
HAL Id: hal-00283095
https://hal.science/hal-00283095v2

Submitted on 29 May 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A relational model of a parallel and non-deterministic
lambda-calculus

Antonio Bucciarelli, Thomas Ehrhard, Giulio Manzonetto

To cite this version:
Antonio Bucciarelli, Thomas Ehrhard, Giulio Manzonetto. A relational model of a parallel and non-
deterministic lambda-calculus. Logical Foundations of Computer Science, International Symposium,
LFCS 2009, Deerfield Beach, FL, USA, January 3-6, 2009. Proceedings„ 2009, United States. pp.107-
121. �hal-00283095v2�

https://hal.science/hal-00283095v2
https://hal.archives-ouvertes.fr

A relational model of a parallel and

non-deterministic λ-calculus

Antonio Bucciarelli, Thomas Ehrhard, and Giulio Manzonetto?

{antonio.bucciarelli, thomas.ehrhard, giulio.manzonetto}@pps.jussieu.fr

Laboratoire PPS, Université Paris 7,
2, place Jussieu (case 7014), 75251 Paris Cedex 05, France

Abstract. We recently introduced an extensional model of the pure
λ-calculus living in a canonical cartesian closed category of sets and re-
lations [6]. In the present paper, we study the non-deterministic features
of this model. Unlike most traditional approaches, our way of interpret-
ing non-determinism does not require any additional powerdomain con-
struction: we show that our model provides a straightforward semantics
of non-determinism (may convergence) by means of unions of interpreta-
tions as well as of parallelism (must convergence) by means of a binary,
non-idempotent, operation available on the model, which is related to
the MIX rule of Linear Logic. More precisely, we introduce a λ-calculus
extended with non-deterministic choice and parallel composition, and we
define its operational semantics (based on the may and must intuitions
underlying our two additional operations). We describe the interpreta-
tion of this calculus in our model and show that this interpretation is
sensible with respect to our operational semantics: a term converges if,
and only if, it has a non-empty interpretation.
Keywords: λ-calculus, relational model, non-determinism, parallel com-
position, denotational semantics.

1 Introduction

Pure and typed λ-terms are specifications of sequential and deterministic pro-
cesses. Several extensions of the λ-calculus with parallel and/or non-deterministic
constructs have been proposed in the literature, either to increase the expressive
power of the language, in the typed [19, 17, 14] and untyped [4, 5] settings, or to
study the interplay between higher order features and parallel/non-deterministic
features [16, 8, 9].

When introducing non-determinism in a functional setting, it is crucial to
specify what notion of convergence is chosen. Two widely used notions are:

– the must convergence: a non-deterministic choice converges if all its compo-
nents do. This characterizes the demonic non-determinism.

– the may convergence: a non-deterministic choice converges if at least one of
its components does. This characterizes the angelic non-determinism.

? Corresponding author.

The usual denotational models of functional calculi do not accommodate may
non-determinism: let true and false be two convergent terms1, whose denota-
tions in standard models are distinct.

What semantic value should take the non-deterministic term true + false,
which may converges to true and to false? The value should be both true

and false if we want the semantics to be invariant under reduction!

The typical way of interpreting “multi-valued” terms, like the one above, is
to use models based on powerdomains [18], often defined as filter models with
respect to suitable notions of intersection and union types [8, 9]. The seman-
tics of true + false becomes some kind of join of both values, available in
the powerdomain (similar techniques are also used for interpreting must non-
determinism). In this framework, both kinds of non-determinism are modelled
by some idempotent, commutative and associative operations.

In a recent paper [11], Faure and Miquel define a categorical counterpart
of the syntactical notion of parallel execution: the aggregation monad. Power-
domains, sets with union and multisets with multi-union are all instances of
aggregation monads (in categories of domains and of sets, respectively). In gen-
eral, the notion of parallel composition modelled by an aggregation monad is
neither idempotent, nor commutative, nor associative.

There are however models of the ordinary λ-calculus where aggregation, con-
sidered as parallel composition (that is, as must non-determinism), can be in-
terpreted without introducing any additional structure, such as the above men-
tioned aggregation monads or powerdomain constructions.

This is the case in models of multiplicative exponential linear logic (MELL),
where aggregation can be interpreted by the mix rule, if available. This rule
allows to “put together” two proofs whatsoever [7]. More precisely, parallel com-
position is obtained by combining the mix rule with the contraction rule. Indeed,
mix can be seen as a linear morphism X⊗Y (XΓY , so that there is a morphism
?A ⊗ ?A (?A, obtained by composing the mix morphism ?A ⊗ ?A (?A Γ ?A
with the contraction morphism ?A Γ ?A (?A. This composite morphism de-
fines a commutative algebra structure on ?A, which is used to model the “parallel
composition” of MELL proofs. Thus, to obtain a model of parallel λ-calculus, it
is sufficient to solve the equation D ∼= D ⇒ D, with an object D of shape ?A.

This is precisely what we did in [6], in a particularly simple model of linear
logic: the model of sets and relations. Similar constructions are possible in other,
richer models, such as the well known model of coherence spaces [12], or the
model of hypercoherences [10]: the mix rule is available there, as well as in
many other models. This shows that coherence (which prevents the above join
of true and false) is not an obstacle to the interpretation of the must non-
determinism in the pure λ-calculus2. Our model D of [6] satisfies the recursive
equation D = ?(A) where A = (D

�

)⊥, and therefore, D has the commutative

1 They could be the actual boolean constants in a typed λ-calculus with constants, or
the projections λxy.x, λxy.y as pure λ-terms.

2 In a typed language like PCF, this would be more problematic, since the object
interpreting the type of booleans does not have the above mentioned structure.

algebra structure mentioned above. It is precisely this structure that we use for
interpreting parallel composition, just as Danos and Krivine did in [7] for an
extension of λµ-calculus with a parallel composition operation.

But the category of sets and relations has another feature, which allows for
a direct interpretation of the may non-determinism as well: morphisms are ar-
bitrary relations between sets (interpreting types), and hence morphisms are
closed under arbitrary unions. Thanks to this union operation on morphisms,
may non-determinism can be interpreted directly, without introducing any ad-
ditional powerdomain construction or aggregation monad. Of course, this op-
eration is not available in the coherence or hypercoherence space models. Note
that, if we consider M + N → M as a reduction rule of our calculus, then
our semantics is not invariant under reduction, since the process of performing
non-deterministic choices entails a non recoverable loss of information. But the
situation is fundamentally similar with the powerdomain-based interpretations.

To summarize, in our model D, the semantic counterparts of may and must
non-determinism are at hand: they are simply the set-theoretic union and the
mix-based algebraic operation. In this framework, parallel composition is no
longer idempotent. This is quite natural if we consider each component of a
parallel composition as the specification of a process whose execution requires
the consumption of some kind of resources.

Contents. We introduce an extension of λ-calculus with parallel composition
and non-deterministic choice, called λ+‖-calculus, and we define its operational
semantics by associating with each term a generalized hnf (head normal form),
which is a set of multisets of terms whose head subterms are variables3. Roughly
speaking, the operational value of a term is the collection of all possible outcomes
of its head reductions. When the head subterm is M +N (may non-deterministic
choice), the head reduction goes on by choosing M or N , and when the head
subterm is M‖N (must parallelism), the head reduction forks.

We provide the denotational semantics of the λ+‖-calculus in D, considered
as a λ-model, and endowed with two additional operations which turn it into a
semiring. We prove the soundness with respect to β-reduction, and we show that
the interpretations of the hnf’s of a term M are included in the interpretation of
M . Next, we generalize Krivine’s realizability technique to our extended calculus,
showing that our denotational model is sensible: the operational value of a term
is non-empty (i.e., a term is solvable) if, and only if, its denotation is non-empty.

This proves that our interpretation of may and must non-determinism is
adequate to the operational semantics we have equipped the λ+‖-calculus with.
The next step should be to get some “full abstraction” results, giving syntactic
characterization of equality and inclusion between interpretations of terms. We
already know that the theory induced on the λ-calculus by our model D is H∗

[15, Sec. 3.3] (just as the theory induced by the model D∞ of Scott); one should
try to generalize this result to this non-deterministic setting.

3 This is reminiscent of the capability semantics of [8], but we consider different notions
of convergence and of head normal form.

2 Preliminaries

To keep this article self-contained we summarize some definitions and results
that will be used in the sequel. In particular, we present our semantic framework
MRel and we recall the construction of a specific reflexive object D of MRel,
that we have introduced in [6]. Our main reference for category theory is [1].

2.1 Multisets and sequences

Let S be a set. We denote by P(S) the collection of all subsets of S. A multiset m
over S can be defined as an unordered list m = [a1, a2, . . .] with repetitions such
that ai ∈ S for all i. A multiset m is called finite if it is a finite list, we denote by
[] the empty multiset. Given two multisets m1 = [a1, a2, . . .] and m2 = [b1, b2, . . .]
the multi-union of m1, m2 is defined by m1] m2 = [a1, b1, a2, b2, . . .]. We will
write Mf (S) for the set of all finite multisets over S.

We denote by
�

the set of natural numbers. Given two
�
-indexed sequences

σ = (σ1, σ2, . . .), τ = (τ1, τ2, . . .) of multisets we define the multi-union of σ
and τ componentwise as σ]̄τ = (σ1] τ1, σ2] τ2, . . .). An

�
-indexed sequence

σ = (m1, m2, . . .) of multisets is quasi-finite if mi = [] holds for all, but a
finite number of indices i. If S is a set, then we denote by Mf (S)(ω) the set
of all quasi-finite

�
-indexed sequences of multisets over S. We write ? for the�

-indexed sequence of empty multisets, i.e., ? is the only inhabitant of Mf (∅)(ω).

2.2 MRel: a cartesian closed category of sets and relations

We now present the category MRel, which is the Kleisli category of the functor
Mf (−) over the ?-autonomous category Rel of sets and relations. We provide
here a direct definition, since in the sequel we will not use explicitly the monoidal
structure of Rel.

– The objects of MRel are all the sets.
– A morphism from S to T is a relation from Mf (S) to T , in other words,

MRel(S, T) = P(Mf (S) × T).
– The identity of S is the relation IdS = {([a], a) | a ∈ S} ∈ MRel(S, S).
– The composition of s ∈ MRel(S, T) and t ∈ MRel(T, U) is defined by:

t ◦s = {(m, c) | ∃(m1, b1), . . . , (mk, bk) ∈ s such that
m = m1] . . .] mk and ([b1, . . . , bk], c) ∈ t}.

We now provide an overview of the proof of cartesian closedness.

Theorem 1. The category MRel is cartesian closed.

Proof. The terminal object � is the empty set ∅, and the unique element of
MRel(S, ∅) is the empty relation.

Given two sets S1 and S2, their categorical product S1&S2 in MRel is their
disjoint union:

S1&S2 = ({1} × S1) ∪ ({2} × S2)

and the projections π1, π2 are given by:

πi = {([(i, a)], a) | a ∈ Si} ∈ MRel(S1&S2, Si), for i = 1, 2.

Given s ∈ MRel(U, S1) and t ∈ MRel(U, S2), the corresponding morphism
〈s, t〉 ∈ MRel(U, S1&S2) is given by:

〈s, t〉 = {(m, (1, a)) | (m, a) ∈ s} ∪ {(m, (2, b)) | (m, b) ∈ t} .

We will consider the canonical bijection between Mf (S1) × Mf (S2) and
Mf (S1 &S2) as an equality, hence we will still denote by (m1, m2) the corre-
sponding element of Mf (S1&S2).

Given two objects S and T the exponential object S⇒T is Mf (S) × T and
the evaluation morphism is given by:

evalST = {(([(m, b)], m), b) | m ∈ Mf (S) and b ∈ T} ∈ MRel((S⇒T)&S, T) .

Given any set U and any morphism s ∈ MRel(U &S, T), there is exactly one
morphism Λ(s) ∈ MRel(U, S⇒T) such that:

evalST ◦〈Λ(s), IdS〉 = s,

namely, Λ(s) = {(p, (m, b)) | ((p, m), b) ∈ s}. �

The points of an object S, i.e., the elements of MRel(� , S), are relations
between Mf (∅) and S. These are, up to isomorphism, the subsets of S.

2.3 An extensional reflexive object in MRel

A reflexive object of a cartesian closed category C (ccc, for short) is a triple
U = (U,A, λ) such that U is an object of C, and λ ∈ C(U ⇒ U, U) and
A ∈ C(U, U⇒U) satisfy A ◦λ = IdU⇒U . U is called extensional if, moreover,
λ ◦A = IdU ; in this case we have that U ∼= U⇒U .

We define a reflexive object D in MRel, which is extensional by construction.
We let (Dn)n∈

� be the increasing family of sets defined by:

– D0 = ∅,
– Dn+1 = Mf (Dn)(ω).

Finally, we set D =
⋃

n∈
� Dn. So we have D0 = ∅ and D1 = {?} = {([], [], . . .)}.

The elements of D2 are quasi-finite sequences of multisets over a singleton, i.e.,
quasi-finite sequences of natural numbers, and so on.

In order to define an isomorphism in MRel between D and D ⇒ D =
Mf (D) × D just notice that every element σ = (σ1, σ2, . . .) ∈ D stands for
the pair (σ1, (σ2, . . .)) and vice versa. Given σ ∈ D and m ∈ Mf (D), we write
m :: σ for the element τ = (τ1, τ2, . . .) ∈ D such that τ1 = m and τi+1 = σi. This
defines a bijection between Mf (D) × D and D, and hence an isomorphism in
MRel as follows:

Proposition 1. (Bucciarelli, et al. [6]) The triple D = (D,A, λ) where:
– λ = {([(m, σ)], m :: σ) | m ∈ Mf (D), σ ∈ D} ∈ MRel(D⇒D, D),
– A = {([m :: σ], (m, σ)) | m ∈ Mf (D), σ ∈ D} ∈ MRel(D, D⇒D),

is an extensional reflexive object of MRel.

3 A parallel and non-deterministic λ-calculus

In this section we introduce the syntax and the operational semantics of a parallel
and non-deterministic extension of λ-calculus that we call λ+‖-calculus.

3.1 Syntax of λ+‖-calculus

To begin with, we define the set Λ+‖ of λ-terms enriched with two binary op-
erators + and ‖, that is the set of terms generated by the following grammar
(where x ranges over a countable set Var of variables):

M, N ::= x | λx.M | MN | M + N | M‖N .

The elements of Λ+‖ are called λ+‖-terms and will be denoted by M, N, P, . . .
Intuitively, M +N denotes the non-deterministic choice between M and N , and
M‖N stands for their parallel composition.

As usual, we suppose that application associates to the left and λ-abstraction
to the right. Moreover, to lighten the notation, we assume that application and
λ-abstraction take precedence over + and ‖ . The notions of free and bound
variables of a term are defined in the obvious way.

A substitution is a finite set s = {(x1, N1), . . . , (xk, Nk)} such that xi 6= xj

for all 1 ≤ i < j ≤ k. Given a λ+‖-term M and a substitution s as above, we
denote by Ms the term obtained by substituting simultaneously the term Nj

for all free occurrences of xj (for 1 ≤ j ≤ k) in M , subject to the usual proviso
about renaming bound variables in M to avoid capture of free variables in the
Nj ’s. If s = {(x, N)} we will write M [N/x] for Ms.

Note that, in general, M{(x1, N1), . . . , (xk , Nk)} 6= M [N1/x1] · · · [Nk/xk].
For instance, x{(x, y), (y, z)} = y, whereas x[y/x][z/y] = z. Actually, k-ary
substitutions will be only used in Section 5 in the proof of the adequation lemma.

As a matter of notation, we will write ~P for a (possibly empty) finite sequence

of λ+‖-terms P1 . . . Pk and `(~P) for the length of ~P . It is easy to check that every

λ+‖-term M has the form λ~x.N ~P where N , which is called the head subterm of
M , is either a variable, a non-deterministic choice, a parallel composition or a
λ-abstraction. Notice that, in this last case, we must have `(~P) > 0.

3.2 Operational semantics

The set Λh
+‖ ⊂ Λ+‖ of head normal forms4 (hnf ’s, for short) is the set of

λ+‖-terms whose head subterm is a variable (called head variable).

The intuitive idea of the head reduction of λ+‖-calculus underlying the notion
of “multiple” hnf (formalized below) is the following:

4 This terminology is coherent with the one usually adopted for λ-calculus (see [2,
Def. 2.2.11]).

– when a term has the head subterm of the form N1 + N2, either of the alter-
natives may be chosen to pursue the head reduction, and the final value is
the union of the values obtained by each choice. In particular, if one of the
choices produces a non-empty value, then the global value is non-empty.

– when a term has the head subterm of the form N1‖N2, the head reduction
forks, and the final value is obtained by “mixing” the values eventually ob-
tained. In particular, if the value of one of the subprocesses is empty, then
also the global value is.

Definition 1. A multiple hnf is a finite multiset of hnf ’s of λ+‖-calculus.
A value is a set of multiple hnf ’s.

We define the operational semantics of λ+‖-calculus by associating with each
M ∈ Λ+‖ the value eventually obtained by head reducing M . In particular, we
use union (resp. multi-union) to get the value of M1 +M2 (resp. M1‖M2) out of
the values of M1 and M2.

To help the reader to get familiar with these notions, we first provide some
simple examples of values (where5 I ≡ λx.x, ∆ ≡ λx.xx and Ω ≡ ∆∆):

– the value of I + ∆ is {[I], [∆]}. In other words, the term I + ∆ has two
different multiple hnf’s, which are singleton multisets;

– the value of I‖∆ is {[I, ∆]}, then I‖∆ has just one multiple hnf;

– the values of I+Ω and I‖Ω are {[I]} and ∅, respectively. This is a consequence
of the fact that the value of Ω is the empty-set.

In general, the value H(M) of a λ+‖-term M can be characterized as the limit
of an increasing sequence (Hn(M))n∈

� of “partial” values, which are defined by
induction on n ∈

�
and by cases on the form of the head subterm of M .

Definition 2. Let M ≡ λ~x.N ~P be a λ+‖-term.

• H0(M) = ∅;

• Hn+1(M) =

{[M]} if N ≡ y,
Hn(λ~x.Q[P1/y]P2 · · ·P`(~P)) if N ≡ λy.Q,

Hn(λ~x.N1
~P) ∪ Hn(λ~x.N2

~P) if N ≡ N1 + N2,

{m1] m2 | mi ∈ Hn(λ~x.Ni
~P) for i = 1, 2} if N ≡ N1‖N2.

Notice that, for all M ∈ Λ+‖ and n ∈
�
, the value Hn(M) ⊂ Mf (Λh

+‖) is

a finite set of multiple hnf’s. Since the sequence (Hn(M))n∈
� is increasing, we

can define the (final) value of M as its limit.

Definition 3. The value of a λ+‖-term M is defined by H(M) =
⋃

n∈
� Hn(M).

Of course, H(M) may be infinite as shown in the example below.

5 The symbol ≡ denotes syntactical equality.

Example 1. Consider the λ+‖-term M ≡ λn.0 + sn, where 0 ≡ λxy.y is the
0-th Church numeral and s ≡ λnxy.nx(xy) implements the successor function.
Let now C ≡ YM where Y is some fixpoint combinator. To have simpler cal-
culations, we suppose that YM reduces to M(YM) in just one step of head
β-reduction. Then, we get:

– H0(C) = ∅,
– H1(C) = H0(MC) = ∅,
– H2(C) = H1(MC) = H0(0 + sC) = ∅,
– H3(C) = H2(MC) = H1(0 + sC) = {[0]} ∪ H0(sC) = {[0]}.

Pursuing the calculation a little further, one gets H9(C) = {[0], [1]} and, even-
tually, H(C) = {[n] | n ∈

�
}.

3.3 Solvability

We now present the natural notion of solvability for the λ+‖-calculus.

Definition 4. A λ+‖-term M is solvable if H(M) 6= ∅. The set of solvable
terms will be denoted by N .

Among solvable terms, we single out the set N0 of hnf’s starting with a
variable, and the set N1 of solvable terms having a multiple hnf whose head
variables are free.

Definition 5. We set:

– N0 = {x~P | x ∈ Var and ~P ∈ Λ+‖}, and

– N1 = {M ∈ Λ+‖ | ∃[λ~x1.y1
~P1, . . . , λ~xk.yk

~Pk] ∈ H(M)∧(∀j = 1..k) yj /∈ ~xj}.

We end this section stating a technical proposition, which will be useful in
Section 5. The proof is quite long and it is provided in Appendix A.

Proposition 2. Let M ∈ Λ+‖ and x ∈ Var, then we have that:

(i) if Mx ∈ N then M ∈ N ,
(ii) if MΩ ∈ N1 then M ∈ N1,
(iii) if M ∈ N1 then MN ∈ N1 for all N ∈ Λ+‖.

Notice that in the case of the pure λ-calculus the analogous properties are
trivial.

4 A relational model of λ+‖-calculus

Exploiting the existence of countable products in MRel we have shown in [6]
that the reflexive object D = (D,A, λ) built in Section 2.3 can be turned into
a λ-model [2, Def. 5.2.1] (this was not clear before, since the category MRel

does not have enough points [1, Def. 2.1.4]). The underlying set of the λ-model
associated with D by our construction is the set of “finitary” morphisms in
MRel(DVar, D), where DVar is the Var-indexed categorical product of countably
many copies of D.

4.1 Finitary morphisms in MRel

The morphisms in MRel(DVar, D) are sets of pairs whose first projection is a
finite multiset of elements in DVar, and whose second projection is an element
of D. Since categorical products in MRel are disjoint unions, a typical such pair
is of the form:

([(x1, σ
1
1), . . . , (x1, σ

n1

1), . . . , (xk, σ1
k), . . . , (xk , σnk

k)], σ)

where k, n1, . . . , nk ∈
�
, x1, . . . , xk ∈ Var and σ1

1 , . . . , σ
nk

k , σ ∈ D.

Notation 1. Given m ∈ Mf (DVar) and x ∈ Var, we set mx = [σ | (x, σ) ∈
m] ∈ Mf (D) and m−x = [(y, σ) ∈ m | y 6= x] ∈ Mf (DVar).

In general, given an object U of a ccc C, we say that a morphism f ∈
C(UVar, U) is “finitary” if it can be decomposed as f = fI ◦πI for some finite
set I of variables (see [6, Sec. 3.1]). Working in MRel it is more convenient to
take the following equivalent definition.

Definition 6. A morphism r ∈ MRel(DVar, D) is finitary if there exists a finite
set I of variables such that for all (m, σ) ∈ r and x ∈ Var we have that mx 6= []
entails x ∈ I.

We denote by MRelf (DVar, D) the set of all finitary morphisms.

4.2 The model

From [6, Thm. 1] we know that (MRelf (DVar, D), •), where • is defined as usual
by r1 • r2 = eval ◦〈A ◦r1, r2〉, can be endowed with a structure of λ-model.

In order to interpret λ+‖-terms as finitary morphisms of MRel we are going
to define on MRel(DVar, D) two binary operations of sum and aggregation for
modelling non-deterministic choice and parallel composition, respectively, and
to prove that MRelf (DVar, D) is closed under these operations.

Definition 7. Let r1, r2 ∈ MRel(DVar, D), then:

– the sum of r1 and r2 is defined by r1 ⊕ r2 = r1 ∪ r2.
– the aggregation of r1 and r2 is defined by r1�r2 = {(m1]m2, σ1]̄σ2) | (mi, σi) ∈

ri, for i = 1, 2}.

Proposition 3. The set MRelf (DVar, D) is closed under sum and aggregation.

Proof. Straightforward. In both cases, the union of the finite sets of variables I1

and I2 given by the finiteness of the arguments of the operation, is a witness of
the finiteness of the result. �

Composition is right-distributive over sum and aggregation.

Proposition 4. Let r, s ∈ MRel(DVar, D) and t ∈ MRel(DVar, DVar), then:

– (r ⊕ s) ◦ t = (r ◦ t) ⊕ (s ◦ t),
– (r � s) ◦ t = (r ◦ t) � (s ◦ t).

Proof. Straightforward. �

The units of the operations ⊕ and � are 0 = ∅ and 1 = {([], ?)}, re-
spectively; (MRelf (DVar, D),⊕, 0) and (MRelf (DVar, D),�, 1) are commuta-
tive monoids. Moreover, 0 annihilates � and aggregation distributes over sum.
Summing up, the following proposition gives an overview of the algebraic prop-
erties of MRelf (DVar, D) equipped with application, sum and aggregation.

Proposition 5. – (MRelf (DVar, D),⊕,�, 0, 1) is a commutative semiring.
– • is right-distributive over ⊕ and �.
– ⊕ is idempotent (whereas � is not).

Proof. Straightforward.

4.3 The absolute interpretation

Before going through the formal definition of the interpretation of λ+‖-terms,
we present a short digression on the nature of such an interpretation.

In our framework, the λ+‖-terms will be interpreted as morphisms in
MRelf (DVar, D), i.e., as subsets of Mf (DVar) × D. The occurrence of a parti-
cular pair ([(x1, σ

1
1), . . . , (x1, σ

n1

1), . . . , (xk , σ1
k), . . . , (xk, σnk

k)], σ) in the interpre-
tation of a term M may be read as “in an environment ρ such that ρ(xi) =
[σ1

i , . . . , σni

i] (for all i = 1, . . . , k) the interpretation � M � ρ contains σ”.
Hence, here there is no need of providing explicitly an environment to the

interpretation function as classically done for λ-models [2, Def. 5.2.1(ii)] because
the whole information is coded inside the elements of the λ-model itself.

On the other hand, the categorical interpretation of a term M is usually
defined with respect to a finite list of variables, containing the free variables of
M [2, Def. 5.5.3(vii)]. Intuitively, our interpretation is defined with respect to
the list of all variables, encompassing then all categorical interpretations.

These considerations lead us to the definition of � − � : Λ+‖ → MRelf (DVar, D)
below, that we call the absolute interpretation6 of λ+‖-terms:

– � x � = πx, for x ∈ Var,
– � M1M2 � = eval ◦〈A ◦ � M1 � , � M2 � 〉,
– � λx.M � = λ ◦Λ(� M � ◦ηx),
– � M1 + M2 � = � M1 � ⊕ � M2 � ,
– � M1‖M2 � = � M1 � � � M2 � ,

where ηx ∈ MRel(DVar&D, DVar) is defined componentwise, for y ∈ Var, by:

πy ◦ηx =

{

π2 if x ≡ y,
πy ◦π1 if x 6≡ y.

6 See [15, Sec. 2.3.2] for more details on the relations among the absolute, algebraic
and categorical interpretations, and on how the former allows to recover the others.

In what follows, we will use the inductive characterization of the interpreta-
tion of (some) λ+‖-terms provided by the proposition below:

Proposition 6. (i) � x � = {([(x, σ)], σ) | σ ∈ D},
(ii) � MN � = {(m0] m1] . . .] mk, σ) | ∃k ≥ 0, (m0, [τ1, . . . , τk] :: σ) ∈ � M � ,

(mi, τi) ∈ � N � for 1 ≤ i ≤ k},
(iii) � λx.M � = {(m−x, mx :: σ) | (m, σ) ∈ � M � }.
Proof. Simple calculations based on the definitions of Section 2. �

We show now the soundness of the interpretation with respect to β-conversion,
which relies on the following lemma.

Lemma 1. If M, N ∈ Λ+‖ and x ∈ Var, then � M [N/x] � = � M � ◦ηx ◦〈id, � N � 〉.
Proof. By structural induction on M . The cases M ≡ M1+M2 and M ≡ M1‖M2

are settled by using Proposition 4. For the other cases, one can use Proposition 6
and the following characterization: ηx ◦ 〈id, � N � 〉 = {([(y, σ)], (y, σ)) | σ ∈ D,
y 6≡ x} ∪ {(m, (x, σ)) | (m, σ) ∈ � N � } ∈ MRel(DVar, DVar). �

Lemma 2. (Soundness) For all M, N ∈ Λ+‖ and x ∈ Var, we have � (λx.M)N � =
� M [N/x] � .
Proof. � (λx.M)N � = eval◦〈A ◦λ ◦Λ(� M � ◦ηx), � N � 〉 = eval◦〈Λ(� M � ◦ηx), � N � 〉 =

� M � ◦ηx ◦〈id, � N � 〉 = by Lemma 1 = � M [N/x] � . �

We aim to prove that our model is sensible w.r.t. the operational semantics:
a λ+‖-term M has a non-empty interpretation if, and only if, M is solvable.

We start showing that the interpretation of every solvable term is non-empty
(for the converse we will adapt Krivine’s realizability method [13], see Section 5).
This is an immediate corollary of the following propositions stating that the
interpretation of a λ+‖-term includes the union of the interpretations of its
multiple hnf’s and that the interpretation of any hnf is non-empty.

Proposition 7. For all M ∈ Λ+‖, we have (
⊕

m∈H(M)(
⊙

N∈m � N �)) ⊆ � M � .

Proof. It is enough to show that (
⊕

m∈Hn(M)(
⊙

N∈m � N �)) ⊆ � M � holds for all
n ∈

�
; we prove it by induction on n. The case n = 0 is trivial. The proof of the

inductive step goes by case analysis on the head subterm M ′ of M ≡ λ~z.M ′ ~P .

– The case M ′ ≡ x is trivial, and the case M ′ ≡ λy.Q is settled by Lemma 2.
– If M ′ ≡ Q1‖Q2, we start by observing that � M � = � λ~z.Q1

~P � � � λ~z.Q2
~P � . This

is an easy consequence of the right distributivity of • over � (Proposition 5)
and of the fact that, by Proposition 6(iii), we have � λ~x.(R1‖R2) � = � λ~x.R1 � �

� λ~x.R2 � , for all ~x ∈ Var and R1, R2 ∈ Λ+‖. Then, we can conclude by the
inductive hypothesis.

– The case M ′ ≡ Q1 + Q2 is similar, and simpler, once noted that � M � =

� λ~z.Q1
~P � ⊕ � λ~z.Q2

~P � (again, by Proposition 5 and Proposition 6(iii)). �

We now show that every hnf has a non-empty interpretation.

Proposition 8. For all x, ~y ∈ Var and ~Q ∈ Λ+‖ we have � λ~y.x ~Q � 6= ∅.

Proof. By Proposition 6(iii), it is sufficient to prove that, for all x ∈ Var and
~Q ∈ Λ+‖, we have � x ~Q � 6= ∅. To conclude, it is easy to show by induction on k
that ([(x, ?)], ?) ∈ � xQ1 . . . Qk � . �

Theorem 2. For all M ∈ Λ+‖, if H(M) 6= ∅ then � M � 6= ∅.

Proof. Let [N1, . . . , Nk] ∈ H(M). By Proposition 7,
⊙

1≤i≤k � Ni � ⊆ � M � , and by
Proposition 8 � Ni � 6= ∅ for 1 ≤ i ≤ k. We conclude that ∅ 6=

⊙

1≤i≤k � Ni � ⊆ � M � .
�

5 Saturated sets and the realizability argument

In this section, we generalize Krivine’s realizability technique [13] to λ+‖-calculus
and we use it for proving that λ+‖-terms having a non-empty interpretation are
all solvable. For notations and terminology, we mainly follow [3].

The saturation of a set S of terms expresses the fact that S is closed un-
der weak head expansions. For the pure λ-calculus, this amounts to the well
known condition of being closed under weak head β-expansion. For the exten-
sion of the λ-calculus we are dealing with, three cases of weak head expansions,
corresponding to the possible shapes of the head term, must be considered.

Definition 8. A set S ⊆ Λ+‖ is saturated if the following conditions hold:

– if M [N/x]~P ∈ S then (λx.M)N ~P ∈ S,

– if (MQ‖NQ)~P ∈ S then (M‖N)Q~P ∈ S,

– if M ~P ∈ S and N ∈ Λ+‖ then (M + N)~P ∈ S.

We recall that the sets N0,N1 and N have been defined in Section 3.3. It is
easy to check that N is saturated, whilst N0 is not. In the realizability argument,
only saturated sets included within N0 and N will be considered.

Definition 9. The set Sath of “small” saturated subsets of Λ+‖ is defined by:

Sath = {S ⊆ Λ+‖ | S is saturated and N0 ⊆ S ⊆ N}.

Given A, B ⊆ Λ+‖, we define A → B = {M ∈ Λ+‖ | (∀N ∈ A) MN ∈ B}.
The operator → is contravariant in its first argument and covariant in its second
one, in other words, A → B ⊆ A′ → B′ for all A′ ⊆ A and B ⊆ B′.

Lemma 3. N0 ⊆ Λ+‖ → N0 ⊆ N0 → N ⊆ N .

Proof. The first inclusion follows by definition, the second one is a consequence
of the contravariance/covariance of the arrow. For the third one, it is enough to
prove that, for all M ∈ Λ+‖ and x ∈ Var, H(Mx) 6= ∅ entails H(M) 6= ∅; this
holds by Proposition 2(i). �

The set Sath enjoys the following closure properties.

Lemma 4. The set Sath is closed under the arrow operator, finite unions, finite
intersections, and under the map F : S 7→ (Λ+‖ → S).

Proof. Given two sets S1, S2 ∈ Sath, it is straightforward to check that S1 ∩ S2,
S1 ∪ S2 ∈ Sath and that S1 → S2 and Λ+‖ → S2 are saturated. The inclusions
N0 ⊆ S1 → S2 ⊆ N and N0 ⊆ Λ+‖ → S2 ⊆ N follow easily from Lemma 3 and
contravariance/covariance of the arrow. �

We are going to define a function (−)• : D → Sath, satisfying (m :: σ)• =
m• → σ•, where, for a multiset m of elements of D, m• =

⋂

α∈m α• and, in
particular, []• = Λ+‖. Since ? = [] :: ?, the set ?• must be a fixpoint of the
function F : S 7→ (Λ+‖ → S). We now show that N1 is one of such fixpoints.

Proposition 9. N1 ∈ Sath and N1 = Λ+‖ → N1.

Proof. The saturation of N1 and the fact that N0 ⊆ N1 ⊆ N are both trivial.
We now prove that N1 = Λ+‖ → N1. Let M ∈ Λ+‖ → N1. Since MΩ ∈ N1, we
get by Proposition 2(ii) that M ∈ N1. Conversely, let M ∈ N1 and N ∈ Λ+‖.
We conclude since, by Proposition 2(iii), we get MN ∈ N1. �

Observe that any element σ ∈ D may be written in a unique way as σ =
σ1 :: · · · :: σn :: ?, with n ≥ 0 and σn 6= []. This is called the standard decompo-
sition of σ.

Definition 10. Let σ ∈ D, and σ1 :: · · · :: σn :: ? be the standard decomposition
of σ. Then, we define σ• = σ•

1 → · · · → σ•
n → N1.

Note that, if m 6= [] or σ 6= ?, then the standard decomposition of m :: σ is
m :: σ1 :: · · · :: σn :: ?, where σ1 :: · · · :: σn :: ? is the standard decomposition of
σ. Hence, (m :: σ)• = m• → σ• holds in general, since ([] :: ?)• = ?• = N1 =
Λ+‖ → N1.

The next lemma shows that the definition of (−)• fits well with parallel
composition.

Lemma 5. Let M, N ∈ Λ+‖, σ = (σ1, σ2, . . .), τ = (τ1, τ2, . . .) ∈ D and ρ =
σ]̄τ . If M ∈ σ• and N ∈ τ•, then M‖N ∈ ρ•.

Proof. Let ρn :: · · · :: ρ1 :: ? be the standard decomposition of ρ. We have to
show that M‖N ∈ ρ•

n → · · · → ρ•1 → N1. We prove it by induction on n.
If n = 0, then σ = τ = ρ = ?. Hence, we conclude since ?• = N1 and N1 is

closed under parallel composition.
If n > 0, then we have to show that, for all Q ∈ ρ•

n, (M‖N)Q ∈ (ρ′)• where
ρ′ = ρn−1 :: · · · :: ρ1 :: ?. Since M ∈ σ•

1 and N ∈ τ•
1 , we have that MQ ∈ (σ′)•

and NQ ∈ (τ ′)•, where σ′ = (σ2, σ3, . . .) and τ ′ = (τ2, τ3, . . .)
•. Moreover, ρ′ =

σ′]̄τ ′ and the standard decomposition of ρ′ is strictly shorter than that of ρ. By
the inductive hypothesis, we get MQ‖NQ ∈ (ρ′)•. By saturation of (ρ′)•, we
conclude that (M‖N)Q ∈ (ρ′)•, and hence M‖N ∈ ρ•. �

We are now able to prove the promised adequation lemma, which constitutes
the key tool in the realizability argument.

Definition 11. A substitution s = {(x1, N1), . . . , (xk , Nk)} is adequate for a
multiset m ∈ Mf (DVar) if:

– mx 6= [] implies x ∈ {x1, . . . , xk}, for all x ∈ Var,
– Ni ∈ m•

xi
for all 1 ≤ i ≤ k.

Observe that, if a substitution is adequate for some multiset m ∈ Mf (DVar),
then it is adequate for all submultisets of m.

Lemma 6. (Adequation lemma) Let M ∈ Λ+‖, (m, σ) ∈ � M � and s be a sub-
stitution. If s is adequate for m, then Ms ∈ σ•.

Proof. By structural induction on M .

– If M ≡ x, then m = [(x, σ)] by Proposition 6(i). If s is adequate for m, then
(x, N) ∈ s for some N ∈ [σ]•. Hence, we have that Ms = N ∈ [σ]• = σ•.

– If M ≡ PQ, then by Proposition 6(ii), we have m = m0]m1] . . .]mk for
some k ≥ 0, and τ1, . . . , τk ∈ D such that (m0, [τ1, . . . , τk] :: σ) ∈ � P � and
(mi, τi) ∈ � Q � for 1 ≤ i ≤ k. Observe now that, if s is adequate for m then
it is also adequate for m0, m1, . . . , mk, since they are all multisubsets of m.
By the inductive hypothesis we have that:

- Ps ∈ ([τ1, . . . , τk] :: σ)• = [τ1, . . . , τk]• → σ•,
- Qs ∈ τ•

1 , . . . , Qs ∈ τ•
k , which implies that Qs ∈ [τ1, . . . , τk]•.

Hence, we can conclude that (PQ)s ∈ σ•.
– If M ≡ λx.P , then by Proposition 6(iii), we have that m = m′

−x and
σ = m′

x :: σ′ for some (m′, σ′) ∈ � P � . Let s be an adequate substitution
for m′

−x and Q ∈ (m′
x)•. Since M is considered up to α-conversion, we can

suppose without loss of generality that x does not occur in s. It is clear that
s′ = s ∪ {(x, Q)} is adequate for m′ and hence, by the inductive hypothesis,
we get Ps′ ∈ (σ′)•. Now we have that Ps′ = (Ps)[Q/x] ∈ (σ′)• because
x does not appear in s. Since (σ′)• is saturated and (λx.Ps) = (λx.P)s
we have that (λx.P)sQ ∈ (σ′)•. From the arbitrariness of Q ∈ (m′

x)• we
conclude that (λx.P)s ∈ (m′

x)• → (σ′)• = (m′
x :: σ′)•.

– If M ≡ P + Q, then (m, σ) belongs to, say, � P � . Now, if s is adequate for m,
then we get by the inductive hypothesis that Ps ∈ σ• and we conclude, by
saturation of σ•, that (P + Q)s ∈ σ•.

– If M ≡ P‖Q, then m = m1] m2 and σ = σ1]̄σ2 with (m1, σ1) ∈ � P �
and (m2, σ2) ∈ � Q � . If s is adequate for m then it is also adequate for
m1, m2 and, from the inductive hypothesis and Lemma 5, we conclude that
(P‖Q)s ∈ (σ1]̄σ2)

•. �

Theorem 3. For all M ∈ Λ+‖, if � M � 6= ∅ then M ∈ N .

Proof. Let (m, σ) ∈ � M � . The substitution sid = {(x, x) | mx 6= []} is adequate
for m (note that Var ⊂ N0), and Msid = M . Hence, by the adequation lemma,
we conclude that M ∈ σ• ⊆ N . �

By Theorem 2 and Theorem 3 we finally get our main result.

Theorem 4. For all M ∈ Λ+‖, H(M) 6= ∅ ⇔ � M � 6= ∅.

References

1. A. Asperti, G. Longo. Categories, types and structures. Category theory for the
working computer scientist. M.I.T. Press, 1991

2. H.P. Barendregt. The lambda calculus: Its syntax and semantics. North-Holland
Publishing Co., Amsterdam, 1984.

3. C. Berline. From computation to foundations via functions and application: The
λ-calculus and its webbed models. Theor. Comp. Sci., vol. 249, pages 81-161, 2000.

4. G. Boudol, Lambda-calculi for (strict) parallel functions. Inf. Comput. 108(1): 51-
127, 1994.

5. G. Boudol, C. Lavatelli. Full abstraction for lambda calculus with resources and
convergence testing. Proc. of CAAP’96, LNCS, vol. 1059, pages 302-316, 1996.

6. A. Bucciarelli, T. Ehrhard and G. Manzonetto. Not enough points is enough. Proc.
of 16th EACSL Annual Conf. on Computer Science and Logic (CSL’07), LNCS,
vol. 4646, pages 268-282, 2007.

7. V. Danos, J.-L. Krivine. Disjunctive tautologies as synchronisation schemes. Proc.
of 9th EACSL Annual Conf. on Computer Science and Logic (CSL’00), LNCS, vol.
1862, pages 292-301, 2000.

8. M. Dezani Ciancaglini, U. de’Liguoro and A. Piperno. Filter models for
conjunctive-disjunctive lambda-calculi. Theor. Comput. Sci., vol. 170(1-2), pages
83-128, 1996.

9. M. Dezani Ciancaglini, U. de’Liguoro and A. Piperno. A filter model for concurrent
λ-calculus. SIAM J. Comput. 27(5): 1376-1419, 1998.

10. T. Ehrhard. Hypercoherences: a strongly stable model of linear logic. Math. Struct.
Comp. Sci., vol. 3(4), pages 365-385, 1993.

11. G. Faure and A. Miquel. A categorical semantics for the parallel lambda-calculus,
submitted. Draft available at http://rho.loria.fr/data/lics07.pdf

12. J.-Y. Girard. Linear Logic. Theor. Comp. Sci., vol. 50, 1988.
13. J.-L. Krivine. Lambda-calculus. Types and models. Ellis Horwood, Hemel Hemp-

stead, 1993.
14. J. Laird, Bidomains and full abstraction for countable nondeterminism, Proc. of

FoSSaCS’06, pages 352-366, 2006.
15. G. Manzonetto. Models and theories of lambda calculus. Ph.D. Thesis, Univ.

Ca’Foscari (Venezia) and Univ. Paris 7 (Paris), 2008.
16. C.-H.L. Ong. Non-determinism in a functional setting. In Proc. of LICS’93, pages

275-286, 1993.
17. L. Paolini. A stable programming language. Inf. Comput. 204(3): 339-375, 2006.
18. G.D. Plotkin. A powerdomain construction. SIAM J. Comput., vol. 5(3):452-487,

1976.
19. G.D. Plotkin. LCF considered as a programming language. Theor. Comput. Sci.

5(3): 225-255, 1977.

A Technical Appendix

This technical appendix is devoted to provide the proof of Proposition 2 in
Section 3.3. This proof is not particularly difficult but it is quite long and requires
some preliminary definitions.

Definition 12. A multiple hnf m is head-free if none of the hnf ’s contained in
m binds its head variable.

The following definition extends the notion of application of λ-calculus to
multiple hnf’s. Recall that the set N0 has been defined in Section 3.3.

Definition 13. Let m be a multiple hnf and N ∈ Λ+‖, then we set mN =
[MN | M ∈ m ∩ N0]] [P [N/x] | λx.P ∈ m].

Proposition 10. Given a multiple hnf m, we have that:

– mx is a multiple hnf, for all x ∈ Var;

– if m is head-free, then mN is a head-free multiple hnf, for all N ∈ Λ+‖.

Proof. Straightforward.

We provide now three technical lemmata which will be used respectively for
proving the three items of Proposition 2. To enlighten the notation, given a
sequence ~P ≡ P1 . . . Pk ∈ Λ+‖ with k ≥ 1, we write ~P≥2 for the (possibly empty)
sequence P2 . . . Pk.

Lemma 7. For all M ∈ Λ+‖ and x ∈ Var we have that for all n ∈
�
:

m ∈ Hn(Mx) ⇒ ∃k ≤ n, ∃m′ ∈ Hk(M) such that m = m′x.

Proof. By induction on n ∈
�
.

If n = 0 then the implication follows trivially, since H0(Mx) = ∅.

Suppose now that n > 0, then the proof is by cases on the shape of M ≡ λ~z.M ′ ~P .

– If M ′ ≡ y and `(~z) = 0, then Hn(y ~Px) = {[y ~Px]}. Hence, the only m ∈

Hn(Mx) is [y ~Px] and the result follows taking k = n and m′ = [y ~P].

– If M ′ ≡ y and `(~z) > 0, then Hn((λ~z.y ~P)x) = Hn−1(λ~z≥2.y[x/z1]~P [x/z1]) =

{[λ~z≥2.y[x/z1]~P [x/z1]]} = {[λ~z.y ~P]x}. Hence, if m ∈ Hn((λ~z.y ~P)x), then

m = [λ~z.y ~P]x and the result follows for k = n and m′ = [λ~z.y ~P].

– If M ′ ≡ (λy.Q) and `(~z) = 0, then Hn((λy.Q)~Px) = Hn−1(Q[P1/y]~P≥2x).

Now, if m ∈ Hn(Mx), then m also belongs to Hn−1(Q[P1/y]~P≥2x) and, by

the inductive hypothesis, there exist k′ ≤ n − 1 and m′ ∈ Hk′(Q[P1/y]~P≥2)

such that m = m′x. We conclude since Hk′ (Q[P1/y]~P≥2) = Hk′+1((λy.Q)~P)
and k = k′ + 1 ≤ n.

– If M ′ ≡ (λy.Q), `(~z) > 0 and Hn(Mx) 6= ∅, then we have that n > 2 and

Hn((λ~z.(λy.Q)~P)x) = Hn−1(λ~z≥2.(λy.Q[x/z1])~P [x/z1])

= Hn−2(λ~z≥2.Q[x/z1][P1[x/z1]/y]~P≥2[x/z1])

= Hn−2(λ~z≥2.Q[P1/y][x/z1]~P≥2[x/z1])

= Hn−1((λ~z.Q[P1/y]~P≥2)x).

Now, if m ∈ Hn(Mx), then m also belongs to Hn−1((λ~z.Q[P1/y]~P≥2)x) and,

by the inductive hypothesis, there exist k′ ≤ n−1 and m′ ∈ Hk′(λ~z.Q[P1/y]~P≥2)

such that m = m′x. We conclude since Hk′(λ~z.Q[P1/y]~P) = Hk′+1(λ~z.(λy.Q)~P)
and k = k′ + 1 ≤ n.

– If M ′ ≡ M1+M2 and `(~z) = 0, then Hn((M1+M2)~Px) = ∪i=1,2Hn−1(Mi
~Px).

If m ∈ Hn(Mx) then m belongs to, say, Hn−1(M1
~Px) and by the inductive

hypothesis there exist k′ ≤ n − 1 and m′ ∈ Hk′(M1
~P) such that m = m′x.

Thus, we conclude since m′ ∈ Hk′+1((M1 + M2)~P) and k = k′ + 1 ≤ n.

– If M ′ ≡ M1 + M2, `(~z) > 0 and Hn(Mx) 6= ∅, then we have n > 2 and

Hn((λ~z.(M1 + M2)~P)x) = Hn−1(λ~z≥2.(M1[x/z1] + M2[x/z1])~P [x/z1])

= ∪i=1,2Hn−2(λ~z≥2.Mi[x/z1]~P [x/z1]).

Thus if m ∈ Hn(Mx) then m belongs to, say, Hn−2(λ~z≥2M1[x/z1]~P) =

Hn−1((λ~z.M1
~P)x) and, by the inductive hypothesis, there exist k′ ≤ n − 1

and m′ ∈ Hk′ (λ~z.M1
~P) such that m = m′x. Hence, we conclude since m′ ∈

Hk′+1(λ~z.(M1 + M2)~P) and k = k′ + 1 ≤ n.

– If M ′ ≡ M1‖M2 and `(~z) = 0 then m ∈ Hn((M1‖M2)~Px) implies that there

exists mi ∈ Hn−1(Mi
~Px) (for i = 1, 2) such that m = m1] m2. By the

inductive hypothesis there exist k1, k2 ≤ n − 1 and m′
i ∈ Hki

(Mi
~P) such

that mi = m′
ix (for i = 1, 2). Hence m1x]m2x ∈ Hmax(k1,k2)+1((M1‖M2)~P)

and we conclude since m1x]m2x = (m1]m2)x and k = max(k1, k2)+1 ≤ n.

– If M ′ ≡ M1‖M2, `(~z) > 0 and H(M) 6= ∅, then we have n > 2 and

Hn((λ~z.(M1‖M2)~P)x) = Hn−1(λ~z≥2.(M1[x/z1]‖M2[x/z1])~P [x/z1]). Hence,

if m ∈ Hn(Mx) then there exists mi ∈ Hn−2(λ~z≥2.Mi[x/z1]~P [x/z1]) =

Hn−1((λ~z.Mi
~P)x) (for i = 1, 2) such that m = m1] m2. By the induc-

tive hypothesis there exist k1, k2 ≤ n − 1 and m′
i ∈ Hki

(λ~z.Mi
~P) such that

mi = m′
ix (for i = 1, 2). Hence m1x] m2x ∈ Hmax(k1,k2)+1(λ~z.(M1‖M2)~P)

and we conclude since m1x]m2x = (m1]m2)x and k = max(k1, k2)+1 ≤ n.
�

Recall that Ω ≡ (λx.xx)(λx.xx).

Lemma 8. For all M ∈ Λ+‖ we have that for all n ∈
�
:

m ∈ Hn(MΩ) head-free ⇒ ∃k ≤ n, ∃m′ ∈ Hk(M) head-free, such that m = m′Ω.

Proof. By induction on n.
If n = 0 then the implication follows trivially, since H0(MΩ) = ∅.

Suppose now that n > 0, then the proof is by cases on the shape of M ≡ λ~z.M ′ ~P .

– If M ′ ≡ y and `(~z) = 0, then Hn(y ~PΩ) = {[y ~PΩ]}. Hence, the only m ∈

Hn(MΩ) is [y ~PΩ] which is head-free and the result follows taking k = n

and m′ = [y ~P].
– If M ′ ≡ y and `(~z) > 0, then we can suppose y /∈ ~z, since otherwise it

is easy to check that Hn(MΩ) contains no head-free multiple hnf. In this

case, we have: Hn−1(λ~z≥2.y ~P [Ω/z1]) = {[λ~z≥2.y ~P [Ω/z1]]} = {[λ~z.y ~P]Ω}.

Hence, the only head-free multiple hnf in Hn(MΩ) is m = [λ~z.y ~P]Ω and we

conclude since Hn−1(λ~z.y ~P) = {[λ~z.y ~P]} and m = [λ~z.y ~P] is head-free.

– If M ′ ≡ (λy.Q) and `(~z) = 0, then Hn((λy.Q)~PΩ) = Hn−1(Q[P1/y]~P≥2Ω).
Now, if there is a head-free multiple hnf m ∈ Hn(MΩ), then m also belongs

to Hn−1(Q[P1/y]~P≥2Ω). By the inductive hypothesis there exist k′ ≤ n − 1

and m′ ∈ Hk′ (Q[P1/y]~P≥2) head-free such that m = m′Ω. We conclude since

Hk′(Q[P1/y]~P≥2) = Hk′+1((λy.Q)~P) and k = k′ + 1 ≤ n.
– If M ′ ≡ (λy.Q), `(~z) > 0 and Hn(MΩ) 6= ∅, then we have that n > 2 and

Hn((λ~z.(λy.Q)~P)Ω) = Hn−1(λ~z≥2.(λy.Q[Ω/z1])~P [Ω/z1])

= Hn−2(λ~z≥2.Q[Ω/z1][P1[Ω/z1]/y]~P≥2[Ω/z1])

= Hn−2(λ~z≥2.Q[P1/y][Ω/z1]~P≥2[Ω/z1])

= Hn−1((λ~z.Q[P1/y]~P≥2)Ω).

Now, if there is a head-free multiple hnf m ∈ Hn(MΩ), then m also belongs

to Hn−1((λ~z.Q[P1/y]~P≥2)Ω) and, by the inductive hypothesis, there exist

k′ ≤ n − 1 and m′ ∈ Hk′(λ~z.Q[P1/y]~P≥2) head-free such that m = m′Ω.

Then we conclude since Hk′ (λ~z.Q[P1/y]~P) = Hk′+1(λ~z.(λy.Q)~P) and k =
k′ + 1 ≤ n.

– If M ′ ≡ M1+M2 and `(~z) = 0, then Hn((M1+M2)~PΩ) = ∪i=1,2Hn−1(Mi
~PΩ).

If there is a head-free multiple hnf m ∈ Hn(MΩ) then m belongs to, say,

Hn−1(M1
~PΩ) and, by the inductive hypothesis, there exist k′ ≤ n − 1 and

m′ ∈ Hk′(M1
~P) head-free such that m = m′Ω. Thus, we conclude since

m′ ∈ Hk′+1((M1 + M2)~P) and k = k′ + 1 ≤ n.
– If M ′ ≡ M1 + M2, `(~z) > 0 and Hn(MΩ) 6= ∅, then we have that n > 2 and

Hn((λ~z.(M1 + M2)~P)Ω) = Hn−1(λ~z≥2.(M1[Ω/z1] + M2[Ω/z1])~P [Ω/z1])

= ∪i=1,2Hn−2(λ~z≥2.Mi[Ω/z1]~P [Ω/z1]).

Thus if there is a head-free multiple hnf m ∈ Hn(MΩ) then m belongs

to, say, Hn−2(λ~z≥2.M1[Ω/z1]~P) = Hn−1((λ~z.M1
~P)Ω) and by the inductive

hypothesis there exist k′ ≤ n − 1 and m′ ∈ Hk′(λ~z.M1
~P) head-free such

that m = m′Ω. Hence, we conclude since m′ ∈ Hk′+1(λ~z.(M1 + M2)~P) and
k = k′ + 1 ≤ n.

– If M ′ ≡ M1‖M2 and `(~z) = 0 then m ∈ Hn((M1‖M2)~PΩ), implies that there

exists mi ∈ Hn−1(Mi
~PΩ) (for i = 1, 2) such that m = m1]m2. Of course, if

m is head-free then also m1, m2 are. Thus, by the inductive hypothesis, there
exist k1, k2 ≤ n− 1 and m′

i ∈ Hki
(Mi

~P) head-free such that mi = m′
iΩ (for

i = 1, 2). Hence m1Ω] m2Ω ∈ Hmax(k1,k2)+1((M1‖M2)~P) and we conclude
since m1Ω] m2Ω = (m1] m2)Ω and k = max(k1, k2) + 1 ≤ n.

– If M ′ ≡ M1‖M2 and `(~z) > 0, then we have Hn((λ~z.(M1‖M2)~P)Ω) =

Hn−1(λ~z≥2.(M1[Ω/z1]‖M2[Ω/z1])~P [Ω/z1]). Now, if m ∈ Hn(MΩ) then n > 2

and there exists mi ∈ Hn−2(λ~z≥2.Mi[Ω/z1]~P [Ω/z1]) = Hn−1((λ~z.Mi
~P)Ω)

(for i = 1, 2) such that m = m1] m2. Of course, if m is head-free then
also m1, m2 are. By the inductive hypothesis there exist k1, k2 ≤ n − 1
and m′

i ∈ Hki
(λ~z.Mi

~P) head-free such that mi = m′
iΩ (for i = 1, 2).

Hence m1Ω] m2Ω ∈ Hmax(k1,k2)+1(λ~z.(M1‖M2)~P) and we conclude since
m1Ω] m2Ω = (m1] m2)Ω and k = max(k1, k2) + 1 ≤ n. �

Lemma 9. For all M, N ∈ Λ+‖ and for all n ∈
�

if m ∈ Hn(M) is head-free,
then mN ∈ Hn+1(MN).

Proof. The proof is done by induction on n ∈
�
.

If n = 0 then there is no m ∈ H0(M) and the implication is trivially satisfied.

If n > 0 then the proof is done by cases on the shape of M ≡ λ~z.M ′ ~P .

– If M ′ ≡ y and `(~z) = 0, then Hn(M) = {[y ~P]}. Since [y ~P] is head-free we

have to check that [y ~P]N ∈ Hn+1(MN), and this follows since Hn+1(MN) =

{[y ~PN]}, by definition.

– If M ′ ≡ y and `(~z) > 0, then Hn(M) = {[λ~z.y ~P]}. If y ∈ ~z, then Hn(M) does
not contain any head-free multiple hnf and the implication trivially holds.
Otherwise, if y /∈ ~z, then [λ~z.y ~P] is head-free and we have to check that

[λ~z.y ~P]N ∈ Hn+1(MN). This follows since [λ~z.y ~P]N = [λ~z≥2.y ~P [N/z1]]

and Hn+1((λ~z.y ~P)N) = Hn(λ~z≥2.y ~P [N/z1]) = {[λ~z≥2.y ~P [N/z1]]}.
– If M ′ ≡ λy.Q and there exists a head-free multiple hnf m ∈ Hn(M) =

Hn−1(λ~z.Q[P1/y]~P≥2) then, by the inductive hypothesis, we have mN ∈

Hn((λ~z.Q[P1/y]~P≥2)N). If `(~z) = 0 we conclude since Hn+1(((λy.Q)~P)N) =

Hn(Q[P1/y]~P≥2N). Otherwise, when `(~z) > 0, we have:

Hn+1((λ~z.(λy.Q)~P)N) = Hn(λ~z≥2.(λy.Q[N/z1])~P [N/z1])

= Hn−1(λ~z≥2.Q[N/z1][P1[N/z1]/y])~P≥2[N/z1])

= Hn−1(λ~z≥2.Q[P1/y][N/z1])~P≥2[N/z1])

= Hn((λ~z.Q[P1/y]~P≥2)N).

– If M ′ ≡ M1+M2, then Hn(M) = Hn−1(λ~z.M1
~P)∪Hn−1(λ~z.M2

~P). Thus, if

there is a head-free m ∈ Hn(M) then m belongs to, say, Hn−1(λ~z.M1
~P) and

by the inductive hypothesis we get mN ∈ Hn((λ~z.M1
~P)N). If `(~z) = 0 we

conclude since Hn+1((M1 +M2)~PN) = Hn(M1
~PN)∪Hn(M2

~PN). Suppose

now `(~z) > 0. We conclude since

Hn+1(MN) = Hn(λ~z≥2.(M1[N/z1] + M2[N/z1])~P [N/z1])

= ∪i=1,2Hn−1(λ~z≥2.Mi[N/z1]~P [N/z1])

= ∪i=1,2Hn((λ~z.Mi
~P)N).

– If M ′ ≡ M1‖M2 and m ∈ Hn(M), then there is mi ∈ Hn−1(λ~z.Mi
~P) (for

i = 1, 2) such that m = m1] m2. Of course, if m is head-free then also

m1, m2 are. By the inductive hypothesis we have miN ∈ Hn(λ~z.Mi
~PN)

(for i = 1, 2). Now, if `(~z) = 0, then it is straightforward to check that
(m1] m2)N ∈ Hn+1(MN) once noticed that m1N] m2N = (m1] m2)N .
If `(~z) > 0, we conclude since

Hn+1(MN) = Hn+1((λ~z.(M1‖M2)~P)N)

= Hn(λ~z≥2.(M1[N/z1]‖M2[N/z1])~P [N/z1])

= {m1] m2 | mi ∈ Hn−1(λ~z≥2.Mi[N/z1]~P [N/z1]) for i = 1, 2}

= {m1] m2 | mi ∈ Hn(((λ~z.Mi)~P)N) for i = 1, 2}. �

We are now able to provide the complete proof of Proposition 2. Recall that
the sets N and N1 have been defined in Section 3.3.

Proposition 2. Let M ∈ Λ+‖ and x ∈ Var, then we have that:

(i) if Mx ∈ N then M ∈ N ,
(ii) if MΩ ∈ N1 then M ∈ N1,
(iii) if M ∈ N1 then MN ∈ N1 for all N ∈ Λ+‖.

Proof. (i) If Mx ∈ N then there exists a multiset m ∈ H(Mx). By definition of
H(−) we have that m ∈ Hn(Mx) for some n ∈

�
. By Lemma 7 we know that

there exists m′ ∈ Hk(M) for some k ≤ n and hence that H(M) is non-empty.
We conclude that M ∈ N .
(ii) If MΩ ∈ N1 then there is m ∈ H(M) head-free. By definition of H(−) we
have that m ∈ Hn(MΩ) for some n. Then by Lemma 8 there exists m′ head-free
such that m′ ∈ Hk(M) for some k ≤ n. We conclude that M ∈ N1.
(iii) If M ∈ N1 then there exists m ∈ H(M) head-free. By definition of H(−)
we have that m ∈ Hn(M) for some n. From Lemma 9 we have that mN ∈
Hn+1(MN) for all N ∈ Λ+‖ and hence that mN ∈ H(MN). We conclude since,
if m is head-free, then also mN is. �

