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AUTOMORPHISMS OF COXETER GROUPS AND LUSZTIG’S
CONJECTURES FOR HECKE ALGEBRAS

WITH UNEQUAL PARAMETERS

CÉDRIC BONNAFÉ

Abstract. Let (W, S) be a Coxeter system, let G be a finite solvable group of
automorphisms of (W, S) and let ϕ be a weight function which is invariant under
G. Let ϕG denote the weight function on WG obtained by restriction from ϕ. The
aim of this paper is to compare the a-function, the set of Duflo involutions and
the Kazhdan-Lusztig cells associated to (W, ϕ) and to (WG, ϕG).

Let (W, S) be a Coxeter system, with S finite, let Γ be a totally ordered abelian

group and let ϕ : W → Γ be a weight function such that ϕ(s) > 0 for all s ∈ S.

Let G be a group of automorphisms of W stabilizing S and ϕ. We denote by ϕG

the restriction of ϕ to the fixed points subgroup W G. If ω ∈ S/G (the orbit set) is

such that Wω (= 〈ω〉) is finite, we denote by sω the longest element of the standard

parabolic subgroup Wω and we set SG = {sω | ω ∈ S/G and Wω is finite}. Then it

is well-known that (W G, SG) is a Coxeter system and that ϕG : W G → Γ is a weight

function (such that ϕG(sω) > 0 for all ω ∈ S/G).

To the datum (W, S, Γ, ϕ) are associated a Hecke algebra H(W, S, Γ, ϕ) over the

ring Z[Γ], a Kazhdan-Lusztig basis (Cw)w∈W of H(W, S, Γ, ϕ), equivalence relations

∼L, ∼R and ∼LR and two functions a : W → Γ and ∆ : W → Γ (see [L]). We set

D = {w ∈ W | a(w) = ∆(w)}. To the datum (W G, SG, Γ, ϕG), we associate similarly

∼G

L, ∼G

R, ∼G

LR, aG, ∆G and DG. The main result of this paper is the following:

Theorem A. Assume that G is a finite solvable group and that Lusztig’s conjectures

(P1), (P2),. . . , (P8) in [L, Chapter 14] hold for the datum (W H , SH , Γ, ϕH) for all

subgroups H of G. Let x, y ∈ W G. Then:

(a) aG(x) = a(x).

(b) DG = D ∩ W G.

(c) If ? ∈ {L,R,LR}, then x ∼? y if and only if x ∼G
? y.
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2 C. Bonnafé

The proof of this Theorem makes essential use of reduction modulo p. Indeed,

an easy induction argument reduces immediately the problem to the case where G

is a p-group for some prime number p. The main ingredient is then the following:

the natural stupid map H(W G, SG, Γ, ϕG) → H(W, S, Γ, ϕ)G is not a morphism of

algebras in general. However, if we denote by BrG(H(W, S, Γ, ϕ)) the quotient of

H(W, S, Γ, ϕ)G by the two-sided ideal
∑

H<G TrG
H(H(W, S, Γ, ϕ)H) (Brauer’s quo-

tient, see for instance [T, Page 91]), then:

Proposition B. Assume that G is a finite p-group. Then the natural linear map

H(W G, SG, Γ, ϕG) → BrG(H(W, S, Γ, ϕ)G) is a morphism of algebras whose kernel

is generated by p. Moreover, it preserves the Kazhdan-Lusztig basis.
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1. The set-up

1.A. The group (W, S). Let (W, S) be a Coxeter system (with S finite), let

ℓ : W → N denote the length function, let Γ be a totally ordered abelian group and

let ϕ : W → Γ be a weight function [L, §3.1] that is, a map such that ϕ(ww′) =

ϕ(w) + ϕ(w′) whenever ℓ(ww′) = ℓ(w) + ℓ(w′).

Let A be the group algebra Z[Γ]: we will use an exponential notation for A,

namely A = ⊕
γ∈Γ

Zeγ , where eγ · eγ′

= eγ+γ′

for all γ, γ′ ∈ Γ. If a =
∑

γ∈Γ aγe
γ ∈ A,

we denote by deg a (resp. val a) the degree (resp. the valuation) of a, that is, the
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element γ of Γ such that aγ 6= 0 and which is maximal (resp. minimal) for this

condition (by convention, deg 0 = −∞ and val 0 = +∞).

We shall denote by H the Hecke algebra associated to the datum (W, S, Γ, ϕ).

It is a free A-module, with basis (Tw)w∈W , and where the multiplication is entirely

determined by the following rules:
{

TwTw′ = Tww′ if ℓ(ww′) = ℓ(w) + ℓ(w′);

(Ts − eϕ(s))(Ts + e−ϕ(s)) = 0 if s ∈ S.

Note that this implies that Tw is invertible in H for all w ∈ W . This algebra is

endowed with an A-anti-linear involution ¯ : H → H which is determined by the

following properties:
{

eγ = e−γ if γ ∈ Γ,

Tw = T−1
w−1 if w ∈ W .

By [L, Theorem 5.2], there exists a unique element Cw ∈ H such that
{

Cw = Cw,

Cw ≡ Tw mod H<0,

where H<0 = ⊕
w∈W

A<0Tw, and where A<0 = ⊕
γ<0

Zeγ .

Let τ : H → A be the unique A-linear map such that

τ(Tw) =

{

1 if w = 1,

0 otherwise.

If w ∈ W , we set

∆(w) = − deg τ(Cw),

and we denote by nw the coefficient of e−∆(w) in τ(Cw). Finally, if x, y ∈ W , we

write

CxCy =
∑

z∈W

hx,y,zCz,

where the hx,y,z’s are in A and satisfy hx,y,z = hx,y,z.

1.B. The group (W G, SG). Let G be a group of automorphisms of W such that,

for all σ ∈ G, we have

σ(S) = S and ϕ ◦ σ = ϕ.

If I is a subset of S, we denote by WI the (standard parabolic) subgroup of W

generated by I. If ω ∈ S/G is such that Wω is finite, we denote by sω the longest

element of Wω. We denote by SG the set of sω, where ω runs over the set of G-orbits

in S such that Wω is finite. Recall the following proposition [H, Corollary 3.5 and

Proof of Proposition 3.4]:
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Proposition 1.1. (W G, SG) is a Coxeter group. If ℓG : W G → N denotes the

corresponding length function and if x and y ∈ W G, then ℓ(xy) = ℓ(x) + ℓ(y) if and

only if ℓG(xy) = ℓG(x) + ℓG(y).

Let
ϕG : W G −→ Γ

w 7−→ ϕ(w)

denote the restriction of ϕ to W G. Then ϕG is a weight function (by Proposition

1.1). Therefore, we can define HG, HG,<0, T G

w , CG

w, τG, ∆G, nG

z and hG

x,y,z with

respect to (W G, SG, Γ, ϕG) in a similar way as H, H<0, Tw, Cw, τ , ∆, nz and hx,y,z

were defined with respect to (W, S, Γ, ϕ).

2. Brauer quotient

Hypothesis and notation. From now on, and until the end of this

paper, we fix a prime number p and we assume that G is a finite

p-group.

2.A. Definition. For all the facts contained in this subsection, the reader may

refer to [T, §11]: even though this reference deals only with O-algebras (where O is

a commutative complete local noetherian Zp-algebra) which are O-modules of finite

type, the proofs can be applied almost word by word to our more general situation.

Let R be a commutative ring and let M be an RG-module. If H is a subgroup of

G, we set

TrG
H : MH −→ MG

m 7−→
∑

σ∈[G/H]

σ(m).

We also define

Tr(M) =
∑

H<G

TrG
H(MH).

This is an R-submodule of MG, containing pMG. The Brauer quotient BrG(M) is

then defined by

BrG(M) = MG/ Tr(M)

and we denote by brG : MG → BrG(M) the canonical map.

Lemma 2.1. Assume that pR 6= R and that M admits an R-basis B which is

permuted by the action of G. Then BrG(M) is a free R/pR-module with basis

(brG(b))b∈BG.
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If M is an R-algebra and if G acts on M by automorphisms of algebra, then

Tr(M) is a two-sided ideal of MG and so BrG(M) is an R-algebra. Of course, brG

is a morphism of algebras in this case. We recall the following result:

Lemma 2.2. Assume that pR 6= R, that M is an R-algebra, that G acts on M by

automorphisms of algebra, that M admits an R-basis B which is permuted by G and

let us write ab =
∑

c∈B λa,b,cc for a, b ∈ B. If a, b ∈ BG, then

brG(a) brG(b) =
∑

c∈BG

π(λa,b,c) brG(c),

where πR → R/pR is the canonical morphism.

2.B. Applications to Hecke algebras. Since G stabilizes S and ϕ, it also acts

by automorphisms of A-algebras (by σ(Tw) = Tσ(w) for all w ∈ W ). Moreover, it

permutes the standard basis (Tw)w∈W , so it follows from Lemma 2.1 that:

Corollary 2.3. (brG(Tw))w∈W G is an Fp[Γ]-basis of the Fp[Γ]-algebra BrG(H).

Now, let

canG : HG −→ BrG(H)

be the unique A-linear map such that

canG(T G

w ) = brG(Tw)

for all w ∈ W G. The main result of this subsection is the following:

Proposition 2.4. The map canG : HG −→ BrG(H) is a surjective morphism of

A-algebras whose kernel is pHG.

Proof. It follows from Corollary 2.3 that canG is surjective and that Ker(canG) =

pHG. It remains to show that canG is a morphism of algebras. First, note that if x,

y ∈ W G satisfy ℓG(xy) = ℓG(x) + ℓG(y), then ℓ(xy) = ℓ(x) + ℓ(y) (by Proposition

1.1) and so

canG(T G

x T G

y ) = canG(T G

xy) = brG(Txy)

= brG(TxTy) = brG(Tx) brG(Ty) = canG(T G

x ) canG(T G

y ).

So it remains to show that, if ω is a G-orbit in S such that Wω is finite, then

(?) brG((Tsω
− eϕ(sω))(Tsω

+ e−ϕ(sω))) = 0.
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Since sω is the longest element of Wω, we have

Csω
=

∑

w∈Wω

e−ϕ(w)Tw

and

Tsω
Csω

= eϕ(sω)Csω
.

(by [L, Theorem 6.6 (b)]). But (Wω)G = {1, sω}. Since ϕ(w) = ϕ(σ(w)) for all

w ∈ Wω and all σ ∈ G, we have

Csω
≡ Tsω

+ e−ϕ(sω) mod Tr(H).

This completes the proof of (?). �

Corollary 2.5. Fp ⊗Z HG ≃ BrG(H).

Corollary 2.6. If h ∈ HG and h′ ∈ H are such that canG(h) = brG(h′), then

τG(h) ≡ τ(h′) mod pA.

Proposition 2.7. If w ∈ W G, then canG(CG

w) = brG(Cw).

Proof. Let C = canG(CG

w) − brG(Cw). Then

C = C.

where : BrG(H) → BrG(H) is defined by brG(h) = brG(h) for all h ∈ HG. More-

over, there exists a family (αw)w∈W G of elements of Fp ⊗Z A<0 such that

C =
∑

w∈W G

αw brG(Tw).

Assume that C 6= 0 and let w be maximal (for the Bruhat order) such that αw 6= 0.

Then

C = αw brG(T−1
w−1) +

∑

x∈WG

x 6=w

αx brG(T−1
x−1).

Therefore, the coefficient of brG(Tw) in C is equal to αw. But C = C, so αw = αw.

Since αw 6= 0 and αw ∈ Fp ⊗Z A<0, we get a contradiction. So C = 0, as desired. �

Corollary 2.8. If x, y, z ∈ W G, then hx,y,z ≡ hG

x,y,z mod pA and τ(Cz) ≡ τG(CG
z )

mod pA.

Proof. This follows from Proposition 2.7, from Lemma 2.2 and from Corollary 2.6.

�
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3. Lusztig’s conjectures

3.A. Cells. To (W, S, Γ, ϕ) are associated preorder relations 6L , 6R and 6LR

on W as defined in [L, §8.1]. The associated equivalence relations are denoted by

∼L, ∼R and ∼LR respectively.

Similarly, to (W G, SG, Γ, ϕG) are associated preorder relations 6G

L , 6G

R and 6G

LR

on W . The associated equivalence relations are denoted by ∼G

L, ∼G

R and ∼G

LR re-

spectively.

3.B. Boundedness. Following Lusztig [L, §13.2], we say that (W, S, Γ, ϕ) is

bounded if there exists γ0 ∈ Γ such that deg τ(TxTyTz) 6 γ0 for all x, y and z ∈ W .

Lusztig has conjectured [L, Conjecture 13.4] that (W, S, Γ, ϕ) is always bounded.

Hypothesis. From now on, and until the end of this paper, we as-

sume that (W, S, Γ, ϕ) and (W G, SG, Γ, ϕG) are bounded. Recall that

p is a prime number and that G is a finite p-group.

By [L, Lemma 13.5 (b)], this hypothesis allows us to define Lusztig’s function

a : W → Γ by

a(z) = max
x,y∈W

(

deg hx,y,z

)

.

If x, y, z ∈ W , we shall denote by γx,y,z−1 the unique element of Z such that

hx,y,z ≡ γx,y,z−1ea(z) mod
(

⊕
γ<a(z)

Zeγ
)

.

Similarly, we define a function aG : W G → Γ and elements γG

x,y,z−1 of Z (for x, y,

z ∈ W G).

Let D = {z ∈ W | a(z) = ∆(z)}. If I ⊆ S, we denote by aI the analogue of the

function a but defined for WI instead of W : if z ∈ WI , then

aI(z) = max
x,y∈WI

deg hx,y,z.

Lusztig’s Conjectures for (W, S, Γ, ϕ). With the above notation, we have:

P 1. If z ∈ W , then a(z) 6 ∆(z).

P 2. If d ∈ D and if x, y ∈ W satisfy γx,y,d 6= 0, then x = y−1.

P 3. If y ∈ W , then there exists a unique d ∈ D such that γy−1,y,d 6= 0.

P 4. If z′ 6LR z, then a(z) 6 a(z′). Therefore, if z ∼LR z′, then a(z) = a(z′).

P 5. If d ∈ D and y ∈ W satisfy γy−1,y,d 6= 0, then γy−1,y,d = nd = ±1.

P 6. If d ∈ D, then d2 = 1.

P 7. If x, y, z ∈ W , then γx,y,z = γy,z,x.

P 8. If x, y, z ∈ W satisfy γx,y,z 6= 0, then x ∼L y−1, y ∼L z−1 and z ∼L x−1.



8 C. Bonnafé

P 9. If z′ 6L z and a(z′) = a(z), then z′ ∼L z.

P 10. If z′ 6R z and a(z′) = a(z), then z′ ∼R z.

P 11. If z′ 6LR z and a(z′) = a(z), then z′ ∼LR z.

P 12. If I ⊂ S and z ∈ WI , then aI(z) = a(z).

P 13. Every left cell C of W contains a unique element d ∈ D. If y ∈ C, then

γy−1,y,d 6= 0.

P 14. If z ∈ W , then z ∼LR z−1.

P 15. If x, x′, y, w ∈ W are such that a(y) = a(w), then
∑

y′∈W

hw,x′,y′ ⊗Z hx,y′,y =
∑

y′∈W

hy′,x′,y ⊗Z hx,w,y′

in A ⊗Z A.

Let us recall the following result:

Lemma 3.1. Assume that Lusztig’s Conjectures (P1), (P2), (P3) and (P4) hold for

(W, S, Γ, ϕ). Then:

(a) Lusztig’s Conjectures (P5), (P6), (P7) and (P8) hold for (W, S, Γ, ϕ).

(b) If d ∈ D, then γd,d,d = nd = ±1.

(c) If x ∈ W and if d ∈ D is the unique element of W such that γx,x−1,d 6= 0,

then γd,x,x−1 = ±1.

Proof. (a) is proved in [L, Chapter 14].

(b) By (P6), we get that d2 = 1. By (P3), there exists a unique e ∈ D such that

γd,d,e 6= 0. By (P5), this implies that γd,d,e = ne = ±1. By (P7), this implies that

γe,d,d = ±1. By (P2), we get that e = d−1 = d.

(c) If x ∈ W and if d ∈ D is the unique element of W such that γx−1,x,d 6= 0, then

γx,d,x−1 = γx−1,x,d = ±1 by (P7) and (P5). �

We can now state the main result of this paper:

Theorem 3.2. Assume that Lusztig’s conjectures (P1), (P2), (P3) and (P4) hold for

(W, S, Γ, ϕ) and (W G, SG, Γ, ϕG). Then:

(a) If z ∈ W G, then aG(z) = a(z).

(b) DG = D ∩ W G (= DG).

(c) Assume moreover that Lusztig’s Conjecture (P13) holds for (W, S, Γ, ϕ) and

(W G, SG, Γ, ϕG). Let x, y ∈ W G. Then x ∼G

L y (respectively x ∼R y) if and

only if x ∼L y (respectively x ∼R y).
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Proof. (a) By Corollary 2.8, we have, for all x, y, z ∈ W G:

(1) If γx,y,z−1 6≡ 0 mod p, then a(z) 6 aG(z).

(2) If γG

x,y,z−1 6≡ 0 mod p, then aG(z) 6 a(z).

Now let z ∈ W G. By (P3), there exists a unique d ∈ D such that γz−1,z,d 6= 0.

From the uniqueness, we get that d ∈ DG ⊆ W G. By Lemma 3.1 (c), we get that

γz,d,z−1 = ±1. So a(z) 6 aG(z) by (1).

The same argument shows that there exists d ∈ DG such that γG

z,d,z−1 = ±1, so

(2) can be applied to get that aG(z) 6 a(z). The proof of (a) is complete.

Before going further, let us state the following consequence of (a):

Corollary 3.3. If x, y, z ∈ W G, then γx,y,z ≡ γG

x,y,z mod p.

Proof. This follows easily from Theorem 3.2 (a) and Corollary 2.8. �

(b) Let d ∈ DG. By Lemma 3.1 (b), we have nd = ±1. Moreover, by Corollary

2.8, we have

τ(Cd) ≡ τG(CG

d ) mod pA.

This shows that the coefficient of e∆(d) in τG(CG

d ) is non-zero. So ∆G(d) 6 ∆(d).

But, by (P1),

aG(d) 6 ∆G(d) 6 ∆(d) = a(d).

So aG(d) = ∆G(d) = ∆(d) = a(d) by (a). In particular, d ∈ DG.

The same argument shows that, if d ∈ DG, then ∆(d) 6 ∆G(d) and again we get

similarly that d ∈ D. The proof of (b) is complete.

(c) Let d (respectively e) be the unique element of D such that γx−1,x,d = ±1

(respectively γy−1,y,e = ±1). By uniqueness, we have d, e ∈ DG = DG. By Corollary

3.3, we also get γG

x−1,x,d 6= 0 and γG

y−1,y,e 6= 0. Therefore, by (P8), we have

x ∼L d, x ∼G

L d, y ∼L e and y ∼G

L e.

But, by (P13), we have x ∼L y (respectively x ∼G

L y) if and only if d = e. This

proves (c). �

3.C. Asymptotic algebra. Let J (respectively JG) be the free abelian group

with basis (tw)w∈W (respectively (tG

w)w∈W ).

Hypothesis. In this subsection, and only in this subsection, we as-

sume moreover that Lusztig’s Conjectures (P1), (P2),. . . , (P15) hold

for (W, S, Γ, ϕ) and (W G, SG, Γ, ϕG).
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By [L, §18.3], J (respectively JG) can be endowed with a structure of associative

ring, the multiplication being defined by txty =
∑

z∈W γx,y,z−1tz (respectively tG

x tG

y =
∑

z∈W G γG

x,y,z−1tG

z ). Then it follows immediately from Corollary 3.3 and from Lemma

2.2 that:

Theorem 3.4. Assume that G is a finite p-group and that Lusztig’s Conjectures

(P1), (P2),. . . , (P15) hold for (W, S, Γ, ϕ) and (W G, SG, Γ, ϕG). Then

Fp ⊗Z JG ≃ BrG(J).

4. Open questions

The results of this paper should be compared with [L, Chapter 14], where the

quasi-split case is considered: more particularly, see [L, Lemmas 16.5, 16.6 and

16.14]. This lead to the following questions:

• Does Theorem A hold if G is not solvable? It is probably the case, but a

proof should rely on completely different arguments.

• Let z ∈ W G. Is it true that ∆G(z) 6 ∆(z)? See [L, Lemma 16.5] for the

quasi-split case.

• Let x, y ∈ W G be such that x 6G

L y. Is it true that x 6L y? See [L, 16.13

(a)] for the quasi-split case.
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[T] J. Thévenaz, G-Algebras and Modular Representation Theory, Clarendon Press, Oxford,

1995.
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