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We theoretically study the energy transfer between semiconductor nanocrystals and we calculate the rate of
this process in the case of direct-gap �InAs� and indirect-gap �Si� semiconductors. The calculations are based
on the tight-binding method that enables us to determine the transfer rate, including electronic structure effects,
dielectric screening, and multipolar Coulomb interactions using a microscopic approach. In the case of direct-
gap semiconductor nanocrystals, we show that the energy transfer arises only from dipole-dipole interactions in
agreement with experimental observations. We obtain that the transfer rate is well described by Förster’s
theory, and we provide an analytical expression in which the Förster rate is determined not only by the spectral
overlap between the emission and absorption spectra of the nanocrystals but also by a factor that simulates the
dielectric effects on the Coulomb interactions. In the case of Si nanocrystals, the situation is different because
dipolar transitions are weak due to the indirect gap of Si. For this reason, we show that multipolar terms
dominate when the distance between the nanocrystals is small and surface effects play an important role in the
screening. We predict that the energy transfer between Si nanocrystals by a no-phonon process is possible only
when the dots are almost in close contact.

DOI: 10.1103/PhysRevB.75.195311 PACS number�s�: 78.67.Hc, 73.22.�f

I. INTRODUCTION

Colloidal nanocrystals can be used as building blocks to
form molecular1 or solidlike assemblies such as
two-dimensional2 or three-dimensional colloidal crystals.3

These systems give the possibility to study the cooperative
phenomena that develop when neighbor nanocrystals inter-
act, paving the way to the discovery of materials with new
electronic and optical properties.4 In close-packed assemblies
in which there is strong chemical interdot coupling, transport
measurements have shown that carriers are mobile by hop-
ping between neighbor nanocrystals.5,6 When nanocrystals
are not chemically coupled, interdot communication remains
possible by fluorescence resonant energy transfer7–11 follow-
ing Förster’s mechanism,12,13 which is well-known in organic
materials. In that case, an exciton created in a nanocrystal
�the donor� is transferred to another nanocrystal �the accep-
tor� with a lower �or equal� energy gap in which radiative
recombination can take place. Using this process, tailoring
the size of the nanocrystals gives the possibility to engineer
energy flows in artificial materials.9

All the experiments made so far on the energy transfer
between nanocrystals are interpreted using the theory devel-
oped by Förster in terms of dipole-dipole interactions,12,13

theory which was extended by Dexter14 to include multipole
and exchange interactions. In Förster’s theory, the dipole in
the donor site couples with the absorbing transition in the
acceptor one, and the energy transfer rate is given by �
= �2� /��J2�, where J is the dipole-dipole Coulomb cou-
pling and � is the overlap between the emission spectrum of
the donor chromophore and the absorption spectrum of the
acceptor. � varies as 1 / �R6�out

2 �, where R is the distance be-
tween the two sites and �out is the dielectric constant of the
embedding medium. This theory has been originally devel-
oped for molecular systems and has been experimentally
confirmed.15 However, it has never been theoretically vali-

dated for nanocrystals, while nanocrystal assemblies are
complex dielectric systems in which variations of the fields
at the microscopic scale �local fields� play an important role
in the optical response.16,17 Thus, the dipolar approximation
and the use of a macroscopic dielectric constant need to be
based on a more rigorous basis. In addition, it is not clear
whether multipolar interactions become important in closely
packed arrays of nanoparticles.18 There is also a need to per-
form calculations to predict the energy transfer rates without
using experimental inputs. A full treatment implies the cal-
culation of the electronic structure, the Coulomb coupling,
and the dielectric screening just starting with the microscopic
description of the system.

In this paper, we show that the tight-binding framework is
ideally suited to address this complex problem. We present
calculations of the energy transfer rate between two nano-
crystals. We consider semiconductor materials differing by
the nature of their gap, direct �InAs� or indirect �Si�. In the
case of InAs nanocrystals, we show that the dipolar theory is
justified with the rate � varying like R−6, but we also show
that � strongly depends on the dielectric constant of the ma-
terials. We study the dependence of the rate on the size of the
nanocrystals, and we highlight the importance of the spectral
overlap between the excitation spectra of the donor and of
the acceptor in agreement with original Förster’s theory. We
provide a simple expression which, from the knowledge of
the emission and absorption spectra, gives the Förster rate
taking into account the dielectric environment of the nano-
crystals. Thus, one can determine the transfer rate by just
calculating the optical properties of the independent nano-
crystals. In the case of Si nanocrystals, we show that dipole-
dipole interactions only dominate at large distance R,
whereas at smaller values, multipole interactions play an im-
portant role. This effect is a direct consequence of the weak
dipolar transitions in Si nanocrystals due to the indirect gap
of the material.19
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II. NUMERICAL CALCULATION OF THE TRANSFER
RATE

In the following, we consider two nanocrystals �D
=donor and A=acceptor� of radius RD and RA, respectively.
We call R the distance between their centers. An electron-
hole pair is created in D, and we study its transfer to A.
When R is not too small, the electronic states of the two
nanocrystals are nonoverlapping, and they are just coupled
by long-range Coulomb interactions. Following the
quantum-mechanical derivation of Förster’s theory,13,14 we
calculate the energy transfer rate using the Fermi golden rule,

� =
2�

�
�
i,f

p�i���i�W�f��2��Ei − Ef� , �1�

where the sum is over the initial ��i�� and final ��f�� states of
energy Ei and Ef, respectively, and p�i� is the thermal popu-
lation of state �i�. W is the screened Coulomb interaction
which, due to the inhomogeneous character of the system,
must be written as

W�r,r�� =� �−1�r,r��V�r�,r��dr�, �2�

where � is the static dielectric function and V�r� ,r�� is the
bare Coulomb interaction e2 / �r�−r��. Thus, the calculation
of � requires a good description of the electronic states and
of the dielectric screening in the system and an evaluation of
the matrix elements of the screened potential. We also calcu-
late ��0� from Eq. �1� in which W is replaced by V to see the
effect of the screening on the transfer rate.

The delta function in Eq. �1� means that the total energy is
conserved during the transition. To account for the broaden-
ing of the levels due to electron-phonon coupling �more gen-
erally due to the coupling to the environment�, we replace it
by a Gaussian of width �. We take �=10 meV, a typical
value for nanocrystals in the range of size considered here.16

More complex line shapes could be introduced to describe
the electron-phonon coupling �see, for example, Ref. 7�, but
it would not change the conclusions of our work.

The initial and final states in Eq. �1� correspond to the
many-particle states of the system before and after the en-
ergy transfer as depicted in Fig. 1. In the initial states, the
donor nanocrystal is in an excited configuration whereas the
acceptor one is in its ground state, the situation for the final
states being reversed. Working in the strong confinement re-

gime, excitonic effects are neglected, which enables us to
define the many-particle states as single Slater determinants
built from single-particle states �we will come back to this
point later�. We assume that, before the energy transfer, the
system is in a quasiequilibrium situation, i.e., the electron
and the hole in the donor nanocrystal are thermalized in their
respective bands and the coefficients p�i� are defined accord-
ing to a Boltzmann distribution.19 This approximation is jus-
tified when the carrier relaxation is faster than the exciton
transfer, which is a likely situation �relaxation lifetimes are
typically in the picosecond range16,20,21�. We denote the
single-particle states in the nanocrystal D�A� as 	nc

D �	nc

A � and
	nv

D �	nv

A �, where c and v represent the empty �conduction�
and occupied �valence� states, respectively. Developing the
Slater determinants in this basis, Eq. �1� becomes13,14

� =
2�

�
�

nc,nv�D

mc,mv�A

e−�Enc

D −Env

D �/kT

Z
��	nc

D 	mv

A �W�	nv

D 	mc

A ��2


��Enc

D − Env

D − Emc

A + Emv

A � , �3�

where nc, nv, mc, and mv include the spin index,

Z = �
nc,nv�D

e−�Enc

D −Env

D �/kT �4�

and

�	nc

D 	mv

A �W�	nv

D 	mc

A �

=� � 	nc

D*�r1�	mv

A*�r2�W�r1,r2�	nv

D �r1�	mc

A �r2�dv1dv2.

�5�

When the gap of the donor nanocrystal is much larger
than the acceptor one, the final states in Eq. �1� correspond to
high-energy excitonic states of the acceptor nanocrystal.
Thus single-particle energy levels and wave functions must
be calculated with a method able to describe them in a wide
energy range, which necessitates to go beyond effective mass
and k ·p methods.16 The tight-binding method provides such
a description with a moderate computational cost.16,19,22–25

The single-particle wave functions are written in a basis
of sp3 atomic orbitals. The Hamiltonian matrix includes in-
teractions up to third nearest neighbors, providing a very
good description of the bulk energy bands for Si �Ref. 22�
and InAs.24 The matrix elements of the screened Coulomb
potential V�r1 ,r2� are easily calculated because overlaps be-
tween atomic orbitals are neglected and because electronic
charges localized on the atoms can be approximated by point
charges.16,26,27 The calculation of the dielectric matrix � and
of the screened potential W is described in the Appendix. In
the following, we present results obtained for a large number
of donor and acceptor sizes. The correlation between con-
finement energies and size is given in Refs. 22 and 24 for Si
and InAs nanocrystals, respectively.

FIG. 1. Many-particle electronic configurations of the donor �D�
and acceptor �A� nanocrystals in the �i� initial and �f� final states of
the system, before and after the energy transfer.
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III. ANALYTICAL DERIVATION OF THE TRANSFER
RATE

Our main goal in this section is to establish an analytical
relation between the transfer rate � and two important quan-
tities: first, the overlap between the donor emission spectrum
and, the acceptor absorption spectrum, and second, a quan-
tity � describing the dielectric screening in the system and
which will only depend on the nature of the materials and on
geometrical factors. Thus, we assume that we can replace W
by �V in Eq. �1�.

A. Definition of the Förster rate and of the spectral overlap

We must calculate the matrix elements of the Coulomb
interaction V=e2 / �R+rD−rA� between two electrons in the
donor and the acceptor, respectively. R is the vector joining
the nanocrystal centers and rD �rA� is the vector position
measured from the center of the donor �acceptor�. Following
Ref. 14, we expand V in a Taylor series about R and we only
keep the first nonzero contribution,

Vdip = �e2/R3��rD · rA − 3�rD · R��rA · R�/R2	 , �6�

corresponding to the dipole-dipole interaction. The injection
of Eq. �6� into Eq. �3� leads to an expression which includes
matrix elements �	nc

D �rD�	nv

D � and �	mc

A �rA�	mv

A �. Because the
nanocrystals have almost a spherical symmetry, we can re-
place the absolute square of the matrix elements in Eq. �3� by
their average over all possible orientations of R.28 Following
Ref. 14, the average is

���	nc

D 	mv

A �Vdip�	nv

D 	mc

A ��2�av =
2e4

3R6 ��rncnv

D ��2��rmcmv

A ��2, �7�

where

��rncnv

D ��2 = ��	nc

D �xD�	nv

D ��2 + ��	nc

D �yD�	nv

D ��2 + ��	nc

D �zD�	nv

D ��2.

�8�

From Eq. �3�, we deduce the transfer rate �F following
Förster’s theory,

�F =
4�

3�

e4�2

R6 �
nc,nv�D

mc,mv�A

e−�Enc

D −Env

D �/kT

Z
��rncnv

D ��2��rmcmv

A ��2


��Enc

D − Env

D − Emc

A + Emv

A � . �9�

The lifetime �ncnv
for the spontaneous radiative transition

of an electron in the donor from the state 	nc

D to the state 	nv

D

is given by14,29

1

�ncnv

=
4e2�Enc

D − Env

D �3

3c3�4 ��rncnv

D ��2. �10�

It is important to note that this definition of the spontane-
ous lifetime holds for the emission of a photon in vacuum
and does not include local-field effects.14 We will come back
to these points later. Then, we can define the emission spec-
trum of the donor nanocrystal as

L��
� = �
nc,nv�D

e−�Enc

D −Env

D �/kT

Z�ncnv

���
 − Enc

D + Env

D � , �11�

where �
 is the photon energy. L��
� provides the shape of
the emission spectrum, and its integral 
L��
�d�
 is equal
to the average decay probability, 1 / �̄.

We define the absorption cross section of the acceptor
nanocrystal as16

���
� = �
mc,mv�A

4�2
e2

c

��rmcmv

A ��2

3
���
 − Emc

A + Emv

A � .

�12�

Equivalently, we can define the optical absorption coefficient
���
�=���
� /�A, where �A is the volume of the nanocrys-
tal. Once again, these definitions do not include local-field
factors and, thus, cannot be compared directly to experi-
ments. Using Eqs. �9�–�12�, we deduce a final expression of
the Förster transfer rate as

�F =
3�2c4

4�R6 � L��
����
�

4 d��
� , �13�

which, in the common situation where the luminescence
spectrum can be replaced by a delta function at the energy
�
, becomes

�F �
3�2c4

4�R6

���
�
�̄
4 . �14�

B. Definition of the screening factor �

We discuss in the following how it is possible to describe
the effect of the screening on the electron-electron interac-
tion through a simple factor �. The basic idea is to consider
the screening of the dipole-dipole interaction between two
nanocrystals using classical electrostatics. It was shown that
the dielectric response of nanocrystals differs from the bulk
one because it is strongly reduced near the surfaces while it
is bulklike inside the nanocrystal.27,30,31 However, for some
properties, it is still possible to define effective values which
correspond to averages over the nanocrystal volume and
which decrease at decreasing nanocrystal size.27,30,32 Al-
though approximate, this approach enables us to get a com-
pact expression for the dielectric screening in nanoscale ma-
terials. Thus, we assume that the donor and acceptor
nanocrystals can be described by dielectric constants �in

D and
�in

A , respectively. Their size dependence is written as

�in
D�A� = 1 + ��in

bulk − 1��1 − �/RD�A�� , �15�

where � is of the order of the Thomas-Fermi
wavelengths.30,33 In addition, we consider that the two nano-
crystals are embedded in a dielectric material of dielectric
constant �out.

To calculate the dipole-dipole interaction, we consider a
dipole situated at the center of D and we calculate the elec-
trostatic potential �out�r� outside the dot �r�RD�. Opposite
charges +q and −q are positioned at s and −s, respectively
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�s= �s��RD�. The dipole is p=2qs, and �out�r� is given by34

�out�r� = ��r,s� − ��r,− s� , �16�

where

��r,s� =
q

�in
D�r − s�

�17�

+ q�1 −
�out

�in
D 
�

l=0

�
sl�l + 1�Pl„cos���…

��in
Dl + �out�l + 1��rl+1 . �18�

� is the angle between the vectors r and s, and Pn is the nth
Legendre polynomial. If we keep only the dipolar term, we
obtain

�out�r� � � 3

�in
D + 2�out


�dip�r� , �19�

where �dip�r�= p cos��� /r2 is the potential induced by the
dipole in vacuum. The same relation holds between the re-
spective electric fields Eout and Edip. To calculate the electric
field Ein

A in A due to the dipole in D, we must take into
account the effect of the dielectric screening in A. We simply
write Ein

A �3�out / ��in
A +2�out�Eout, an expression which nor-

mally holds for the electric field inside a dielectric sphere in
response to a homogeneous electric field.16,34 Combining
these equations, we obtain Ein

A =�Edip, where Edip is the elec-
tric field of the dipole in vacuum and

� �
3�out

��in
D + 2�out���in

A + 2�out�
. �20�

This derivation of � is clearly approximate, since, in par-
ticular, it neglects the mutual influence between A and D.
However, we will see that Eq. �20� provides a reasonable
description of the screening of dipole-dipole interactions be-
tween two quantum dots. Furthermore, it is exact in two
limits, when �in

D =�in
A =�out and when R→�.

IV. InAs QUANTUM DOTS: RESULTS AND DISCUSSIONS

A. Dependence of the transfer rate on the distance
between nanocrystals

Figure 2 presents the variation of the transfer time
�1/� ,1 /��0�� with respect to the distance R between two
identical InAs nanocrystals. Similar results are obtained for
nanocrystals of different sizes. � varies almost exactly like
R−6 in a wide range of distance, showing that the transition is
induced by dipole-dipole interactions even when the two
nanocrystals are almost in contact. Multipolar interactions
are not involved in the transition. Thus, our work confirms
the conclusions of Kagan et al.7 that the energy transfer in
assemblies of nanocrystals arises from dipole-dipole interdot
interactions. As shown by the large difference between � and
��0�, the dielectric screening has a strong influence on the
energy transfer rate but it does not affect the R−6 law. Con-
sequently, the ratio between ��0� and � does not depend on R.

B. Screening factor

By definition, � /��0� describes the effect of the screening
on the energy transfer rate. Figure 3 shows that, in average,
� /��0� is close to �2, where � is given by Eqs. �15� and �20�.
Thus, �2 provides a simple expression for the dependence of
the rate on the effective dielectric constant of the materials.
However, the dispersion of � /��0� with respect to �2 is not
negligible due to the approximations used to derive Eq. �20�
and due to the fact that the effective dielectric constant is just
an average notion.16,27,30 Main differences with respect to the
average values are due to microscopic effects on the dielec-
tric response and, thus, can only be calculated using a micro-
scopic approach.

C. Comparison with Förster’s theory

Figure 4 presents the transfer time between two InAs
nanocrystals in various situations �R=10 nm� and compares
the results of the full calculation with those obtained using
the Förster’s theory �Eq. �13��. The agreement between the
two calculations is excellent over many orders of magnitude.
Similar agreement is obtained for other values of R. We have
checked that the discrepancies between the two results only

FIG. 2. Energy transfer time ��, 1 /�; 
, 1 /��0�� between two
identical InAs nanocrystals �radius=1.52 nm� in vacuum versus the
interdot distance R. � is calculated using the screened Coulomb
interaction, and ��0� using the bare one. The solid �dotted� curve
shows that 1 /� �1/��0�� varies like R6.

FIG. 3. Ratio �� /��0�� /�2 calculated for InAs nanocrystals in
vacuum versus the radius RA of the acceptor. The figure shows that
� /��0� is close to �2, in average. The radii of the donors are
0.58 nm ���, 0.68 nm �
�, 0.83 nm � * �, 0.99 nm ���, 1.22 nm
���, 1.52 nm ���, 1.67 nm �•�, and 1.82 nm ���. � is calculated
from Eqs. �15� and �20� using �=0.324 nm, �out=1, and �in

bulk

=9.21.
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come from the approximations used to define the screening
factor � �the agreement is almost perfect when we compare
the lifetimes calculated with the unscreened Coulomb inter-
action�. The large fluctuations of the transfer time 1/� in Fig.
4 are a consequence of the discrete character of the density
of states in the acceptor nanocrystal due to the quantum con-
finement. The energy transfer is only possible when there is a
good overlap between the emission spectrum of the donor
and the absorption spectrum of the acceptor. The same effect
of the overlap appears in �F �Eq. �13��, explaining why �
and �F capture the same fluctuations. For the same reason,
the comparison between � and �F remains excellent inde-
pendently of the width � of the Gaussians that we take to
broaden the delta functions in both calculations.

Thus, we conclude that �F in Eq. �13� provides a simple
expression of the transfer rate between two direct-gap semi-
conductor nanocrystals, since it only requires the calculation
of the luminescence and absorption spectra of the respective
nanocrystals, which is a much simpler task than to evaluate �
directly from Eq. �3�. In addition, from Eq. �13�, it becomes
easier to take into account more complex phenomena which
may be involved in the energy transfer, such as excitonic
effects or more complex line shapes due to the electron-
phonon interaction. Dynamical effects could be also in-
cluded, replacing in Eqs. �13� and �20� the static dielectric
constant by its value calculated at the transition energy.

D. Determination of the energy transfer rate from experimental
quantities

The luminescence and absorption spectra of the respective
nanocrystals can be measured experimentally and, thus, can
be used to estimate the energy transfer rate �. However, it
must be done with some care because � depends not only on
the intrinsic properties of the nanocrystals but also on the
dielectric properties of the surrounding materials. Let us con-
sider a typical situation. One measures the luminescence
spectrum Lexp��
� and the absorption cross section �exp��
�

of the nanocrystals diluted in a material of dielectric constant
�out. These quantities differ from those defined in Eqs. �11�
and �12� due to local-field factors. For nanocrystals of dielec-
tric constant �in, and in the limit where the nanocrystals rep-
resent a small volume fraction of the medium, we can write16

Lexp��
� = F2nL��
� ,

�exp��
� = F2���
�/n , �21�

where F=3�out / ��in+2�out� is the local-field factor and n is
the refractive index of the medium ����out�. Similarly, the
measured radiative lifetime �exp of the nanocrystals is given
by16

�exp = �̄/�F2n� . �22�

Thus, from the experimental optical properties of the
nanocrystals, we can deduce L��
�, ���
�, and �̄, from
which we can estimate �F from Eqs. �13� and �14�. However,
we must pay attention to the fact that the evaluation of Eqs.
�13� and �14� requires, in principle, us to know the quantities
corresponding to single quantum dots whereas most of the
time measurements are made on ensembles of dots.

E. Energy transfer versus radiative recombination

We discuss now the respective efficiency of the energy
transfer and of the radiative recombination of the exciton in
the donor. We consider a donor nanocrystal in vacuum, and
Fig. 5 compares its radiative lifetime �exp �Eq. �22�� with the
transfer time calculated for three acceptor sizes. We obtain
that the energy transfer is more efficient than the radiative
recombination when R�10–12 nm for the largest acceptor
nanocrystals, in agreement with the experiments on direct-
gap semiconductor nanocrystal assemblies.7–11

Figure 5 shows that the radiative lifetime that we calcu-
late is long ��exp=0.3 �s� because the optical transition from
the lowest unoccupied state �denoted 1Se in Ref. 24� to the
highest occupied state �1H� has a very small oscillator
strength. The first optically allowed transition takes place

FIG. 4. Calculated energy transfer time 1/� for InAs nanocrys-
tals in vacuum plotted versus the radius RA of the acceptor �interdot
distance R=10 nm�. The radii of the donors are 0.58 nm ���,
0.68 nm �
�, 0.83 nm � * �, 0.99 nm ���, 1.22 nm ���, 1.52 nm
���, 1.67 nm �•�, 1.82 nm ���. The lines connect the values 1/�F

calculated for the same nanocrystal sizes using Eq. �13� based on
Förster’s theory ��out=1�.

FIG. 5. Lifetime for the energy transfer between two InAs nano-
crystals �radius of the donor=1.22 nm� in vacuum versus the inter-
dot distance R. Radii of the acceptors: 2.07 nm �solid curve�,
1.75 nm �dashed curve�, and 1.25 nm �dotted curve�. The horizontal
line denotes the radiative lifetime �exp of the donor in vacuum.

ENERGY TRANSFER BETWEEN SEMICONDUCTOR… PHYSICAL REVIEW B 75, 195311 �2007�

195311-5



with the second occupied state �2H� which is only 114 meV
below 1H. These selection rules are due to the spherical
shape of the nanocrystal ��Td symmetry� and the 1Se, 1H,
and 2H states have a symmetry close to A1, T1, and T2, re-
spectively �A1→T1 is forbidden, A1→T2 is allowed�. In the
case of a nanocrystal with a less symmetric shape, the T1 and
T2 states are mixed, the lowest optical transition becomes
allowed, and the radiative lifetime reaches values in the
10 ns range. However, in that case, because the transfer rate
is proportional to the radiative recombination rate, all the
curves in Fig. 5 would be shifted in the same way, and the
conclusions on the respective efficiency of the two processes
would remain the same.

V. Si QUANTUM DOTS: RESULTS AND DISCUSSIONS

A. Dependence of the transfer rate on the distance
between nanocrystals

The situation for Si nanocrystals is more complex because
it is an indirect-gap semiconductor. The first difference with
InAs can be seen in Fig. 6, where we plot 1 /� and 1/��0� as
functions of the interdot distance R. The R6 dependence is
found except when R is small, of the order of the nanocrystal
radius, where the transfer times vary much faster with R. In
this limit, multipolar interactions become larger than dipolar
ones, and this effect is a consequence of the indirect nature
of the Si band gap. In the bulk, the direct radiative recombi-
nation of electron-hole pairs is forbidden and the recombina-
tion is only possible with the assistance of phonons. In nano-
crystals, direct no-phonon transitions become slightly
allowed due to the fact that a confinement in real space leads
to a spread of the wave functions in k space.16,35,36 Thus,
each optical matrix element is a function of the overlap in k
space between the electron and hole wave functions. This
overlap is extremely small and the lifetime is long �basically
in the millisecond to microsecond range�. Consequently, at
decreasing interdot distance, multipolar terms increase faster
than dipolar ones and, thus, become more important below a
threshold of the order of the nanocrystal size.

The difference with InAs is also visible in Fig. 7 showing

the dependence of the transfer time 1/� on the size of the
nanocrystals when R is large �10 nm�, i.e., when dipolar
terms dominate. When the size of the donor nanocrystal in-
creases, the transfer time increases by orders of magnitude
because the dipolar recombination rate vanishes �in compari-
son, the distribution of 1/� is much smaller for InAs, see
Fig. 4�. A similar evolution is obtained for the radiative life-
time as a function of the nanocrystal size.16,35,36 There is also
a smaller variation of 1 /� with the radius of the acceptor:
1 /� decreases at increasing RA due to an enhanced optical
absorption at a fixed energy when going to larger sizes.

B. Screening factor and comparison with Förster’s
theory

By comparison with the full calculation, we have obtained
that Eq. �13� corresponding to Förster’s theory cannot be
used to calculate the transfer rate for Si nanocrystals, not
only at small values of R when multipolar terms dominate
but also at larger values. At large R, the problem comes from
the screening factor, and not from the spectral overlap. Fig-
ure 8 shows that 1 /��0� is almost perfectly given by Eq. �13�
with �=1 �1/��0��1/�F

�0� when R�RA ,RD�. The transfer
rate calculated with the unscreened Coulomb interaction is
entirely described by the overlap between the emission spec-
trum of the donor and the absorption spectrum of the accep-
tor. However, the ratio � /��0� cannot be described by the
factor �2 like in the case of InAs. The indirect character of
the Si band gap is once again at the origin of this difference.
In contrast to the bulk, the dipolar terms are not equal to zero
in Si nanocrystals because of the confinement. Thus, the op-
tical matrix elements only contain contributions coming from
the atoms near the surfaces where the electric field is less
screened than inside the nanocrystals. Therefore, the screen-
ing factor cannot be approximated by Eq. �20� and must be
calculated using a microscopic approach. However, for prac-
tical purposes, Figs. 7 and 8 already provide the transfer time
in two opposite situations, when �out=1 �Fig. 7� and when
�out=�in

bulk �Fig. 8 using the fact that we have just to multiply
1/��0� by ��in

bulk	2�.

FIG. 6. Energy transfer time ��, 1 /�; 
, 1 /��0�� between two
identical Si nanocrystals �radius=1.36 nm� in vacuum versus the
interdot distance R. � is calculated using the screened Coulomb
interaction, and ��0� using the bare one. The solid �dotted� curve
shows that 1 /� �1/��0�� varies like R6 at large distance.

FIG. 7. Energy transfer time 1/� calculated for Si nanocrystals
in vacuum and plotted versus the radius RA of the acceptor �interdot
distance R=10 nm�. Radii of the donors: 0.52 nm �
�, 0.61 nm
���, 0.75 nm � * �, 0.84 nm ���, 1.09 nm ���, 1.36 nm ���,
1.50 nm �•�, and 1.63 nm ���.
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C. Energy transfer versus radiative recombination

We have already confirmed that the energy transfer be-
tween two nanocrystals can be more efficient than the radia-
tive recombination in the case of direct-gap semiconductors,
as observed experimentally.7–11 In the case of Si nanocrys-
tals, the situation is once again different. Figure 9 compares
the transfer lifetime and the radiative lifetime in typical situ-
ations. It shows that energy transfer is possible but only
when the two Si nanocrystals are almost in contact. How-
ever, we have considered here no-phonon processes, and it is
likely that phonon-assisted processes are also involved in the
energy transfer such as in the radiative recombination. The
calculation of the transfer rate including these processes is
obviously a difficult task and beyond the scope of the present
paper.

VI. CONCLUSION

The energy transfer between semiconductor nanocrystals
is a phenomenon of growing interest to engineer energy

flows in artificial materials.9 Its description is usually based
on Förster’s theory in terms of dipole-dipole interactions. In
this work, we present theoretical calculations of the energy
transfer rate which fully justify the application of Förster’s
theory in the case of direct-gap semiconductor nanocrystals.
We show that the multipole interactions are negligible even
when the distance between the nanocrystals is small. We pro-
vide an analytical formula to calculate the Förster rate using
the emission spectrum, the absorption cross section, and the
effective dielectric constant of the nanocrystals. In the case
of Si nanocrystals, we show that multipolar interactions are
important at short interdot distances and that dipole-dipole
interactions dominate otherwise. We conclude that Förster’s
theory cannot be applied to the no-phonon process of energy
transfer between indirect-gap semiconductor nanocrystals.

APPENDIX: CALCULATION OF THE SCREENED
COULOMB POTENTIAL

Here, we describe the calculation of the Coulomb poten-
tial V�r ,r��, of the dielectric constant ��r ,r��, and of the
screened potential W�r ,r�� in tight binding. As discussed in
Refs. 16 and 27, tight binding leads to a considerable sim-
plification because the functions of r are evaluated at discrete
values corresponding to the atomic positions Rn and because
the overlaps between atomic wave functions are neglected.
Thus, V, �, and W are described by matrices whose size is
given by the number of atoms in the system. The matrix of
the bare Coulomb potential V is given by26

Vnm = e2/�Rn − Rm� if n � m ,

Vnn = Un
at, �A1�

where Un
at is the intraatomic Coulomb energy on the atom n.

The dielectric response is calculated in the random-phase
approximation �or linearized time-dependent Hartree�16,37

leading to �= I−V� and W=�−1V. � is the matrix of the
noninteracting density response function �polarization� given
by

�nm = �
nc,nv

��
�

anc,m�anv,m�
* ���

�

anv,n�anc,n�
* �


� 1

Env
− Enc

− i0+ −
1

Enc
− Env

− i0+� �A2�

when the one-electron wave functions are defined by 	nc
=�n�anc,n��n� in the basis of atomic orbitals ��n�	, where n
denotes the atomic site and � the atomic orbital �similar
definition holds for 	nv

�. The coefficients anc,n� are obtained
by the diagonalization of the tight-binding Hamiltonian, and,
thus, the calculation of � and W is straightforward. However,
the calculation of � becomes prohibitive for nanocrystals
containing a large number of atoms due to the double sum in
Eq. �A2�. Thus, we have used an approximation which con-
siderably reduces the computational cost. We have calculated
the density response function �bulk of the bulk semiconduc-
tors, and we have transferred its components to the case of
nanocrystals using the fact that the quantum confinement

FIG. 8. Energy transfer time 1/��0� calculated using the un-
screened Coulomb interaction for Si nanocrystals in vacuum and
plotted versus the radius RA of the acceptor �interdot distance R
=10 nm�. Radii of the donors: 0.52 nm �
�, 0.61 nm ���, 0.75 nm
� * �, 0.84 nm ���, 1.09 nm ���, 1.36 nm ���, 1.50 nm �•�, and
1.63 nm ���. The lines connect the values 1/�F

�0� calculated for the
same nanocrystal sizes using Eq. �13� with �=1.

FIG. 9. Lifetime for the energy transfer between two Si nano-
crystals �diameter of the donor=2.7 nm� in vacuum versus the in-
terdot distance R. Diameters of the acceptors: 2.7 nm ���, 3.3 nm
�
�, and 3.9 nm ���. The horizontal line denotes the radiative life-
time �exp of the donor in vacuum.
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plays no role in the static dielectric response of
nanocrystals.30,31 We write

�nm = �nm
bulk if n � m , �A3�

�nn = − �
m�n

�nm
bulk. �A4�

Equation �A3� is justified by Fig. 6 of Ref. 30 showing
that �nm �denoted by P in this paper� does not depend on the
nanocrystal size and, thus, can be replaced by its bulk value.
Equation �A4� is derived from the sum rules �m�nm=0, ∀n,
which state that the total charge is conserved in the system in
response to a constant perturbation. We have checked that
this approximation works very well compared to the full cal-
culation, for example, when looking at the response of the
nanocrystal to a homogeneous electric field.
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