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Abstract 
 

Simulation is often used for the evaluation of a 
Master Production Schedule (MPS). Also, the goal of 
this paper is the study of the design of a simulation 
model by reducing its complexity. According to theory 
of constraints, we want to build reduced models 
composed exclusively by bottleneck and, in order to 
do that, a neural network, particularly a multilayer 
perceptron, is used. Moreover, the structure of the 
network is determined by using a pruning procedure. 
This approach is applied to a sawmill flow shop case.  
 
 

1. Introduction 
 

The planning or scheduling scenario evaluation by 
simulation is very useful for the decision makers. 
Indeed, simulation highlights the evolution of the 
machines states, the WIP (work in process), and the 
queues. This information is useful in order to perform 
a “Predictive scheduling” [13] which is the function 
that concerns the MPS initially established with the 
Manufacturing Planning and Control System (MPCS), 
as opposed to “Reactive scheduling” which gives a 
new MPS established after significant events occur 
during the concerned period. Effectively, once the 
MPS is released, daily events may require it to be 
brought into question: this is the problem of 
rescheduling. The real time systems performing 
manufacturing checks (production reporting) lead to 
have current follow up information very quickly into 
the management system [11]. However, it is difficult 
to use this huge amount of information in order to 
make decision [19, 20]. At this level of planning, 
load/capacity equilibrium is obtained via the 
“management of critical resource capacity” function or 

Rough-Cut Capacity Planning (RCCP) which 
essentially concerns bottlenecks [27]. Goldratt and 
Cox, in “The Goal” [6] put forward the Theory of 
Constraints (TOC), which proposes to manage the 
whole supply chain by bottlenecks control. For this, 
the use of dynamic discrete events simulation of 
material flow is helpful [22]. In fact, simulation 
models of actual industrial cases are often very 
complex and the modellers encounter problems of 
scale [17]. Also, many works have highlighted the 
interest to use simplest (reduced/aggregated) models 
of simulation [1, 3, 15, 18, 28]. In addition, neural 
networks have proved there abilities to extract 
performing models from experimental data [26]. Also 
the use of neural networks appears recently as an 
interesting approach within the framework of the 
supply chain [2, 21]. 

According to the theory of constraint concepts, the 
main goal of this paper is to prove the interest of using 
neural network in order to reduce simulation models 
useful for the decision making process in re-
scheduling problem. In the next part, the proposed 
approach of reduction model and the multilayer 
perceptron are presented. The third part will be 
devoted to the presentation of an industrial application 
which is a sawmill flow shop case. In order to evaluate 
the proposition, the obtained reduced simulation 
model of the sawmill flow shop case is compared to 
the complete one in the last part.  
 

2. The model reduction 
 
2.1. The algorithm 
 

Amongst various authors, Zeigler was the first to 
deal with this problem [29]. In his view, the 
complexity of a model is relative to the number of 
elements, connections and model calculations. He 
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distinguished four ways of simplifying a discrete 
simulation model, in replacing part of the model by a 
random variable, coarsening the range of values taken 
by a variable and grouping parts of a model together. 
Innis et al. [10] first listed 17 simplification techniques 
for general modelling. Their approach was comprised 
of four steps: hypotheses (identifying the important 
parts of the system), formulation (specifying the 
model), coding (building the model) and experiments. 
Leachman [12] has proposed a model that considers 
cycle times in production planning models, especially 
for the semi-conductor industry which uses cycle time 
as an indicator. Brooks and Tobias [1] suggest a 
“simplification of models” approach for those cases 
where the indicators to be followed are the average 
throughput rates. Other cases have been studied [8, 9].  
The reduction algorithm proposed is an extension of 
those presented by Thomas and Charpentier [23]: 
1. Identifying the structural bottleneck (work center 

(WC) which for several years has been mainly 
constrained in capacity). 

2. Identifying the conjectural bottleneck for the 
Manufacturing Order (MO) portfolio of the MPS 
under consideration. 

3. Among the WC not listed in 1 and 2, identify the 
one (synchronisation WC) satisfying these two 
conditions: 

- Present at least in one of the MO using a 
bottleneck, 

- widely used considering the whole MO. 
4. If all MO have been considered go to 5 if not go to 

3. 
5. Use of neural networks for modelled the intervals 

between the entire WC find during preceding steps. 
 
2.2. The multilayer perceptron (MLP) 
 
The works of Cybenko [4] and Funahashi [5] have 
proved that a multilayer neural network with only one 
hidden layer using a sigmoïdal activation function and 
an output layer using a linear activation function can 
approximate all non linear functions with the 
desiderated accuracy. This result explains the great 
interest of this type of neural network which is called 
multilayer perceptron. In this research work, our 
hypothesis lies in the fact that a part of the modelized 
production system could be approximate by a non 
linear function obtained thanks to a MLP. 
The structure of the multilayer perceptron is recalled 
here. Its architecture is shown in figure 1. 
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Figure 1. Architecture of the multilayer perceptron 
 
The neuron in the last layer simply performs the 

following sum, its activation function being chosen 
linear: 
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where 2
iw  are the weights connecting the output of the 

hidden neurons with the output neuron and b2 is the 
threshold of the output neuron.  

Now, only the number of hidden neurons is always 
unknown. In order to determine it, the learning starts 
from an overparametrized structure. A weight 
elimination method is used to remove spurious 
parameters. The pruning algorithm used is the Optimal 
Brain Surgeon (OBS) [7].  

The learning of the MLP is performed in three 
steps: 

- Initialisation of the weights and biases of an 
oversized structure by using the Nguyen Widrow 
algorithm [16]. 

- Learning of the parameters by using Levenberg-
Marquard algorithm with robust criterion [24]. 

- Weights elimination by using the Optimal Brain 
Surgeon algorithm with a robust criterion [25]. 
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3. The overview of the sawmill 
 

At the time of the study, the sawmill SIAT had a 
capacity of 270.000 m3 / year, a 52 million euros 
turnover and 300 employees. 

The physical industrial production system is 
composed of sequential work centers (kockums saw, 
trimmer, sorter,…) and queues or conveyors (RQM4, 
RQM5, RQM7, …). The log enters the system in 
RQM1 then is steered to RQM4 or 5 according to the 
cutting pattern. Following that it passes to the cutting 
machine (Canter). It then enters the edger. After this 
phase, the log is transformed into main and secondary 
products. The final operation is the cross cutting 
which consists in cutting up products to length. 

 

4. The simulation models 
 
4.1. The complete model 
 

Preceding works [22, 23] have permit to construct 
the complete model of the sawmill process. This 
model is presented figure 2. It permits to simulate the 
log arrival. The second module, “input sorting” 
permits to drive the log into RQM4 or RQM5 in 
function of its characteristics. The conveyors RQM4, 
RQM5 and RQM7 serve of input inventory for the 
canter line.  
 

Timber
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Input sorter

Canter line

Kockums saw Trimmer

Sorter

Timber
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Input sorter
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Figure 2. The complete model 

 
Two other modules permit to model the canter line 

and the passage on the RQM7 conveyor. The 
modelisation of the canter line needs two submodels 
which permit to differentiate main and secondary 
products. Two other modules permit to model the 
kockums saw and the trimmer.  

 
4.2. The reduced model 
 

As we can see, the design of a complete model for 
the simulation of a workshop is a difficult task which 
leads to a complex model. Moreover, the bottleneck of 
this line is the trimmer [22]. And industrial objectives 

are optimising the use of the bottleneck work station 
in order to maximise its utilisation [6, 14].  

Consequently and within this framework, the 
modelisation of the functioning of inventories RQM4 
RQM5 and RQM7, and of the canter line is 
unnecessary. Also, all the parts surrounded by grey 
dashed line on the figure 2 give no direct and useful 
information for the evaluation of a MPS. In fact, only 
the arrival times of the products in trimmer queue are 
useful in order to simulate the work load of this 
bottleneck. And this is why a multilayer perceptron is 
used to replace all the parts surrounded by grey 
dashed line on the figure 2. Then the neural network 
uses the available shop floor information.  

For this, we need to collect the available data in 
input of the process. First, each log holds numerous 
information which are collected by a scanner in input 
of the canter line. This information are relative to the 
product dimension, as length (Lg) and three values for 
timber diameter (diaPB ; diaGB ; diaMOY). These 
variables serve to drive the log to RQM4 or RQM5 
queues which is additional information (RQM).  

In addition of this dimensional information, we 
have to characterise the process variables at the time 
of the log arrival. Particularly, the input stock of the 
trimmer (Q_trim), the utilisation rate of the trimmer 
(U_trim) and the number of log present in the process 
between the inputs of RQM4 and RQM5 and the 
output of the canter line (Q_RQM).  

The last type of information is related to the cutting 
plan of the logs. In fact, each log will be cut into n 
main or secondary products. In our application, the 
cutting plan divides the log into 7 products: 

- 2 secondary products resulting from the first step 
of the canter line cutting process on the saw 
CSMK, 

- 2 secondary products resulting from the second 
step of the canter line cutting process on the saw 
CSMK after going through on the RQM7 queue, 

- 3 main products resulting from the third step of 
the canter line cutting process on the saw MKV. 

These two saws (CSMK and MKV) belong to the 
canter line. These 7 products can be classified into 
three categories according to the location (CSMK or 
MKV) and the time during the cutting process (first or 
second cutting). This information is given by the 
variable (T_piece). The last information is the 
thickness (in mm) of the product which is also the 
reference. In our case, we are taking into account only 
two references: main products 75; secondary products 
25 (ref).  

Consequently, the neural networks input variables 
are: Lg ; diaGB; diaMOY ; diaPB ; ref ; T_piece ; 
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Q_trim ; U_trim ; Q_RQM ; RQM. In our application 
12775 products are simulated.  

Our objective is to estimate the delay (∆T) 
corresponding to the throughput time for the 12775 
products. ∆T is measured between the process input 
time and the trimmer queue input time. In practice ∆T 
is the output of the neural network: 
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The learning of the network is supervised. So, it is 
necessary to divide the database into two datasets, the 
learning one and the validation one. The number of 
hidden neurons should be determined. In order to 
determine it, the learning starts from an 
overparametrized structure and a weight elimination 
method is used to remove spurious parameters [25].  
So, the learning begins with a structure using 30 
hidden neurons (5) which correspond to 361 
parameters. Then, the spurious parameters are 
removed one after the other and the sum square of the 
error (SSE) is calculated for the two data sets. Figure 
3 presents the SSE for the learning data set (grey 
circle) and for the validation data set (black cross) in 
function of the number of parameters remaining. 
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Figure 3. SSE for learning (grey circle) and validation 
datasets (black cross) function of parameters number 

 
Different choices can be performed concerning the 
best structure. The structure with 161 parameters is the 
smallest which satisfies SSE. The structure with 225 
parameters gives the lowest SSE for the learning 
dataset and those with 240 parameters gives the best 
SSE for the validation dataset. However, these three 
structures are very close together. And, in these three 
structures only 4 hidden neurons have been removed. 
The selected structure, with 240 parameters, uses 26 
hidden neurons. It is presented figure 4.   
 

Lg

diaGB

diaMOY

diaPB

ref

T_piece

Q_trim

U_trim

Q_RQM

RQM

∆T

Lg

diaGB

diaMOY

diaPB

ref

T_piece

Q_trim

U_trim

Q_RQM

RQM

∆T

 
Figure 4. Structure of the network 

 
4.3. The results 
 
Now, the results obtained with the reduced and the 
complete models will be compared. As explained in 
the preceding part, the database has been divided into 
two datasets for learning and validation. The division 
of the database has been performed randomly and the 
learning dataset is constituted by 6365 products and 
the validation dataset by 6410 products.  
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Figure 5. ∆T – learning set 

 
Firstly, the results obtained on the learning data set are 
presented. Figure 5 shows the delay ∆T (ordinate) 
used by the 6365 products (abscissa) of the learning 
dataset. The black line presents the delay for the 
complete model and the grey line for the reduced 
model. The times are given in seconds. We can see 
that the major part of the pieces uses less than 1000 
seconds in order to enter in the input stock of the 
trimmer. However, some of these products use more 
than 3000 seconds to perform the same course. Figure 
5 shows that the times given by the two models are 
very similar except nine peaks where we can notice 
important differences. Figure 6 which presents the 
error performed between the two models corroborate 
these first remarks. This fact can be explained by the 
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lack of some variables which can have a particular 
incidence on the data, as, for example, the percentage 
of machine-gunned logs, or the repartition of logs into 
the different RQM queues, … 
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Figure 6. Error – Learning set 

 

0 1000 2000 3000 4000 5000 6000 7000
0

1000

2000

3000

4000

5000

6000
Complete model: black – reduced model: grey

0 1000 2000 3000 4000 5000 6000 7000
0

1000

2000

3000

4000

5000

6000

0 1000 2000 3000 4000 5000 6000 7000
0

1000

2000

3000

4000

5000

6000
Complete model: black – reduced model: grey

 
Figure 7. ∆T – Validation set 

 
The error mean performed on the learning data set is 
small (7.9 seconds) but with an important standard 
deviation (430) which is due to these nine error peaks 
(figure 6). If these peaks are not considered, the error 
mean becomes 2.9 seconds. These results obtained on 
the learning data set prove that the use of a neural 
network permits to estimate the delays. However, it is 
necessary to verify that these results can be extended 
for other data. Figure 7 shows the delay (ordinate) 
used by the 6410 products (abscissa) of the validation 
dataset. The black line presents the delay for the 
complete model and the grey line for the reduced 
model. The times are given in seconds. These results 
are very similar to those obtained on the learning 
dataset. So, no overfitting problem occurs, and the 
neural network can estimate the delay for other data as 
those of the learning algorithm.  

In the same way, the error mean performed on the 
validation data set remain small (9.4 seconds) and 
with an important standard deviation (448) for the 
same reasons as those mentioned above. If peaks are 
not considered, the mean error becomes 2.1 seconds. 
 

0 1000 2000 3000 4000 5000 6000 7000-3000

-2000

-1000

0

1000

2000

3000

4000

5000

0 1000 2000 3000 4000 5000 6000 7000-3000

-2000

-1000

0

1000

2000

3000

4000

5000

 
Figure 8. Error – validation set 

 
The figure 8 shows the error performed on the 
validation data set and confirms the remarks 
performed during the study of the figure 6. 
 

5. Conclusion 
 

A new approach of simulation model reduction is 
presented here. This approach uses a neural network, 
and more particularly, a multilayer perceptron. The 
aim is to model the functioning of the part of the 
process which is not constrained in capacity. This 
approach has been applied to a sawmill flow shop 
case. The results have shown that: 

- the two sets of data present similar results, 
- the average of the error (less than 10s) is small 

according to the process time scale (2000s). 
That means that it is very interesting to use neural 

network to model a part of the process instead of 
computing with the complete model.It is quicker and 
easier. It allows the decision making system to focus 
on the management of the bottlenecks. 

Our perspectives are to investigate the structure 
determination of the network, and particularly, the 
choice of the inputs of it, and the validation of this 
approach on different application cases.   
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