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Abstract

We study theoretically and experimentally the properties of quasiperiodic

one-dimensional serial loop structures made of segments and loops arranged

according to a Fibonacci sequence (FS). Two systems are considered. (i) By

inserting the FS horizontally between two waveguides, we give experimental

evidence of the scaling behaviour of the amplitude and the phase of the

transmission coefficient. (ii) By grafting the FS vertically along a guide, we

obtain from the maxima of the transmission coefficient the eigenmodes of the

finite structure (assuming the vanishing of the magnetic field at the boundaries

of the FS). We show that these two systems (i) and (ii) exhibit the property of

self-similarity of order three at certain frequencies where the quasiperiodicity

is most effective. In addition, because of the different boundary conditions

imposed on the ends of the FS, we show that horizontal and vertical structures

give different information on the localization of the different modes inside the

FS. Finally, we show that the eigenmodes of the finite FS coincide exactly with

the surface modes of two semi-infinite superlattices obtained by the cleavage of

an infinite superlattice formed by a periodic repetition of a given FS.

1. Introduction

Photonic crystals (PCs) have been a subject of great interest during the last decade because of

their interesting properties in the development of new optical circuits [1, 2]. These systems,

constituted by periodic arrangements (cells) of dielectric materials according to one (1D), two

(2D) and three (3D) dimensions, present characteristic frequency domains in the dispersion



curves where light can propagate (bulk bands) and frequency domains where light cannot

propagate (gaps). These structures present unusual properties which can be exploited in the

control and the guidance of light [3, 4]. In their 1D version, PCs are well known as optical

multilayers of alternating dielectric materials [5]. Such structures exhibit multiple reflections

and destructive interference giving rise to forbidden bands where light cannot propagate. This

effect is used in designing optical devices such as omnidirectional optical mirrors [6–9], Fabry–

Perot filters [5] and thermophotovoltaics [10]. Recently, quasi-one-dimensional photonic

crystals based on coaxial BNC connectors have been used to reproduce several effects related

to periodic dielectric media in the radio-frequency region such as: band-gap structures with

or without defect modes [11–13], superluminal effects [13, 14], field localization [12], Fabry–

Perot resonators [15] and non-linear effects [16]. Coaxial PCs are more attractive for this

purpose than their optical counterparts since they require relatively simple equipment. In

addition, the propagation in these structures is monomode [17] and one can obtain very accurate

experimental results that may be fitted with a simple 1D theoretical model.

Photonic quasi-crystals are intermediate between periodic and disordered systems [18].

Since the introduction of the Fibonacci dielectric multilayers by Kohmoto et al [19], the

propagation of electromagnetic waves in quasi-periodic systems has been the subject of

several theoretical and experimental investigations [20–32]. These structures may present

several applications such as optical microcavities [31], omnidirectional reflection [32], multi-

wavelength narrow band optical filters and wavelength division multiplexing systems [26].

Also, it was demonstrated [25] that these systems can provide an interesting alternative to

regular photonic crystals for the realization of photonic devices, such as optical filters with

a self-similar spectrum and a high wavelength selectivity in the band edge region. Because

of their non-interacting nature, electromagnetic waves provide an excellent tool for probing

the localization phenomena in comparison with other excitations such as electronic waves.

Recently [33], we have studied the propagation and localization of electromagnetic waves in

a quasi-periodic coaxial photonic crystal made of loops and segments arranged to a Fibonacci

sequence (FS) Sk+1 = SkSk−1 with the initial conditions S1 = A, S2 = B, where k is the

generation number. For example S3 = ABA, S4 = ABAAB, S5 = ABAABABAB, . . .. The

number of blocks in each generation k is Fk = Fk−1 + Fk−2 with F1 = 1 and F2 = 2. In [33],

we have considered the transmission through a given sequence of the FS inserted between

two standard coaxial cables and deduced several properties of the wave propagation in such

structures such as the dispersion curves, the phase times and therefore the density of states

as well as the group velocities. Each of the two blocks A and B constituting the Fibonacci

structure is composed of a loop connected to a segment. When the loop is symmetric (i.e.,

composed of two identical waveguides), it becomes equivalent to a segment characterized by

half the impedance of its constituents. Therefore, each block may be considered as a bi-segment

of different impedances. When the segments are standard coaxial cables of 50 � impedance,

each block becomes a 25 �/50 � bisegment. Our aim was to reproduce Fibonacci structures

similar to those used in the pioneering work of Merlin et al [34] on layered media, where each

block is composed of two different layers (bilayer). However, because of the length of these

structures and the attenuation in the cables, we were not able to check experimentally some

peculiar features of FS such as the scaling behaviour of the amplitude and the phase of the

transmission coefficient. In this work, we consider a simpler Fibonacci structure where block

A is formed by a coaxial cable of length dA = 1 m and impedance ZA = 50 � and block B

is a symmetric loop of impedance ZB = 25 � and length dB = 1 m (see figures 1(a) and (b)).

This structure is equivalent to the one used in our recent theoretical work on acoustic waves in

Fibonacci phononic circuits [35] and the works of Kohmoto et al [19, 20] on layered optical

media. Our aim in this paper is twofold.



Figure 1. Schematic representation of blocks A and B constituting the Fibonacci structure. Block

A (a) is a simple coaxial cable of length d1 and impedance Z1. Block B (b) is a loop made of

two cables of lengths d2 and d3 and impedances Z2 and Z3 respectively. (c) A finite Fibonacci

structure inserted horizontally between two waveguides. (d) The same as (c) but for a structure

grafted vertically along a guide. (e) A superlattice made of a periodic repetition of a given Fibonacci

sequence. (f), (g) Two semi-infinite superlattices obtained by the cleavage of an infinite superlattice

(e) between two successive sequences.

(i) In addition to our recent work [33, 35], we give not only theoretical but also experimental

evidence of the scaling behaviour of the amplitude and the phase of the transmission

coefficient through a finite FS inserted between two semi-infinite waveguides.

(ii) We study a vertical structure formed by a given FS grafted along a guide. This structure

enables us to deduce all the eigenmodes of the FS (assuming the vanishing of the magnetic

field at the boundaries of the FS).

Different effects related to these quasi-periodic media are observed, including localization and

scaling properties.

2. Method of theoretical and numerical calculation

2.1. Interface response theory of continuous media

Our theoretical analysis is performed with the help of the interface response theory of

continuous media, which allows calculation of the Green’s function of any composite material.



In what follows, we present the basic concept and the fundamental equations of this theory [36].

Let us consider any composite material contained in its space of definition D and formed out

of N different homogeneous pieces located in their domains Di . Each piece is bounded by an

interface Mi , adjacent in general to j (1 � j � J ) other pieces through subinterface domains

Mi j . The ensemble of all these interface spaces Mi will be called the interface space M of the

composite material. The elements of the Green’s function g(DD) of any composite material

can be obtained from [36]

g(DD) = G(DD) − G(DM)G−1(M M)G(M D)

+ G(DM)G−1(M M)g(M M)G−1(M M)G(M D), (1)

where G(DD) is the reference Green’s function formed out of truncated pieces in Di of the

bulk Green’s functions of the infinite continuous media and g(M M), the interface element of

the Green’s function of the composite system. The knowledge of the inverse of g(M M) is

sufficient to calculate the interface states of a composite system through the relation [36]

det[g−1(M M)] = 0. (2)

Moreover if U(D) represents an eigenvector of the reference system, equation (1) enables the

calculation of the eigenvectors u(D) of the composite material and

u(D) = U(D) − U(M)G−1(M M)G(M D)

+ U(M)G−1(M M)g(M M)G−1(M M)G(M D). (3)

ln equation (3), U(D), U(M), and u(D) are row vectors. Equation (3) provides a

description of all the waves reflected and transmitted by the interfaces, as well as the reflection

and transmission coefficients of the composite system. ln this case, U(D) is a bulk wave

launched in one homogeneous piece of the composite material [17].

2.2. Inverse surface Green’s functions of the elementary constituents

We consider an infinite homogeneous isotropic dielectric wire i characterized by its

characteristic impedance Z i . The Fourier transformed Green’s function between two points

x and x ′ of this wire is

G i (x, x ′) = 1
2
jZ i e

−αi |x−x′ | (4)

where

αi = −j
ω

c

√
εi , (5)

εi is the relative permittivity, ω the angular frequency of the wave, c the speed of light in

vacuum, and j =
√

−1. Before addressing the problem of the FS, it is helpful to know the

surface elements of its elementary constituents (see figures 1(a) and 1(b)), namely, the Green’s

function of a finite segment of length d1 and impedance Z1, of a loop (2, 3) made of two wires 2

and 3 of lengths d2 and d3 and impedances Z2 and Z3 respectively, and of a semi-infinite wire s

of impedance Zs . The finite segment is bounded by two free surfaces located at x = −di/2 and

x = +di/2. These surface elements can be written in the form of a (2 × 2) matrix gi(M M),

within the interface space Mi = {−di/2,+di/2}. The inverse of this matrix takes the form [17]

[g1(M M)]−1 =
(

C1

Z1S1
− 1

Z1S1

− 1
Z1S1

C1

Z1S1

)

, (6)



for the segment (figure 1(a)) and

[g2,3(M M)]−1 =

(

C2

Z2S2
+ C3

Z3S3
− 1

Z2S2
− 1

Z3S3

− 1
Z2S2

− 1
Z3S3

C2

Z2S2
+ C3

Z3S3

)

, (7)

for the loop (figure 1(b)). Ci = cos(ωdi

√
εi/c), Si = sin(ωdi

√
εi/c) and Z i is the impedance

of the different wires (i = 1, 2, 3). The inverse of the surface element of a semi-infinite

waveguide s characterized by its impedance Zs is given by

[gs(0, 0)]−1 = −
j

Zs

. (8)

From equation (7) one can deduce that a symmetric loop made of identical wires of lengths

d2 = d3 and impedances Z2 = Z3 is equivalent to a single segment of length d2 and

characterized by the impedance Z2/2. Therefore, block B (figure 1(b)) becomes equivalent

to a segment of length dB = d2 and impedance ZB = Z2/2. We shall also call dA = d1 and

ZA = Z1 the length and the impedance of the segment constituting block A respectively. The

experimental evidence of the existence of band gaps and defect modes in 1D periodic photonic

systems constructed by two alternative coaxial cables of different characteristic impedances

was presented recently [11, 12, 14, 15]. However, the advantage of the symmetric loop structure

lies in the fact that it is not necessary to have two cables of different natures to realize the

contrast between the two constituent media of each block. This property could be of practical

interest in optical waveguide structures.

2.3. Transmission coefficient through horizontal and vertical sequences

The 1D FS can be considered as a finite number of blocks A and B pasted together according

to the Fibonacci sequence. The interface domain is made of all the connection points between

finite segments and loops. Within the total interface space of the finite sequence, the inverse

of the matrix giving all the interface elements of the Green’s function g is a finite tridiagonal

matrix formed by linear superposition of the elements [gi(M M)]−1 (equations (6) and (7)).

The explicit expression of the Green’s function elements on the two surfaces bounding the FS

can be written as [37]

[g(M M)]−1 =
(

a b

b c

)

. (9)

The four matrix elements are real quantity functions of the different parameters of the

constituent’s elements gi(M M) (equations (6) and (7)). From equations (2) and (9), one

can deduce the expression giving the eigenmodes of the FS with (i) vanishing magnetic field

boundary conditions, namely

ac − b2 = 0, (10)

and (ii) vanishing magnetic field on one side and electric field on the other side, namely

c = 0. (11)

Now, if the finite composite system is sandwiched (grafted) horizontally (vertically)

between two homogeneous waveguides labelled s (see figures 1(c) and (d)), then an incident

plane wave launched from the left waveguide gives rise to the transmission functions in the

right waveguide as

th =
2jb/Zs

ac − b2 − (1/Zs)2 − j(a + c)/Zs

, (12)



and

tv =
−2jc/Zs

ac − b2 − 2jc/Zs

, (13)

respectively, where h and v stand for horizontal and vertical. The transmission function can

be written in an explicit complex form as t = α + jβ = |t|ejϕ where |t| is the transmission

coefficient, ϕ = arctan(β/α) ± mπ is the phase associated with the transmission field and

m is an integer. The first derivative of ϕ with respect to the frequency is related to the delay

time taken by the wave to traverse the structure. This quantity, called the phase time, is defined

by [38]

τϕ =
dϕ

dω
. (14)

2.4. Dispersion relations of infinite and semi-infinite periodic sequences

The Green’s function of the infinite superlattice (SL) made of a periodic repetition of a given

sequence (figure 1(e)) is obtained by a linear juxtaposition of the 2 × 2 matrices (equation (9))

at the different interfaces. We obtain a tridiagonal matrix. After a Fourier transform, we obtain

the following expression giving the dispersion relation of an infinite SL [39]:

cos(K D) = −(a + c)/2b, (15)

where K is the propagation vector and D the period of the SL (D =
∑Fk

i=1 di , where Fk is the

number of blocks in generation k). In the same way, the dispersion relation giving the surface

modes for a semi-infinite SL lying in the half space z > 0 (figure 1(f)) is given by

ac − b2 = 0, (16)

together with the condition
∣

∣

∣

∣

b

a

∣

∣

∣

∣

< 1. (17)

The latter condition (equation (17)) ensures that the waves are decaying from the surface when

penetrating into the SL. We obtain the same expression (equation (16)) for the semi-infinite SL

lying in the half space z < 0 (figure 1(g)) but with the condition
∣

∣

∣

∣

b

a

∣

∣

∣

∣

> 1. (18)

This result shows that if a surface mode appears on the surface of one SL, it does not appear on

the other surface of the complementary SL. Moreover, equation (16) shows that the expression

giving the surface modes for two complementary SLs is exactly the same expression giving the

eigenmodes of one sequence (equation (10)).

3. Numerical and experimental results

As mentioned above, we consider a Fibonacci structure made of two blocks A and B. The wires

constituting these blocks are made of standard coaxial cables (i.e. Z = 50 � and ε = 2.3).

Block A is a coaxial cable of length dA = 1 m and impedance Z = ZA = 50 �, whereas

block B is a loop made of two identical cables of length dB = 1 m and impedance Z = 50 �

(figures 1(a) and (b)). As mentioned before, this loop is equivalent to a segment of length

dB = 1 m and impedance ZB = Z/2 = 25 �. We shall focus on the transmission coefficient

when a given Fibonacci sequence is either inserted horizontally between, or grafted vertically

to, two semi-infinite waveguides of type A. In particular, we shall show that these two geometric

systems may give different information on the propagation and localization of electromagnetic

waves in such structures.



3.1. The case of the horizontal sequence

In this subsection, we consider a given Fibonacci sequence inserted horizontally between two

semi-infinite waveguides (figure 1(c)). Figures 2(b)–(g) show the transmission coefficient for

the generations S4 (five blocks), S5 (eight blocks), S6 (13 blocks), S7 (21 blocks), S8 (34 blocks)

and S9 (55 blocks), respectively. The solid (dashed) curves represent the theoretical results

with (without) absorption, whereas open circles correspond to the experimental ones. The

experiments were performed using standard coaxial cables assembled together with metallic

T-shaped connectors. The cross section of the cables being negligible compared to their length

and to the propagation wavelength, the assumption of monomode propagation is then satisfied.

The transmission measurements have been realized by using the tracking generator coupled to

a spectrum analyser in the frequency range of 10–100 MHz. The attenuation inside the coaxial

cables was simulated by introducing a complex dielectric constant ε (ε = ε′ − jε′′). The

attenuation coefficient α′′ can be expressed as α′′ = ε′′ω/c. On the other hand, the attenuation

specification data supplied by the manufacturer of the coaxial cables in the frequency range of

10–100 MHz can be approximately fitted with the expression ln(α′′) = γ + δ ln(ω), where γ

and δ are two constants. From this fitting procedure, a useful expression for ε′′ as a function of

frequency can be obtained under the form ε′′ = 0.017 f −0.5 where the frequency f is expressed

in hertz. The experimental results are very well fitted by the 1D model using the Green’s

function method. One can notice in figure 2 that the attenuation inside the cables induces

transmission depletion, especially at high frequencies.

Two regions of frequencies may be distinguished in figures 2(b)–(g): the regions where the

transmission falls down rapidly to zero as the generation number increases, which correspond

to the forbidden modes (transmission gaps), and the regions where the transmission is more

noticeable, which correspond to the allowed modes (transmission bands). These results

clearly show the existence of more than one gap (transmission dips) in comparison with

the transmission spectrum of the periodic case (figure 2(a)), especially for high generations

(figure 2(g)). This is the consequence of the band-gap fragmentation in quasi-periodic

structures. An interesting result in figures 2(b)–(g) is the existence of new features around

the central gap frequency fc ≃ 49.34 MHz of the periodic structure; these resonances present a

certain recursive order which is a characteristic of Fibonacci systems. This property, called the

scaling relation [19, 20], has been interpreted as a sign of localization of the waves in Fibonacci

systems. Kohmoto et al [19] have shown that the scaling behaviour of the transmission

coefficient is characterized by the scaling factor [19, 20]

F =
√

1 + 4(1 + I )2 + 2(1 + I ), (19)

where I is an invariant which remains constant at every step of the recursive procedure. This

invariant is given by [19]

I =
1

4

(

ZB

ZA

−
ZA

ZB

)2

sin2(ωd
√

ε/c) (20)

where ZA = 50 � and ZB = 25 � are the impedances of the cables and loops respectively.

Also, it has been demonstrated [19, 20] that one can expect scaling around φ = ωd
√

ε/c =
(2m + 1)π/2, where the quasiperiodicity is most effective (m is an integer). This implies that

the transmission coefficient should exhibit a self-similar behaviour around the central frequency

fc = (2m + 1)49.34 MHz with T j+3 = T j (the period of the transmission coefficient is three

recursions) with a scaling factor F . For this frequency, equations (19) and (20) lead to I =
0.526 and thus F = 6.4061. This is clearly illustrated in the insets of figures 2(b)–(g) near fc.

Note the scale change of the frequency axis in the insets of figures 2(b), (c), and (d) as compared

to figures 2(e), (f) and (g) respectively. We remark that S4 (S7), S5 (S8) and S6 (S9) resemble



Figure 2. Theoretical (solid curves) and experimental (open circles) variations of the transmission

coefficient as a function of the frequency for different structures. Block A is a cable of length

d1 = 1 m and impedance Z1 = 50 �, while block B is a symmetric loop with d2 = d3 = 1 m and

Z2 = Z3 = 50 �. (a) The periodic structure; (b)–(g) generation Sk (k = 4–9) of the Fibonacci

structure. The dashed curves in (a)–(g) are the theoretical curves when the absorption is not taken

into account. Blocks A and B in the periodic and Fibonacci structures are the same as in figure 1.

Note the scale change of the frequency axis near the central frequency fc in the insets of the figures

associated with S4, S5 and S6 as compared to S7, S8 and S9 respectively.



each other near fc with a periodicity of three and a scaling factor F as was found by Gellermann

et al [20] in optical layered media. One can notice, however, that due to the dissipation in the

cables the similarities between the different curves around fc do not show exactly the same

features as they should in the absence of dissipation (see the dashed curves). This is in particular

the case for high generations (see the insets of figures 2(d) and (g)). However, as will be shown

below, this self-similarity is better illustrated in the transmission phase time.

It is well established that outside the Fibonacci band gaps the waves are critically

localized [39]. In contrast with the fully disordered (Anderson) localized case, these critically

localized modes display weaker decay than exponential, most likely by a power law, and have

a rich self-similar structure [40]. In order to understand the spatial localization of the different

modes in figure 2, we plotted in figure 3 the local density of states4 (LDOS) as a function of the

space position z for the modes lying at f = 98.68, 49.34 and 68.08 MHz (i.e. for the reduced

frequencies φ = π, 0.5π and 0.69π ) in figure 2(f) (eighth generation). The LDOS reflects

the square modulus of the electric field inside the structure. These modes could be classified

respectively as the following. (i) Extended modes as shown in figure 3(a) for the completely

transparent mode (φ = π ), for which the transmission is unity [39]. The wavefunction, namely

the electric field distribution, follows the structure of the Fibonacci sequence (see the inset

of figure 3(a)). Similar results are found for electronic and electromagnetic waves in layered

media [41, 42]. (ii) Self-similar modes as shown in figure 3(b) for the mode lying at φ = 0.5π .

The corresponding LDOS shows a self-similar behaviour [43, 44] around the main peak every

three generations (see the inset of figure 3(b) displayed for the 11th generation). (iii) Band-

edge modes as shown in figure 3(c) for the mode φ = 0.69π . The LDOS shows a noticeable

similarity to the band edge resonances occurring in the periodic structure (see the inset of

figure 3(c)) but is less regular. Band edge resonances in photonic periodic crystals are shown

not to be localized states since their extension scales linearly with the system size and they

do not decay to zero [43, 45]. In contrast, the Fibonacci band edge resonances may decay

via a power law due to an optical path gradient occurring during the growth of the Fibonacci

samples [25, 46]. As pointed out in [47], these resonances could serve as a new type of complex

cavity in 1D multilayer structures that provides the feedback for laser action in the field of

random laser systems.

Another important quantity that characterizes the interaction of the incident photon with

the different modes in the FS is the transmission phase time τϕ . This quantity is interpreted as

the time needed for a photon to complete the transmission process. The phase time in symmetric

loop structures is equivalent to the total density of states [13, 37]. Figure 4(a) gives the phase

time as a function of the frequency for the periodic structure as in figure 2(a). Similarly to

the density of states in 1D structures, the phase time exhibits large values near the band edges

and small oscillations inside the allowed bands (which are indicative of the discrete modes in

the finite size structure) and vanishes inside the forbidden bands. In the frequency domain of

the forbidden bands of the periodic structure around fc, the phase time associated with the FS

(figures 4(b)–(g)) also shows a self-similarity (three recursions). In addition, because of the

small effect of the attenuation in the cables on the phase, the self-similarity around fc is better

illustrated in the spectra of the phase time (S4 (S7), S5 (S8) and S6 (S9)) than in the spectra

of the amplitude (see the insets of figure 2). To our knowledge, until now there has been no

experimental study on the phase time scaling behaviour in FS. It is worth mentioning that these

results are different from those we obtained recently [33] when blocks A and B were composed

of a bisegment instead of one segment. In this case, the periodicity is of order six instead of

three and therefore the scaling factor is about F2 instead of F .

4 The detail of calculations of LDOS is given in [51].



Figure 3. The local density of states LDOS (in arbitrary units) as a function of the space position

z for three frequencies from figure 2(f): (a) φ = π (middle of the band), (b) φ = 0.5π (central

frequency) and (c) φ = 0.69π (band edge). The inset of (b) corresponds to the LDOS associated

with the 11th generation at φ = 0.5π . The inset of (c) corresponds to the LDOS associated with

the periodic structure at φ = 0.622π .



Figure 4. (a) The same as figure 2(a) but for the phase time. (b)–(g) The same as figures 2(b)–(g)

but for the phase time in the frequency domain 40–60 MHz.

From the phase time one can deduce the group velocity defined as vg = L/τϕ [48] where L

is the total length of the structure, i.e. the sum of the lengths of the A and B blocks constituting

the structure (here L = Fk metres). In the case of a periodic structure (figure 5(a)), an

anomalous dispersion occurs inside the gaps and velocities greater than the speed of light are

expected [13, 14]. Inside the passbands, the group velocity is equal to 0.66c, which is the

normal speed of wave propagation in the cables used in these experiments. Near the band edge

a strongly reduced group velocity associated with large delay times can be observed. In the

case of an FS (figures 5(b)–(g)), which induces large phase times in the frequency domain 40–

60 MHz (figures 4(b)–(g)), small group velocities vg ≃ 0.3c lower than the normal speed in

the cables (i.e. 0.66c) can be observed. This value is the same as the one found by Munday

and Robertson [49] in a periodic structure made of two alternating different coaxial cables with

an embedded defect cable. Therefore, the FS may be used as a tool to reduce the propagation

speed of waves in such structures.

3.2. The case of the vertical sequence

Now, we consider the second structure, where the FS is attached vertically to two waveguides

(figure 1(d)). From the comparison of equations (10) and (13) one can see that the maxima

of the transmission (i.e. tv = 1) occur at the eigenfrequencies of the finite FS with vanishing

magnetic field on both ends. However, the comparison of equations (11) and (13) shows that



Figure 5. (a) The same as figure 4 but for the group velocity.

the minima of the transmission (i.e. tv = 0) occur at the eigenfrequencies of the finite FS

with vanishing magnetic field on one side and electric field on the other side. Transmission

spectra for the generations S3–S8 are presented in figure 6. The theoretical results (full curves)

are in good agreement with experimental results (open circles). In figure 7 we have reported

as dots the frequencies corresponding to the maxima of the spectra in figure 6 for different

generations. One can notice that, as predicted, the number of eigenmodes of the FS increases

with increasing generation number. Another interesting point is the accumulation of these

modes in certain frequency regions and their absence from other regions that coincide with

dips in the transmission spectra of figure 2.

In general, the spatial localizations of the eigenmodes of the FS with vanishing magnetic

fields on both ends present different behaviours in comparison with those of the FS inserted

between two waveguides. An example of the dependence of the LDOS on the media

surrounding the structure is sketched in figure 8 for the mode lying exactly at the central

frequency fc = 49.34 MHz. One can notice that the localization of the electric field goes

from the middle of the structure to its extremities when the impedance of the surrounding

media decreases from Zs = ZA to Zs = 0. In particular, one can notice (figure 9(a)) that,

contrary to the results of figure 3(b), the whole spectra of the LDOS associated with the

modes lying at fc = 49.34 MHz (see figure 7(b) which corresponds to figure 7(a) enlarged

in the frequency domain 40–60 MHz) are not self-similar as illustrated in the LDOS of S11 as

compared to S8 sketched in the inset of figure 9(b). However, a magnification of the spectra

associated with S11 in the space domain z � 34 m gives rise to similar spectra as those of

S8 and S5. This is shown in figures 9(b) and (c), where we have magnified the curve of S11

(figure 8(a)) and compared it to the curves of S8 and S5 sketched in the insets of figures 9(b)

and (c) respectively. For the modes lying at an almost constant frequency ( f = 41.93 MHz)



Figure 6. Theoretical (solid curves) and experimental (open circles) variations of the transmission

coefficient as a function of the frequency for a finite Fibonacci sequence grafted vertically along a

guide (figure 1(d)) for generations S3–S8.

until the eighth generation (figure 7(b)), these modes are induced by one of the two surfaces

bounding the FS as shown in figure 9(d) for the modes labelled 1 and 2 in figure 7(b). We

observe now a decrease of the LDOS from the surface when penetrating into the structure with

almost the same localization. This is also the case for the modes lying at f = 57.01 MHz

(figure 7(b)). These modes are without analogue in the case of an FS surrounded by media of

different impedances. For the modes lying at f = 98.68 MHz (i.e. φ = π ), one can notice

(dashed curve in figure 9(e)) that these modes show regular oscillations (extended modes).

This behaviour is different from the one obtained for the same mode but in the horizontal

structure, where the LDOS follows a Fibonacci line shape (see figure 3(a)). Indeed, an analysis

of the LDOS similar to the one sketched in figure 8 shows that the LDOS follows a Fibonacci

line shape for different impedances of the surrounding media until Zs = 0, where this mode

shows regular oscillations (figure 9(e)). Concerning the other modes of the FS, they exhibit an

irregular shape inside the structure (see the full curve in figure 9(e) associated with the mode

labelled 3 in figure 7(b)). These modes could be qualified as critical modes. It is worth to notice



Figure 7. (a) Eigenfrequencies (dots) of a finite FS with vanishing magnetic field on both sides

as a function of the generation numbers. The eigenmodes are obtained from the maxima of the

transmission spectra of figure 6. (b) The same as (a) but enlarged in the frequency domain 40–

60 MHz.

that similar results to those presented here are found theoretically for other excitations in the

FS such as plasmon polaritons and magnetostatic excitations [50]. As mentioned above, the

minima of the transmission spectra of figure 6 give the eigenmodes of the FS with vanishing

magnetic field on one side and electric field on the other side. These results are reported in

figure 10. One can notice that the eigenmodes of such a structure are quite different from those

of the FS with vanishing magnetic field on both ends (figure 7(a)).

As mentioned in section 2.4, the eigenfrequencies of the finite FS with vanishing magnetic

field on both ends coincide with the surface modes of two complementary superlattices obtained

by the cleavage of an infinite superlattice made of a periodic repetition of a given sequence. To

confirm these results, we have plotted in figure 11 the distribution of the bandwidths (heavy

lines) of an infinite superlattice. These bulk bands are separated by gaps where surface modes

for the semi-infinite superlattice lying at z > 0 (figure 1(f)) (z < 0, figure 1(g)) are given by



Figure 8. The LDOS (in arbitrary units) as a function of the space position z for generation S11

at the central frequency fc = 49.34 MHz and different impedances of the surrounding media:

(a) Zs = ZA, (b) Zs = ZA/2, (c) Zs = ZA/3, (d) Zs = ZA/7 and (e) Zs = 0.

open circles (filled triangles). One can notice that, apart from the modes lying around 0 and

100 MHz, all the eigenmodes of one finite FS (figure 7(a)) coincide with the surface modes of

two complementary superlattices (figure 11). In addition, we obtain a generalization of a rule

obtained before for transverse elastic waves in N-layer superlattices [51]; namely, there exists

one surface mode per gap for each generation when we consider two complementary semi-

infinite superlattices together. As the number of bands is equal to the number of blocks Fk for

each generation k in the frequency domain φ < π (i.e. f < 100 MHz), the number of gaps



Figure 9. The LDOS (in arbitrary units) as a function of the space position z for two frequencies.

(i) f = fc and different generations: (a) S11, (b) S11 enlarged in the space position z < 34 m (the

inset represents the LDOS for generation S8) and (c) S11 enlarged in the space position z < 8 m

(the inset represents the LDOS for generation S5). Notice the high similarity between the enlarged

magnification of the results for S11 and the results for S8 and S5. (ii) f = 41.93 MHz; the LDOSs

for the modes labelled 1 and 2 in figure 7(b) for generations S6 and S7 are sketched in figure 8(d)

by solid and dashed lines respectively. (e) LDOS for the mode labelled 3 (full curve) in figure 7(b);

the dashed curve corresponds to the mode lying at φ = π ( f = 98.68 MHz).



Figure 10. (a) Eigenfrequencies (dots) of a finite FS with vanishing magnetic field on one side and

electric field on the other side as a function of the generation numbers. The eigenmodes are obtained

from the minima of the transmission spectra of figure 6.

and therefore of surface modes is equal to Fk − 1. A detailed analysis of the bulk and surface

modes of infinite, finite and semi-infinite periodic FSs including the scaling and multifractal

behaviours has been presented elsewhere [52].

4. Summary and conclusions

In this paper, we have presented theoretical and experimental results of propagation and

localization of electromagnetic waves in Fibonacci structures made of coaxial cables. The

two blocks constituting the system are respectively a simple coaxial cable and a symmetric

loop that play the role of a segment with half the impedance of its constituting wires. We have

considered the propagation of electromagnetic waves through such structures in two different

ways, where each way gives interesting results on the modes of the FS.

(i) By inserting the structure horizontally between two waveguides, we were able to reproduce

different results known in layered media as the splitting of the bands and the self-

similarity between the transmission spectra with a scaling factor when the generation



Figure 11. Distribution of the bandwidth (vertical lines) of a periodic superlattice (figure 1(e)) as a

function of the generation number. Open circles and filled triangles correspond to the surface modes

of two semi-infinite complementary superlattices lying at z > 0 (figure 1(f)) and z < 0 (figure 1(g))

respectively. Notice the similarity between the positions of these modes and those of figure 7(a).

number increases. In addition, we have shown that besides the transmission amplitude,

an analysis of the phase time enables us to determine the density of states as well as the

group velocities in these structures.

(ii) By grafting the structure vertically, we have shown that the maxima of the transmission

coefficient give the eigenmodes of the FS with vanishing magnetic field at the boundaries,

whereas the minima of the transmission coefficient give the eigenmodes of the FS with

vanishing magnetic field on one side and electric field on the other side.



The spatial localizations of the modes of the FS are very sensitive to the different boundary

conditions on both ends. Some modes of the FS with vanishing magnetic field on both ends

fall at an almost constant frequency as a function of the generation number. These modes may

exhibit either a strong localization at the surface terminations of the FS, a self-similar behaviour

of order three or just an oscillating behaviour inside the FS.
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