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Competitive exclusion — n species cannot coexist on fewer than n limiting resources
in a constant and isolated environment — has been a central ecological principle for
the past century'?. Coexistence in natural communities** and even in simple
microcosms®’ would seem to belie such a principle. Nevertheless, because
competitive exclusion has been substantiated by some influential empirical>*® and

theoretical studies"'*?

, most ecologists have accepted it as a principle and devoted
substantial effort to find mechanisms explaining coexistence of competing
species”* "5, As with empirical studies, mathematical proofs do not universally
demonstrate exclusion. Many biologically sensible models with density-dependent
per capita growth rates allow competitive coexistence'®. Here we show that, when
consumer-resource dynamics are solely governed by statistical mechanics, arguably
the most parsimonious, fundamental driving force for the dynamics of a system,
coexistence emerges as the norm rather than the exception. Any number of species
can coexist on a single resource in a constant, isolated environment. Moreover
species tend to coexist at constant relative abundances irrespective of variation in
the abundance of the total community or the resource. Depending on species
characteristics, competition can cause rarity, which may subsequently lead to

extinction in small populations due to stochastic mortality events. However, our

model shows that ecological similarity does not lead to rarity; on the contrary, the



more similar species are, the more even their proportions will be. Thus limiting

similarity in the niches of species is not required to explain coexistence.

All mathematical formalisms of consumer/resource interactions convey critical
assumptions about the way consumer per capita growth rate varies with its own
abundance, the abundance of resources and the abundance of other consumers'”.
Depending on these assumptions, models can preclude or permit coexistence of
competing species'"'®. Here we introduce a very different kind of model, using a
mathematical formalism deduced entirely from first principles, of energy and mass
conservation, and statistical mechanics. The sole assumptions are that a consumer can
only process a given amount of resources at a given time (discrete events), that essential
resources are required in fixed proportions (stoichiometry), and that process events
require some activation energy in order to occur, as with chemical reactions. Energy and
mass conservation constraints then restrict the range of possible trajectories for the
dynamics of a consumer/resource system - the phase space. In general, this is not
sufficient to determine the system trajectory. However, statistical mechanics makes some
trajectories in phase space more probable than others. Statistical mechanics is literally'®
the basic combinatorial principle by which a given macroscopic system trajectory is more
probable than others if it can be realized in more ways at the microscopic, individual level
(box 1). It has previously been shown' that, in a phase space defined by energy and mass
conservation constraints, statistical mechanics can drive an ecosystem along a
deterministic trajectory that can be fully characterized by a system of difference equations
(box 1). The mathematical formalism obtained was argued to be more realistic in many
respects than Lotka-Volterra or Monod formulations'. Above all, since it predicts the

expected behaviour of a consumer/resource system when there is no driving force other



than statistical mechanics affecting its trajectory, predictions can be viewed as the most

parsimonious, or null, expectations for competitive outcomes.

Here we consider ecosystems with N consumers and one or two resources. First
consider the case of a system with an arbitrary number of consumer species (C))ien
feeding on a single resource R (Fig. 1 depicts the two consumer species case). To
apply the formalism of statistical mechanics, the possible processes must first be
specified. Here resource uptake and consumer growth are treated as a single process. We
assume the i" consumer C; can take up and process an amount V; of resource R
at a given time, and that this yields one new consumer item (changing the resource to
consumer yield would not affect the results presented here) and some waste by-products
of growth, W . This can be written as a mass-balance equation : C;,+V,R->2C,+W |
Wecall Vv, astoichiometric coefficient or requirement (here it is also the inverse of a
yield). We further assume that the i consumer turns over, C;,—W | where turnover can
be losses due to predation, maintenance and mortality sensu stricto. The magnitudes of
consumption and turnover processes in a given time interval depend on their activation
energy and on temperature via a kinetic constant (see box 1). We use the term “affinity”
for kinetic constants associated with resource consumption, and “mortality rate” for
kinetic constants corresponding to mortality. The greater the activation energy required

for a consumer to take up a resource and grow the lower its affinity for that resource.

First consider a “batch” situation where a resource is initially provided to a
community of consumers but is not renewed. We show (see Supplementary Information
for equations) that when governed by statistical mechanics, such a system tends toward a
quasi-steady state; all consumers adjust to the resource level and they coexist with
constant relative abundances as long as there is some resource remaining. The community
therefore reaches dynamic homeostasy, i.e., total abundance may vary but species

relative proportions do not. The relative abundance of C; with respectto C; is



determined by their stoichiometric requirements, their affinities for the resource, and their

mortality rates:
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where k; is the affinity of resource uptake by consumer C, and m; its

mortality rate.

Equation (1) shows that a consumer will be more abundant relative to its competitors if it
has a low mortality rate, a high affinity, and a low stoichiometric requirement for its
resource, all intuitive predictions. One important feature of equation (1) is that the relative
abundances of two species depend only on their own characteristics, irrespective of which
other competitors might be present in the community. Such a prediction is testable and
might prove useful for predicting community change following biodiversity loss or
species introductions. Another noteworthy property of the model is that, despite the
intricacy of its mathematical formalism, very simple kinetics emerges for consumer and
resource dynamics; they follow first order kinetics with respect to either consumer or

resource abundances (Fig. 1 and supplementary equations).

A straightforward consequence of the emergence of first order kinetics for
resource uptake is that the system will reach an equilibrium if the resource is continually

6,7,12 on

supplied at a constant input rate. Landmark empirical as well as theoretical studies
coexistence have often examined the equilibrium behaviour of flow-through cultures (or
chemostats), as opposed to batch cultures. Adding a constant dilution rate D in the

model does not affect the occurrence of an equilibrium where all consumer species

coexist, however it does shift their competitive balance, and simple calculations show that

D
m‘i‘ m; has to be substituted for 7; in eqn (1). Thus high dilution rates will

primarily affect species with comparatively low mortality rates 7,



Next, consider a situation where two consumers share two resources, a situation
relevant to resource-ratio theory'?. Although the equations are not readily analytically
tractable, random simulations (>100) show that after a short transient period, consumers
adjust to their resource levels and their relative abundances remain constant thereafter
(Fig. 2 depicts examples with essential resources). The community is again homeostatic,
even though resources are continually depleted and are not taken up at equal rates. The
same pattern holds for substitutable resources (not shown). Whether resources are
essential or substitutable only changes the fate of the community after one resource has
become exhausted. When both resources are essential, the community collapses. In
contrast, when resources are substitutable, a progressive “phase” transition occurs during
which the community pattern shifts towards one that reflects the relative abilities of the
consumers to obtain the one remaining resource (although we do not have an analytical
equation akin to (1) for the two resource case, the community pattern depends on the
amount and identity of all available resources). In chemostats with two essential
resources, an equilibrium will be reached with the two species coexisting whatever the
resource input ratios (see Supplementary equations). This is in contrast to resource-ratio
theory although the equilibrium consumer ratios will depend on the resource input ratio,

as in resource-ratio theory (Fig. 3).

We briefly address the issue of variable stoichiometry, such as observed with
plants®. The most straightforward way to account for it is to distinguish between various
components of a consumer or resource biomass (such as storage vs structural biomass).
From a consumer's perspective, this adds a new resource, and will likely promote
coexistence®'. From the resource's perspective, this adds a new “consumer”. However,
since our model allows consumers to coexist irrespective of their number, this will not

affect coexistence but may shift competitive balances between consumers.



Our results show that when community dynamics are constrained by energy and
mass balance equations, and otherwise driven by statistical mechanics, species should be
expected to coexist, even on a single limiting resource, in a constant homogeneous and
isolated environment (i.e., no immigration). These results stand in sharp contrast to
previous theoretical work. In our view, they illuminate the incongruity of impossible
coexistence between competitors and our everyday observations; species share resources

and scarce resources are likely to be limiting for whole communities, yet species coexist.

We showed that species should coexist at constant relative abundances in constant
environments. Ecological assemblages could therefore persist with a constant,
recognizable pattern under constant environmental conditions, but possibly varying
resource levels. Such a holistic behaviour need not depend on the assemblage of
particular species with complementary niches, but arises as the most probable behaviour
of any community of competing species. The temporal component of species relative
abundance distributions on ecological timescales has received little attention™>.
However, in fossil records, where coarse time resolution presumably averages out

community variability due to changing environmental conditions, there is intriguing

evidence that homeostatic communities can persist over millions of years™.

Our results do not preclude competition from incidentally leading to local
extinction in some circumstances. According to eqn (1), if, in a given environment, a
species has a high mortality rate and a low affinity for the one most limiting resource,
and/or a large stoichiometric requirement for that resource, then it may only achieve an
extremely low relative abundance compared to its competitors. In finite, real-world
populations (and particularly experimental ones), the competitive balance may be so
unfavourable to that species that only very few, if any, of its individuals can survive.
Under such circumstances, Darwin's insight that “rarity is the precursor of [stochastic]

extinction” (quoted from ref 3) still holds. Consequently our findings can explain



“apparent competitive exclusion” and they do not, of course, invalidate other mechanisms

7,13-15

that promote coexistence if competition drives one species to very low densities.

Finally, limiting similarity in species' niche may not be needed to explain species
coexistence. On the contrary, in our model, ecologically similar species, such as cryptic

species™*

, are expected to tend towards similar abundances, with identical species (i.e.,
conspecifics) having identical abundances, as intuitively expected. This may have

ramifications for sympatric speciation and adaptive dynamics (but see also ref 27).

Box 1

How statistical mechanics determines system dynamics can be best understood with the
dog-flea model of the Erhenfest's™*. Two dogs A and B infested by fleas are lying side
by side. Fleas can jump from one dog to the other. Suppose we know each dog has 5 fleas
at time zero. We want to predict the number n of fleas jumping from A to B and
conversely the number p of fleas going from B to A during a time interval T . Assume
that energy constraints let us know that 4 fleas will change dogs during 7 . Then any
combination (n,p) satisfying n+p=4 is a possible macroscopic event in this system. In
turn, any possible macrocroscopic event (n,p) can be realized in many ways at the
microscopic, flea-level; specifically, the macro-event (n,p) can be realized in
W(n,p)=C(5,n) C(5,p) micro-events, where C(i,j) isthe binomial
coefficient and W(n,p) is the multiplicity of the macro-event (n,p). Because not all macro-
events have equal multiplicities, some will be more probable than others. In fact, for
sufficiently large numbers of fleas, one macro-event will be overwhelmingly more
probable than any other. We can thus make a deterministic prediction (n,p) describing the

dynamics of this system.

Previously, Neill& Gignoux'" showed that it is possible to extend this rationale to

ecosystems. Specifically, consider an ecosystem consisting of an arbitrary set (S;) of N



living or non-living species (the dogs), consisting of identical items (the fleas) interacting
through a number R of processes (the jumps). We assume that each process can be
described by an energy and mass-balance equation, Zi v,S,— zi n,S; ,where Vv,
and 1, are stoichiometric coefficients. When constrained by mass and energy
conservation and driven by statistical mechanics, the trajectory of this system proved
quasi-deterministic under very general conditions (small enough time interval T , and
large enough number of items of each species). Moreover, this trajectory can be fully
specified by the magnitude (x,),<, of each process during T , which must satisfy the

following system of non-linear equations :

s—Zv

\

s

x—kH(

where S; is the abundance of S, V,:zi v, , and k, is a kinetic adimensional

constant depending on temperature and on the amount of activation energy required for

one process event to occur.

Methods

Full model derivation is described elsewhere'®. There are two equivalent mathematical
formalisms derived in ref 19. The first is given by the equation in box 1. It is the most
meaningful and easily tractable analytically. The second is less intuitive and uses

Lagrange multipliers :

Y, v, (log(=-)—u)

v

r

@

x,=k, exp

where the K, 's are Lagrange multipliers chosen so that the mass conservation

constraints zr v, X,=S; are satisfied for all i (in that formulation possible processes

include identical transformations S;—S; ). This latter formulation is more efficient to



implement than solving a system of non-linear equations, and was therefore used for

128

random simulations. Following the method of Agmon et al*®, it can be readily shown that

the vectorial function [/ =(f),<, with fi(Ho...1,)=5,— Zi Vv, X, , whose zeros we
seek to find, has a positive definite Jacobian matrix. Therefore it derives from a potential
F, FHg.,m,)= Zi IliSiJrzr V,.X, . whose minimum can be accurately found by a
non-linear minimization algorithm. This minimum is precisely the Lagrangian multipliers
we sought. The procedure is repeated at each time step. All simulations were run with a
one hour time step. All source code was written using R statistical software. Random
simulations were performed on a subset of relevant parameters for the two resources and
two consumers case. In the batch mode, resource initial abundances were held fixed.
Changing them would not alter the results because (i) the model is scale invariant, and (ii)
the patterns are robust to changes in the resource ratio. Consumer initial abundances also
do not matter since their abundances are eventually determined by resource levels. In
addition to initial abundances, one affinity and one stoichiometric coefficient were chosen
to serve as references in each case. The reference affinity was set so that a significant
amount of resource would be consumed within 50 days. The other affinities were left to
vary by intervals within one order of magnitude centered around the reference. Mortality
rates were allowed to vary within one order of magnitude greater than affinities. This
ensured that consumers reached a quasi-steady state before resources were exhausted,
and allowed macroscopic properties to emerge. In the case of two consumers feeding on
two essential resources, stoichiometric coefficients on the first resource R, , V,; and
vV, , were taken to correspond to the inverse of carbon yields and accordingly the
reference stoichiometric coefficient, Vv, was set to 2 (corresponding to a 0.5 yield).
Stoichiometric coefficients for the second resource R,, VvV, and V. , were taken to
reflect the consumers elemental C to N ratios. Stoichiometric coefficients were sampled
uniformly within their interval. Kinetic parameters were sampled uniformly on a log)o

scale.
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Figure Legends

Figure 1 Model illustration for the one resource/two consumers case. All
abundances are log scaled. The dynamics of the resource R (closed diamonds)
follows first order kinetics. The dynamics of consumer C1 (open squares) and C,
(closed squares) parallel that of the resource, so that the ratios C+/R and C./C;
remain constant. Parameter values used : affinities (log scaled) k,=—2.3 |

k,=—2 |, mortality rates (log scaled) m,=—1 , m,=—1 | stoichiometric
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coefficients v,=2.5 | v,=2 _ An analytical demonstration for any number of

consumers is available in Supplementary Information.

Figure 2 Simulation results with 10 randomly drawn parameter sets in the two
essential resources/two consumers case. All values are log scaled. a, total
resource, R1+R;, dynamics for each parameter set. b, consumer ratio dynamics
for each set. ¢, resource ratio dynamics for each set. Note the transition after
exhaustion of one resource for some parameter sets. The following parameters
were held fixed: initial abundances: r,=10, r,=1, ¢,=c,=0.1 | affinity (log
scaled) k,=—2.8 | stoichiometric coefficient v, =2 .The other parameters
were sampled within the following intervals: affinity (log scaled)

k,€[—3.3,-2.3] and mortality rates (log scaled) m, m,€[—2,—1]

stoichiometric coefficients v,€[1.6,3.3] | v, v,,€[0.1,04] |

Figure 3 Examples for the time course of the consumer abundance ratio (log
scaled) in a chemostat with two essential resources and two consumers at
different resource input ratios. Dilution rate D =0.01 , initial abundances
r,=10, r,=(0.2,0.5,1,2), ¢,=¢,=0.1 | affinities (log scaled) k,=k,=—1 |
mortality rates (log scaled) m,=m,=—1.3 | stoichiometric coefficients

v,=1.6, v, =33, v,=0.2, v,,=0.07 .
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Coexistence of an arbitrary number of consumers on a single resource

Consider a system with n consumers Ci, ..., C, and one resource R. Each consumer may
feed on the resource according to the following mass-balance equation :

V,R+C,—2C,+W | where W stand for waste and V; is the stoichiometric requirement
for R of Ci. Each consumer also turns over accordingto C;—»W _Letx; and z denote the
magnitudes of consumption and mortality processes during one time step. Note that the
model is scale-invariant so that the units used for abundances and process magnitudes do

not matter as long as the relative stoichiometry does not change (ref 19 of the main text).

According to the model (box 1 in the main text), the dynamics of this system are given by :

6r=—zivixi (1)

with
dc,=x,—z, (2)

(E)
xi:ki(ci_'xi_zi (3)

1 —
)(1+v,.) r Z_,’ VX
V.

1

and Z,':mi(cj_xi_zi) (4)

Let us first assume that we are at quasi steady-state, ie  x;~z; for all i. Substituting (4)

into (3) and then using the steady-state assumption yields, for all i :



1 Vi
X; |(1+v) F—Zijj (1+v,)
x=k|— e
ml- vi

Rearranging gives :

/v,

(r—zj vjxj) (5)

k(l+vi)

m

i

Summing (5) over i gives the expected result that total ( Zi v;X; ) and individual (xi)

consumption fluxes are proportional to r. Using equation (3) again, it is easy to show that
the consumer abundances c; will be proportional to r as well. Using (4) and (5) we can also

compute the quasi-steady state relative abundance of any two consumers ¢; and ¢;

(1+v)lv,; (1+v ) v,

¢, (I1+2m,)m;, x;, (1+2m,)

B S VA Ana S

c, (I4+2m;)m;x, (1+2m))

k;

m.

1

M

k.

J

To show that the system will reach this quasi-steady state, consider a state where all
consumers are at quasi steady-state except for one, say Ci. Suppose for instance that

¢,<c,® ,where ¢;° would be the quasi steady-state value for C; given the resource
level. We want to show that, necessarily, 6c¢,=x,—z,>0 _ Equation (5) remains valid for
all i>1 since we assume those consumers to be at quasi steady-state. Therefore summing

over all >1 yields :

—_ ! . _
Zt>1vixi_k (r—v,x, Zi>lvixi)

k!
ZN ViX=10 (r=v,x,) (6)

Now eliminating z: in (4) , substituting in (3) for i=1 and using also (6) gives

1
(1+v,)
(

v

L r=ViX iy

(1+k") v,

m,

_ 1
)(1+v1)
1+m, !

x, =k, 1~

Finally, dividing by c; we get the following equation :



1

xl ml (1+V1)(

1+m,

=Ry
C

Equation (7) shows that

Vi

(T4v,) (7)

1
)(1+v1)

1

(1+k")

Xy

¢y

r Xy

Vit ¢

is a decreasing function of ¢; . Indeed, omitting the
1

multiplicative constants for clarity, and rearranging, we have :

(xl/cl)(Hv')

(I—x,/c,) *

V¢,

v X1

Vi

(8)

X
The left hand side is an increasing function of ~— , whereas the right hand side is a

Ci

decreasing function of

C
x .
— must increase.
Ci
. ° . X1 X
Therefore if ¢;<c,;” we have, necessarily, —>|—
¢y ¢

with i=1 yields

z X
(1+m)—==m,(1-=)
C) C

. Thus, when ¢, decreases,

increases and as a result,
1

) . Next rearranging equation (4)

. . . . Z1 &£
Therefore, — 1is an increasing function of ¢; and we must have : —<|—
C 1 c 1 ¢ 1
. L. X Z .
Because at quasi steady-state, by definition |(— | =|—] , this provesthat x;<z;, and
c c
1 1

so ¢ will increase, as expected. See also the proof for the existence of a locally stable

equilibrium (in chemostats) of a larger class of models, including ours, in ref 16 of the main

text.

Chemostat equilibrium of two competitors on two essential resources

Consider two competitors feeding on two essential resources. With obvious notations, the

dynamics of the system will be, in a chemostat with dilution rate D :



6r;=D(r=r;)=vyx=vyx, (9)

Sc¢,=x,—z,—Dc, (10) with

Vi2

V(1)

1 Vi
v, VT2 T VX T VX,
x=k,(c,(—x—z)"

4

=V Xi— VX,

Vi Vio

xri:mi(ci_xi_zi) (12)
where Vv,=1+v,+v, .

Setting (9),(10) to zero at equilibrium, using (12) and substituting into (11) gives, for

=1,2:

(1-D)x,
D+m,(1-D)

i i

so the same procedure can be used to compute the magnitudes x; at and out of
equilibirum (although with slightly different parameters). At equilibrium, this procedure is

guaranteed to converge to positive solutions satisfying
(1+D) (1+D)
T p (Vi1 X4V X,)>0, 75—

(Vi,x,+ vy, x,)>0 . So the system will

have an equilibrium solution for any positive values of 757y .



