The Algebra of Connectors - Structuring Interaction in BIP

Simon Bliudze, Joseph Sifakis
\{bliudze, sifakis\}@imag.fr
VERIMAG, Grenoble

- Overview of BIP
- Interactions and Connectors
- The Algebra of Connectors
- Applications
- Conclusion

Motivation

- Develop a unified compositional framework for describing and analysing the interaction between components
- interaction and system architecture - first class entities
- minimal set of constructs and principles
- tangible, well-founded, and organised concepts
(instead of using dispersed mechanisms such as semaphores, monitors, message passing, remote call etc.)
- full separation of concerns: computation and coordination
- Encompass different kinds of heterogeneity
- strong and weak synchronisation,
- synchronous and asynchronous execution.
- Provide automated support for component integration and generation of glue code.

Layered component model

- Behaviour - labelled transition systems with communication ports
- Interaction - set of interactions (interaction $=$ set of ports)
- Priorities - order on interactions

A family of atomic components $\left\{B_{i}\right\}_{i=1}^{n}$ with $B_{i}=\left(Q_{i}, 2^{P_{i}}, \rightarrow_{i}\right) \quad \leadsto \gamma\left(B_{1}, \ldots, B_{n}\right)$ - product automaton
A set of interactions $\gamma \in 2^{2^{P}}$

Interactions (n-ary strong synchronisation)

$$
\frac{a \in \gamma \wedge \forall i \in I, q_{i} \xrightarrow{a \cap P_{i}}}{i} q_{i}^{\prime}{ }_{\left(q_{1}, \ldots, q_{n}\right) \xrightarrow{a} \gamma\left(q_{1}^{\prime}, \ldots, q_{n}^{\prime}\right)}
$$

Priorities (π is an order on $2^{2^{P}}$)

$$
\frac{q \xrightarrow[\rightarrow]{\gamma}_{\gamma} q^{\prime} \wedge \quad \nexists a^{\prime}:\left(a \prec a^{\prime} \wedge q{\xrightarrow{a_{\gamma}^{\prime}}}_{\gamma}\right)}{q \xrightarrow[\rightarrow]{a}_{\pi} q^{\prime}}
$$

Other parallel composition operators (e.g. CCS, CSP) can be expressed in BIP.

- Overview of BIP
- Interactions and Connectors
- The Algebra of Connectors
- Applications
- Conclusion

The Algebra of Interactions $\mathcal{A I}(P)$

Syntax: $x::=0|1| p|x \cdot x| x+x \mid(x)$

Axioms:

+ union idempotent, associative, commutative, identity 0
- synchronisation idempotent, associative, commutative, identity 1 , absorbing 0 distributes over union

$$
\text { Examples: } \begin{aligned}
s+s r_{1}+s r_{2}+s r_{1} r_{2} & =s\left(1+r_{1}\right)\left(1+r_{2}\right) & & \text { broadcast } \\
s+s r_{1}+s r_{1} r_{2} & =s\left(1+r_{1}\left(1+r_{2}\right)\right) & & \text { causality chain }
\end{aligned}
$$

Semantics: defined by the function $\|\cdot\|: \mathcal{A I}(P) \rightarrow 2^{2^{P}}$

$$
\begin{array}{ll}
\|0\| & =\emptyset, \\
\|1\| & =\{\emptyset\}, \\
\|p\| & =\{\{p\}\}, \text { for any } p \in P, \\
\left\|x_{1}+x_{2}\right\| & =\left\|x_{1}\right\| \cup\left\|x_{2}\right\|, \text { for any } x_{1}, x_{2} \in \mathcal{A I}(P), \\
\left\|x_{1} \cdot x_{2}\right\| & =\left\{a_{1} \cup a_{2} \mid a_{1} \in\left\|x_{1}\right\|, a_{2} \in\left\|x_{2}\right\|\right\}, \text { for any } x_{1}, x_{2} \in \mathcal{A I}(P) .
\end{array}
$$

$\mathcal{A} \mathcal{I}(P)$	$\mathbb{B}[P]$
0 $1 \quad p \quad q \quad p q$ $p+1 \quad q+1 \quad p q+1 \quad p+q \quad p+p q \quad q+p q$ $p+q+1 \quad p q+p+1 \quad p q+q+1 \quad p q+p+q$ $p q+p+q+1$	false $$

Boolean function representation depends on the set P :

Synchronisation in $\mathcal{A I}(P)$ is represented by simple concatenation

- A connector is a set of ports which can be involved in an interaction.
- Port attributes (trigger Δ, synchron \bigcirc) determine the synchronisation type.
- An interaction in a connector is a subset of ports such that either it contains a trigger or it is maximal.

Rendezvous

Broadcast

Atomic boadcast

Causality chain

- Overview of BIP
- Interactions and Connectors
- The Algebra of Connectors
- Applications
- Conclusion

The Algebra of Connectors $\mathcal{A C}(P)$

Syntax:

$$
\begin{array}{rll}
s & ::=[0]|[1]|[p] \mid[x] & \text { (synchrons) } \\
t & ::=[0]^{\prime}\left|[1]^{\prime}\right|[p]^{\prime} \mid[x]^{\prime} & \text { (triggers) } \\
x & :=s|t| x \cdot x|x+x|(x) &
\end{array}
$$

Operators:

$+\quad$ union idempotent, associative, commutative, identity [0]

- fusion idempotent, associative, commutative, identity [1] distributes over union ([0] is not absorbing)
$[\cdot],[\cdot]^{\prime} \quad$ typing $\quad\left(\right.$ often denoted $[\cdot]^{\alpha}$ for some trigger/synchron typing α)

Semantics: is given by a function $|\cdot|: \mathcal{A C}(P) \rightarrow \mathcal{A I}(P)$.

Rendezvous

$$
s r_{1} r_{2} r_{3}
$$

Broadcast

$$
s^{\prime} r_{1} r_{2} r_{3}
$$

Atomic boadcast

$$
s^{\prime}\left[r_{1} r_{2} r_{3}\right]
$$

Causality chain

$s^{\prime}\left[r_{1}^{\prime}\left[r_{2}^{\prime} r_{3}\right]\right]$

Consider two connectors: $x=p_{1}^{\prime} p_{2}$ and $y=p_{3}^{\prime} p_{4}$.

$x y \quad \sim p_{1}+p_{1} p_{2}+p_{1} p_{3}+p_{1} p_{4}+p_{1} p_{2} p_{3}+p_{1} p_{2} p_{4}+p_{1} p_{3} p_{4}$

$$
+p_{3}+p_{2} p_{3}+p_{3} p_{4}+p_{2} p_{3} p_{4}+p_{1} p_{2} p_{3} p_{4}
$$

$[x]^{\prime}[y] \sim p_{1}+p_{1} p_{2}+p_{1} p_{3}+p_{1} p_{2} p_{3}+p_{1} p_{3} p_{4}+p_{1} p_{2} p_{3} p_{4}$

Axioms for typing (for arbitrary typing α, β):

1. $[0]^{\prime}=[0]$,

2. $\left[[x]^{\alpha}\right]^{\beta}=[x]^{\beta}$,
3. $[x+y]^{\alpha}=[y]^{\alpha}+[x]^{\alpha}$,

4. $[x]^{\prime} \cdot[y]^{\prime}=[x]^{\prime} \cdot[y]+[x] \cdot[y]^{\prime}$.

Fusion of typed connectors is not associative, e.g.

$$
[p q] r \neq p[q r]
$$

Equivalence vs. Congruence

- $x \simeq y \stackrel{\text { def }}{\Longleftrightarrow}|x|=|y|$, i.e. they represent the same sets of interactions
- The axiomatisation of $\mathcal{A C}(P)$ is sematically sound, i.e. $x=y \Rightarrow x \simeq y$.
- Semantic equivalence is not a congruence (not preserved by fusion)

$$
\begin{array}{ll}
p+p q \simeq p^{\prime} q, & \text { but } \quad p r+p q r \nsucceq p^{\prime} q r / \simeq p+p q+p r+p q r / \\
p[q r] \simeq[p q] r, & \text { but } \quad s^{\prime} p[q r] \nsucceq s^{\prime}[p q] r .
\end{array}
$$

- \cong is the largest congruence contained in \simeq
- A criterion to infer congruence from equivalence is available.
- Similarly typed semantically equivalent elements are congruent, i.e. for any two connectors $x, y \in \mathcal{A C}(P)$, and any typing α, we have

$$
x \simeq y \Longrightarrow[x]^{\alpha} \cong[y]^{\alpha} .
$$

- Overview of BIP
- Interactions and Connectors
- The Algebra of Connectors
- Applications
- Conclusion

Incremental construction

Transformation (separate one port in a connector)

Connector synthesis: Modulo- 8 counter

Multi-shot semantics: several connectors can be fired simultaneously

Interactions: $a+a b c+a b c d e+a b c d e f$
One-shot semantics: one connector can be fired at a time
Connector synthesis: $[a+a b]^{\prime}[c+c d]^{\prime}[e+e f]^{\prime} \cap a^{\prime}[b c]^{\prime}[d e]^{\prime} f^{\prime} \simeq a^{\prime}\left[[b c]^{\prime}\left[[d e]^{\prime} f\right]\right]$.

- Overview of BIP
- Interactions and Connectors
- The Algebra of Connectors
- Applications
- Conclusion

The BIP framework: Implementation

The algebra of connectors

- Allows compact and structured description and analysis of interactions, in terms of two operators admitting a very intuitive interpretation: typing and fusion.
- Differs from process algebras, which do not study interactions as such these are only a means to compose behaviour.
- Provides basis for the symbolic comparison, transformation, and synthesis of connectors, which can be directly implemented.
- Boolean representation provides powerful techniques for manipulation, implementation, and synthesis.
- Application in BIP to model interaction in non trivial case studies, e.g. TinyOS-based wireless networks, autonomous robot software.
- Causal semantics for $\mathcal{A C}(P)$
- Temporised connectors
- Algebraic approach to constraints and priorities
- Application to other formalisms encompassing event-based interaction, in particular coordination languages
- Efficient implementation in future versions of BIP.

A mapping $\beta: \mathcal{A I}(P) \rightarrow \mathbb{B}[P]$

$$
\begin{aligned}
\beta(0) & =\text { false } \\
\beta\left(p_{i_{1}} \ldots p_{i_{k}}\right) & =\bigwedge_{j=1}^{k} p_{i_{j}} \wedge \bigwedge_{i \notin\left\{i_{j}\right\}} \overline{p_{i}}, \quad \text { for any } p_{i_{1}}, \ldots p_{i_{k}} \in P, \\
\beta(x+y) & =\beta(x) \vee \beta(y), \quad \text { for any } x, y \in \mathcal{A I}(P), \\
\beta(1) & =\bigwedge_{p \in P} \bar{p},
\end{aligned}
$$

Annex: Full axiomatisation of \cong

For $x, y, z \in \mathcal{A C}(P)$ and arbitrary typing α, β :

Basic:

1. $[0]^{\prime}=[0]$,
2. $\left[[x]^{\alpha}\right]^{\beta}=[x]^{\beta}$,
3. $[x+y]^{\alpha}=[y]^{\alpha}+[x]^{\alpha}$,

Additional:

1. $[x]^{\prime}[0]=[x]^{\prime}$,
2. $[[x][0]]=[0]$,
3. $[x]^{\prime}+[x]=[x]^{\prime}$,
4. $[x]^{\prime}[y]^{\prime}=[x]^{\prime}[y]+[y]^{\prime}$,
5. $[x]^{\prime}[y][z]=[x]^{\prime}\left[[y]^{\prime}[z]^{\prime}\right]$,
6. $[x]^{\prime}[y]=\left[[x]^{\prime}[y]\right]^{\prime}+[0][y]$,
7. $[x][y]=[[x][y]]+[0][x][y]$,
8. $\left[[x]^{\prime}[y]\right]=[x]+[[x][y]]$,
9. $[[[x][y]][z]]=[[x][y][z]]$.

The semantics of $\mathcal{A C}(P)$ is given by the function $|\cdot|: \mathcal{A C}(P) \rightarrow \mathcal{A I}(P)$, defined by the rules

$$
\begin{aligned}
|[p]| & =p, \text { for } p \in P \cup\{0,1\} \\
\left|x_{1}+x_{2}\right| & =\left|x_{1}\right|+\left|x_{2}\right| \\
\left|\prod_{i=1}^{n}\left[x_{i}\right]\right| & =\prod_{i=1}^{n}\left|x_{k}\right| \\
\left|\prod_{i=1}^{n}\left[x_{i}\right]^{\prime} \cdot \prod_{j=1}^{m}\left[y_{j}\right]\right| & =\sum_{i=1}^{n}\left|x_{i}\right| \cdot\left(\prod_{k \neq i}\left(1+\left|x_{k}\right|\right) \cdot \prod_{j=1}^{m}\left(1+\left|y_{j}\right|\right)\right)
\end{aligned}
$$

for $x, x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m} \in \mathcal{A C}(P)$.

