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Jean-Yves Gauthier, Arnaud Hubert, Joël Abadie, Nicolas Chaillet, Christian Lexcellent

Institut Femto-ST, CNRS, ENSMM, UFC, UTBM,
24 chemin de l’Epitaphe, 25000 Besançon, France
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Abstract— This paper is focused on a modeling procedure well-
suited for the design of micro-mechatronic systems and especially
for micro-actuators. The purpose of this publication is to show
that the variational and energetical methods is not only well-
suited to model classical micro-mechatronic devices but that they
are also well-suited to include complex dynamical behaviour such
as non-linearity and hysteretical behaviour. This procedure is
applied to the design of a new actuator using one of the rela-
tively new smart materials, the Magnetic Shape Memory Alloys
(MSMAs). It should be stressed that the presented approach can
be extented to a great range of other smart materials and that
the description can be easily extented up to the control level.

I. INTRODUCTION

Micro-mechatronic devices are systems including mecha-
tronic elements at the mini- and microscopic scale. Presently,
most of these devices concern actuators and sensors appli-
cations. Indeed, at this scale, the use of multi-components
systems to develop a mechatronic function is not convenient
because of integration difficulties. Therefore a great part
of these applications use smart materials because they can
achieve a sensing and actuation function in an integrated and
distributed way.

This paper is focused on a modeling procedure well-suited
to micro-actuators design. In a first step, some headlines will
be given concerning variational and energetic methods for the
modeling and design procedures. These procedures will be
applied for the design of a new actuator using one of the
relatively new smart materials, the Magnetic Shape Memory
Alloys (MSMAs). Even if, this method is applied to MSMAs
materials, it should be stressed that this approach can be
extented to a great range of other smart materials.

II. VARIATIONAL AND ENERGETIC METHODS FOR THE
MICRO-ACTUATOR DESIGN

For the modeling of any micro-mechatronic systems, the
design has to take into account different physical fields.
For the example of an MSMA actuator, a thermo-magneto-
mechanical model is required. During the first design step
of classical actuators (not requiring a mechatronic approach),
each physical field is usually studied independently and the
coupling effects are taken into account in a second step using
numerical computations such as the Finite Elements Analysis

(FEA). Nevertheless, for mechatronic systems and especially
when the size of the device is reduced, the coupling effects
become predominant as it is the case for the use of smart
materials. The coupling effects must then be taken into account
from the first step of the design procedure. At this stage, the
FEA are not usually relevant because of the computing time
and the necessity to already have the geometry of the devices
at one’s disposal. Indeed, it is necessary to use a synthesis tool
for the design procedure instead of an analysis tool to make
the first design choices. This tool must also be multi-physical
and in this purpose, the only relevant method is to adopt an
energetic point of view because energy is the only common
point between different fields of physics.

For the mechatronic field, such a relevant tool is the Bond
Graph method. It is a muti-physical, graphical and energetical
tool well-suited for the design procedure. The last edition of
the reference book on the subject [1] emphasises this point by
adding the subtitle Modeling and Simulation of Mechatronic
Systems to the title of the book. As the Bond-graph method
is a relevant and efficient tool for mechatronic devices design
and modeling, it is nevertheless limited for micro-mechatronic
devices because it is difficult to model distributed parameters
systems described by Partial Differential Equations with this
tool. In such a case, variational methods are much more
relevant. These variational methods in an energetical context
include the Lagrangian and Hamiltonian formalisms ([2], [3],
[4], [5]). These methods can model discret parameters systems
(lumped parameters physics) as well as distributed parameters
systems (continuum physics) in a similar way. These meth-
ods are also the bases of approximate methods such as the
Finite Elements Analysis Technique. Some recent textbooks
on mechatronic modeling emphasises this point in beeing
completely based on the Lagrangian modeling for mechatronic
devices as well as for micro-mechatronic devices using piezo-
electric materials ([6], [7]).

A. Conservative systems

The lagrangian formalism is a modeling technique based on
some energy functions used with the Hamilton principle [4]
[5]. This principle postulates that the variation of an action S
between two times on a real path is always equal to zero. This
action is the lagrangian L(q, q̇, t) integrated between the two



times t1 et t2 :

S =
∫ t2

t1

L dt ⇒ δS = 0 on a real path (1)

For the particular case of non-relativist systems, the la-
grangian function is the difference between a kinetic co-energy
T ∗(q̇) and a potential energy V(q) [2]. For conservative
systems (i.e. closed and non-dissipative), L does not depend
explicitely on the time t:

L(q, q̇) = T ∗(q̇)− V(q) (2)

A variational calculus on the Hamilton principle leads to the
set of n Lagrange equations:

∂L
∂qi
− d

dt

(
∂L
∂q̇i

)
= 0 i ∈ [1, n] (3)

where ∂L
∂qi

are the generalized forces and pi = ∂L
∂q̇i

are the
generalized momentums.

The Hamilton formalism is an extension of the lagrangian
formalism which uses a Legendre transformation to substitute
the time rate functions q̇ in the lagrangian L(q, q̇) for the
generalized momentum p = ∂L

∂q̇ in a new energy function
called the hamiltonian function H(q,p):

H(q,p) = p · q̇− L(q, q̇) (4)

In such a case, the hamiltonian function corresponds to the
total energy expressed with coordinates q and momentums p
instead of coordinates q and velocities q̇:

H(q,p) = T (p) + V(q) (5)

Then the n second order Lagrange equations are transformed
into a set of 2n first order Hamilton equations:

q̇i =
∂H
∂pi

ṗi = −∂H
∂qi

i ∈ [1, n] (6)

With this formalism, x =
(
q p

)T
can be chosen as the state

of the system and (6) becomes the state-space model of the
system:

d

dt

(
q
p

)
=
(
fq(q,p)
fp(q,p)

)
(7)

B. Dissipative and controlled systems

The previous variational procedures are defined for conser-
vative systems, nevertheless this formalism can be extended
to the non-conservative case (open and dissipative) and also
to systems that include kinematic constraints.

An open system means that it exchanges some energy with
an outer system. This is the case when we try to control the
system with an external force fext depending explicitely on
the time t. In this case, we also speak about non-autonomous
systems. A dissipative system means that some part of the
inner energy is non-available during any motion of the system.
A system with kinematic constraints mean that there is some

geometric or topologic constraints on the admissible motion
of this system. These kinematic constraints can be taken
into account in the dynamical equations using a Lagrange
multiplier technique.

To take into account all these phenomena, we make use of
an extented lagrangian function L′:
• the external generalized forces fext(q, t) are taking into

account in the variation of L′ by adding their virtual
works δWext = fext(q, t) · δq ;

• dissipations by static and viscous frictions are taking into
account by adding their dissipated energies variations
δQs(q) and δQv(q̇). The dissipation by viscous friction
Qv(q̇) is calculated with a Rayleigh dissipation function
R(q̇) like Qv(q̇) =

∫ t2
t1
R(q̇) dt ;

• the holonomic kinematic constraints c(q) = 0 are taking
into account with a Lagrange multipliers technique by
adding the term −λ · δc(q) to the variation δL′.

Finally, we have:

δL′ = δL+ fext · δq + δQs + δQv − λ · δc (8)

The Hamilton principle using δL′ gives the following La-
grange equations:

∂L
∂qi
− d

dt

(
∂L
∂q̇i

)
− ∂R
∂q̇i

+
∂Qs

∂qi
+ fext,i − λi ·

∂ci
∂qi

= 0 (9)

The extented lagrangian function for a controlled dissipative
system with kinematic constraints can also be transformed into
an extented hamiltonian function. This leads to the following
Hamilton equations:

q̇i =
∂H
∂pi

ṗi = −∂H
∂qi
− ∂R
∂q̇i

+
∂Qs

∂qi
+ fext,i − λi ·

∂ci
∂qi

(10)

C. Thermodynamics of irreversible processes as a way to
define dissipative potential for nonlinear systems

The previous Lagrange and Hamilton formalisms are well-
suited to conservative systems and can also be extented to
take into account the dissipative and exchanges phenomona.
The connexion with thermodynamics is therefore direct be-
cause, except for the choice of the relevant coordinates, the
hamiltonian function H(q,p) corresponds to the total energy
ET (q, q̇), the energetical function used in thermodynamics.
The point of view of thermodynamics of irreversible processes
is a phenomenological point of view directed toward the
storage, the available and the dissipated energies.

The first law of the thermodynamic states that the total
energy – or the hamiltonian – is always conserved in a close
system and its variation gives rise to an energy exchange in
an open system [8]. The exchange appears through an heat
exchange Qe and a work exchange We corresponding in par-
ticular to mechanical, electromechanical, thermal, chemical,...,
exchange processes. The energy exchange depends on the path
and then, work and heat exchanges are not state variables:

dET = d̄Qe + d̄We (11)



In thermodynamics, the total energy is not the only relevant
energetical functional and some other thermodynamic state
functions as the internal energy U , the Helmholtz Free energy
F , the Gibbs free energy G can be used instead. They are
defined using a Legendre transformation applied to the total
energy as it was the case between the lagrangian and the
hamiltonian functions.

In thermodynamical systems, we must notice a strong
distinction between the work and heat exchange because when
the first one is reversible, the second one is always irreversible.
It implies that some energy is unavaible in the stored energy.
The lost energy contributes to the increase of the total entropy
(d̄Si ≥ 0 with Si the irreversible entropy). This is stated
as the second law of the thermodynamic and leads to the
Clausius-Duhem inequality of irreversible behaviour. With
T the temperature of the system and d̄D the increment of
dissipation, we have:

T · d̄Si = d̄D ≥ 0 (12)

The purpose of thermodynamics of irreversible processes with
internal variables [9] is to select relevant internal variables, for
example zi describing an internal working of the system and
added as a complementary variable in the expression of any
thermodynamic potential P . For such an internal variable zj ,
we also define πj the dual thermodynamic force as πj = ∂P

∂zj
.

These additional variables permit to explain and to compute
the Clausius-Duhem inequality and then to determine the
dissipation resulting from the irreversibility of the processus:

d̄D = T · d̄Si =
∑

j

πj · zj (13)

That permits to define a dissipation potential or a Rayleigh
function for the lagrangian or hamiltonian formalism applied
to a dissipative system.

III. APPLICATION OF AN MSMA BASED ACTUATOR

A. Characteristic of MSMAs and general description of the
system

MSMAs are relatively new smart materials combining the
properties of classical Shape Memory Alloys and the proper-
ties of magnetostrictive materials [10]. The thermo-magneto-
mechanical behavior of such a material is quite difficult to
model because of a strong nonlinear and hysteretical behavior
[11] (c.f. FIG. 1 for an example of stress versus strain
according to the magnetic field level).

For such a thermo-magneto-mechanical behavior, it is im-
possible to use quadratic Rayleigh function to describe the
dissipation potential of the material and it makes sense to
use the thermodynamics of irreversible processes with internal
variables coupled with the lagrangian/hamiltonian formalism
to propose a dynamical model of the system.

A scheme and a photograph of the MSMA device used as an
exemple of the modeling procedure is presented on the FIG. 2.
A magnetic circuit including a coil and a ferromagnetic core
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Fig. 1. Mechanical stress versus strain with and without a magnetic field for
a cyclic charging (simulation: solid line, experimental results: cross points)

permits to create a magnetic field inside an air-gap where an
MSMA sample is inserted. This sample is attached at one
extremity to the fixed support and at the other extremity to
a mobile load. The weight of the load permits to pre-stress
the MSMA sample to obtain a motion in both directions.
Gravitational and inertial effects of the load have to be taken
into account. The coil is supplied by an home-made switching
power amplifier (200 V - 2 A). The displacement of the load
is measured with a laser sensor (Keyence LK-152) and the
control is performed using a DSP board (dSpace). A PC is
used for the displacement signal acquisition and to control the
complete system.

B. Modeling of the device

The modeling procedure is based on the computation of the
Hamiltonian function for the full device. All the energetical
terms of this function are expressed for each sub-system of
the device:
• the non-linear electromagnetical behaviour of the elec-

trical (coil) and magnetical circuits (based on a lumped
parameters circuit),

• the thermo-magneto-mechanical behaviour of the MSM
material (based on the thermodynamics of irreversible
processes),

• the mechanical behaviour of the load driven by the
actuator (based on classical Lagrangian mechanics).

The different energetical terms of the full device are described
on the FIG. 3. More details about each energetical expression
may be found in [12].

1) Magnetic circuit: To model the core and the magnetic
circuit, an electrical network including resistances and induc-
tances was used. This lumped-parameters model permits to
take into account the magnetic leakage in the surrounding air
and the ferromagnetic saturation of the core without any time-
consuming numerical computation such as the finite elements
method. The different inductances in this electrical network are
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Fig. 2. Description of the simple MSMA actuator: (a) scheme of the device,
(b) photograph of the device.

Fig. 3. Description of the different energies of the full device.

respectively associated with the magnetic flux accross the Fe-
Si core, the leakage magnetic flux in the surrounding air, the
magnetic flux accross the airgap, and lastly the magnetic flux
accross the MSMA. It must be stressed that the inductances of
the core and MSMA are not constant parameters but they take
into account the nonlinear magnetic behaviours of these two
materials. For the coil’s quantities, a global form is used: the
electric charge qc is the generalized coordinate q1, the current
I is the generalized velocity q̇1, the magnetic flux φ is the
generalized momentum p1. For the other magnetic quantities,

a local form is used: the magnetic excitation field Di corre-
sponds to the generalized coordinate, the curvilinear integral
Hi ·li along the path li corresponds to the generalized velocity,
the flux Bi · Si accross the surface Si is the generalized
momentum. lFe, ll, la and l are respectively the ferromagnetic
core, leakage, airgap and MSMA mean flux path lengths. The
dissipation due to eddy-currents are neglected because the
laminated Fe-Si magnetic core limits them drastically. Joule
effect losses in the coil are taken into account with a classical
quadratic dissipation potential (Rayleigh function R1).

The magnetic energy Wmag in this circuit depends on the
magnetic fields Bi (generalized momentum pi) in the volume
V and we have:

H =Wmag =
∫

V

∫ Bi

o

Hi(b)db · dV (14)

The magnetic energy stored in the Fe-Si core takes into
account the nonlinear saturated magnetic behaviour of the Fe-
Si material with an arctan shape function. The generalized
external force applied to this sub-system is the voltage applied
to the coil fext = u(t). Ampère’s law (Kirchhoff’s Current
Law) gives some algebraic relations between coordinates re-
sulting in the definition of two kinematic constraints c1(q) = 0
and c2(q) = 0 (c.f. [12]).

2) MSMA: Two types of generalized coordinates are con-
sidered in the MSMA modelling. The first ones, the temper-
ature T , the strain ε and the magnetic field H are classi-
cal thermodynamic variables. They are associated with three
thermodynamic forces, the entropy s, the mechanical stress
σ and the magnetization of the MSMA M . The coordinate
T is not used afterwards because of the isothermic working
of the actuator and the constant value of thermic part of the
Helmholtz free energy Ftherm. The second type of generalized
coordinates appears only in the frame of the thermodynamics
of irreversible processes with internal variables. As explained
previously, an internal variable is a generalized coordinate
characterizing an internal working of the material not directly
linked to any external forces. This variable permits to take into
account the memory effect of the material. For the MSMA,
the volume fraction z is such an internal variable (c.f. [11]).

The Hamiltonian function of the MSMA sample corre-
sponds to its total energy. Because of the size and weight
of the MSMA sample compared to the size and weight of the
load, the influence of the potential and the kinetic energies
of MSMA is quite low in the complete device energy and
therefore these two terms can be neglected. The hamiltonian
function of the MSMA sample of volume VMSMA can be
expressed as:

HMSMA = VMSMA · (Fmech +Fmag) +
p2

z

2mz
+

p2
ε

2mε
(15)

with Fmech and Fmag , the mechanical and magnetical
Helmholtz free energies, mz and mε inertial parameters cor-
responding respectively to the z and ε variables.

The internal variable z was introduced to model the dis-
sipative hysteretical behaviour of the material. In order to



satisfy the second thermodynamic law, z is used to define the
Clausius-Duhem inequality:

d̄D = πf∗(z, ż) · d̄z ≥ 0 (16)

with πf∗(z, ż) the thermodynamic force associated with z.
The expression of πf∗(z, ż) will not be detailled in this paper
and can be found in [12] but this expression can be used to
express the dissipation power Physt.

3) Load: The driven load energy includes a kinetic energy
(Tload = 1

2mp
2
x with m the mass of the load) and a gravity

potential energy (Vload = mgx with g the gravity constant).
The viscous friction of the load in the surrrounding air is
modelled using a quadratic dissipation potential (Rayleigh
function R2 = f

2 ẋ
2 with f the viscous friction coefficient).

Moreover the load attached to the MSMA sample gives an
algebraic relation between the strain ε and the displacement x
and gives an other kinematic constraint c3(q).

By adding all the previous sub-system energies, the Hamil-
tonian function H of the full system can be written and this
expression permits to obtain 16 Hamilton equations. Among
these 16 equations, 8 are associated with the time rate of
coordinates and 8 with the time rate of momentums. The 8
equations associated with the time rate of coordinates gives 8
definitions of variables:
• the first Hamilton equation is the definition of the induc-

tance creating the magnetic flux φ,
• the four following Hamilton equations are the definition

of the magnetic fields Hi,
• the three following Hamilton equations are the definition

of the relations between the momentum pi and the
velocities q̇i for qi ∈ {z, ε, x}.

The 8 equations associated with the time rate of momentums
give 8 relations that can be rewritten to obtain 4 physical
equations, one constitutive equation for the MSMA and finally
the value of the three Lagrange multipliers:
• the dynamic electrical equation (Voltage Kirchoff’s Law),
• two equations for the conservation of magnetic fluxes in

the magnetic circuit,
• the dynamic equation of the load (Newton’s law),
• the quasi-static behaviour of the MSM material (the

constitutive equation),
• the values of the three Lagrange multipliers

C. Discussion on the quasi-static and dynamic behaviour and
on the energy distribution

To verify the prediction of the model, a sufficiently slow
voltage ramp was applied as an input to verify the quasi-static
model behaviour. The Fig. 4 presents the voltage, current and
displacement of the actuator versus time for the experimental
and the simulation values. The maximum reachable displace-
ment is about 550 micrometres after a current ramp satured at
1 A. Then, a voltage step is applied to extract the dynamical
behaviour of this system. The Fig. 5 reports also the voltage,
current and displacement versus time (this graph uses a smaller
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Fig. 4. Quasi-static behaviour of the system: voltage, current and displace-
ment versus time (simulation: dotted line, experimental results: solid line).

time range). The maximum reachable displacement is now
about 750 micrometres for a 1 A current step.
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It is interesting to mention that the dynamical effect com-
bined with the nonlinear MSMA behaviour permits to obtain a
larger reachable strain in the dynamic mode than in the quasi-
static mode. This is due to the decrease of the compressive
stress applied to the MSMA sample when the acceleration
of the load appears in dynamic mode. The simulation results
appear reasonably accurate compared with the experimental
measurements. The computation of different energetical terms
of this MSMA simple actuator were computed.

The external energy Wext supplied to the device is an
electrical ones. As the energy exchange is dWext = u(t) ·dqc,
the energy supply rate corresponding to the the electrical
power is therefore Ẇext = u(t) · I(t). The heat exchange was
not measured on the experimental bench but the dissipation by
Joule effect can be computed as Qjoule =

∫ t

0
R1(q̇1) dt. The

computations show that the main part of the supply energy
is dissipated as heat losses into the coil. This confirms that
MSMA as well as classical Shape Memory Alloys are not
attractive materials from the efficiency point of view.

The rest of the available energy is divided into the coil
and core magnetic energies (recoverable energies) and into



an energy transfer to the MSMA and to the load. A part
of the MSMA energy is lost in the hysteretical loop of the
material behavior Qhyst =

∫ t

0
Physt dt when the other is

converted through the electromechanical energy conversion
process. The result of this energy conversion is then distributed
as a viscous friction process Qviscous =

∫ t

0
R2(ẋ) dt, a

potential energy Vload(x) and a kinetic energy Tload(px).
We observe that the practical available mechanical energies
(kinetic Tload and potential Vload) are quite small compared
to the input energy. In the quasi-static mode, the MSMA elastic
energy corresponding to the mechanical Helmholtz free energy
Fmech minus its interaction part Fint (due to the compatibility
between martensite variant, c.f. [12]), the kinetic energy Tload,
and viscous losses Qviscous are constant.

The differences between dynamic mode and quasi-static
mode can also be discussed. In the dynamic working mode,
an energy transfer between the MSMA elastic energy and
the kinetic energy Tload exists. Actually, this elastic energy
increases when some energy is supplied to the system, then
decreases to a lower value than beginning because of kinetic
energy Tload. At this time, Vload can increase to a higher value
than in quasi-static mode. The dissipation is more important
for Qhyst and Qviscous in the dynamic case than in the quasi-
static but Qjoule is lower in the dynamic case because the
time range is smaller than in quasi-static mode.

It should be stressed that for this actuator, less than 8 to
11 mJ are recovered by the load for 5 to 20 Joules supplied
to the actuator. These results clearly show a poor actuator
efficiency. Because the main energetic losses are due to the
Joule effect, an efficient actuator is an actuator which can
hold a displacement value without keeping a current into the
coil. This problem can be partially solved by using a Push-
Pull actuator design working by voltage pulses: two MSMA
samples and two magnetic circuits are used in an antagonistic
way in order to obtain a multi-stable actuator. This kind of
actuator was also designed and studied by the authors in [13],
[14].

IV. CONCLUSION

The purpose of this paper was to present on a simple MSMA
actuator example that the variational and energetical methods
is not only well-suited to model classical micro-mechatronic
devices such as these described on references [6] [7] but
that they are also well-suited to include complex dynamical
behaviour such as non-linearity and hysteretical behaviour. On
this paper, the choice was made to applied these modeling
techniques to a simple MSMA based actuator, nevertheless
it could also be conveniently applied to any other micro-
mechatronic systems using other non-linear and hysteretical
smart materials. In a next paper, it will also be shown that
this variational and energetic modeling procedure can be
easily extented up to the control level because some important
tools based on energetical concepts exist in the control field
to explore the stability and to design efficient control laws

(Lyapunov function, dissipativity, passivity, energy shaping,
port-hamiltonian modeling as reported in [15], [16] and [17]).
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