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. In the present paper, we study the non-deterministic features of this model. Unlike most traditional approaches, our way of interpreting non-determinism does not require any additional powerdomain construction: we show that our model provides a straightforward semantics of non-determinism (may convergence) by means of unions of interpretations as well as of parallelism (must convergence) by means of a binary, non-idempotent, operation available on the model, which is related to the MIX rule of Linear Logic. More precisely, we introduce a λ-calculus extended with non-deterministic choice and parallel composition, and we define its operational semantics (based on the may and must intuitions underlying our two additional operations). We describe the interpretation of this calculus in our model and show that this interpretation is sensible with respect to our operational semantics: a term converges if, and only if, it has a non-empty interpretation.

Introduction

Pure and typed λ-terms are specifications of sequential and deterministic processes. Several extensions of the λ-calculus with parallel and/or non-deterministic constructs have been proposed in the literature, either to increase the expressive power of the language, in the typed [START_REF] Plotkin | LCF considered as a programming language[END_REF][START_REF] Paolini | A stable programming language[END_REF][START_REF] Laird | Bidomains and full abstraction for countable nondeterminism[END_REF] and untyped [START_REF] Boudol | Lambda-calculi for (strict) parallel functions[END_REF][START_REF] Boudol | Full abstraction for lambda calculus with resources and convergence testing[END_REF] settings, or to study the interplay between higher order features and parallel/non-deterministic features [START_REF] Ong | Non-determinism in a functional setting[END_REF][START_REF] Dezani Ciancaglini | Filter models for conjunctive-disjunctive lambda-calculi[END_REF][START_REF] Dezani Ciancaglini | A filter model for concurrent λ-calculus[END_REF].

When introducing non-determinism in a functional setting, it is crucial to specify what notion of convergence is chosen. Two widely used notions are:

the must convergence: a non-deterministic choice converges if all its components do. This characterizes the demonic non-determinism. -the may convergence: a non-deterministic choice converges if at least one of its components does. This characterizes the angelic non-determinism.

The usual denotational models of functional calculi do not accommodate may non-determinism: let true and false be two convergent terms 1 , whose denotations in standard models are distinct. What semantic value should take the non-deterministic term true + false, which may converges to true and to false? The value should be both true and false if we want the semantics to be invariant under reduction!

The typical way of interpreting "multi-valued" terms, like the one above, is to use models based on powerdomains [START_REF] Plotkin | A powerdomain construction[END_REF], often defined as filter models with respect to suitable notions of intersection and union types [START_REF] Dezani Ciancaglini | Filter models for conjunctive-disjunctive lambda-calculi[END_REF][START_REF] Dezani Ciancaglini | A filter model for concurrent λ-calculus[END_REF]. The semantics of true + false becomes some kind of join of both values, available in the powerdomain (similar techniques are also used for interpreting must nondeterminism). In this framework, both kinds of non-determinism are modelled by some idempotent, commutative and associative operations.

In a recent paper [START_REF] Faure | A categorical semantics for the parallel lambda-calculus[END_REF], Faure and Miquel define a categorical counterpart of the syntactical notion of parallel execution: the aggregation monad. Powerdomains, sets with union and multisets with multi-union are all instances of aggregation monads (in categories of domains and of sets, respectively). In general, the notion of parallel composition modelled by an aggregation monad is neither idempotent, nor commutative, nor associative.

There are however models of the ordinary λ-calculus where aggregation, considered as parallel composition (that is, as must non-determinism), can be interpreted without introducing any additional structure, such as the above mentioned aggregation monads or powerdomain constructions. This is the case in models of multiplicative exponential linear logic (MELL), where aggregation can be interpreted by the mix rule, if available. This rule allows to "put together" two proofs whatsoever [START_REF] Danos | Disjunctive tautologies as synchronisation schemes[END_REF]. More precisely, parallel composition is obtained by combining the mix rule with the contraction rule. Indeed, mix can be seen as a linear morphism X⊗Y XΓY , so that there is a morphism ?A ⊗ ?A ?A, obtained by composing the mix morphism ?A ⊗ ?A ?A Γ ?A with the contraction morphism ?A Γ ?A ?A. This composite morphism defines a commutative algebra structure on ?A, which is used to model the "parallel composition" of MELL proofs. Thus, to obtain a model of parallel λ-calculus, it is sufficient to solve the equation D ∼ = D ⇒ D, with an object D of shape ?A.

This is precisely what we did in [START_REF] Bucciarelli | Not enough points is enough[END_REF], in a particularly simple model of linear logic: the model of sets and relations. Similar constructions are possible in other, richer models, such as the well known model of coherence spaces [START_REF] Girard | Linear Logic[END_REF], or the model of hypercoherences [START_REF] Ehrhard | Hypercoherences: a strongly stable model of linear logic[END_REF]: the mix rule is available there, as well as in many other models. This shows that coherence (which prevents the above join of true and false) is not an obstacle to the interpretation of the must nondeterminism in the pure λ-calculus2 . Our model D of [START_REF] Bucciarelli | Not enough points is enough[END_REF] satisfies the recursive equation D = ?(A) where A = (D ) ⊥ , and therefore, D has the commutative algebra structure mentioned above. It is precisely this structure that we use for interpreting parallel composition, just as Danos and Krivine did in [START_REF] Danos | Disjunctive tautologies as synchronisation schemes[END_REF] for an extension of λµ-calculus with a parallel composition operation.

But the category of sets and relations has another feature, which allows for a direct interpretation of the may non-determinism as well: morphisms are arbitrary relations between sets (interpreting types), and hence morphisms are closed under arbitrary unions. Thanks to this union operation on morphisms, may non-determinism can be interpreted directly, without introducing any additional powerdomain construction or aggregation monad. Of course, this operation is not available in the coherence or hypercoherence space models. Note that, if we consider M + N → M as a reduction rule of our calculus, then our semantics is not invariant under reduction, since the process of performing non-deterministic choices entails a non recoverable loss of information. But the situation is fundamentally similar with the powerdomain-based interpretations.

To summarize, in our model D, the semantic counterparts of may and must non-determinism are at hand: they are simply the set-theoretic union and the mix-based algebraic operation. In this framework, parallel composition is no longer idempotent. This is quite natural if we consider each component of a parallel composition as the specification of a process whose execution requires the consumption of some kind of resources.

Contents. We introduce an extension of λ-calculus with parallel composition and non-deterministic choice, called λ + -calculus, and we define its operational semantics by associating with each term a generalized hnf (head normal form), which is a set of multisets of terms whose head subterms are variables 3 . Roughly speaking, the operational value of a term is the collection of all possible outcomes of its head reductions. When the head subterm is M +N (may non-deterministic choice), the head reduction goes on by choosing M or N , and when the head subterm is M N (must parallelism), the head reduction forks.

We provide the denotational semantics of the λ + -calculus in D, considered as a λ-model, and endowed with two additional operations which turn it into a semiring. We prove the soundness with respect to β-reduction, and we show that the interpretations of the hnf's of a term M are included in the interpretation of M . Next, we generalize Krivine's realizability technique to our extended calculus, showing that our denotational model is sensible: the operational value of a term is non-empty (i.e., a term is solvable) if, and only if, its denotation is non-empty.

This proves that our interpretation of may and must non-determinism is adequate to the operational semantics we have equipped the λ + -calculus with. The next step should be to get some "full abstraction" results, giving syntactic characterization of equality and inclusion between interpretations of terms. We already know that the theory induced on the λ-calculus by our model D is H * [15, Sec. 3.3] (just as the theory induced by the model D ∞ of Scott); one should try to generalize this result to this non-deterministic setting.

To keep this article self-contained we summarize some definitions and results that will be used in the sequel. In particular, we present our semantic framework MRel and we recall the construction of a specific reflexive object D of MRel, that we have introduced in [START_REF] Bucciarelli | Not enough points is enough[END_REF]. Our main reference for category theory is [START_REF] Asperti | Categories, types and structures. Category theory for the working computer scientist[END_REF].

Multisets and sequences

Let S be a set. We denote by P(S) the collection of all subsets of S. A multiset m over S can be defined as an unordered list m = [a 1 , a 2 , . . .] with repetitions such that a i ∈ S for all i. A multiset m is called finite if it is a finite list, we denote by [] the empty multiset. Given two multisets

m 1 = [a 1 , a 2 , . . .] and m 2 = [b 1 , b 2 , . . .] the multi-union of m 1 , m 2 is defined by m 1 m 2 = [a 1 , b 1 , a 2 , b 2 , . . .].
We will write M f (S) for the set of all finite multisets over S.

We denote by the set of natural numbers. Given two -indexed sequences σ = (σ 1 , σ 2 , . . .), τ = (τ 1 , τ 2 , . . .) of multisets we define the multi-union of σ and τ componentwise as

σ ¯ τ = (σ 1 τ 1 , σ 2 τ 2 , . . .). An -indexed sequence σ = (m 1 , m 2 , . . . ) of multisets is quasi-finite if m i = []
holds for all, but a finite number of indices i. If S is a set, then we denote by M f (S) (ω) the set of all quasi-finite -indexed sequences of multisets over S. We write for the -indexed sequence of empty multisets, i.e., is the only inhabitant of M f (∅) (ω) .

MRel: a cartesian closed category of sets and relations

We now present the category MRel, which is the Kleisli category of the functor M f (-) over the -autonomous category Rel of sets and relations. We provide here a direct definition, since in the sequel we will not use explicitly the monoidal structure of Rel.

-The objects of MRel are all the sets.

-A morphism from S to T is a relation from M f (S) to T , in other words, MRel(S, T ) = P(M f (S) × T ). -The identity of S is the relation

Id S = {([a], a) | a ∈ S} ∈ MRel(S, S).
-The composition of s ∈ MRel(S, T ) and t ∈ MRel(T, U ) is defined by:

t • s = {(m, c) | ∃(m 1 , b 1 ), . . . , (m k , b k ) ∈ s such that m = m 1 . . . m k and ([b 1 , . . . , b k ], c) ∈ t}.
We now provide an overview of the proof of cartesian closedness.

Theorem 1. The category MRel is cartesian closed.

Proof. The terminal object ¡ is the empty set ∅, and the unique element of MRel(S, ∅) is the empty relation. Given two sets S 1 and S 2 , their categorical product S 1 &S 2 in MRel is their disjoint union:

S 1 &S 2 = ({1} × S 1 ) ∪ ({2} × S 2 )
and the projections π 1 , π 2 are given by:

π i = {([(i, a)], a) | a ∈ S i } ∈ MRel(S 1 &S 2 , S i ), for i = 1, 2.
Given s ∈ MRel(U, S 1 ) and t ∈ MRel(U, S 2 ), the corresponding morphism s, t ∈ MRel(U, S 1 &S 2 ) is given by:

s, t = {(m, (1, a)) | (m, a) ∈ s} ∪ {(m, (2, b)) | (m, b) ∈ t} .
We will consider the canonical bijection between M f (S 1 ) × M f (S 2 ) and M f (S 1 & S 2 ) as an equality, hence we will still denote by (m 1 , m 2 ) the corresponding element of M f (S 1 &S 2 ).

Given two objects S and T the exponential object S ⇒T is M f (S) × T and the evaluation morphism is given by:

eval ST = {(([(m, b)], m), b) | m ∈ M f (S) and b ∈ T } ∈ MRel((S ⇒T )&S, T ) .
Given any set U and any morphism s ∈ MRel(U &S, T ), there is exactly one morphism Λ(s) ∈ MRel(U, S ⇒T ) such that:

eval ST • Λ(s), Id S = s, namely, Λ(s) = {(p, (m, b)) | ((p, m), b) ∈ s}.
The points of an object S, i.e., the elements of MRel(¡ , S), are relations between M f (∅) and S. These are, up to isomorphism, the subsets of S.

An extensional reflexive object in MRel

A reflexive object of a cartesian closed category C (ccc, for short) is a triple U = (U, A, λ) such that U is an object of C, and λ ∈ C(U ⇒ U, U ) and

A ∈ C(U, U ⇒U ) satisfy A • λ = Id U ⇒U . U is called extensional if, moreover, λ • A = Id U ; in this case we have that U ∼ = U ⇒U .
We define a reflexive object D in MRel, which is extensional by construction. We let (D n ) n∈ be the increasing family of sets defined by: -

-D 0 = ∅, -D n+1 = M f (D n ) (ω) .
λ = {([(m, σ)], m :: σ) | m ∈ M f (D), σ ∈ D} ∈ MRel(D ⇒D, D), -A = {([m :: σ], (m, σ)) | m ∈ M f (D), σ ∈ D} ∈ MRel(D, D ⇒D)
, is an extensional reflexive object of MRel.

A parallel and non-deterministic λ-calculus

In this section we introduce the syntax and the operational semantics of a parallel and non-deterministic extension of λ-calculus that we call λ + -calculus.

Syntax of λ + -calculus

To begin with, we define the set Λ + of λ-terms enriched with two binary operators + and , that is the set of terms generated by the following grammar (where x ranges over a countable set Var of variables):

M, N ::= x | λx.M | M N | M + N | M N .
The elements of Λ + are called λ + -terms and will be denoted by M, N, P, . . . Intuitively, M + N denotes the non-deterministic choice between M and N , and M N stands for their parallel composition.

As usual, we suppose that application associates to the left and λ-abstraction to the right. Moreover, to lighten the notation, we assume that application and λ-abstraction take precedence over + and . The notions of free and bound variables of a term are defined in the obvious way.

A substitution is a finite set s = {(x 1 , N 1 ), . . . , (x k , N k )} such that x i = x j for all 1 ≤ i < j ≤ k. Given a λ + -term M and a substitution s as above, we denote by M s the term obtained by substituting simultaneously the term N j for all free occurrences of x j (for 1 ≤ j ≤ k) in M , subject to the usual proviso about renaming bound variables in M to avoid capture of free variables in the N j 's. If s = {(x, N )} we will write M [N/x] for M s.

Note that, in general, M {(x 1 , N 1 ), . . . ,

(x k , N k )} = M [N 1 /x 1 ] • • • [N k /x k ].
For instance, x{(x, y), (y, z)} = y, whereas x[y/x][z/y] = z. Actually, k-ary substitutions will be only used in Section 5 in the proof of the adequation lemma.

As a matter of notation, we will write P for a (possibly empty) finite sequence of λ + -terms P 1 . . . P k and ( P ) for the length of P . It is easy to check that every λ + -term M has the form λ x.N P where N , which is called the head subterm of M , is either a variable, a non-deterministic choice, a parallel composition or a λ-abstraction. Notice that, in this last case, we must have ( P ) > 0.

Operational semantics

The set Λ h + ⊂ Λ + of head normal forms4 (hnf 's, for short) is the set of λ + -terms whose head subterm is a variable (called head variable).

The intuitive idea of the head reduction of λ + -calculus underlying the notion of "multiple" hnf (formalized below) is the following:

when a term has the head subterm of the form N 1 + N 2 , either of the alternatives may be chosen to pursue the head reduction, and the final value is the union of the values obtained by each choice. In particular, if one of the choices produces a non-empty value, then the global value is non-empty. -when a term has the head subterm of the form N 1 N 2 , the head reduction forks, and the final value is obtained by "mixing" the values eventually obtained. In particular, if the value of one of the subprocesses is empty, then also the global value is.

Definition 1. A multiple hnf is a finite multiset of hnf 's of λ + -calculus. A value is a set of multiple hnf 's.

We define the operational semantics of λ + -calculus by associating with each M ∈ Λ + the value eventually obtained by head reducing M . In particular, we use union (resp. multi-union) to get the value of

M 1 + M 2 (resp. M 1 M 2 ) out of the values of M 1 and M 2 .
To help the reader to get familiar with these notions, we first provide some simple examples of values (where 5 I ≡ λx.x, ∆ ≡ λx.xx and Ω ≡ ∆∆):

-the value of I + ∆ is {[I], [∆]}.
In other words, the term I + ∆ has two different multiple hnf's, which are singleton multisets; -the value of I ∆ is {[I, ∆]}, then I ∆ has just one multiple hnf; -the values of I+Ω and I Ω are {[I]} and ∅, respectively. This is a consequence of the fact that the value of Ω is the empty-set.

In general, the value H(M ) of a λ + -term M can be characterized as the limit of an increasing sequence (H n (M )) n∈ of "partial" values, which are defined by induction on n ∈ and by cases on the form of the head subterm of M . Definition 2. Let M ≡ λ x.N P be a λ + -term.

• H 0 (M ) = ∅; • H n+1 (M ) =        {[M ]} if N ≡ y, H n (λ x.Q[P 1 /y]P 2 • • • P ( P ) ) if N ≡ λy.Q, H n (λ x.N 1 P ) ∪ H n (λ x.N 2 P ) if N ≡ N 1 + N 2 , {m 1 m 2 | m i ∈ H n (λ x.N i P ) for i = 1, 2} if N ≡ N 1 N 2 .
Notice that, for all M ∈ Λ + and n ∈ , the value H n (M ) ⊂ M f (Λ h + ) is a finite set of multiple hnf's. Since the sequence (H n (M )) n∈ is increasing, we can define the (final) value of M as its limit.

Definition 3. The value of a λ + -term M is defined by H(M ) = n∈ H n (M ).
Of course, H(M ) may be infinite as shown in the example below.

Example 1. Consider the λ + -term M ≡ λn.0 + sn, where 0 ≡ λxy.y is the 0-th Church numeral and s ≡ λnxy.nx(xy) implements the successor function. Let now C ≡ YM where Y is some fixpoint combinator. To have simpler calculations, we suppose that YM reduces to M (YM ) in just one step of head β-reduction. Then, we get:

-H 0 (C) = ∅, -H 1 (C) = H 0 (M C) = ∅, -H 2 (C) = H 1 (M C) = H 0 (0 + sC) = ∅, -H 3 (C) = H 2 (M C) = H 1 (0 + sC) = {[0]} ∪ H 0 (sC) = {[0]}.
Pursuing the calculation a little further, one gets

H 9 (C) = {[0], [1]} and, even- tually, H(C) = {[n] | n ∈ }.

Solvability

We now present the natural notion of solvability for the λ + -calculus.

Definition 4. A λ + -term M is solvable if H(M ) = ∅.
The set of solvable terms will be denoted by N .

Among solvable terms, we single out the set N 0 of hnf's starting with a variable, and the set N 1 of solvable terms having a multiple hnf whose head variables are free. Definition 5. We set:

-N 0 = {x P | x ∈ Var and P ∈ Λ + }, and

-N 1 = {M ∈ Λ + | ∃[λ x 1 .y 1 P 1 , . . . , λ x k .y k P k ] ∈ H(M )∧(∀j = 1..k) y j / ∈ x j }.
We end this section stating a technical proposition, which will be useful in Section 5. The proof is quite long and it is provided in Appendix A. Proposition 2. Let M ∈ Λ + and x ∈ Var, then we have that:

(i) if M x ∈ N then M ∈ N , (ii) if M Ω ∈ N 1 then M ∈ N 1 , (iii) if M ∈ N 1 then M N ∈ N 1 for all N ∈ Λ + .
Notice that in the case of the pure λ-calculus the analogous properties are trivial.

A relational model of λ + -calculus

Exploiting the existence of countable products in MRel we have shown in [START_REF] Bucciarelli | Not enough points is enough[END_REF] that the reflexive object D = (D, A, λ) built in Section 2.3 can be turned into a λ-model [2, Def. 5.2.1] (this was not clear before, since the category MRel does not have enough points [1, Def. 2.1.4]). The underlying set of the λ-model associated with D by our construction is the set of "finitary" morphisms in MRel(D Var , D), where D Var is the Var-indexed categorical product of countably many copies of D.

Finitary morphisms in MRel

The morphisms in MRel(D Var , D) are sets of pairs whose first projection is a finite multiset of elements in D Var , and whose second projection is an element of D. Since categorical products in MRel are disjoint unions, a typical such pair is of the form:

([(x 1 , σ 1 1 ), . . . , (x 1 , σ n1 1 ), . . . , (x k , σ 1 k ), . . . , (x k , σ n k k )], σ)
where k, n 1 , . . . , n k ∈ , x 1 , . . . , x k ∈ Var and σ 1 1 , . . . , σ n k k , σ ∈ D.

Notation 1. Given m ∈ M f (D Var ) and x ∈ Var, we set m x = [σ | (x, σ) ∈ m] ∈ M f (D) and m -x = [(y, σ) ∈ m | y = x] ∈ M f (D Var ).
In general, given an object U of a ccc C, we say that a morphism f ∈ C(U Var , U ) is "finitary" if it can be decomposed as f = f I • π I for some finite set I of variables (see [START_REF] Bucciarelli | Not enough points is enough[END_REF]Sec. 3.1]). Working in MRel it is more convenient to take the following equivalent definition. the sum of r 1 and r 2 is defined by

r 1 ⊕ r 2 = r 1 ∪ r 2 .
the aggregation of r 1 and r 2 is defined by Proof. Straightforward. In both cases, the union of the finite sets of variables I 1 and I 2 given by the finiteness of the arguments of the operation, is a witness of the finiteness of the result.

r 1 r 2 = {(m 1 m 2 , σ 1 ¯ σ 2 ) | (m i , σ i ) ∈ r i , for i = 1, 2}.
Composition is right-distributive over sum and aggregation. 

-(r ⊕ s) • t = (r • t) ⊕ (s • t), -(r s) • t = (r • t) (s • t).
Proof. Straightforward.

The units of the operations ⊕ and are 0 = ∅ and 1 = {([], )}, respectively; (MRel f (D Var , D), ⊕, 0) and (MRel f (D Var , D), , 1) are commutative monoids. Moreover, 0 annihilates and aggregation distributes over sum. Summing up, the following proposition gives an overview of the algebraic properties of MRel f (D Var , D) equipped with application, sum and aggregation. -• is right-distributive over ⊕ and .

-⊕ is idempotent (whereas is not).

Proof. Straightforward.

The absolute interpretation

Before going through the formal definition of the interpretation of λ + -terms, we present a short digression on the nature of such an interpretation. In our framework, the λ + -terms will be interpreted as morphisms in MRel f (D Var , D), i.e., as subsets of M f (D Var ) × D. The occurrence of a particular pair ([(x 1 , σ 1 1 ), . . . , (x 1 , σ n1 1 ), . . . , (x k , σ 1 k ), . . . , (x k , σ n k k )], σ) in the interpretation of a term M may be read as "in an environment ρ such that ρ(x i ) = [σ 1 i , . . . , σ ni i ] (for all i = 1, . . . , k) the interpretation M ¡ ρ contains σ". Hence, here there is no need of providing explicitly an environment to the interpretation function as classically done for λ-models [2, Def. 5.2.1(ii)] because the whole information is coded inside the elements of the λ-model itself.

On the other hand, the categorical interpretation of a term M is usually defined with respect to a finite list of variables, containing the free variables of M [2, Def. 5.5. 3(vii)]. Intuitively, our interpretation is defined with respect to the list of all variables, encompassing then all categorical interpretations.

These considerations lead us to the definition of -¡ : Λ + → MRel f (D Var , D) below, that we call the absolute interpretation6 of λ + -terms:

-x¡ = π x , for x ∈ Var, -M 1 M 2 ¡ = eval • A • M 1 ¡ , M 2 ¡ , -λx.M ¡ = λ • Λ( M ¡ • η x ), -M 1 + M 2 ¡ = M 1 ¡ ⊕ M 2 ¡ , -M 1 M 2 ¡ = M 1 ¡ M 2 ¡ ,
where η x ∈ MRel(D Var &D, D Var ) is defined componentwise, for y ∈ Var, by:

π y • η x = π 2 if x ≡ y, π y • π 1 if x ≡ y.
In what follows, we will use the inductive characterization of the interpretation of (some) λ + -terms provided by the proposition below:

Proposition 6. (i) x¡ = {([(x, σ)], σ) | σ ∈ D}, (ii) M N ¡ = {(m 0 m 1 . . . m k , σ) | ∃k ≥ 0, (m 0 , [τ 1 , . . . , τ k ] :: σ) ∈ M ¡ , (m i , τ i ) ∈ N ¡ f or 1 ≤ i ≤ k}, (iii) λx.M ¡ = {(m -x , m x :: σ) | (m, σ) ∈ M ¡ }.
Proof. Simple calculations based on the definitions of Section 2.

We show now the soundness of the interpretation with respect to β-conversion, which relies on the following lemma. 

¡ = eval• A • λ • Λ( M ¡ • η x ), N ¡ = eval• Λ( M ¡ • η x ), N ¡ = M ¡ • η x • id, N ¡ = by Lemma 1 = M [N/x]¡ .
We aim to prove that our model is sensible w.r.t. the operational semantics: a λ + -term M has a non-empty interpretation if, and only if, M is solvable.

We start showing that the interpretation of every solvable term is non-empty (for the converse we will adapt Krivine's realizability method [START_REF] Krivine | Lambda-calculus. Types and models[END_REF], see Section 5). This is an immediate corollary of the following propositions stating that the interpretation of a λ + -term includes the union of the interpretations of its multiple hnf's and that the interpretation of any hnf is non-empty. Proof. It is enough to show that ( m∈Hn(M ) ( N ∈m N ¡ )) ⊆ M ¡ holds for all n ∈ ; we prove it by induction on n. The case n = 0 is trivial. The proof of the inductive step goes by case analysis on the head subterm M of M ≡ λ z.M P .

-The case M ≡ x is trivial, and the case M ≡ λy.Q is settled by Lemma 2.

-If M ≡ Q 1 Q 2 , we start by observing that M ¡ = λ z.Q 1 P ¡ λ z.Q 2 P ¡ . This is an easy consequence of the right distributivity of • over (Proposition 5) and of the fact that, by Proposition 6(iii), we have λ x.(R 1 R 2 )¡ = λ x.R 1 ¡ λ x.R 2 ¡ , for all x ∈ Var and R 1 , R 2 ∈ Λ + . Then, we can conclude by the inductive hypothesis. -The case M ≡ Q 1 + Q 2 is similar, and simpler, once noted that M ¡ = λ z.Q 1 P ¡ ⊕ λ z.Q 2 P ¡ (again, by Proposition 5 and Proposition 6(iii)).

Finally, we

  set D = n∈ D n . So we have D 0 = ∅ and D 1 = { } = {([], [], . . . )}. The elements of D 2 are quasi-finite sequences of multisets over a singleton, i.e., quasi-finite sequences of natural numbers, and so on. In order to define an isomorphism in MRel between D and D ⇒ D = M f (D) × D just notice that every element σ = (σ 1 , σ 2 , . . .) ∈ D stands for the pair (σ 1 , (σ 2 , . . .)) and vice versa. Given σ ∈ D and m ∈ M f (D), we write m :: σ for the element τ = (τ 1 , τ 2 , . . .) ∈ D such that τ 1 = m and τ i+1 = σ i . This defines a bijection between M f (D) × D and D, and hence an isomorphism in MRel as follows: Proposition 1. (Bucciarelli, et al. [6]) The triple D = (D, A, λ) where:

Definition 6 .Definition 7 .

 67 A morphism r ∈ MRel(D Var , D) is finitary if there exists a finite set I of variables such that for all (m, σ) ∈ r and x ∈ Var we have that m x = [] entails x ∈ I.We denote by MRel f (D Var , D) the set of all finitary morphisms.4.2 The modelFrom [6, Thm. 1] we know that (MRel f (D Var , D), •), where • is defined as usual by r 1 • r 2 = eval • A • r 1 , r 2 , can be endowed with a structure of λ-model.In order to interpret λ + -terms as finitary morphisms of MRel we are going to define on MRel(D Var , D) two binary operations of sum and aggregation for modelling non-deterministic choice and parallel composition, respectively, and to prove that MRel f (D Var , D) is closed under these operations. Let r 1 , r 2 ∈ MRel(D Var , D), then:

Proposition 3 .

 3 The set MRel f (D Var , D) is closed under sum and aggregation.

Proposition 4 .

 4 Let r, s ∈ MRel(D Var , D) and t ∈ MRel(D Var , D Var ), then:

Proposition 5 .

 5 -(MRel f (D Var , D), ⊕, , 0, 1) is a commutative semiring.

Lemma 1 .

 1 If M, N ∈ Λ + and x ∈ Var, then M [N/x]¡ = M ¡ • η x • id, N ¡ .Proof. By structural induction on M . The cases M ≡ M 1 +M 2 and M ≡ M 1 M 2 are settled by using Proposition 4. For the other cases, one can use Proposition 6 and the following characterization:η x • id, N ¡ = {([(y, σ)], (y, σ)) | σ ∈ D, y ≡ x} ∪ {(m, (x, σ)) | (m, σ) ∈ N ¡ } ∈ MRel(D Var , D Var ).Lemma 2. (Soundness) For all M, N ∈ Λ + and x ∈ Var, we have (λx.M )N ¡ = M [N/x]¡ . Proof. (λx.M )N

Proposition 7 .

 7 For all M ∈ Λ + , we have( m∈H(M ) ( N ∈m N ¡ )) ⊆ M ¡ .

They could be the actual boolean constants in a typed λ-calculus with constants, or the projections λxy.x, λxy.y as pure λ-terms.

In a typed language like PCF, this would be more problematic, since the object interpreting the type of booleans does not have the above mentioned structure.

This is reminiscent of the capability semantics of[START_REF] Dezani Ciancaglini | Filter models for conjunctive-disjunctive lambda-calculi[END_REF], but we consider different notions of convergence and of head normal form.

This terminology is coherent with the one usually adopted for λ-calculus (see[START_REF] Barendregt | The lambda calculus: Its syntax and semantics[END_REF] Def. 2.2.11]).

See [15, Sec. 2.3.2] for more details on the relations among the absolute, algebraic and categorical interpretations, and on how the former allows to recover the others.

We now show that every hnf has a non-empty interpretation. Proposition 8. For all x, y ∈ Var and Q ∈ Λ + we have λ y.x Q¡ = ∅.

Proof. By Proposition 6(iii), it is sufficient to prove that, for all x ∈ Var and Q ∈ Λ + , we have x Q¡ = ∅. To conclude, it is easy to show by induction on k that ([(x, )], ) ∈ xQ 1 . . . Q k ¡ . Theorem 2. For all M ∈ Λ + , if H(M ) = ∅ then M ¡ = ∅.

Proof. Let [N 1 , . . . , N k ] ∈ H(M ). By Proposition 7, 1≤i≤k N i ¡ ⊆ M ¡ , and by Proposition 8 N i ¡ = ∅ for 1 ≤ i ≤ k. We conclude that ∅ = 1≤i≤k N i ¡ ⊆ M ¡ .

Saturated sets and the realizability argument

In this section, we generalize Krivine's realizability technique [START_REF] Krivine | Lambda-calculus. Types and models[END_REF] to λ + -calculus and we use it for proving that λ + -terms having a non-empty interpretation are all solvable. For notations and terminology, we mainly follow [START_REF] Berline | From computation to foundations via functions and application: The λ-calculus and its webbed models[END_REF].

The saturation of a set S of terms expresses the fact that S is closed under weak head expansions. For the pure λ-calculus, this amounts to the well known condition of being closed under weak head β-expansion. For the extension of the λ-calculus we are dealing with, three cases of weak head expansions, corresponding to the possible shapes of the head term, must be considered. Definition 8. A set S ⊆ Λ + is saturated if the following conditions hold:

if M P ∈ S and N ∈ Λ + then (M + N ) P ∈ S.

We recall that the sets N 0 , N 1 and N have been defined in Section 3.3. It is easy to check that N is saturated, whilst N 0 is not. In the realizability argument, only saturated sets included within N 0 and N will be considered. Definition 9. The set Sat h of "small" saturated subsets of Λ + is defined by:

The operator → is contravariant in its first argument and covariant in its second one, in other words,

Proof. The first inclusion follows by definition, the second one is a consequence of the contravariance/covariance of the arrow. For the third one, it is enough to prove that, for all M ∈ Λ + and x ∈ Var, H(M x) = ∅ entails H(M ) = ∅; this holds by Proposition 2(i).

The set Sat h enjoys the following closure properties. Lemma 4. The set Sat h is closed under the arrow operator, finite unions, finite intersections, and under the map F : S → (Λ + → S).

Proof. Given two sets S 1 , S 2 ∈ Sat h , it is straightforward to check that S 1 ∩ S 2 , S 1 ∪ S 2 ∈ Sat h and that S 1 → S 2 and Λ + → S 2 are saturated. The inclusions N 0 ⊆ S 1 → S 2 ⊆ N and N 0 ⊆ Λ + → S 2 ⊆ N follow easily from Lemma 3 and contravariance/covariance of the arrow.

We are going to define a function (-)

where, for a multiset m of elements of D, m • = α∈m α • and, in particular, [] • = Λ + . Since = [] :: , the set • must be a fixpoint of the function F : S → (Λ + → S). We now show that N 1 is one of such fixpoints.

Proof. The saturation of N 1 and the fact that N 0 ⊆ N 1 ⊆ N are both trivial. We now prove that

We conclude since, by Proposition 2(iii), we get M N ∈ N 1 .

Observe that any element σ ∈ D may be written in a unique way as σ = σ 1 :: • • • :: σ n :: , with n ≥ 0 and σ n = []. This is called the standard decomposition of σ. Definition 10. Let σ ∈ D, and σ 1 :: • • • :: σ n :: be the standard decomposition of σ. Then, we define σ

Note that, if m = [] or σ = , then the standard decomposition of m :: σ is m :: σ 1 :: • • • :: σ n :: , where σ 1 :: • • • :: σ n :: is the standard decomposition of σ. Hence, (m ::

The next lemma shows that the definition of (-) • fits well with parallel composition.

Proof. Let ρ n :: • • • :: ρ 1 :: be the standard decomposition of ρ. We have to show that

We prove it by induction on n. If n = 0, then σ = τ = ρ = . Hence, we conclude since • = N 1 and N 1 is closed under parallel composition.

If n > 0, then we have to show that, for all • , where σ = (σ 2 , σ 3 , . . .) and τ = (τ 2 , τ 3 , . . .) • . Moreover, ρ = σ ¯ τ and the standard decomposition of ρ is strictly shorter than that of ρ. By the inductive hypothesis, we get

We are now able to prove the promised adequation lemma, which constitutes the key tool in the realizability argument.

Observe that, if a substitution is adequate for some multiset m ∈ M f (D Var ), then it is adequate for all submultisets of m.

Proof. By structural induction on M .

-

Observe now that, if s is adequate for m then it is also adequate for m 0 , m 1 , . . . , m k , since they are all multisubsets of m.

By the inductive hypothesis we have that:

-If M ≡ λx.P , then by Proposition 6(iii), we have that m = m -x and σ = m x :: σ for some (m , σ ) ∈ P ¡ . Let s be an adequate substitution for m -x and Q ∈ (m x ) • . Since M is considered up to α-conversion, we can suppose without loss of generality that x does not occur in s. It is clear that 

and (m 2 , σ 2 ) ∈ Q¡ . If s is adequate for m then it is also adequate for m 1 , m 2 and, from the inductive hypothesis and Lemma 5, we conclude that

for m (note that Var ⊂ N 0 ), and M s id = M . Hence, by the adequation lemma, we conclude that M ∈ σ • ⊆ N .

By Theorem 2 and Theorem 3 we finally get our main result.

A Technical Appendix

This technical appendix is devoted to provide the proof of Proposition 2 in Section 3.3. This proof is not particularly difficult but it is quite long and requires some preliminary definitions.

Definition 12. A multiple hnf m is head-free if none of the hnf 's contained in m binds its head variable.

The following definition extends the notion of application of λ-calculus to multiple hnf's. Recall that the set N 0 has been defined in Section 3.3. Definition 13. Let m be a multiple hnf and

Proposition 10. Given a multiple hnf m, we have that:

mx is a multiple hnf, for all x ∈ Var; -if m is head-free, then mN is a head-free multiple hnf, for all N ∈ Λ + .

Proof. Straightforward.

We provide now three technical lemmata which will be used respectively for proving the three items of Proposition 2. To enlighten the notation, given a sequence P ≡ P 1 . . . P k ∈ Λ + with k ≥ 1, we write P ≥2 for the (possibly empty) sequence P 2 . . . P k .

Lemma 7. For all M ∈ Λ + and x ∈ Var we have that for all n ∈ :

Proof. By induction on n ∈ . If n = 0 then the implication follows trivially, since H 0 (M x) = ∅. Suppose now that n > 0, then the proof is by cases on the shape of M ≡ λ z.M P .

- 

, then m also belongs to H n-1 (Q[P 1 /y] P ≥2 x) and, by the inductive hypothesis, there exist

-If M ≡ (λy.Q), ( z) > 0 and H n (M x) = ∅, then we have that n > 2 and

, then m also belongs to H n-1 ((λ z.Q[P 1 /y] P ≥2 )x) and, by the inductive hypothesis, there exist k ≤ n-1 and m ∈ H k (λ z.Q[P 1 /y] P ≥2 ) such that m = m x. We conclude since

If m ∈ H n (M x) then m belongs to, say, H n-1 (M 1 P x) and by the inductive hypothesis there exist k ≤ n -1 and m ∈ H k (M 1 P ) such that m = m x. Thus, we conclude since m ∈ H k +1 ((M 1 + M 2 ) P ) and

) and, by the inductive hypothesis, there exist

By the inductive hypothesis there exist k 1 , k 2 ≤ n -1 and m i ∈ H ki (M i P ) such that m i = m i x (for i = 1, 2). Hence m 1 x m 2 x ∈ H max(k1,k2)+1 ((M 1 M 2 ) P ) and we conclude since

Recall that Ω ≡ (λx.xx)(λx.xx).

Lemma 8. For all M ∈ Λ + we have that for all n ∈ :

Proof. By induction on n.

If n = 0 then the implication follows trivially, since H 0 (M Ω) = ∅. Suppose now that n > 0, then the proof is by cases on the shape of M ≡ λ z.M P .

-If M ≡ y and ( z) = 0, then H n (y P Ω) = {[y P Ω]}. Hence, the only m ∈ H n (M Ω) is [y P Ω] which is head-free and the result follows taking k = n and m = [y P ].

-If M ≡ y and ( z) > 0, then we can suppose y / ∈ z, since otherwise it is easy to check that H n (M Ω) contains no head-free multiple hnf. In this case, we have:

Hence, the only head-free multiple hnf in H n (M Ω) is m = [λ z.y P ]Ω and we conclude since H n-1 (λ z.y P ) = {[λ z.y P ]} and m = [λ z.y P ] is head-free.

-

)Ω) and, by the inductive hypothesis, there exist

If there is a head-free multiple hnf m ∈ H n (M Ω) then m belongs to, say, H n-1 (M 1 P Ω) and, by the inductive hypothesis, there exist k ≤ n -1 and m ∈ H k (M 1 P ) head-free such that m = m Ω. Thus, we conclude since

Thus if there is a head-free multiple hnf m ∈ H n (M Ω) then m belongs to, say, -If M ≡ M 1 M 2 and ( z) = 0 then m ∈ H n ((M 1 M 2 ) P Ω), implies that there exists m i ∈ H n-1 (M i P Ω) (for i = 1, 2) such that m = m 1 m 2 . Of course, if m is head-free then also m 1 , m 2 are. Thus, by the inductive hypothesis, there exist k 1 , k 2 ≤ n -1 and m i ∈ H ki (M i P ) head-free such that m i = m i Ω (for i = 1, 2). Hence m 1 Ω m 2 Ω ∈ H max(k1,k2)+1 ((M 1 M 2 ) P ) and we conclude since

Of course, if m is head-free then also m 1 , m 2 are. By the inductive hypothesis there exist k 1 , k 2 ≤ n -1 and m i ∈ H ki (λ z.M i P ) head-free such that m i = m i Ω (for i = 1, 2). Hence m 1 Ω m 2 Ω ∈ H max(k1,k2)+1 (λ z.(M 1 M 2 ) P ) and we conclude since

Lemma 9. For all M, N ∈ Λ + and for all n

Proof. The proof is done by induction on n ∈ .

If n = 0 then there is no m ∈ H 0 (M ) and the implication is trivially satisfied.

If n > 0 then the proof is done by cases on the shape of M ≡ λ z.M P .

- 

Otherwise, when ( z) > 0, we have:

-

there is a head-free m ∈ H n (M ) then m belongs to, say, H n-1 (λ z.M 1 P ) and by the inductive hypothesis we get mN ∈ H n ((λ z.M

-If M ≡ M 1 M 2 and m ∈ H n (M ), then there is m i ∈ H n-1 (λ z. We are now able to provide the complete proof of Proposition 2. Recall that the sets N and N 1 have been defined in Section 3.3. Proposition 2. Let M ∈ Λ + and x ∈ Var, then we have that:

Proof. (i) If M x ∈ N then there exists a multiset m ∈ H(M x). By definition of H(-) we have that m ∈ H n (M x) for some n ∈ . By Lemma 7 we know that there exists m ∈ H k (M ) for some k ≤ n and hence that H(M ) is non-empty. We conclude that M ∈ N . (ii) If M Ω ∈ N 1 then there is m ∈ H(M ) head-free. By definition of H(-) we have that m ∈ H n (M Ω) for some n. Then by Lemma 8 there exists m head-free such that m ∈ H k (M ) for some k ≤ n. We conclude that M ∈ N 1 . (iii) If M ∈ N 1 then there exists m ∈ H(M ) head-free. By definition of H(-) we have that m ∈ H n (M ) for some n. From Lemma 9 we have that mN ∈ H n+1 (M N ) for all N ∈ Λ + and hence that mN ∈ H(M N ). We conclude since, if m is head-free, then also mN is.