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Local well-posedness of nonlocal Burgers equations
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Abstract. This paper is concerned with nonlocal generalizations of the inviscid Burgers equa-
tion arising as amplitude equations for weakly nonlinear surface waves. Under homogeneity
and stability assumptions on the involved kernel it is shown that the Cauchy problem is locally
well-posed in H2(R), and a blow-up criterion is derived. The proof is based on a priori estimates
without loss of derivatives, and on a regularization of both the equation and the initial data.
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1 Introduction

We consider a nonlocal generalization of the inviscid Burgers equation

(1.1) ∂tu + ∂xQ[u] = 0 ,

where Q is a quadratic nonlocal operator given in Fourier variables by

(1.2) FQ[u](k) =
∫

Λ(k − `, `)û(k − `)û(`)d` ,

when u is Schwartz. (Throughout the paper F denotes the Fourier transform in one space di-
mension.) Equations of this type arise in particular as amplitude equations for weakly nonlinear
waves [5, 1, 3]. The kernel Λ is piecewise smooth and satisfies the following conditions

(i) symmetry: Λ(k, `) = Λ(`, k) ∀k, ` ∈ R ,

(ii) reality: Λ(−k,−`) = Λ(k, `) ∀k, ` ∈ R ,

(iii) homogeneity: Λ(αk, α`) = Λ(k, `) ∀k, ` ∈ R, and α > 0 ,

(iv) structure: Λ(k + ξ,−ξ) = Λ(k, ξ) ∀k, ξ ∈ R ,

the latter being possibly replaced by

(v) stability: Λ(1, 0−) = Λ(1, 0+) .
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(When Λ ≡ 1/2, (1.1) is nothing but the classical inviscid Burgers equation.) The symmetry
condition is not actually a restriction: any kernel Λ defining an operator Q as in (1.2) can be
changed into a symmetric one, by change of variables ` 7→ k − ` in the integral. The reality
condition ensures that Q[u] is real valued if u is so (which is equivalent to û(−k) = û(k)). When
(1.1) is an amplitude equation, the homogeneity condition is linked to the scale invariance of
surface waves. Homogeneity of degree zero ensures in particular that Λ is bounded, since it is
piecewise smooth, and that its singularities occur along rays. We shall assume these singularities
are located exclusively on the axes k = 0, ` = 0 and on {(k, `) ; k + ` = 0}, which is clearly
compatible with all other assumptions. The one that we call structure condition may look
mysterious at first glance. The weaker condition (v) was pointed out by Hunter [5] as formally
ensuring the linearized stability of constant states. Al̀ı, Hunter and Parker [1] have observed that
(iv) yields a Hamiltonian structure for (1.1). More precisely, if (iv) holds true, (1.1) equivalently
reads

(1.3) ∂tu + ∂xδH[u] = 0 ,

where the Hamiltonian is defined by

(1.4) FH[u](k) =
1
3

∫∫
Λ(k, ξ)û(k)û(ξ)û(−k − ξ) dk dξ

if u is Schwartz. In this framework – that is, assuming (iv) – Hunter has shown the local existence
of periodic solutions of (1.3) [6]. The purpose of this paper is to show the local existence of
smooth solutions to (1.1) on the real line, and more precisely the local well-posedness of (1.1) in
H2(R), assuming the stability condition (v) but not (iv). Indeed, (v) turns out to be sufficient
to get a priori estimates for (1.1) without loss of derivatives. To prove well-posedness we shall
then use a regularization method as proposed by Taylor [7, p.360].

2 A priori estimates

Let us rewrite (1.1) as

(2.5) ∂tu + 2B[u, ∂xu] = 0 ,

where

(2.6) FB[u, w](k) =
∫

Λ(k − `, `)ŵ(k − `)û(`)d` .

The operator B is well-defined and bilinear on S (R)×S (R), and it is clearly symmetric because
of the symmetry property of Λ. Furthermore, by straightforward inspection,

(2.7) ∂xB[u, w] = B[∂xu, w] + B[u, ∂xw] ,

so that, because also of the symmetry of B, (1.1) and (2.5) are indeed equivalent for smooth
solutions.

In addition, the operator B extends to a continuous operator from H1(R)×L2(R) to L2(R).
Indeed, by its definition (2.6), Plancherel’s theorem and L1 −L2 convolution estimates we have

(2.8) ‖B(u, w)‖L2 = ‖FB(u,w)‖L2 ≤ ‖Λ‖L∞ ‖û‖L1 ‖ŵ‖L2 . ‖Λ‖L∞ ‖u‖H1 ‖w‖L2 .

Here above and throughout the paper, the symbol . means ‘less or equal to a harmless constant
times’. In a similar but more symmetric way – distributing derivatives equally on u and w -, we
also find that B is a continuous bilinear operator in H1(R) and H2(R), with

(2.9) ‖B(u, w)‖H1 . ‖Λ‖L∞ ‖u‖H1 ‖w‖H1 ,
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(2.10) ‖B(u, w)‖H2 . ‖Λ‖L∞ (‖u‖H1 ‖w‖H2 + ‖u‖H2 ‖w‖H1) .

Now we consider, for a given (smooth enough) u, the linear equation

(2.11) ∂tv + 2B[u, ∂xv] = 0 ,

and we look for a priori estimates without loss of derivatives. All functions of the space variable x
will be taken with values in R, and we shall use repeatedly the corresponding property (û(−k) =
û(k)) in the Fourier variable.

Lemma 2.1 We assume that Λ is C 1 outside the lines k = 0, ` = 0, and k + ` = 0, and has
C 1 continuations to the sectors delimited by these lines. If in addition it satisfies (ii), (iii), (v),
then the solutions of (2.11) satisfy the following a priori estimates

(2.12)
d
dt
‖v‖2

L2 ≤ C(Λ) ‖F(∂xu)‖L1 ‖v‖2
L2 ,

(2.13)
d
dt
‖v‖2

H1 ≤ C(Λ) ‖F(∂xu)‖L1 ‖v‖2
H1 ,

(2.14)
d
dt
‖v‖2

H2 ≤ C(Λ) ‖u‖H2 ‖v‖2
H2 ,

where C(Λ) depends only on ‖Λ‖L∞, ‖∇Λ‖L∞(D), and ‖∇Λ‖L∞(I) with

D = {(−1 + θ,−θ) ; 0 < θ < 1 } , I = {(1,−θ) ; 0 < θ < 1 } .

Proof. If v is a solution of (2.11), we have

d
dt
‖v(t)‖2

L2 =
d
dt
‖v̂(t)‖2

L2 =

−2 Re
∫∫

i(k − `)Λ(k − `, `)v̂(k − `, t)û(`, t)v̂(−k, t) d`dk .

The integral here above can be split into

−
∫∫

i`Λ(k − `, `)v̂(k − `, t)û(`, t)v̂(−k, t) d`dk

+
∫∫

ikΛ(k − `, `)v̂(k − `, t)û(`, t)v̂(−k, t) d`dk .

By Fubini and the Cauchy-Schwarz inequality the modulus of the first integral is bounded by
‖Λ‖L∞ ‖F(∂xu)‖L1 ‖v(t)‖2

L2 . We now concentrate on the real part of the second one, equal to∫∫
ikΛ(k − `, `)v̂(k − `, t)û(`, t)v̂(−k, t) d`dk

−
∫∫

ikΛ(`− k,−`)v̂(`− k, t)û(−`, t)v̂(k, t) d`dk .

By change of variable (k, `) 7→ (k − `,−`) in the first integral here above, we obtain

Re
∫∫

ikΛ(k − `, `)v̂(k − `, t)û(`, t)v̂(−k, t) d`dk =
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−
∫∫

i`Λ(k,−`)v̂(k, t)û(−`, t)v̂(`− k, t) d`dk

+
∫∫

ik (Λ(k,−`)− Λ(`− k,−`)) v̂(`− k, t)û(−`, t)v̂(k, t) d`dk ,

where the first integral is bounded again by ‖Λ‖L∞ ‖F(∂xu)‖L1 ‖v(t)‖2
L2 . As to the second

integral, the factor

Λ(k,−`)− Λ(`− k,−`) = Λ(k,−`)− Λ(`− k,−`)

(by the reality assumption (ii)) is zero if the structure assumption (iv) is satisfied. It turns out
that we can also deal with the integral under the (weaker) stability assumption (v). Indeed, this
integral can be split into the sum of∫∫

|k|≤|`|
ik (Λ(k,−`)− Λ(`− k,−`)) v̂(`− k, t)û(−`, t)v̂(k, t) d`dk ,

whose modulus is bounded by 2‖Λ‖L∞ ‖F(∂xu)‖L1 ‖v(t)‖2
L2 , and of∫∫

|k|>|`|
ik (Λ(k,−`)− Λ(`− k,−`)) v̂(`− k, t)û(−`, t)v̂(k, t) d`dk .

This integral can be decomposed again as the sum of four integrals, each taken on a sector
on which (k, `) 7→ Λ(k,−`) − Λ(` − k,−`) is smooth. These four sectors are {0 < ` < k}
and {−k < ` < 0}, and their images by the center symmetry (k, `) → (−k,−`). By the
reality assumption (ii) it is sufficient to estimate the integrals on the first two sectors. Now for
0 < ` < k,

Λ(k,−`)− Λ(`− k,−`) = Λ(1,−`/k)− Λ(−1 + `/k,−`/k)

by (iii). Since
Λ(1, 0−) = Λ(−1, 0−)

by (ii) and (v), we may rewrite the above equality as

Λ(k,−`)− Λ(`− k,−`) = Λ(1,−`/k)− Λ(1, 0−) + Λ(−1, 0−)− Λ(−1 + `/k,−`/k) ,

and thus obtain the bound, for 0 < ` < k,

|Λ(k,−`)− Λ(`− k,−`)| ≤ (max
D

|∂1Λ|+ max
I
|∂2Λ|)

∣∣∣∣ `

k

∣∣∣∣ ,

where D, I are the line segments joining respectively the points (−1, 0)-(0,−1) and (1, 0)-(1,−1).
The very same bound is obtained for −k < ` < 0, by using (ii). So finally we get∣∣∣∣∣

∫∫
|k|>|`|

ik (Λ(k,−`)− Λ(`− k,−`)) v̂(`− k, t)û(−`, t)v̂(k, t) d`dk

∣∣∣∣∣ ≤
4 (max

D
|∂1Λ|+ max

I
|∂2Λ|)‖F(∂xu)‖L1 ‖v(t)‖2

L2 .

This proves the L2 estimate (2.12).
The derivation of higher order estimates is a little bit trickier but follows the same lines. (It

is to be noted that no commutator estimate is required.) We have

d
dt
‖∂n

xv(t)‖2
L2 =

d
dt

∫
k2n |v̂(k, t)|2 dk =
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−2 Re
∫∫

ik2n(k − `)Λ(k − `, `)v̂(k − `, t)û(`, t)v̂(−k, t) d`dk .

As in the case n = 0, we make a change of variables (k, `) 7→ (k − `,−`) in the integral, and
leave its conjugate unchanged. This yields

Re
∫∫

ik2n(k − `)Λ(k − `, `)v̂(k − `, t)û(`, t)v̂(−k, t) d`dk =

∫∫
i
(
k (k − `)2nΛ(k,−`)− (k − `)k2n Λ(`− k,−`))

)
v̂(k, t)û(−`, t)v̂(`− k, t) d`dk

To estimate this integral, the idea is to distribute in a suitable way the powers of k, `, and
k − ` among v̂(−k, t), û(`, t), and v̂(k − `, t) respectively. Let us begin with n = 1.

As in the case n = 0, the contribution of the domain |k| ≤ |`| to the integral is harmless.
Indeed, we have ∣∣∣∣∣

∫∫
|k|≤|`|

ik2(k − `)Λ(k − `, `)v̂(k − `)û(`)v̂(−k) d`dk

∣∣∣∣∣ ≤
‖Λ‖L∞

∫∫
|(k − `)v̂(k − `) `û(`) kv̂(−k)|d`dk ≤ ‖Λ‖L∞ ‖F(∂xu)‖L1 ‖∂xv‖2

L2

For the other part we observe that∫∫
|k|>|`|

∣∣(k (k − `)2Λ(k,−`)− (k − `)k2 Λ(`− k,−`))
)
v̂(k, t)û(−`, t)v̂(`− k, t)

∣∣ d`dk ≤

∫∫
|k|>|`|

|Λ(k,−`) kv̂(k, t) `û(−`, t) (`− k)v̂(`− k, t)| d`dk +

∫∫
|k|>|`|

|k (Λ(k,−`)− Λ(`− k,−`))) kv̂(k, t)û(−`, t)(`− k)v̂(`− k, t)| d`dk ,

where the former admits again the bound ‖Λ‖L∞ ‖F(∂xu)‖L1 ‖∂xv‖2
L2 , and the latter can be

estimated exactly as before (in the case n = 0). This proves in turn that

d
dt
‖∂xv‖2

L2 ≤ 4 (‖Λ‖L∞ + 2 max
D

|∂1Λ|+ max
I
|∂2Λ|) ‖F(∂xu)‖L1 ‖∂xv‖2

L2 ,

which together with (2.12) implies (2.13).
We observe that, as for a (local) transport equation, we have an H1 estimate which does

not require more derivatives on the coefficient (u) than the L2 estimate. A difference with local
transport equations though, is that ‖F(∂xu)‖L1 plays the role of the smaller norm ‖∂xu‖L∞ .
Nevertheless, observing that ‖F(∂xu)‖L1 will be bounded provided that u belongs to Hs, s >
3/2, we can hope to deal with the well-posedness of the nonlinear Cauchy problem in these
spaces, as for the classical Burgers equation. However, to avoid fractional derivatives, we shall
deal with well-posedness in H2 only.

This means we need an H2 a priori estimate, which are going to derive now. A first, easy
way consists in deducing it from the former estimates, which may written as

(2.15) |〈v,B[u, ∂xv]〉| ≤ C(Λ) ‖F(∂xu)‖L1 ‖v‖2
L2 ,

(2.16) |〈∂xv, ∂xB[u, ∂xv]〉| ≤ C(Λ) ‖F(∂xu)‖L1 ‖∂xv‖2
L2 ,
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Then by (2.7) we have∣∣〈∂2
xv, ∂2

xB[u, ∂xv]〉
∣∣ ≤ ∣∣〈∂2

xv, ∂xB[∂xu, ∂xv]〉
∣∣ +

∣∣〈∂2
xv, ∂xB[u, ∂2

xv]〉
∣∣ ,

where the latter term is bounded by C(Λ) ‖F(∂xu)‖L1 ‖∂2
xv‖2

L2 thanks to (2.16), and, by Cauchy-
Schwarz and (2.9), the former is bounded by ‖Λ‖L∞‖∂2

xv‖L2 ‖∂xu‖H1 ‖∂xv‖H1 up to a (harmless)
multiplicative constant. Therefore, up to substituting a larger positive constant (depending only
on Λ) for C(Λ),

(2.17)
∣∣〈∂2

xxv, ∂2
xxB(u, ∂xv)〉

∣∣ ≤ C(Λ) ‖u‖H2 ‖v‖2
H2 ,

which together with (2.15) and (2.16) proves (2.14).
We now prove (2.14) in a more direct (and more technical) way, which yields an additional

estimate for the nonlinear equation (2.5). Proceeding as described before for higher order esti-
mates, we have

d
dt
‖∂2

xv(t)‖2
L2 ≤∣∣∣∣∫∫

i
(
k (k − `)4Λ(k,−`)− (k − `)k4 Λ(`− k,−`))

)
v̂(k, t)û(−`, t)v̂(`− k, t) d`dk

∣∣∣∣ ≤∫∫ ∣∣((k − `)3 − k3)Λ(k,−`) kv̂(k, t) û(−`, t) (k − `)v̂(`− k, t)
∣∣ d`dk +∫∫ ∣∣ k3 (Λ(k,−`)− Λ(`− k,−`)) kv̂(k, t) û(−`, t) (k − `)v̂(`− k, t)

∣∣ d`dk .

We can estimate the first integral by decomposing

(k − `)3 − k3 = (k − `) `2 − k `2 − 3` k (k − `) .

This yields the bound

‖Λ‖L∞
(
2 ‖F(∂xv)‖L1 ‖∂2

xu‖L2 ‖∂2
xv‖L2 + 3 ‖F(∂xu)‖L1 ‖∂2

xv‖2
L2

)
.

Concerning the second integral, we split it again. We have∫∫
|k|≤|`|

∣∣ k3 (Λ(k,−`)− Λ(`− k,−`)) kv̂(k, t) û(−`, t) (k − `)v̂(`− k, t)
∣∣ d`dk ≤

∫∫ ∣∣ `2(`− k + k) (Λ(k,−`)− Λ(`− k,−`)) kv̂(k, t) û(−`, t) (k − `)v̂(`− k, t)
∣∣ d`dk ≤

4 ‖Λ‖L∞ ‖F(∂xv)‖L1 ‖∂2
xu‖L2 ‖∂2

xv‖L2 ,

while ∫∫
|k|>|`|

∣∣ k3 (Λ(k,−`)− Λ(`− k,−`)) kv̂(k, t) û(−`, t) (k − `)v̂(`− k, t)
∣∣ d`dk ≤

4 (max
D

|∂1Λ|+ max
I
|∂2Λ|)

∫∫
|k|>|`|

∣∣ (k − ` + `) ` k2v̂(k, t) û(−`, t) (k − `)v̂(`− k, t)
∣∣ d`dk ≤

4 (max
D

|∂1Λ|+ max
I
|∂2Λ|)

(
‖F(∂xu)‖L1 ‖∂2

xv‖2
L2 + ‖F(∂xv)‖L1 ‖∂2

xv‖L2 ‖∂2
xu‖L2

)
.

So we recover the H2 estimate (2.14) by using the Cauchy-Schwarz inequality to bound ‖F(∂xw)‖L1

by ‖w‖H2 for w = v and w = u. In the special case u = v we obtain a more precise estimate for
the nonlinear equation (2.5), namely

(2.18)
d
dt
‖u‖2

H2 ≤ C(Λ) ‖F(∂xu)‖L1 ‖u‖2
H2 .
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In fact, by the very same procedure, we can obtain also the H3 estimate

(2.19)
d
dt
‖u‖2

H3 ≤ C(Λ) ‖F(∂xu)‖L1 ‖u‖2
H3 .

Indeed, for all smooth enough solutions u of (2.5) we have

d
dt
‖∂3

xu(t)‖2
L2 ≤

∣∣∣∣∫∫
i
(
k (k − `)6Λ(k,−`)− (k − `)k6 Λ(`− k,−`))

)
û(k, t)û(−`, t)û(`− k, t) d`dk

∣∣∣∣ ≤∫∫ ∣∣((k − `)5 − k5)Λ(k,−`) kû(k, t) û(−`, t) (k − `)û(`− k, t)
∣∣ d`dk +

∫∫ ∣∣ k5 (Λ(k,−`)− Λ(`− k,−`)) kû(k, t) û(−`, t) (k − `)û(`− k, t)
∣∣ d`dk

To bound the first integral we use the identity

(k − `)5 − k5 = −(k − `)2 `3 − k2 `3 − 5 ` k2 (k − `)2 − 3 k (k − `) `3 ,

in which only the last term seems to be a problem (because when multiplied by k(k− `) it yields
a distribution of derivatives as 2 + 2 + 3 instead of 1 + 3 + 3). But of course we can bound
|k2(k − `)2`3| by |k||k − `|3|`|3 + |k − `||k|3|`|3. Therefore, we find that∫∫ ∣∣((k − `)5 − k5)Λ(k,−`) kû(k, t) û(−`, t) (k − `)û(`− k, t)

∣∣ d`dk .

‖Λ‖L∞ ‖F(∂xu)‖L1 ‖∂3
xu‖2

L2 .

As regards the other integral, we observe that∫∫
|k|≤|`|

∣∣ k5 (Λ(k,−`)− Λ(`− k,−`)) kû(k, t) û(−`, t) (k − `)û(`− k, t)
∣∣ d`dk ≤

∫∫ ∣∣ `3(`− k + k)2 (Λ(k,−`)− Λ(`− k,−`)) kû(k, t) û(−`, t) (k − `)û(`− k, t)
∣∣ d`dk ≤

8 ‖Λ‖L∞ ‖F(∂xu)‖L1 ‖∂3
xu‖2

L2 ,

while ∫∫
|k|>|`|

∣∣ k5 (Λ(k,−`)− Λ(`− k,−`)) kû(k, t) û(−`, t) (k − `)û(`− k, t)
∣∣ d`dk ≤

4 (max
D

|∂1Λ|+ max
I
|∂2Λ|)

∫∫
|k|>|`|

∣∣ (k − ` + `)2 ` k3û(k, t) û(−`, t) (k − `)û(`− k, t)
∣∣ d`dk ≤

8 (max
D

|∂1Λ|+ max
I
|∂2Λ|) ‖F(∂xu)‖L1 ‖∂3

xu‖2
L2 .

2
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3 Well-posedness

Once we have a priori estimates in H2(R), a fairly general method (see for instance [7, p. 360])
to actually prove well-posedness in H2(R) consists in regularizing (1.1) in such a way that the
regularized problem is merely solvable by the Cauchy-Lipschitz theorem and that its solutions
converge in a suitable manner to solutions of the original problem.

A simple, and natural way to regularize (1.1) is by means of Fourier multipliers. In what
follows we shall use a Fourier multiplier Sε of symbol

Ŝε(ξ) = Ŝ1(εξ)

with Ŝ1 real valued, C∞ with compact support, taking the value 1 at zero and of absolute value
not greater than 1. Clearly, for all ε ≥ 0, Sε is a bounded operator on Hs(R) for each s ∈ R,
with

(3.20) ‖Sε‖Hs→Hs ≤ 1 .

Furthermore, for all ε > 0, Sε is a regularizing operator, with

(3.21) ‖Sε‖Hs→Hs+σ . ε−σ

for all s ∈ R and σ ≥ 0, and we have the error estimate

(3.22) ‖Sεu− u‖Hs . εσ ‖u‖Hs+1

for all ε ≥ 0. Here above, the multiplicative constants hidden in the symbol . depend on (s, σ)
but not of ε of course.

Let us consider the following regularization of (1.1)

(3.23) ∂tu
ε + SεB (uε, ∂xSεu

ε) = 0 .

For ε > 0, the mapping u 7→ SεB (u, ∂xSεu) is locally Lipschitz in H2(R), and more precisely,
for all ε ∈ (0, 1], if u and v belong to H2(R)then

‖SεB (u, ∂xSεu)− SεB (v, ∂xSεv) ‖H2 ≤ ‖SεB (u− v, ∂xSεu) ‖H2 + ‖SεB (v, ∂xSε(u− v)) ‖H2

≤ C

ε
‖Λ‖L∞ (‖u‖H2 + ‖v‖H2) ‖u− v‖H2 .

Therefore, the Picard iteration scheme

uε
0 := u0 , uε

k+1 : t ∈ [0, T ε] 7→ uε
k+1(t) := −

∫ t

0
SεB (uε

k(τ), ∂xSεu
ε
k(τ)) dτ , k ∈ N

is well defined and convergent in BR := {u ; ‖u‖H2 ≤ R} provided that 2CR‖Λ‖L∞T ε ≤ ε.
This shows the existence of a solution uε ∈ C 1(0, T ε;H2(R)) of (3.23) such that uε(0) = u0.
This solution is unique and depends continuously on u0 by Gronwall’s lemma. Indeed, if vε ∈
C 1(0, T ε;BR) is another solution of (3.23) we have

‖uε(t)− vε(t)‖H2 ≤ ‖uε(0)− vε(0)‖H2 +
2CR

ε
‖Λ‖L∞

∫ t

0
‖uε(τ)− vε(τ)‖H2 dτ ,

hence

‖uε(t)− vε(t)‖H2 ≤ (1 + e
2CRt

ε
‖Λ‖L∞ ) ‖uε(0)− vε(0)‖H2 ≤ (1 + e) ‖uε(0)− vε(0)‖H2
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for t ≤ T ε (by assumption on T ε). This shows continuous dependence on initial data for
(3.23), and uniqueness within the ball BR. Unconditional uniqueness follows from a classical
connectedness argument.

Let us now redefine T ε as the maximal time of existence of the solution of (3.23) with initial
data uε(0) = u0 ∈ BR. By the construction hereabove we have T ε ≥ ε/(2CR‖Λ‖L∞). It remains
to show that T ε is positively bounded by below when ε → 0, and that uε converges to a solution
of (1.1) in H2.

As a first step, we show that ‖uε(t)‖H2 is bounded independently of ε > 0 and t ∈ [0, T ] for
some positive T . This relies on the a priori estimates (2.15) (2.16) (2.17). Indeed, since Sε is a
self-adjoint operator and commutes with ∂x,

d
dt
‖uε‖2

H2 = −2 〈Sεu
ε,B(uε, ∂xSεu

ε)〉 − 2 〈∂xSεu
ε, ∂xB(uε, Sε∂xuε)〉

−2 〈∂2
xxSεu

ε, ∂2
xxB(uε, ∂xSεu

ε)〉,

hence
d
dt
‖uε‖2

H2 ≤ 6C(λ) ‖uε‖3
H2 ,

and after integration

‖uε(t)‖H2 ≤
‖u0‖H2

1− 3C(λ)t‖u0‖H2

for all t ∈ [0, T ε) such that t < 1/(3C(λ)R). As a consequence, T ε cannot be lower than
1/(3C(λ)R) (otherwise, denoting Rε := R/(1 − 3C(Λ)T εR), we could extend uε behond T ε,
restarting from uε(tε0) with tε0 = T ε − ε/(4CRε‖Λ‖L∞) as initial data, which would contradict
the fact that T ε is maximal). From now on, we choose T < 1/(3C(λ)R). By the argument
above, T ε > T for all ε > 0, and (uε)ε>0 is bounded in C (0, T ;H2(R)).

The heart of the matter then consists in showing that (uε)ε∈(0,ε0] satisfies the Cauchy criterion
in C (0, T ;L2(R)). For 0 < ν ≤ ε, we have

d
dt
‖uε − uν‖2

L2 = −2 〈uε − uν , SεB(uε − uν , ∂xSεu
ε)〉

−2 〈uε − uν , SεB(uν , ∂x(Sεu
ε − Sνu

ν))〉
−2 〈uε − uν , (Sε − Sν)B(uν , ∂xSνu

ν)〉 .

We are going estimate these three terms separately. By Cauchy-Schwarz and (2.8) (2.9) we can
estimate the first and last terms

|2 〈uε − uν , SεB(uε − uν , ∂xSεu
ε)〉| . ‖Λ‖L∞ ‖uε‖H2 ‖uε − uν‖2

L2 ,

|2 〈uε − uν , (Sε − Sν)B(uν , ∂xSνu
ν)〉| . ‖Λ‖L∞ ‖uε − uν‖L2 ε ‖uν‖H1 ‖uν‖H2 .

As to the middle term, using again that Sε is self-adjoint, we can split it as

−2 〈Sεu
ε − Sνu

ν ,B(uν , ∂x(Sεu
ε − Sνu

ν))〉+ 2 〈(Sε − Sν)uν ,B(uν , ∂x(Sεu
ε − Sνu

ν))〉 .

By Cauchy-Schwarz and (2.8) again we have

|2 〈(Sε − Sν)uν ,B(uν , ∂x(Sεu
ε − Sνu

ν))〉| . ‖Λ‖L∞ ε ‖uν‖2
H1 (‖uε‖H1 + ‖uν‖H1) ,

and by (2.15),

|2 〈Sεu
ε − Sνu

ν ,B(uν , ∂x(Sεu
ε − Sνu

ν))〉| . C(Λ) ‖∂xuν‖H1 ‖Sεu
ε − Sνu

ν‖2
L2

. C(Λ) ‖∂xuν‖H1 (‖uε − uν‖L2 + ε ‖uν‖H1)2 .
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Adding these estimates altogether, and using that ‖uε‖H2 , ‖uν‖H2 , are uniformly bounded by
R we obtain the (rather crude) estimate (for some modified constant C̃(Λ))

d
dt
‖uε − uν‖2

L2 ≤ C̃(Λ) R ‖uε − uν‖2
L2 + C̃(Λ) R3 ε ,

which yields by integration, using that uε(0) = uν(0),

‖uε(t)− uν(t)‖2
L2 ≤ C̃(Λ) R3 ε e eC(Λ) R t .

Therefore, uε is convergent in C (0, T ;L2(R)) as ε goes to zero. It remains to show some addi-
tional regularity for its limit u. In fact, since (uε(t)) is uniformly bounded in H2(R), we have
u(t) ∈ H2(R) for all t ∈ [0, T ]. By L2 −H2 interpolation, this implies that uε converges to u in
C (0, T ;Hs(R)) for all s ∈ [0, 2). Now, by interpolation between (2.8) and (2.9), we have

(3.24) ‖B(v, w)‖Hs . ‖Λ‖L∞ ‖v‖H1 ‖w‖Hs ,

for all s ∈ [0, 1] and v ∈ H1, w ∈ Hs. This will enable us to show that SεB (uε, ∂xSεu
ε) converges

to B(u, ∂xu) in C (0, T ;Hs(R)) for s ∈ [0, 1). Indeed, we have the pointwise time estimate

‖SεB (uε, ∂xSεu
ε)− B(u, ∂xu)‖Hs ≤

ε(1−s)/2 ‖B (uε, ∂xSεu
ε) ‖H1 + ‖B (uε, ∂xSεu

ε)− B(u, ∂xu)‖Hs .

ε(1−s)/2 ‖uε‖H1 ‖uε‖H2 + ‖B (uε, ∂x(Sεu
ε − u))‖Hs + ‖B (uε − u, ∂xu)‖Hs .

ε(1−s)/2 ‖uε‖H1 ‖uε‖H2 + ‖uε − u‖H1 ‖u‖Hs+1 .

(For simplicity we have included ‖Λ‖L∞ in the . symbol.) Therefore, being the limit of ∂tu
ε

in the sense of distributions, ∂tu = −B(u, ∂xu) belongs to C (0, T ;Hs(R)). This shows that u is
in C 1(0, T ;Hs(R)) for all s ∈ [0, 1). Then we can prove that u is the unique solution of (1.1)
in C (0, T ;Hs+1(R)) ∩ C 1(0, T ;Hs(R)) ∩ L∞(0, T ;H2(R)) with initial data u0. For, if v were
another one, we would have

d
dt
‖u− v‖2

L2 = −2 〈u− v,B(u− v, u)〉 − 2 〈u− v,B(v, ∂x(u− v))〉 . K ‖u− v‖2
L2 .

Here above we have used Cauchy-Schwarz to estimate the first term, (2.15) for the second, and
K is a uniform bound for (‖u‖H2 +‖v‖H2) on the time interval [0, T ]. So we have by integration

‖u(t)− v(t)‖2
L2 ≤ eKt‖u(0)− v(0)‖2

L2 .

We already know that u belongs to L∞(0, T ;H2(R)). To conclude that u is actually in
C (0, T ;H2(R)) we invoke weak topology arguments. Since uε converges to u in C (0, T ;Hs(R))
for all s ∈ [0, 2), by density of the dual H−s(R) of Hs(R) in H−2(R), we see that uε(t) converges
uniformly on [0, T ] to u in H2

w(R), the Sobolev space H2(R) equipped with the weak topology.
By a similar argument, for all t0 ∈ [0, T ], u(t) tends to u(t0) in H2

w(R) when t goes to t0, which
implies in particular

lim inf
t→t0

‖u(t)‖H2 ≥ ‖u(t0)‖H2 .

Therefore, to prove the strong limit

lim
t→t0

‖u(t)− u(t0)‖H2 = 0 ,

it suffices to prove
lim sup

t→t0
‖u(t)‖H2 ≤ ‖u(t0)‖H2 .
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Now, as shown before (substituting t− t0 for t),

‖uε(t)‖H2 ≤
‖u(t0)‖H2

1− 3C(λ)(t− t0)‖u(t0)‖H2

for all ε > 0 and t ∈ [t0, T ], hence

‖u(t)‖H2 ≤ lim inf
ε↘0

‖uε(t)‖H2 ≤
‖u(t0)‖H2

1− 3C(λ)(t− t0)‖u(t0)‖H2

,

and finally
lim sup

t↘t0

‖u(t)‖H2 ≤ ‖u(t0)‖H2 .

The inequality for t ↗ t0 can be obtained in a similar way by reversing time.
We have thus proved the following.

Theorem 3.1 Assuming the kernel Λ is C 1 outside the lines k = 0, ` = 0, and k + ` = 0,
has C 1 continuations to the sectors delimited by these lines, and satisfies (ii), (iii), (v), for all
u0 ∈ H2(R) there exists T > 0 and a unique solution u ∈ C (0, T ;H2(R)) ∩ C 1(0, T ;H1(R)) of
(1.1).

Continuous dependence with respect to initial data in H2 demands a little more work.

Theorem 3.2 Under the assumptions of Theorem 3.1 the mapping

H2(R) → C (0, T ;H2(R))
u0 7→ u , solution of (1.1) such that u(0) = u0 ,

is continuous.

To prove this result, we shall use a trick originally introduced by Bona and Smith for KdV [4]
(also see [2]), and regularize initial data by means of Sεβ for a suitable β > 0. In this respect we
shall make the further assumption that Ŝε equals one on the interval [−1/ε, 1/ε]. This implies
that for all s ∈ R, σ ≥ 0, for all u ∈ Hs(R),

(3.25) ‖Sεu− u‖Hs−σ = o(εσ) ,

and moreover, for any sequence (un)n∈N converging to u in Hs(R),

(3.26) ε−σ‖Sεu− u‖Hs−σ = o(1) , uniformly with respect to n .

Lemma 3.1 We assume that the Fourier multiplier Sε satisfies (3.20), (3.21), (3.22), (3.25),
and (3.26). We take a β ∈ (0, 1/2). Then, under the assumptions of Theorem 3.1, for all
R > 0 there exists T > 0 such that for all u0 ∈ H2(R) of norm not greater than R, for all
ε > 0, the Cauchy problem for (3.23) and initial data uε(0) = Sεβu0 admits a unique solution
uε ∈ C (0, T ;H3(R)). Furthermore, we have

‖uε‖C (0,T ;H2(R)) = O(1) , ‖uε‖C (0,T ;H3(R)) = O(ε−β) ,

and uε converges in C (0, T ;H2(R)) to a solution u of (1.1) such that u(0) = u0, with the
following rate in H1:

‖uε − u‖H1 = O(ε1−β) .

.
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Proof. By a slight modification of the argument used above for the Cauchy problem with
non-regularized initial data, we easily see that for all ε > 0, the Cauchy problem with regularized
initial uε(0) = Sεβu0 admits a unique local solution in H3, the maximal time of existence T ε

being at least of order of ε1+β/‖u0‖H2 (like ε/‖Sεβu0‖H3). In addition, by integration of

d
dt
‖uε‖2

H2 ≤ 6C(Λ) ‖uε‖3
H2 ,

we obtain

‖uε(t)‖H2 ≤
‖uε(0)‖H2

1− 3C(Λ)t‖uε(0)‖H2

≤ ‖u0‖H2

1− 3C(Λ)t‖u0‖H2

for all t ∈ [0, T ε), hence T ε ≥ 1/(3C(Λ)R if ‖u0‖H2 ≤ R. From now on we take T < 1/(3C(Λ)R),
in such a way that ‖uε(t)‖H2 is uniformly bounded for t ∈ [0, T ] and ε > 0, which also implies
a uniform bound for ‖F(∂xuε)‖L∞(0,T ;L1(R)).

Now, revisiting the proof of (2.12) (2.13) (2.18) (2.19) (just using that |Ŝε| ≤ 1) we find that

d
dt
‖uε‖2

H3 ≤ C(Λ) ‖F(∂xuε)‖L1 ‖uε‖2
H3 .

By integration, this yields

‖uε(t)‖2
H3 ≤ ‖uε(0)‖2

H3 eC(Λ)‖F(∂xuε)‖L1((0,T )×R) ,

hence

(3.27) ‖uε‖C (0,T ;H3(R)) . ‖Sεβu0‖H3 . ε−β ‖u0‖H2 .

Thanks to this estimate and the uniform bound of ‖uε‖C (0,T ;H2(R)), say R′, we can now show
that (uε)ε>0 satifies the Cauchy criterion not only in C (0, T ;L2(R)) (as done before) but also
in C (0, T ;H2(R)). For m ∈ N, 0 < ν ≤ ε, we have

1
2

d
dt
‖∂m

x (uε − uν)‖2
L2 = −〈∂m

x (uε − uν), Sε∂
m
x B(uε − uν , ∂xSεu

ε)〉
− 〈∂m

x (Sεu
ε − Sνu

ν), ∂m
x (B(uν , ∂x(Sεu

ε − Sνu
ν)))〉

+ 〈(Sε − Sν)∂m
x uν , ∂m

x (B(uν , ∂x(Sεu
ε − Sνu

ν))〉
− 〈∂m

x (uε − uν), (Sε − Sν)∂m
x B(uν , ∂xSνu

ν)〉 .

For convenience we call Im
i , i = 1, 2, 3, 4, the terms above. We first concentrate on the case

m = 1. By Cauchy-Schwarz and (2.9),

|I1
1 | ≤ ‖∂x(uε − uν)‖L2 ‖B(uε − uν , ∂xSεu

ε)‖H1 . ‖∂xuε‖H1 ‖uε − uν‖2
H1 .

By the energy estimate (2.16) and the error estimate (3.22),

|I1
2 | . ‖F(∂xuν)‖L1 ‖∂x(Sεu

ε − Sνu
ν)‖2

L2 . ‖F(∂xuν)‖L1 (‖∂x(uε − uν)‖2
L2 + ε2‖∂xuν‖2

H1) .

By Cauchy-Schwarz, (2.9), (3.22), and (3.27),

|I1
3 | . ‖(Sε − Sν)∂xuν‖L2 ‖B(uν , ∂x(Sεu

ε − Sνu
ν))‖H1

. ε2‖∂xuν‖H1 ‖uν‖H1 (‖uν‖H3 + ‖uε‖H3) . ε2−β ‖∂xuν‖H1 ‖uν‖H1 ‖u0‖H2 .

By Cauchy-Schwarz, (2.10), and (3.27),

|I1
4 | . ε ‖∂x(uε − uν)‖L2 ‖B(uν , ∂xSνu

ν)‖H2 . ε1−β ‖∂x(uε − uν)‖L2 ‖uν‖H2 ‖u0‖H2 .
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By adding all four estimates we get (recalling also the L2 estimate)

1
2

d
dt
‖uε − uν‖2

H1 . R′ ‖uε − uν‖2
H1 + (R′)3 ε2 + (ε2(1−β) + ε2−β) R′R2 .

Therefore, by integration we obtain

‖uε(t)− uν(t)‖2
H1 ≤ eC′t (‖uε(0)− uν(0)‖2

H1 + (R′)2 ε2 + (ε2(1−β) + ε2−β) R2 ) ,

where C ′ is proportional to R′. Since ‖uε(0) − uν(0)‖H1 . ε ‖u0‖H2 by (3.22), we receive a
uniform estimate

(3.28) ‖uε − uν‖C (0,T ;H1(R)) = O(ε1−β) .

Let us now turn to the estimate of ‖uε(t)−uν(t)‖H2 . By Cauchy-Schwarz, (2.10), and (3.28)

|I2
1 | ≤ ‖∂2

x(uε − uν)‖L2 ‖B(uε − uν , ∂xSεu
ε)‖H2

. ‖uε − uν‖H2 (‖∂xuε‖H2 ‖uε − uν‖H1 + ‖∂xuε‖H1 ‖uε − uν‖H2 )

. ‖∂xuε‖H1 ‖uε − uν‖2
H2 + O(ε1−2β) ‖uε − uν‖H2 .

By the energy estimate (2.17), the error estimate (3.22), and the uniform bound (3.27)

|I2
2 | . ‖F(∂xuν)‖L1 ‖∂2

x(Sεu
ε − Sνu

ν)‖2
L2 . ‖F(∂xuν)‖L1 (‖∂x(uε − uν)‖2

L2 + ε2‖∂xuν‖2
H2)

. ‖∂xuν‖H1 (‖∂x(uε − uν)‖2
L2 + ε2(1−β)‖u0‖2

H2) .

By Cauchy-Schwarz, (2.9), (3.22), and (3.27),

|I2
3 | . ‖(Sε − Sν)∂2

xuν‖L2 ‖B(uν , ∂x(Sεu
ε − Sνu

ν))‖H2

. ε‖∂2
xuν‖H1 ( ‖uν‖H1 ‖(Sεu

ε − Sνu
ν)‖H3 + ‖uν‖H2 ‖(Sεu

ε − Sνu
ν)‖H2 )

. ε ‖uν‖2
H2 ( ‖uε − uν‖H2 + ε−β‖u0‖L2 ) .

The most ‘dangerous’ term is in I2
4 . It can dealt with by first integrating by part, which leads

to
I2
4 = −〈∂3

x(uε − uν), (Sε − Sν)∂xB(uν , ∂xSνu
ν)〉 ,

hence by Cauchy-Schwarz, (2.10), and (3.27),

|I2
4 | . ε ‖∂3

x(uε − uν)‖L2 ‖B(uν , ∂xSνu
ν)‖H2 . ε1−2β ‖u0‖2

H2 ‖uν‖H2 .

By summation of these four estimates with the estimates obtained for first order derivatives, we
finally arrive at an inequality of the form

1
2

d
dt
‖uε − uν‖2

H2 . ‖uε − uν‖2
H2 + O(ε1−2β) .

As a consequence, we get

‖uε − uν‖C (0,T ;H2) . ‖uε(0)− uν(0)‖H2 + O(ε1/2−β) = o(1) .

by (3.25) applied to u0, s = 2, and σ = 0. 2



14

Proof of Theorem 3.2. It amounts to proving that for any sequence (un
0 )n∈N tending to u0

in H2(R), the solutions un of the Cauchy problems

(3.29) ∂tun + B[un, ∂xun] = 0 , un(0) = un
0

go to the solution of

(3.30) ∂tu + B[u, ∂xu] = 0 , u(0) = u0 .

Let us take (un
0 )n∈N tending to u0 in H2(R). We first observe that since (un

0 )n∈N is bounded
in H2, by Lemma 3.1 the solution un of (3.29) in H2 is well-defined on some interval [0, T ]
independent of n, as well as the solutions uε

n and uε of the regularized Cauchy problems

(3.31) ∂tu
ε
n + SεB[uε

n, ∂xSεu
ε
n] = 0 , un(0) = Sεu

n
0 ,

(3.32) ∂tu
ε + SεB[uε, ∂xSεu

ε] = 0 , uε(0) = Sεu0 .

Furthermore, by Lemma 3.1 we also have that ‖uε − u‖C (0,T ;H2) goes to zero, and revisiting its
proof with the help of (3.26), we also find that ‖uε

n − un‖C (0,T ;H2) goes to zero uniformly in n.
We can now conclude by an ε/3-(or more appropriately here an η/3)-argument. Indeed, for all
t ∈ [0, T ], for all n ∈ N, for all ε > 0,

‖un(t)− u(t)‖H2 ≤ ‖un(t)− uε
n(t)‖H2 + ‖uε

n(t)− uε(t)‖H2 + ‖uε(t)− u(t)‖H2 .

For η > 0, there exists ε0 such that for all ε ∈ (0, ε0), for all t ∈ [0, T ], for all n ∈ N,

‖un(t)− uε
n(t)‖H2 + ‖uε(t)− u(t)‖H2 ≤ 2η/3 .

If we choose an ε ∈ (0, ε0), as we have seen in the proof of Theorem 3.1,

‖uε
n(t)− uε(t)‖H2 ≤ Cε ‖uε

n(0)− uε(0)‖H2 ≤ Cε ‖un(0)− u(0)‖H2

by (3.20). So ‖un(t)− u(t)‖H2 can be made less than η for n large enough. 2

Another result that comes out from the proof of Lemma 3.1 is the following blow-up criterion,
which generalizes the well-known blow-up criterion for the classical inviscid Burgers equation
(limt↗T ‖∂xu‖L1(0,T ;L∞(R)) = +∞ if T is a finite, maximal time of existence).

Corollary 3.1 Under the assumptions of Theorem 3.1, if u ∈ C (0, T ;H2(R) is a solution of
(1.1) such that F(∂xu) belongs to L1((0, T )× R) then u can be extended beyond T .
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