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In considering a class of quasilinear elliptic equations on a Riemannian manifold with nonnegative Ricci curvature, we give a new proof of Tolksdorf's result on the construction of separable p-harmonic functions in a cone.

Introduction

Let (r, σ) be the spherical coordinates in R N . If u is a harmonic function in R N \ {0} written under the separable form u(x) = r -β ω(σ) (1.1) it is straightforward to check that ω is an eigenfunction of the Laplace-Beltrami operator -∆ S N-1 on the unit sphere S N -1 ⊂ R N and β is a root of

X 2 -(N -2)X -λ = 0, (1.2) 
where λ ≥ 0 is the corresponding eigenvalue. The function ω is called a spherical harmonic and its properties are well-known, since such functions are the restrictions to the sphere of homogeneous harmonic polynomials. More generally, if C S ⊂ R N is the cone with vertex 0 and opening S S N -1 , there exist positive harmonic functions u in C S under the form (1.1) which vanish on ∂C S \ {0} if and only if β is a root of (1.2), where, in that case, λ := λ S is the first eigenvalue of -∆ S N-1 in W 1,2 0 (S). These separable harmonic functions play a fundamental role in the discription of isolated interior or boundary singularities of solutions of second order linear elliptic equations. If the Laplace equation is replaced by the p-Laplace equation -∆ p u := -div |Du| p-2 Du = 0, (

(p > 1), the same question of existence of separable p-harmonic functions, i.e. solutions of (1.3) in the form (1.1), was considered by Krol [START_REF] Krol | The behaviour of the solutions of a certain quasilinear equation near zero cusps of the boundary[END_REF], Tolksdorf [START_REF] Tolksdorf | On the Dirichlet problem for quasilinear equations in domains with conical boundary points[END_REF], Kichenassamy and Véron [START_REF] Kichenassamy | Singular solutions of the p-Laplace equation[END_REF]. If u in (1.1) is p-harmonic, then the function ω must be a solution of the spherical p-harmonic equation,

-div (β 2 ω 2 + |∇ ′ ω| 2 ) p/2-1 ∇ ′ ω = β(β(p -1) + p -N )(β 2 ω 2 + |∇ ′ ω| 2 ) p/2-1 ω, (1.4) 
on S N -1 , where ∇ ′ and div are respectively the covariant derivative identified with the "tangential gradient" and the divergence operator acting on vector fields on S N -1 . Two special cases arise when either p = 2 or N = 2: if p = 2, (1.4) is just an eigenvalue problem

-∆ ′ ω = β(β + 2 -N )ω, (1.5) 
where ∆ ′ is the Laplace-Beltrami operator on S N -1 . When N = 2, equation (1.4) becomes

-(β 2 ω 2 + |ω θ | 2 ) p/2-1 ω θ θ = β(β(p -1) + p -2)(β 2 ω 2 + |ω θ | 2 ) p/2-1 ω, (1.6) 
where θ ∈ [0, π]. Introducing the new unknown φ := ω θ /ω, (1.6) is transformed into a separable equation, -(β 2 + φ 2 ) p/2-1 φ θ = (p -1)φ 2 + β(β(p -1) + p -2) (β 2 + φ 2 ) p/2-1 .

(1.7)

This equation was completely integrated by Krol [START_REF] Krol | The behaviour of the solutions of a certain quasilinear equation near zero cusps of the boundary[END_REF] in the case β < 0, and Kichenassamy and Véron [START_REF] Kichenassamy | Singular solutions of the p-Laplace equation[END_REF] in the case β > 0. It turns out that for any integer k > 0 there exist two couples ( βk , φk ) and (β k , φ k ) where βk < 0, β k > 0, and φk and φ k are anti-periodic solutions of the corresponding equation (1.7). Furthermore φk and φ k are uniquely determined, up to an homothety. An important step for analyzing the local behaviour of p-harmonic functions was realized by Tolksdorf [START_REF] Tolksdorf | On the Dirichlet problem for quasilinear equations in domains with conical boundary points[END_REF] when he proved that for any smooth domain S ⊂ S N -1 there exists a couple (β, φ) where β < 0 and φ ∈ C 1 ( S) is positive in S, vanishes on ∂S and solves (1.4) in S. Furthermore β := βS is unique and φ is determined up to a multiplicative constant. Tolksdorf's result is obtained by constructing a p-harmonic function u in the cone C S generated by S with a compactly supported boundary data and by proving, thanks to a kind of Harnack inequality up to the boundary, the "equivalence principle", that the asymptotic behaviour of u is self-similar. Later on the existence of a couple (β, φ), with β := β S > 0 and φ, as above, positive solution of (1.4) in S vanishing on ∂S is proved by the same method in [START_REF] Véron | Some existence and uniqueness results for solutions of some quasilinear elliptic equations on compact Riemannian manifolds[END_REF], therefore we shall refer to the two cases β > 0 and β < 0 as Tolksdorf's results. The structure of these spherical p-harmonic functions is studied in [START_REF] Borghol | Boundary singularities of N -harmonic functions[END_REF]. These regular (β < 0) and singular (β > 0) separable p-harmonic functions play a fundamental role in describing the behaviour of solutions of quasilinear equations near a regular or singular boundary point [START_REF] Krol | The behaviour of the solutions of a certain quasilinear equation near zero cusps of the boundary[END_REF], [START_REF] Krol | The lack of continuity and Hölder continuity of the solution of a certain quasilinear equation[END_REF], [START_REF] Bidaut-Véron | Boundary Harnack inequality and a priori estimates of singular solutions of quasilinear elliptic equations[END_REF], [START_REF] Borghol | Boundary singularities of solutions of N -harmonic equations with absorption[END_REF].

In this article, we give a new proof of Tolksdorf's results, entirely different from his. Actually, performing a change of variable, we embed our problem into a wider class of quasilinear equations. Indeed, if ω ∈ W 1,p 0 (S) is a positive solution of (1.4) in S ⊂ S N -1 , which vanishes on ∂S, then the function v defined by

v = - 1 β ln ω solves            -div 1 + |∇ ′ v| 2 p/2-1 ∇ ′ v + β(p -1) 1 + |∇ ′ v| 2 p/2-1 |∇ ′ v| 2 = -(β(p -1) + p -N ) 1 + |∇ ′ v| 2 p/2-1 in S lim σ→∂S v(σ) = ∞. (1.8)
Notice that this equation is never degenerate and v is C 2 (actually C ∞ ) in S and satisfies the equation and the boundary condition in classical sense. Our construction of solutions of (1.4) relies on a careful study of the quasilinear problem (1.8), and on the interpretation of the constant in the right hand side of (1.8) as the analogue of an "ergodic constant". Furthermore, having an intrinsic independent interest, this study will be performed on any compact smooth subdomain of a Riemannian manifold, without refering to the p-Laplace equation (1.3). Our main result is the following:

Theorem A. Let (M, g) be a d-dimensional Riemannian manifold with nonnegative Ricci curvature, and let ∇ and div g be respectively the covariant derivative and the divergence operator on M . Then for any compact smooth subdomain S ⊂ M and any β > 0 there exists a unique positive constant λ β such that the problem

         -div g 1 + |∇v| 2 p/2-1 ∇v + β(p -1) 1 + |∇v| 2 p/2-1 |∇v| 2 = -λ β 1 + |∇v| 2 p/2-1 in S lim x→∂S v(x) = ∞.
(1.9) admits a solution v ∈ C 2 (S). Furthermore, v is unique up to an additive constant.

By formal analogy to the case p = 2, the result of Theorem A is the typical statement of an ergodic problem, although no real link with probability theory seems to exist in the quasilinear case. Therefore, we shall call λ β the ergodic constant for the equation obtained after dividing by 1 + |∇v| 2 p/2-1 (see (2.1)); we shall prove its uniqueness for a given β.

Observe also that (1.9) may be reformulated if we set ω = e -βv , then ω is a solution of

-div g (β 2 ω 2 + |∇ω| 2 ) p/2-1 ∇ω = βλ β (β 2 ω 2 + |∇ω| 2 ) p/2-1 ω in S ω = 0 on ∂S (1.10)
When p = 2, problem (1.10) reduces to an eigenvalue problem since βλ β = λ 1 (S), the principal eigenvalue of the Laplace-Beltrami operator in S. In that case the connection between (1.9) and (1.10) dates back to the stochastic interpretation of principal eigenvalues (see e.g. [START_REF] Holland | A new energy characterization of the smallest eigenvalue of the Schrödinger equation[END_REF], [START_REF] Lasry | Nonlinear elliptic equations with singular boundary conditions and stochastic control with state constraints. I. The model problem[END_REF]). In the nonlinear framework with p = 2, by proving that the mapping β → λ β is continuous, decreasing and tends to ∞ as β → 0 + , we conclude that the equation λ β = (β(p -1) + p -d -1) has a unique positive solution. As a consequence we generalize Tolksdorf's result as follows.

Theorem B. Under the assumptions of Theorem A, for any compact smooth subdomain S of M there exists a unique β := β S > 0 such that the problem

-div g (β 2 ω 2 + |∇ω| 2 ) p/2-1 ∇ω = β (β(p -1) + p -d -1) (β 2 ω 2 + |∇ω| 2 ) p/2-1 ω in S ω = 0 on ∂S, (1.11 
) admits a positive solution ω ∈ C 1 ( S) ∩ C 2 (S). Furthermore ω is unique up to an homothethy.

Of course, we obtain similarly that for β < 0 there exists a unique β := βS < 0 such that λ β = (β(p-1)+p-d-1). Tolksdorf's results then follow as a particular case by taking (M, g) = (S N -1 , g 0 ), where S N -1 is equipped with the standard metric g 0 induced by the Euclidean structure in R N . Because the spherical domain S is assumed to be smooth, this method does not give a construction for signed spherical p-harmonic functions: if one wants to construct such functions, the natural way is to consider a tessalation of S N -1 obtained via the action of a finite group of isometries generated by reflexions through hyperplanes, to construct, in a fundamental domain S, a positive spherical p-harmonic function vanishing on ∂S, and to extend it by reflexions through the boundary. However, the difficulty comes from the fact that S is necessarily Lipschitz (except if S is a hemisphere). This non-smooth case will be considered in a forthcoming article. Notice that a large class of explicit spherical p-harmonic functions are obtained in [START_REF] Borghol | Boundary singularities of N -harmonic functions[END_REF]Sec 4] as product of N-1 functions depending only of one spherical coordinate.

The singular case

In the following, we consider a general geometric setting and we recall some elements of Riemannian geometry (see e.g. [START_REF] Do | Carmo Riemannian geometry[END_REF], [START_REF] Greene | Function theory on manifolds which possess a pole[END_REF]). Let (M, g) be a complete d-dimensional Riemannian manifold with metric tensor g = (g ij ), inverse g -1 = (g ij ) and determinant |g|. If X and Y are two tangent vector fields to M , we denote by

X.Y = ij g ij (x)X i Y j
their scalar product in the tangent space T x M . Let x j , j = 1, ..., d, be a local system of coordinates: if u ∈ C 1 (M ), the gradient of u, quoted by ∇u, is the vector field with components (∇u

) i = k g ik u x k . Therefore ∇u.∇u = |∇u| 2 = ij g ij (x)u x i u x j . If X = (X i ) is a C 1 vector field on M , the divergence of X is defined by div g X = 1 |g| k |g|X k x k .
Recalling that, in local coordinates, the Christoffel symbols are

Γ k ij = 1 2 l ∂g jl ∂x i + ∂g li ∂x j - ∂g ij ∂x l g lk ,
the second covariant derivatives of a C 2 function u are

∇ ij u = u x i x j - k Γ k ij u x k ,
while the Hessian is the 2-tensor D 2 u = (∇ ij u). Finally, ∆ g u = trace(D 2 u) = div g ∇u is the Laplace-Beltrami operator on M , locally expressed by

∆ g u = 1 |g| ij ∂ ∂x i |g| g ij ∂u ∂x j = ij ∂ ∂x i g ij ∂u ∂x j + ijk Γ k ik g ij ∂u ∂x j .
We denote by Ricc g the Ricci curvature tensor of the metric g. In particular, if (M, g) = (S N -1 , g 0 ), then Ricc g 0 = (N -1)g 0 . In all the sequel p > 1 is a real number. We prove next the result of Theorem A, which we restate here for the reader's convenience. 

   -∆ g v -(p -2) D 2 v∇v.∇v 1 + |∇v| 2 + β(p -1)|∇v| 2 = -λ β in S lim x→∂S v(x) = ∞. (2.1)
Furthermore, v is unique up to an additive constant.

Proof. We start by considering the problem

   -∆ g v ǫ -(p -2) D 2 v ǫ ∇v ǫ .∇v ǫ 1 + |∇v ǫ | 2 + β(p -1)|∇v ǫ | 2 + ǫv ǫ = 0 in S lim x→∂S v ǫ (x) = ∞, (2.2) 
where ǫ > 0, and then we study the limit when ǫ → 0.

Step 1: Construction of super and sub solutions. Since ∂S is C 2 , the distance function ρ(x) = dist (x, ∂S), where the distance is the geodesic distance, is a positive

C 2 function is some relative neighborhood N δ = {x ∈ M : | ρ(x)| < δ} of ∂S; here ρ(x) is the signed distance, equal to ±ρ(x) according x ∈ S or x ∈ M \ S. Then |∇ ρ(x)| = 1 in N δ . We extend ρ outside N δ into a C 2 (M ) function ρ. Next we consider the function ū(x) = - 1 β ln(ρ(x)) -M 0 ρ(x) + M 1 ǫ ∀x ∈ S, (2.3) 
where the M j > 0 are to be chosen later on. Using that

|∇ū(x)| 2 = 1 + 2βM 0 ρ(x) + O(ρ 2 (x)) β 2 ρ 2 (x) as ρ(x) → 0.
and that D 2 ū∇ū.∇ū = 1 2 ∇(|∇ū| 2 ).∇ū, after some lengthy but standard computations one obtains the following:

-∆ g ū -(p -2) D 2 ū∇ū.∇ū 1 + |∇ū| 2 + β(p -1)|∇ū| 2 + ǫū = 1 ρ ∆ g ρ β - ε β ρ ln(ρ) + 2(p -1)M 0 |∇ρ| 2 + ψ β (x) + M 1 , (2.4) 
where ψ β is a function depending on β (and on M 0 ), but which is bounded on S, uniformly when β remains in a compact subset of (0, ∞). Since |∇ρ| = 1 near the boundary, it is possible to choose M 0 and M 1 such that ū defined by (2.3) is a supersolution for (2.2). Moreover, M 0 and M 1 can be chosen independent of β whenever it varies on a compact subset of (0, ∞).

One finds similarly that the function

u(x) = - 1 β ln(ρ(x)) + M 0 ρ(x) - M 1 ǫ ∀x ∈ S, (2.5) 
is a subsolution of (2.2), with M 0 and M 1 chosen as for ū. Moreover, for 0 < h < δ, we can approximate ū and u respectively from above and from below by

ūh (x) = - 1 β ln(ρ(x) -h) -M 0 (ρ(x) -h) + M 1,h ǫ , (2.6) 
u h (x) = - 1 β ln(ρ(x) + h) + M 0 (ρ(x) + h) - M 1,h ǫ , (2.7) 
which are, respectively, a supersolution in {x ∈ S : ρ(x) > h} and a subsolution in S.

Together with the comparison principle, these super and sub solutions will be used to derive estimates on the solutions of (2.2).

Step 2: Basic estimates. In this part, by using the classical Bernstein's method ([3]), we derive the fundamental gradient estimate for the solutions u ∈ C 2 (S) of

-∆ g u -(p -2) D 2 u∇u.∇u 1 + |∇u| 2 + β(p -1)|∇u| 2 + ǫu = 0 in S. (2.8)
We recall the Weitzenböck formula (see e.g. [START_REF] Berger | Le spectre d'une variété riemannienne[END_REF]):

1 2 ∆ g |∇u| 2 = |D 2 u| 2 + ∇(∆ g u).∇u + Ricc g (∇u, ∇u), (2.9) 
and the Cauchy-Schwarz inequality for D 2 u

|D 2 u| 2 ≥ 1 d |∆ g u| 2 .
Let m = inf{Ricc g (∇u, ∇u)

: |∇u| = 1} ≥ 0, then 1 2 ∆ g |∇u| 2 ≥ 1 d |∆ g u| 2 + m|∇u| 2 + ∇(∆ g u).∇u. (2.10)
If we set z = |∇u| 2 , we can re-write (2.8) as

∆ g u = - (p -2) 2 ∇z.∇u 1 + |∇u| 2 + β(p -1)z + ǫu in S, (2.11) 
and we obtain

∇(∆ g u).∇u = - (p -2) 2 D 2 z∇u.∇u 1 + |∇u| 2 - (p -2) 4 |∇z| 2 1 + |∇u| 2 + (p -2) 2 (∇z.∇u) 2 (1 + |∇u| 2 ) 2 + β(p -1)∇z.∇u + ǫz.
Since, from (2.11)

|∆ g u| 2 ≥ c 0 z 2 -c 1 (ǫu -) 2 + (∇z.∇u) 2 (1 + |∇u| 2 ) 2 ,
we derive from (2.10)

∆ g z + (p -2) D 2 z∇u.∇u 1 + |∇u| 2 ≥ 2c 0 z 2 d - 2c 1 d (ǫu -) 2 + (∇z.∇u) 2 (1 + |∇u| 2 ) 2 + 2(m + ǫ)z - (p -2) 2 |∇z| 2 1 + |∇u| 2 + (p -2) (∇z.∇u) 2 (1 + |∇u| 2 ) 2 + 2β(p -1)∇z.∇u,
which yields, by Young's inequality and the fact that

z = |∇u| 2 , -∆ g z -(p -2) D 2 z∇u.∇u 1 + |∇u| 2 + C 0 z 2 + 2(m + ǫ)z ≤ C 1 |∇z| 2 1 + z + C 2 (2.12)
for some positive constants C j (j = 0, 1, 2), eventually depending on β, with the constant C 2 also depending on ǫu -∞ . Next we introduce the operator A defined by

A(z) = -∆ g z -(p -2) D 2 z∇u.∇u 1 + |∇u| 2 . (2.13)
Working in local coordinates, one can see that A can be written as

A(z) = - ij a ij z x i x j + i b i z x i , (2.14) 
where the b i are bounded and the a ij are uniformly elliptic and bounded, in particular

min(p -1, 1)g ij ξ i ξ j ≤ a ij ξ i ξ j ≤ max(1, p -1)g ij ξ i ξ j .
Therefore from (2.12) z is a positive subsolution of an equation of the type

A(z) + h(z) + g(z)|∇z| 2 = f, (2.15) 
where

g(z) = -C 1 (1 + z) -1 , h(z) = 2(m + ǫ)z + C 0 z 2 and f = C 2 .
Since m ≥ 0, g and h are increasing functions of the nonnegative variable z, it follows that the comparison principle holds between super and sub-solutions of

-∆ g z -(p -2) D 2 z∇u.∇u 1 + |∇u| 2 + C 0 z 2 + 2(m + ǫ)z -C 1 |∇z| 2 1 + z = C 2 .
(2.16)

Standard computations show that, if λ and µ are positive constants large enough, the function z(x) = λ ρ2 (x) + µ is a supersolution of (2.16), which in addition blows up on ∂S. We conclude that any bounded subsolution of (2.16) satisfies z(x) ≤ z(x), and therefore any subsolution by replacing S by {x ∈ S : ρ(x) > h} and ρ(x) by ρ(x) -h. Finally, we proved that any u ∈ C 2 (S) which is solution of (2.8) satisfies

|∇u(x)| ≤ L 0 ρ(x) + L 1 ∀x ∈ S, (2.17) 
for some constants L 0 , L 1 depending on ε u -∞ . Moreover, L 0 and L 1 can be chosen uniformly bounded with respect to β, provided β remains in a compact subset of (0, ∞).

To conclude with the estimates on solutions of (2.8), it is classical from the theory of quasilinear elliptic equations (see e.g. [START_REF] Gilbarg | Partial Differential Equations of Second Order[END_REF]) that local Lipschitz estimates imply local C 2,α estimates since the equation is smooth and uniformly elliptic.

Step 3: Existence for the approximate equation. As in [START_REF] Lasry | Nonlinear elliptic equations with singular boundary conditions and stochastic control with state constraints. I. The model problem[END_REF], we consider, for n ∈ N the solution v n,ǫ := v of

   -∆ g v -(p -2) D 2 v∇v.∇v 1 + |∇v| 2 + β(p -1)|∇v| 2 + ǫv = 0 in S v(x) = n on ∂S, (2.18) 
By previous steps, the following estimates hold in S.

0 ≤ v n,ǫ (x) ≤ - 1 β ln ρ(x) -M 0 ρ(x) + M 1 ǫ , (2.19 
)

|∇v n,ǫ (x)| ≤ L 0 ρ(x) + L 1 .
(2.20)

Moreover the sequence {v n,ǫ } is bounded in C 2,α loc (S), which ensures the local compactness of the gradients. Since n → v n,ǫ is increasing, there exists v ǫ = lim n→∞ v n,ǫ and v ǫ is a solution of (2.2) which satisfies (2. [START_REF] Lieberman | Boundary regularity for solutions of degenerate elliptic equations[END_REF]) and (2.20).

Step 4: The ergodic limit.

From Step 1, by comparison with ūh and u h defined in (2.6)-(2.7) (and letting h → 0), we know that their holds in S:

- 1 β ln ρ(x) + M 0 ρ(x) - M 1 ǫ ≤ v ǫ (x) ≤ - 1 β ln ρ(x) -M 0 ρ(x) + M 1 ǫ . (2.21)
Therefore ǫv ǫ is locally bounded in S. Since ∇v ǫ is locally bounded too in S, ǫ n v ǫn converges (for some sequence {ǫ n }) to some constant λ 0 ≥ 0 in the C loc -topology of S. We fix x 0 ∈ S and set w ǫ := v ǫ (x) -v ǫ (x 0 ). Because w ǫ is locally bounded in C 1 loc (S) and w ǫ satisfies

-∆ g w ǫ -(p -2) D 2 w ǫ ∇w ǫ .∇w ǫ 1 + |∇w ǫ | 2 + β(p -1)|∇w ǫ | 2 + ǫw ǫ = -ǫv ǫ (x 0 ) in S (2.22)
the regularity theory for elliptic equations implies that w ǫ is locally bounded in C 2,α (S).

Up to an extraction of subsequence, there exists w 0 = lim n→∞ w ǫn , and w 0 is a solution of

-∆ g w 0 -(p -2) D 2 w 0 ∇w 0 .∇w 0 1 + |∇w 0 | 2 + β(p -1)|∇w 0 | 2 = -λ 0 in S. (2.23) 
The only question which remains to be proved is that w 0 blows-up at the boundary. We set

ψ(x) = - 1 β ln ρ(x) + M 0 ρ(x),
and we have, with same computations as for (2.4),

-∆ g ψ -(p -2) D 2 ψ∇ψ.∇ψ 1 + |∇ψ| 2 + β(p -1)|∇ψ| 2 + ǫψ = 1 ρ ∆ g ρ β - ε β ρ ln(ρ) -2(p -1)M 0 |∇ρ| 2 + ψ β (x),
where ψ β is a bounded function (depending on β, M 0 ). Noticing that |∇ρ| = 1 in a neighborhood of ∂S, and that ǫv ǫ (x 0 ) is uniformly bounded, we can choose M 0 , ρ 0 such that the function ψ is a subsolution of (2.22) in {x ∈ S : 0 < ρ(x) < ρ 0 }. Since, whenever ρ(x) = ρ 0 , we have w ǫ (x) ≥ -c 0 for some c 0 > 0 (due to the gradient estimate for v ǫ ), and since ψ -c is still a subsolution for any positive constant c, we derive

w ǫ (x) ≥ - 1 β ln ρ(x) + M 0 ρ(x) -c ∀x s.t. ρ(x) ≤ ρ 0 . (2.24)
Letting ǫ tend to 0 implies that lim x→∂S w 0 (x) = ∞.

Step 5: Uniqueness of the ergodic limit. We claim that there exists a unique constant λ 0 > 0 such that there exists v 0 ∈ C 2 (S) solution of

   -∆ g v 0 -(p -2) D 2 v 0 ∇v 0 .∇v 0 1 + |∇v 0 | 2 + β(p -1)|∇v 0 | 2 = -λ 0 in S lim x→∂S v 0 (x) = ∞.
(2.25)

To this purpose, it will be useful the following Lemma 2.2 A function v 0 ∈ C 2 (S) is solution of (2.25) if and only if the function

ω 0 = e -βv 0 ∈ C 2 (S) ∩ C( S) is a solution of -div g (β 2 ω 2 0 + |∇ω 0 | 2 ) p/2-1 ∇ω 0 = βλ 0 (β 2 ω 2 0 + |∇ω 0 | 2 ) p/2-1 ω 0 in S ω 0 = 0 on ∂S.
(2.26)

Moreover, ω 0 ∈ C 1,γ ( S) for some γ > 0, and ∂ ν ω 0 < 0 on ∂S.

Proof. Let v 0 ∈ C 2 (S) be a solution of (2.25). As in the previous steps, the functions

φ(x) = - 1 β ln ρ(x) + M 0 ρ(x) -M * and φ(x) = - 1 β ln ρ(x) -M 0 ρ(x) + M * ,
appear to be respectively a sub and a super-solution for (2.25) in {x : ρ(x) < δ} for some δ > 0 small enough (where M * depends on the value of v 0 on the set {x ∈ S : ρ(x) = δ}).

Then we obtain, by comparison,

v 0 (x) + ln ρ(x) β ≤ M * . (2.27)
By the gradient estimates of Step 2, there holds

|∇v 0 (x)| ≤ L 0 ρ(x) + L 1 .
(2.28)

Now set ω 0 = e -βv 0 , then ω 0 ∈ W we deduce that ∂ ν ω 0 < -e -βM * < 0 on ∂S. As a consequence, since ω 0 ∈ C 1 ( S) and is positive in S, we deduce that problem (2.26) is uniformly elliptic, so that the classical regularity theory applies to give ω 0 ∈ C 2,α (S). Of course, the converse is also true: given a solution ω 0 of (2.26), clearly v 0 = -1 β ln ω 0 is a solution of (2.25).

Assume now that there exist two ergodic constants, λ 1 and λ 2 , associated with two solutions v 1 , v 2 , and let correspondingly ω i = e -βv i be solutions of (2.26). Notice that multiplying (2.26) by ω 0 and integrating on S, we get actually λ 0 > 0. Thus λ i > 0 and, say, λ 2 > λ 1 .

Since ω 1 /ω 2 ∈ L ∞ (S) (from estimate (2.29)), we denote

θ = sup S ω 1 ω 2 .
Because equation (2.26) is homogeneous we can assume that θ = 1 and either there exists x 0 ∈ S such that ω 1 (x 0 ) = ω 2 (x 0 ), ∇ω 1 (x 0 ) = ∇ω 2 (x 0 ) and ω 1 (x) ≤ ω 2 (x) for x ∈ S, or ω 1 (x) < ω 2 (x) for x ∈ S and there exists x 0 ∈ ∂S such that ∂ ν ω 1 (x 0 ) = ∂ ν ω 2 (x 0 ). In the first case, it turns out that the function z = v 1 -v 2 is nonnegative in S, achieves a minimum at x 0 ∈ S and satisfies

-∆ g z(x 0 ) -(p -2) D 2 z(x 0 )∇v 1 (x 0 ).∇v 1 (x 0 ) 1 + |∇v 1 (x 0 )| 2 = λ 2 -λ 1 > 0,
which is impossible because of ellipticity. In the second case, we have

∂ ν (ω 1 -ω 2 )(x 0 ) = 0, whereas ω 1 -ω 2 is negative in S and (ω 1 -ω 2 )(x 0 ) = 0.
Since the problem (2.26) is uniformly elliptic (recall that the functions ω i satisfy (β 2 w 2 i + |∇ω i | 2 ) > 0 on S) this contradicts Hopf maximum principle. Therefore ω 1 = ω 2 , which implies λ 1 = λ 2 by the equation. Thus the ergodic constant is unique.

In a similar way one can prove that ω 0 is unique up to a multiplicative constant, and so v 0 is unique up to an additive constant (as a consequence, the whole sequence w ǫ , constructed in Step 4, converges to w 0 as ǫ → 0). However, the uniqueness of v 0 can be proved with a more general argument, concerning directly problem (2.25), which is a variant as well as a generalization of previous uniqueness results for explosive solutions. Since it can have its own interest, we present it here.

First of all, we recall that any C 2 function v 0 solution of (2.25) satisfies (2.27) and (2.28). Moreover, by Lemma 2.2 we have that ω 0 = e -βv 0 ∈ C 1 ( S) and ∂ ν ω 0 < 0 on ∂S, hence, using that ∇v 0 = -e βv 0 β ∇ω 0 and the estimate (2.27) we conclude that there exists a constant σ > 0 such that, in a neighborhood of ∂S

|∇v 0 | ≥ σ ρ(x)
.

(2.30)

In addition, it is possible to deduce from (2.27)-(2.28) that there exists a constant

C 0 > 0 such that |D 2 v 0 | ≤ C 0 ρ2 (x) ∀x ∈ S . (2.31) 
Indeed, take x 0 ∈ S and let ρ 0 = ρ(x 0 ) 2 , where we recall that ρ(x 0 ) = dist(x 0 , ∂S). Then consider (in a local neighborhood of x 0 ) the rescaled function

u 0 (ξ) = v 0 (x 0 + ρ 0 ξ) + ln ρ 0 β ,
for ξ ∈ B(0, 1). Note that ρ(x 0 + ρ 0 ξ) ∈ (ρ 0 , 3ρ 0 ) so that (2.28) and (2.30) imply σ 3 ≤ |Du 0 | ≤ L 0 +L 1 ρ 0 . Since v 0 is a solution of (2.25), a simple scaling in the local coordinates gives that u 0 is a solution of

-∆ g u 0 -(p -2) D 2 u 0 ∇u 0 .∇u 0 ρ 2 0 + |∇u 0 | 2 + β(p -1)|∇u 0 | 2 = -λ 0 ρ 2 0 for ξ ∈ B(0, 1)
with a slight abuse of notation since now, in local coordinates, the derivatives are taken with respect to the variable ξ. Since the second order operator is uniformly elliptic, by the classical regularity theory (e.g. see [START_REF] Gilbarg | Partial Differential Equations of Second Order[END_REF], Theorem 13.6 to deduce the Hölder estimates for Du 0 and then apply the Schauder estimates, Chapter 6) we have that

|D 2 u 0 (ξ)| ≤ C ∀ξ ∈ B 0, 1 2
where C is a constant depending on sup B(0,1) (|u 0 | + |Du 0 |). Using the estimates (2.27)-(2.28) we can bound this last quantity only depending on M * , L 0 , L 1 , hence we conclude that |D 2 u 0 (0)| ≤ C, which gives (2.31). Now, take two solutions v 1 , v 2 of (2.25) corresponding to λ 1 , λ 2 with, say, λ 1 ≤ λ 2 . We adapt now an argument in [START_REF] Lasry | Nonlinear elliptic equations with singular boundary conditions and stochastic control with state constraints. I. The model problem[END_REF]: consider the function v = θv 2 , for θ < 1, and compute

     -∆ g v -(p -2) D 2 v∇v.∇v 1 + |∇v| 2 + β(p -1)|∇v| 2 = -θλ 2 +(1 -θ 2 )θ(p -2) D 2 v 2 ∇v 2 .∇v 2 (1+|∇v 2 | 2 )(1+θ 2 |∇v 2 | 2 ) -(1 -θ)θβ(p -1)|∇v 2 | 2
Using (2.28), (2.31) and (2.30), and recalling that λ 2 ≥ λ 1 , we deduce that v satisfies, for some constant C > 0:

-∆ g v -(p -2) D 2 v∇v.∇v 1 + |∇v| 2 + β(p -1)|∇v| 2 ≤ -λ 1 + (1 -θ)[λ 1 + C -β(p -1)θ|∇v 2 | 2 ].
Thanks to (2.30), we conclude that there exists δ > 0, independent on θ, such that v satisfies

-∆ g v -(p -2) D 2 v∇v.∇v 1 + |∇v| 2 + β(p -1)|∇v| 2 ≤ -λ 1
in {x ∈ S : ρ(x) < δ}. However, from the estimate (2.27) which holds for v 1 and v 2 we have that v 1 -v → +∞ as ρ(x) → 0, hence v 1 -v has a minimum in {x ∈ S : ρ(x) < δ} and, by standard maximum principle, it is reached when ρ(x) = δ. Letting θ → 1, we conclude that

min{(v 1 -v 2 )(x), x : ρ(x) ≤ δ} = min{(v 1 -v 2 )(x), x : ρ(x) = δ} .
On the other hand, looking at the equations of v 1 , v 2 in {x ∈ S : ρ(x) > δ}, we also know (again by maximum principle) that

min{(v 1 -v 2 )(x), x : ρ(x) ≥ δ} = min{(v 1 -v 2 )(x), x : ρ(x) = δ} hence v 1 -v 2
should have a global minimum reached at a point x 0 ∈ S such that ρ(x 0 ) = δ. Since x 0 lies inside the domain, and the function z = v 1 -v 2 satisfies a smooth elliptic equation around x 0 , using the strong maximum principle we conclude that v 1 -v 2 is constant. This proves the uniqueness, up to a constant, of the solution of (2.25) (note that this argument gives at the same time that λ 1 = λ 2 , i.e. the uniqueness of the ergodic constant which we already proved before).

Remark 2.3

The argument used in the last step of the previous proof also provides a general uniqueness result for explosive solutions of

   -∆ g v -(p -2) D 2 v∇v.∇v 1 + |∇v| 2 + β(p -1)|∇v| 2 + ǫv = f in S lim x→∂S v(x) = ∞ .
(2.32)

Precisely, if f is a Lipschitz function, and ǫ > 0, the problem (2.32) has a unique solution v ∈ C 2 (S). To our knowledge, such a result is new even in the euclidean setting M = R N .

We proceed now studying how the ergodic constant λ β depends on β, which will lead to the proof of Theorem B.

Proposition 2.4 Under the assumptions of Theorem 2.1, the mapping β → λ β is continuous and decreasing from (0, ∞) in (0, ∞), and it verifies

lim β→0 λ β = ∞.
(2.33)

Proof.

Step 1: the monotonicity. Let 0 < β 1 < β 2 and let v ǫ,1 and v ǫ,2 be the corresponding solutions of (2.2) with β respectively replaced by β 1 and β 2 . Since the v ǫ,i are limit of solutions with finite boundary value there holds v ǫ,1 > v ǫ,2 by comparison principle. Therefore

λ β 1 := lim ǫ→0 ǫv ǫ,1 ≥ λ β 2 := lim ǫ→0 ǫv ǫ,2 .
Next, if we assume that there exist β i (i = 1, 2) such that 0 < β 1 < β 2 and λ β 1 = λ β 2 = λ and if ω 1 and ω 2 are the corresponding solutions of (2.26) with β = β i and λ = λ

β 1 = λ β 2 , then (2.27) implies m -1 ρ(x) ≤ ω i ≤ mρ(x) ∀x ∈ S,
for some m > 0. Set ω = ω

β 2 /β 1 1
, then

-div g (β 2 2 ω2 + |∇ω| 2 ) p/2-1 ∇ω -β 2 λ(β 2 2 ω2 + |∇ω| 2 ) p/2-1 ω = (p -1) 1 - β 2 β 1 β 2 β 1 p-1 ω (p-1)(β 2 /β 1 -1) 1 β 2 1 ω 2 1 + |∇ω 1 | 2 (p-2)/2 |∇ω 1 | 2 ω 1 . (2.34)
Therefore ω is a strict sub-solution. By homogeneity, and since ∂ ν ω vanishes on ∂S, we can assume that ω ≤ ω 2 , that there exists x 0 ∈ S such that ω(x 0 ) = ω 2 (x 0 ) and the coincidence set of ω and ω 2 is a subset of S.

Let z = - 1 β 2 (ln ω 2 -ln ω) = v 2 -ṽ.
Then z ≤ 0, it is not identically zero, z(x 0 ) = 0 and z(x) → -∞ as ρ(x) → ∂S. Since (2.34) implies that ṽ is a strict super-solution of the equation satisfied by v 2 , we obtain that, at x = x 0 , there holds

-∆ g z -(p -2) D 2 z∇v 2 .∇v 2 1 + |∇v 2 | 2 +(p -2) D 2 ṽ∇ṽ.∇ṽ 1 + |∇ṽ| 2 - D 2 ṽ∇v 2 .∇v 2 1 + |∇v 2 | 2 + β 2 (p -1) |∇v 2 | 2 -|∇ṽ| 2 ≤ 0
Since ṽ, v 2 are C 2 in S, the strong maximum principle yields a contradiction. Therefore β → λ β is decreasing.

Step 2: the continuity. Let {β n } be a positive sequence such that β n → β 0 and v βn be the corresponding solution of

   -∆ g v βn -(p -2) D 2 v βn ∇v βn .∇v βn 1 + |∇v βn | 2 + β n (p -1)|∇v βn | 2 = -λ βn in S lim x→∂S v βn (x) = ∞, (2.35) 
and let v ǫ,βn be the corresponding solutions of (2.2) with β = β n . Since ǫv ǫ,βn remains locally bounded in S when β n remains in a compact subset of (0, ∞) and converges to λ βn locally uniformly as ǫ → 0, the set {λ βn } is bounded. Up to a subsequence (not relabeled) we can assume that λ βn → λ as n → ∞. Thanks to (2.27) and (2.28), there holds

v βn + ln ρ(x) β n ≤ C 0 and |∇v βn | ≤ C 1 ρ(x) , (2.36) 
for some constants C 0 , C 1 , hence the sequence {v βn } remains locally bounded in W 1,∞ loc (S) and, therefore, in C 2,α loc (S). Up to a subsequence v βn → v in C 2 loc (S), and v is a solution of

   -∆ g v -(p -2) D 2 v∇v.∇v 1 + |∇v| 2 + β 0 (p -1)|∇v| 2 = -λ in S lim x→∂S v(x) = ∞.
By uniqueness of the ergodic limit, λ = λ β 0 , and λ βn → λ β 0 for the whole sequence.

Step 3: (2.33) holds. Let ω be a positive solution of

-div g (β 2 ω 2 + |∇ω| 2 ) p/2-1 ∇ω = βλ β (β 2 ω 2 + |∇ω| 2 ) p/2-1 ω in S ω = 0 on ∂S. ( 2 

.37)

We normalize ω by S |∇ω| p dv g = 1.

Therefore, if µ S is the first eigenvalue of -div g (|∇ . | p-2 ∇ .) in W 1,p 0 (S), there holds

|ω| p dv g ≤ 1 µ S .
Multiplying (2.37) by ω and integrating over S yields to

S (β 2 ω 2 + |∇ω| 2 ) p/2 dv g = β(λ β + β) S (β 2 ω 2 + |∇ω| 2 ) p/2-1 ω 2 dv g . (2.38) Clearly S (β 2 ω 2 + |∇ω| 2 ) p/2 dv g ≥ S |∇ω| p dv g = 1. If p ≥ 2, S (β 2 ω 2 + |∇ω| 2 ) p/2-1 ω 2 dv g ≤ 2 p/2-2 S (ω p + ω 2 |∇ω| p-2 )dv g ≤ 2 p/2-2 1 + 2 p S ω p dv g + 2 p/2-2 1 - 2 p S |∇ω| p )dv g ≤ C p,S
This implies We have now all the ingredients for the proof of Theorem B.

β(λ β + β) ≥ 1 C p,S =⇒ λ β ≥ 1 C p,S β -β. ( 2 
Proof of Theorem B. If we set ω = e -βv where v is the solution of (2.1), then ω is defined up to a multiplicative constant and satisfies (2.37). By Lemma 2.2, ω ∈ C 1 ( S) ∩ C 2 (S). Therefore the Theorem is obtained if we can prove that there exists a unique β := β S > 0 such that 

A Appendix

We prove here the C 1,γ regularity up to the boundary, stated in Lemma 2.2, for solutions of degenerate equations in divergence form -div (a(x, u, ∇u)) = B(x, u, ∇u) in S u = 0 on ∂S. (A.1)

Theorem 2 . 1

 21 Let S ⊂ M be a smooth bounded open domain of M such that Ricc g ≥ 0 on S. Then for any β > 0 there exists a unique λ β > 0 such that there exists a function v ∈ C 2 (S) satisfying

-div 1 +Corollary 3 . 1

 131 λ β = β(p -1) + p -d -1. (2.41) But the mapping β → λ β -β(p -1) is continuous and decreasing on (0, ∞). Clearly lim β→∞ λ β -β(p -1) = -∞, and lim β→0 λ β -β(p -1) = ∞, by Proposition 2.4. The results follows by continuity.3 The regular case and Tolksdorf's resultIf β < 0, the equation satisfied by a a separable p-harmonic function u under the form (1.1) is unchanged. However, if we set β = -β, then (1.4) turns into-div ( β2 ω + |∇ ′ ω| 2 ) p/2-1 ∇ ′ ω = β( β(p -1) + N -p)( β2 ω + |∇ ′ ω| 2 ) p/2-1 ω. (3.1)Furthermore, if a solution ω of (3.1) in S ⊂ S N -1 exists which vanishes on ∂S, then β(p -1) + N -p > 0 by multiplying by ω and integration over S. By setting|∇ ′ v| 2 p/2-1 ∇ ′ v + β(p -1) 1 + |∇ ′ v| 2 p/2-1 |∇ ′ v| 2 = -( β(p -1) + N -p) 1 + |∇ ′ v| 2 p/2-1 in S lim σ→∂S v(σ) = ∞.In the general setting of a Riemannian manifold, Theorem 2.1 and Proposition 2.4 are valid with β replaced by β. The proof of Theorem B holds except that (2.41) is replaced by λ β = β(p -1) + d + 1 -p. (3.2) Because the function β → λ β -β(p -1) is unchanged, the proof of Theorem B applies and shows that there exists a unique β := βS > 0 such that (3.2) holds. Consequently we have proved the following result which contains Tolksdorf's initial result if (M, g) = (S N -1 , g 0 ). Under the assumptions of Theorem 2.1 there exists a unique β := βS > 0 such that the problem -div g ( β2 ω 2 + |∇ω| 2 ) p/2-1 ∇ω = β β(p -1) + d + 1 -p ( β2 ω 2 + |∇ω| 2 ) p/2-1 ω in S ω = 0 on ∂S, admits a positive solution ω ∈ C 1 ( S) ∩ C 2 (S). Furthermore ω is unique up to an homothethy.

  (β 2 ω 2 + |∇ω| 2 ) 1-p/2 ≤ β p-2 S |ω| p dv g ≤ β p-2 µ S . Therefore β p-1 (λ β + β) ≥ µ S =⇒ λ β ≥ µ S β p-1 -β. (2.40) Clearly (2.39) and (2.40) imply (2.33). Remark. Using the uniform ellipticity and the maximum principle, it is possible to improve inequalities (2.39) and (2.40) and replace them by the following estimate λ β ≥ C β .

	.39)
	If 1 < p < 2,

S

ω 2 dv g

We will assume that a(x, s, ξ) satisfies the following conditions: there exist constants λ, Λ, β > 0, and α ∈ (0, 1], p > 1 and a continuous function µ : S × R → R such that, for every s, t ∈ R, for every ξ, η ∈ R N , and a.e. x ∈ Ω: ∂a i ∂ξ j (x, s, ξ) η i η j ≥ λ(µ(x, s) The model we have in mind is clearly

where p > 1, and the function µ(x, s) is Lipschitz (or possibly Hölder) continuous. In many cases, as in the proof of Lemma 2.2, the a priori information that u is Lipschitz (or Hölder) continuous could allow us to consider only the case µ = µ(x).

The C 1,γ estimates, or similar kind of regularity results, are by now classical since the works of E. DiBenedetto [START_REF] Dibenedetto | C 1+α local regularity of weak solutions of degenerate elliptic equations[END_REF] and P. Tolksdorf [START_REF] Tolksdorf | Regularity for a more general class of quasilinear elliptic equations[END_REF] for the p-Laplace equation: as far as the global regularity, up to the boundary, is concerned, we refer to the works of G. Lieberman (e.g. [START_REF] Lieberman | Boundary regularity for solutions of degenerate elliptic equations[END_REF]) or to [START_REF] Dibenedetto | Boundary estimates for solutions of nonlinear degenerate parabolic systems[END_REF] (see also [START_REF] Acerbi | Regularity for minimizers of nonquadratic functionals: the case 1 < p < 2[END_REF], [START_REF] Manfredi | Regularity for minima of functionals with p-growth[END_REF]). Despite a large amount of literature available, it seems that no exact reference applies to our model, so that, for the sake of completeness, we feel like giving a proof of this result, at least detailing the possible slight modifications in order that previous results can be generalized. To this purpose, we observe that while the case p ≥ 2 is somehow contained, if not in previous statements, at least in previous arguments (specifically, we refer to [START_REF] Lieberman | Boundary regularity for solutions of degenerate elliptic equations[END_REF]), this seems not sure for the case p < 2 because of our growth assumption (A.4) (roughly speaking, the (x, s)-derivatives may grow like |ξ| p-2 ). Finally, we note that the next result would still hold for a nonhomogeneous boundary condition (u = ϕ on ∂S) provided ϕ belongs to C 1,α (∂S).

Theorem A.1 Let S be a bounded C 1,α domain in R N , and assume that (A.2)-(A.5) hold true. If u is a bounded weak solution of (A.1), then there exists γ ∈ (0, 1) such that u ∈ C 1,γ (S) and moreover

Proof. Because our specific interest is in the boundary estimate, we only prove the regularity of u around a point x 0 ∈ ∂S (the inner regularity is treated in the same manner). Up to straightening the boundary, we can assume that locally ∂S = {x : x N = 0} and S = {x : x N > 0}.

We follow the standard approach via perturbation argument. We denote

3), the estimates concerning v are well-established ( [START_REF] Dibenedetto | C 1+α local regularity of weak solutions of degenerate elliptic equations[END_REF], [START_REF] Tolksdorf | Regularity for a more general class of quasilinear elliptic equations[END_REF], [START_REF] Lieberman | Boundary regularity for solutions of degenerate elliptic equations[END_REF]). In particular, from Lemma 5 in [START_REF] Lieberman | Boundary regularity for solutions of degenerate elliptic equations[END_REF] we have, for some σ > 0, osc

where C, here and after, depends only on the constants appearing in the hypotheses and possibly on u ∞ , in particular through the quantity sup{|µ(x,

Moreover, since a(x, s, ξ) • ξ ≥ c(|ξ| p -|µ| p ), one easily deduces from (A.6), using v -u as test function and Young's inequality, that

Finally, the maximum principle gives inf

Now take u -v as test function both in (A.1) (restricted to B + R ) and in (A.6) to obtain

(A.10) Using (A.4) and the definition of D v , we have

Similarly we estimate the second term in the right hand side of (A.10), and using also (A.5) we deduce

where we used that osc

u thanks to (A.9). Now, in both terms in the left hand side we use (A.2) which implies, for every (x, s, ξ):

(A.11)

If p < 2 we get (recall that the generic constant C may depend on u ∞ )

hence using Hölder inequality we end up with

with q = p 2 . If p ≥ 2 we simply get rid of the term µ 2 in (A.11) and obtain the same inequality with q = 1. Therefore, using also (A.8), we conclude for any p > 1

with q = min(1, p 2 ). Starting from the inequality (A.12) it is possible to deduce the Hölder regularity of ∇u following well-known arguments. In particular, if u is Lipschitz continuous (as in our application in Lemma 2.2) the conclusion is straightforward, since (A.12) implies and choosing R = r θ for some suitable θ < 1 the conclusion follows from the results of Campanato [START_REF] Campanato | Proprietà di Hölderianità di alcune classi di funzioni[END_REF].

In the general case, i.e. when a Lipschitz estimate on u is not available, one need further work to estimate the right hand side of (A.12). For this purpose, starting from (A.12), we can follow the arguments of G. Lieberman ([19], Section 3) and still get at the conclusion.