Andrey Shishkov 
  
Laurent Véron 
  
Singular solutions of some nonlinear parabolic equations with spatially inhomogeneous absorption *

Keywords: 1991 Mathematics Subject Classification. 35K60 Parabolic equations, Saint-Venant principle, very singular solutions, razor blade, Keller-Osserman estimates, asymptotic expansions

We study the limit behaviour of solutions of ∂tu -∆u + h(|x|) |u| p-1 u = 0 in R N × (0, T ) with initial data kδ0 when k → ∞, where h is a positive nondecreasing function and p > 1. If h(r) = r β , β > N (p -1) -2, we prove that the limit function u∞ is an explicit very singular solution, while such a solution does not exist if β ≤ N (p-1)-2. If lim infr→0 r 2 ln(1/h(r)) > 0, u∞ has a persistent singularity at (0, t) (t ≥ 0). If r 0 0 r ln(1/h(r)) dr < ∞, u∞ has a pointwise singularity localized at (0, 0).

Introduction

Consider ∂ t u -∆u + h(x) |u| p-1 u = 0 in Q T := R N × (0, T ), (1.1) 
with p > 1 and h is a nonnegative measurable function defined in R N . It is well known that if

QT h(x)E p (x, t)dx dt < ∞, (1.2) 
where E(x, t) = (4πt) -N/2 e -|x| 2 /4t is the heat kernel, then, for any k > 0 there exists a unique solution u = u k to (1.1 ) satisfying initial condition u(., 0) = kδ 0 (1.3) in the sense of measures in R N . Furthermore the mapping k → u k is increasing. If it assumed that h is positive essentially locally bounded from above and from below in R N \ {0}, then the set {u k } is also bounded in the C 1 loc (Q T \ {0 × (0, ∞)})-topology. Thus there exist u ∞ := lim k→∞ u k and u ∞ is a solution of (1.1 ) in Q T \ {0 × (0, ∞)}. Furthermore u ∞ is continuous in Q T \ {0 × [0, ∞)} and vanishes on R N \ {0} × {0}. Only two situations can occur: (i) Either u ∞ (0, t) is finite for every t > 0 and u ∞ is a solution of (1.1 ) in Q T . Such a solution which has a pointwise singularity at (0, 0) is called a very singular solution (abr. V.S.S.) (ii) Or u ∞ (0, t) = ∞ for every t > 0 and u ∞ is a solution of (1.1 ) in Q T \ {0 × (0, ∞)} only. Such a solution with a persistent singularity is called a razor blade (abr. R. B.). In the well-known article [START_REF] Brezis | A very singular solution of the heat equation with absorption[END_REF], Brezis, Peletier and Terman proved in 1985 that u ∞ is a V.S.S., if h(x) ≡ 1. Furthermore they showed that u ∞ (x, t) = t -1/(p-1) f (x/ √ t) for (x, t) ∈ Q T where f is the unique positive (and radial) solution of the problem 1) f (η) = 0.

   -∆f - 1 2 η.∇f - 1 p -1 f + |f | p-1 f = 0 in R N lim |η|→∞ |η| 2/(p-
(1.4)

Their proof of existence and uniqueness relied on shooting method in ordinary differential equations (abr. O.D.E.). The already mentioned self-similar very singular solutions of the problem (1.4 ) was discovered independently in [START_REF] Galaktionov | On asymptotic "eigenfunctions" of the Cauchy problem for a nonlinear parabolic equation[END_REF] too. Later on, a new proof of existence, has been given by Escobedo and Kavian [START_REF] Escobedo | Variational problems related to self-similar solutions of semilinear heat equations[END_REF] by a variational method in a weighted Sobolev space. More precisely they proved that the following functional

v → J(v) = 1 2 R N |∇v| 2 - 1 p -1 v 2 + 2 p + 1 |v| p+1 K(η)dη (1.5) 
achieves a nontrivial minimum in H 1 K (R N ), where K(η) = e |η| 2 /4 . In this article we first study equation (1.1 ) when h(x) = |x| β (β ∈ R). Looking for self-similar solutions under the form u(x, t) = t -(2+β)/2(p-1) f (x/ √ t), we are led to 1) f (η) = 0, (1.6) and the associated functional

           -∆f - 1 2 η.∇f - 2 + β 2(p -1) f + |η| β |f | p-1 f = 0 in R N f ∈ H 1 loc (R N ) ∩ L p+1 loc (R N ; |η| β dη) ∩ C 2 (R N \ {0}) lim |η|→∞ |η| (2+β)/(p-
v → J(v) = 1 2 R N |∇v| 2 - 2 + β 2(p -1) v 2 + 2 p + 1 |η| β |v| p+1 K(η)dη. (1.7)
We prove the following Theorem A I-Assume β ≤ N (p -1) -2; then there exists no nonzero solution to (1.6 ). II-Assume β > N (p -1) -2; then there exists a unique positive solution f * to (1.6 ).

One of the key arguments in the study of isolated singularities of (1.1 ) is the following a priori estimate |u(x, t)| ≤ c (t + |x| 2 ) (2+β)/2(p-1) ∀(x, t) ∈ Q T (1.8) valid for any p > 1 and β > -2. The remarkable aspect of this proof is that it is based upon the auxiliary construction of the maximal solution of (1.1 ) under a selfsimilar form. Next we give two proofs of II, one based upon scaling transformations and asymptotic analysis of O.D.E., combining ideas from [START_REF] Brezis | A very singular solution of the heat equation with absorption[END_REF], [START_REF] Brezis | Singular solutions for some semilinear elliptic equations[END_REF] and [START_REF] Marcus | Semilinear parabolic equations with measure boundary data and isolated singularities[END_REF], and the second based on variational methods, extending some ideas from [START_REF] Escobedo | Variational problems related to self-similar solutions of semilinear heat equations[END_REF] and valid in a more general context. As a consequence we prove Theorem B Assume β > N (p -1) -2, then u ∞ (x, t) = t -(2+β)/2(p-1) f * (x/ √ t).

It must be noticed that, if β ≤ N (p -1) -2, u k does not exist, and more precisely, the isolated singularities of solutions of (1.1 ) are removable.

Next we consider the case of more degenerate potentials h(x):

h(x) |x| α → 0 as |x| → 0 ∀α > 0.

(1.9)

In the set of such potentials we find the borderline which separates the above mentioned two possibilities (i) -(V.S.S.) and (ii) -(R.B). Remark that in the case of flat potentials like (1.9 ), the corresponding solution u ∞ (x, t) does not have self-similar structure and we have to find some alternative techniques for the study of the structure of u ∞ . The main results of the paper are the following two statements.

Theorem C (sufficient condition for V.S.S. solution) Assume that the function h is continuous and positive in R N \ {0} and verifies the following flatness condition

|x| 2 ln 1 h(x) ≤ ω(|x|) ⇔ h(x) ≥ e -ω(|x|)/|x| 2 ∀x ∈ R N , (1.10) 
where the function ω ≥ 0 is nondecreasing, satisfies the following Dini-like condition

1 0 ω(s)ds s < ∞, (1.11) 
and the additional technical condition sω ′ (s) ≤ (2α 0 )ω(s) near 0, (1.12) for some α 0 ∈ (0, 2). Then u ∞ (x, t) < ∞ for any (x, t) ∈ Q T . Furthermore there exists positive constants C i (i = 1, 2, 3), depending only on N , α 0 and p, such that

R N u 2 ∞ (x, t) dx ≤ C 1 t exp C 2 Φ -1 (C 3 t) -2 ∀t > 0, (1.13) 
where Φ -1 is the inverse function of

Φ(τ ) := τ 0 ω(s) s ds. Notice that (1.11 )-(1.12 ) is satisfied if h(x) ≥ Ce -|x| θ-2 for some θ > 0.
Theorem D (sufficient condition for R.B. solution) Assume h is continuous and positive in R N \ {0} and satisfies

lim inf x→0 |x| 2 ln 1 h(x) > 0 ⇔ ∃ω 0 = const > 0 : h(x) ≤ exp - ω 0 |x| 2 . (1.14)
Then u ∞ (0, t) = ∞ for any t > 0, and t → u ∞ (x, t) is increasing. If we denote U (x) = lim t→∞ u ∞ (x, t), then U is the minimal large solution of

-∆u + h(x)u p = 0 in R N \ {0}, (1.15) 
i.e. the smallest solution of (1.15 ) which satisfies

Bǫ u(x)dx = ∞ ∀ǫ > 0. (1.16)
Theorem C is proved by some new version of local energy method. A similar variant of this method was used in [START_REF] Belaud | Long-time extinction of solutions of some semilinear parabolic equations[END_REF] for the study of extinction properties of solutions of nonstationary diffusionabsorption equations.

Theorem D is obtained by constructing local appropriate sub-solutions. The monotonicity and the limit property of u ∞ are characteristic of razor blades solutions [START_REF] Vazquez | Different kinds of singular solutions of nonlinear parabolic equations[END_REF].

A natural question which remains unsolved is to characterize u ∞ if the potential h(x) satisfies

h(x) ≈ exp - ω(|x|) |x| 2 ,
where ω(s) → 0 as s → 0 and

1 0 ω(s)ds s = ∞.
This article is the natural continuation of [START_REF] Marcus | Initial trace of positive solutions to semilinear parabolic inequalities[END_REF], [START_REF] Shishkov | The balance between diffusion and absorption in semilinear parabolic equations[END_REF] where (1.1 ) is replaced by

∂ t u -∆u + h(t) |u| p-1 u = 0 in Q T . (1.17) 
In equation (1.17 ), the function h ∈ C([0, T ]) is positive in (0, T ] and vanishes only at t = 0. In the particular case h(t) = t β (β > 0), u k exists if and only if 1 < p < 1 + 2(1 + β)/N , and u ∞ is an explicit very singular solution. If h(t) ≥ e -ω(t)/t where ω is positive, nondecreasing and satisfies

1 0 ω(s)ds s = ∞,
then u ∞ has a pointwise singularity at (0, 0). If the degeneracy of h is stronger, namely lim inf

t→0 t ln h(t) > -∞,
it is proved that the singularity of u k propagates along the axis t = 0; at end, u ∞ is nothing else than the (explicit) maximal solution Ψ(t) of the O.D.E.

Ψ ′ + h(t)Ψ p = 0 in (0, ∞). (1.18) 
A very general and probably difficult open problem generalizing (1.1 ) and (1.17 ) is to study the propagation phenomenon of singularities starting from (0, 0) when (1.1 ) is replaced by

∂ t u -∆u + h(x, t) |u| p-1 u = 0 in Q T , (1.19) 
where h ∈ C(Q T ) is nonnegative and vanishes only on a curve Γ ⊂ Q T starting from (0, 0). It is expected that two types of phenomena should occur: (i) either u ∞ has a pointwise singularity at (0, 0), (ii) or u ∞ is singular along Γ or a connected part of Γ containing (0, 0). It is natural to conjecture that the order of degeneracy should be measured in terms of the parabolic distance to Γ and of the slope of Γ in the space R N × R. This could serve as a starting model for nonlinear heat propagation in inhomogeneous fissured media.

Our paper is organized as follows: 1 Introduction -2 The power case -3 Pointwise singularities -4 Existence of razor blades.

The power case

In this section we assume that h(x) = |x| β with β ∈ R, and the equation under consideration is the following

∂ t u -∆u + |x| β |u| p-1 u = 0 in Q T := R N × (0, T ), (2.1) 
with p > 1. By a solution we mean a function u ∈ C 2,1 (Q T ). Let E(x, t) = (4πt) -N/2 e -|x| 2 /4t be the heat kernel in Q T and E[φ] the heat potential of a function (or measure) φ defined by

E[φ](x, t) = 1 (4πt) N/2
R N e -|x-y| 2 /4t φ(y) dy.

(2.2)

If there holds

QT E p (x, t)|x| β dx dt < ∞, (2.3) 
it is easy to prove (see [START_REF] Marcus | Initial trace of positive solutions to semilinear parabolic inequalities[END_REF]Prop 1.2], and [18, Th 6.12]), that for any k ∈ R, there exists a unique

function u = u k ∈ L 1 (B R × (0, T )) ∩ L p (B R × (0, T ); |x| β dx) such that QT -u∂ t ζ -u∆ζ + |x| β |u| p-1 uζ dx dt = kζ(0, 0), (2.4) for any ζ ∈ C 2,1 0 (R N × [0, T )). By the maximum principle k → u k is increasing. Next, it is straightforward that (2.3 ) is fulfilled as soon as β > max{N (p -1) -2; -N }.
(2.5)

The a priori estimate and the maximal solution

In order to prove an a priori estimate, we introduce the auxiliary N dimensional equation in the

variable η = x/ √ t -∆f - 1 2 η.∇f -γf + |η| β |f | p-1 f = 0, (2.6) 
where γ = (2 + β)/2(p -1). 

F a (η) = ∞. (2.7) Furthermore a → F a is decreasing. Proof. Set K(η) = e |η| 2 /4 . Then (2.6 ) becomes -K -1 div(K∇f ) -γf + |η| β |f | p-1 f = 0. (2.8)
Step 1-Boundary behaviour. First we claim that

lim |η|→a (a -|η|) 2/(p-1) F a (η) = 2(p + 1) a pβ (p -1) 2 1/(p-1)
.

(2.9)

Actually, if 0 < b < |η| < a, u satisfies -K -1 div(K∇F a ) -γF a + CF p a ≤ 0 with C = min{a β , b β }.
We perform a standard variant of the two-sides estimate method used in [START_REF] Véron | Semilinear elliptic equations with uniform blow-up on the boundary[END_REF] : we set Γ := B ρ \ B b with b < ρ < a, α = (ρb)/2 and denote by z the solution of

z ′′ -Cz p = 0 in (-α, α) z(-α) = z(α) = ∞. (2.10)
Then z is an even function and is computed by the formula

∞ z(t) ds s p+1 -z(0) p+1 = 2C p + 1 (α -t) ∀t ∈ [0, α). (2.11)
Notice also that lim α→0 z(t) = ∞, uniformly on (-α, α) and lim

t→α (t -α) 2/(p-1) z(t) = 2(p + 1) C p (p -1) 2 1/(p-1)
.

(2.12)

We set Z(η) = z(|η| -(ρ + b)/2) and we look for a super-solution in Γ under the form w = M Z(η) .

(M > 1). Then -K -1 div(K∇w) -γw + Cw p = M (M p-1 -1)Cz p - N -1 |η| + |η| 2 z ′ -γz . Since z ′ (t) = 2C p + 1 z p+1 (t) -z(0) p+1 < C * z (p+1)/2 (t), with C * = 2C p + 1 , we derive -K -1 div(K∇w) -γw + Cw p ≥ M (M p-1 -1)Cz p - N -1 b + a 2 C * z (p+1)/2 -γz (2.
(2.14)

Because M > 1 and 0 < b < a are arbitrary, we derive lim sup

|η|→a (a -|η|) 2/(p-1) F a (η) ≤ 2(p + 1) a pβ (p -1) 2 1/(p-1)
.

(2.15)

For the estimate from below we notice that u satisfies

-K -1 div(K∇F a ) -γF a + CF p a ≥ 0 in {η : b < |η| < a}, with C = max{a β , b β }.
Taking now α = ab, we denote by z the positive solution of

   z′′ + γ z -C zp = 0 in (0, α) z(0) = 0 z(α) = ∞.
(2.16)

Then z is computed by the formula

∞ z(t) ds z′2 (0) -γs 2 + 2 Cs p+1 /(p + 1) = α -t ∀t ∈ [0, α), (2.17) 
and formula (2.12 ) is valid provided C be replaced by C. We fix A ∈ ∂B a with coordinates (a, 0, ..., 0), and look for a subsolution under the form w(η

) = M z(η 1 -b) with 0 < M < 1. Then -K -1 div(K∇ w) -γ w + C wp = M ( M p-1 -1)z p - η 1 2 w′ ≤ 0,
since w′ ≥ 0. Applying again the maximum principle, we derive w(η) ≤ F a in B a ∩{η : b < η 1 < a}.

But clearly the direction η 1 is arbitrary and can be replaced by any radial direction. Thus

lim inf |η|→a (a -|η|) 2/(p-1) F a (η) ≥ M 2(p + 1) max{a pβ , b pβ }(p -1) 2 1/(p-1)
.

( Step 2-Uniqueness. If F ′ is another nonnegative solution of (2.6 ) satisfying the same boundary blow-up conditions, then for any ǫ > 0,

F ′ ǫ = (1 + ǫ)F ′ is a super solution. Thus, for δ > 0, Ba - div(K∇F a ) F a + δ + div(K∇F ′ ǫ ) F ′ ǫ + δ + |η| β F p a F a + δ - F ′ ǫ p F ′ ǫ + δ K ((F a + δ) 2 -(F ′ ǫ + δ) 2 ) + dη ≤ γ Ba F a F a + δ - F ′ ǫ F ′ ǫ + δ ((F a + δ) 2 -(F ′ ǫ + δ) 2 ) + Kdη.

By monotonicity

F p a F a + δ - F ′ ǫ p F ′ ǫ + δ ((F a + δ) 2 -(F ′ ǫ + δ) 2 ) + ≥ 0, and 0 ≤ F a F a + δ - F ′ ǫ F ′ ǫ + δ ((F a + δ) 2 -(F ′ ǫ + δ) 2 ) + ≤ ((F a + δ) 2 -(F ′ ǫ + δ) 2 ) + .
By Lebesgue's theorem, since (2.9 ) implies that ((

F a + δ) 2 -(F ′ ǫ + δ) 2 ) + has compact support in B a , lim δ→0 Ba F a F a + δ - F ′ ǫ F ′ ǫ + δ ((F a + δ) 2 -(F ′ ǫ + δ) 2 ) + Kdη = 0.
Using Green formula, we obtain

Ba - div(K∇F a ) F a + δ + div(K∇F ′ ǫ ) F ′ ǫ + δ ((F a + δ) 2 -(F ′ ǫ + δ) 2 ) + Kdη = Fa≥F ′ ǫ ∇F a - F a + δ F ′ ǫ + δ ∇F ′ ǫ 2 + ∇F ′ ǫ - F ′ ǫ + δ F a + δ ∇F a 2 Kdη ≥ 0.
Letting δ → 0, we derive, by Fatou's theorem,

Fa≥F ′ ǫ F p-1 a -F ′ ǫ p-1 (F 2 a -F ′ ǫ 2 )Kdη ≤ 0.
Thus F a ≤ F ′ ǫ . Since ǫ is arbitrary, F a ≤ F ′ . The reverse inequality is the same. The monotonicity of a → F a is proved in a similar way, by the previous form of maximum principle.

Step 3-Existence with finite boundary value.

We shall first prove the existence of a positive solution w k of (2.6 ) with boundary value equal to k > 0 for small value of a, and we shall let k → ∞ in order to obtain one solution satisfying (2.7 ). We denote by J a the functional defined over

H 1 0 (B a ) ∩ L p+1 (B a ; |η| β dη) by J a (w) = 1 2 Ba |∇w| 2 -γw 2 + 1 p + 1 |η| β |w| p+1 K(η)dη. Let k > 0 and κ ∈ C 1 (B a ) with 0 ≤ κ(η) ≤ k, supp(κ) ⊂ B a \ B a/2 , κ(η) ≡ k on B a \ B 2a/3 . If v ∈ H 1 0 (B a ) ∩ L p+1 (B a ; |η| β dη) and w := v + κ, then J a (w) = J a (v + κ) ≥ J a (v) + J a (κ) + Ba ∇v.∇κ -γvκ -|η| β |v| p κ K(η)dη.
Since γ ≤ λ a , it follows from Cauchy-Schwarz and Hölder-Young inequalities that

J a (w) ≥ (1 -ǫ 2 )J a (v) - p p ǫ 2p J a (κ)
for 0 < ǫ < 1. Because lim a→0 λ a = ∞, there exists a 0 ∈ (0, ∞] such that, for any 0 < a < a 0 , J a (v) is bounded from below on H 1 0 (B a )∩L p+1 (B a ; |η| β dη). Thus there exists a minimizer w k such that w k = v + κ with v in the above space; w k is a solution of (2.6 ) and w k | ∂Ba = k. Furthermore w k is positive. Notice that if γ ≤ 0, a 0 = ∞, in which case there exists a solution w k for any k > 0 and any a > 0. The uniqueness of w k > 0, is a consequence of the monotonicity of the mapping k → w k that we prove by a similar argument as in Step 2: if k < k ′ , there holds

w k >w k ′ w p-1 k -w p-1 k ′ )(w 2 k -w 2 k ′ ) |η| β Kdη ≤ 0,
which implies w k < wk . Uniqueness and radiality follows immediately, thus w k solves the differential equation

   -w ′′ - N -1 r + r 2 w ′ -γw + r β w p = 0 on (0, a) w(a) = k and w ∈ H 1 rad (B a ) ∩ L p+1 rad (B a ; |η| β dη).
(2.20)

Next we shall assume γ > 0, equivalently β > -2. If w k is a positive solution of (2.20 ) and λ > 1 (resp. λ < 1) λw k is a super-solution (resp. a sub-solution) larger (resp. smaller) than w k . Note that β > -2 implies w k (0) > 0 while β > -1 implies also w ′ k (0) = 0. Thus, by [START_REF] Ratto | Conformal deformation of hyperbolic space[END_REF], there exists a solution w λk with boundary data λk, and this solution is positive because w k ≤ w λk ≤ λw k (resp. λw k ≤ w λk ≤ w k ). Consequently, the set A of the positive ã such that there exists a positive solution of (2.20 ) on (0, a) for any a < ã is not empty and independent of k. Furthermore, if for some ã > 0 and some k 0 > 0, there exists some positive w k0 solution of (2.20 ) on 0, ã), then for any 0 < a < ã and any k > 0, there exists a positive solution w k of (2.20 ). Since r → max{k, (γ + a -β ) 1/(p-1) } is a super-solution, there holds

w k (r) ≤ max{k, (γ + a -β ) 1/(p-1) } ∀r ∈ [0, a].
(2.21)

Let us assume that a * = sup A < ∞. Because of (2.21 ) and local regularity of solutions of elliptic equations, for any ǫ, ǫ

′ > 0, w ′ k (a) is bounded uniformly with respect if ǫ ≤ a < a * -ǫ ′ . But since (2.20 ) implies a N -1 e a 2 /4 w ′ k (a) = ǫ N -1 e ǫ 2 /4 w ′ k (ǫ) + a ǫ (r β w p k -γw k )r N -1 e r 2 /4 dr, w ′ k (a)
is actually uniformly bounded on [ǫ, a * ). It follows from the local existence and uniqueness theorem that there exists δ > 0, independent of a < a * such that there exists a unique solution z defined on [a, a + δ] to

   -z ′′ - N -1 r + r 2 z ′ -γz + r β z p = 0 on (0, a) z(a) = k, z ′ (a) = w ′ k (a), (2.22) 
and δ and k > 0 can be chosen such that z > 0 in [a, a + δ]. This leads to the existence of a positive solution to (2.20 ) on [0, a + δ]. If a *a < δ, which contradicts the maximality of a * . Therefore a * = ∞.

Step 4-End of the proof. We have already seen that k → w k is increasing. By Step 1, we know that, for any a > 0, and some b < a, there holds

w k (|η|) ≤ C(a -|η|) -1/(p-1) on B a \ B b . (2.23) 
In particular

w k (b) ≤ C * = C * (a, b, p, N ) Next w k (r) ≤ max{C * , (γ + b -β ) 1/(p-1) } ∀r ∈ [0, b]. (2.24) 
Combining (2.23 ) and (2.24 ) implies that w k is locally uniformly bounded on [0, a). Since k → w k is increasing, the existence of F a := w ∞ = lim k→∞ w k follows. The fact that a → F a decreases is a consequence of the fact that F a ′ is finite on ∂B a for any a < a ′ .

Remark. In the sequel we set F ∞ = lim a→∞ F a . Then F ∞ is a nondecreasing, nonnegative solution of (2.6 ). Using asymptotic analysis, is is easy to prove that there holds:

(i) if β = 0 F ∞ (η) = 1 p -1 1/(p-1) |η| -β/(p-1) (1 + •(1)) as |η| → ∞; (2.25) (ii) if β = 0, F ∞ (η) ≡ 1 p -1 1/(p-1)
.

(2.26) Furthermore, if β > -2, it follows by the strict maximum principle that F a (0) = min{F a (η) : |η| < a} > 0. This observation plays a fundamental role for obtaining estimate from above. Proposition 2.2 Assume p > 1 and β > -2. Then any solution u of (2.1 ) in Q T which verifies

lim t→0 u(x, t) = 0 ∀x = 0, (2.27) satisfies |u(x, t)| ≤ min c * |x| -(2+β)/(p-1) ; t -(2+β)/2(p-1) F ∞ (x/ √ t) ∀(x, t) ∈ Q T \ {0}, (2.28) 
where c * = c * (N, p, β).

Proof. Let ǫ > 0 and a > 0 and P a,ǫ = {(x, t) : t > ǫ, |x|/ √ tǫ < a}. By the previous remark min F a > 0, thus the function

W (x, t) = (t -ǫ) -(2+β)/2(p-1) F a (|x|/ √ t -ǫ)
, which is a solution of (2.1 ) in P a,ǫ tends to infinity on the boundary on P a,ǫ ; since u is finite in Q T ∩ P a,ǫ , W dominates u in this domain. Letting successively ǫ → 0 and a → ∞ yields to u ≤ F ∞ . The estimate from below is similar. Next we consider x ∈ R N \ {0}, then v = |u| satisfies (by Kato's inequality) 1) . Estimate from below is similar.

∂ t v -∆v + C(x)v p ≤ 0 in B |x|/2 (x) × (0, T ), where C(x) = max{(|x|/2) β ; (3|x|/2) β }. It is easy to construct a function under the form w(y) = Λ |x| 2 -4|x -y| 2 -2/(p-1) which satisfies -∆w + C(x)w p = 0 in B |x|/2 (x) lim |x-y|→|x|/2 w = ∞, with Λ = Λ(x) = c * |x| (2-β)/(p-1) , c * = c * (N, p, β) > 0. Using (2.27 ), it follows from Lebesgue's theorem that u(y, t) ≤ w(y) in B |x|/2 (x)× [0, T ), thus u(x, t) ≤ w(x) = c * |x| -(2+β)/(p-
The construction of the first part of the proof of Proposition 2.2 (estimate in P a,ǫ ) shows that, without condition (2.27 ), equation (2.1 ) admits a maximal solution u M . Proposition 2.3 Assume p > 1 and β > -2. Then any solution u to (2.1 ) satisfies

|u(x, t)| ≤ u M (x, t) := t -(2+β)/2(p-1) F ∞ (x/ √ t) ∀(x, t) ∈ Q T \ {0}. (2.29)
As a variant of (2.28 ), we have the following Keller-Osserman type parabolic estimate which extends the classical one due to Brezis and Friedman in the case β = 0 (see [START_REF] Brezis | Nonlinear parabolic problems involving measures as initial conditions[END_REF]).

Proposition 2.4 Under the assumptions of Proposition 2.2 there holds

|u(x, t)| ≤ c (|x| 2 + t) (2+β)/2(p-1) ∀(x, t) ∈ Q T \ {0}, (2.30 
) 

with c = c(N, p, β). Proof. Assume |x| 2 ≤ t, then 1 (|x| 2 + t) (2+β)/2(p-1) ≥ 2 -(2+β)/2(p-1) t -(2+β)/2(p-1) ≥ 2 -(2+β)/2(p-1) min{F ∞ (η) : |η| ≤ 1} t -(2+β)/2(p-1) F ∞ (x/ √ t). (2.31) Assume |x| 2 ≥ t, then 1 (|x| 2 + t) (2+β)/2(p-1) ≥ 2 -(2+β)/(p-1) |x| -(2+β)/(p-

Isolated singularities and the very singular solution

Theorem 2.5 Assume p > 1 and -2 < β ≤ N (p -1) -2. Then any solution u to (2.1 ) which satisfies (2.27 ) is identically 0. 1) is locally integrable in R N , thus u(., t) → 0 in L 1 loc (R N ) as t → 0. For ǫ > 0 there exists R = R(ǫ) such that u(x, t) ≤ ǫ for any |x| ≥ R and t > 0. Thus

Proof. If -(2 + β)/(p -1) + N -1 > -1, equivalently β < N (p -1) -2, the function x → |x| -(2+β)/(p-
u(x, t + τ ) ≤ ǫ + E[uχ B R u(., τ )](x, t) ∀t > 0, τ > 0 and x ∈ R N , (2.33) 
where E[φ] denotes the heat potential of the measure φ (see (2.2 )). Letting successively τ → 0 and ǫ → 0, yields to u ≤ 0. In the same way u ≥ 0. In the case

β = N (p -1) -2 estimate (2.30 ) reads |u(x, t)| ≤ c (|x| 2 + t) N/2 .
From this estimate, the proof of [3, Th 2, Steps 5, 6] applies and we recall briefly the steps (i) By choosing positive test functions φ n which vanish in

V n = {(x, t) : |x| 2 + t ≤ n -1 } and are constant on V ′ n = {(x, t) : |x| 2 + t ≥ 2n -1 }
, we first prove that, for any ρ > 0,

Bρ×(0,T ) |u(x, t)| + |x| β |u| p dxdt < ∞.
(2.34) Thus, using the same test function, we derive that the identity

QT -u∂ t ζ -u∆ζ + |x| β |u| p-1 uζ dx dt = 0, (2.35) 
holds for any ζ ∈ C 2,1 0 (R N × [0, T )). The uniqueness yields to u = 0. Proof of Theorem A-case I. In the case -2 < β ≤ N (p -1) -2, the result is a consequence of Theorem 2.5. Next we assume β ≤ -2. If f is a solution of (1.6 ), it satisfies

f (η) = •(|η| -(2+β)/(p-1) ) as |η| → ∞. If β = -2, the equation becomes -∆f - 1 2 η.∇f + |η| -2 |f | p-1 f = 0,
and f (η) → 0 at infinity. Since any positive constant is a supersolution,

f ≤ 0. Similarly f ≥ 0. If β < -2, for ǫ > 0 the function η → ǫ|η| -(2+β)/(p-1) = ψ(η) belongs to W 1,1 loc (R N ) since β < -2 and satisfies -∆ψ - 1 2 η.∇ψ - 2 + β 2(p -1) ψ + |η| β |ψ| p-1 ψ = ǫr -(2+β)/(p-1)-2 2 + β p -1 2 + β p -1 + 2 -N + ǫ p-1 .
Therefore, either if N ≥ 2 or N = 1 and β ≤ -(p + 1), ψ is a super-solution of (1.6 ) for any ǫ > 0.

The conclusion follows as above.

Finally we treat the case N = 1 and -(p + 1) < β < -2 where there exists a particular solution of 1) . Furthermore, if f ≥ 0 (which can be always assumed by the maximum principle), it is a subsolution of the linear equation

f ′′ + r 2 f ′ + 2 + β 2(p -1) f -r β |f | p-1 f = 0 on R + , under the form f 1 (r) = A β,p r -(2+β)/(p-
φ ′′ + r 2 φ ′ + 2 + β 2(p -1) φ = 0
Noticing that this equation has a solution φ 1 which has the same behaviour at infinity than the explicit solution of (1.4 ), namely

φ 1 (r) = cr -(2+β)/(p-1) (1 + •(1)),
by standard methods (see e.g. [10, Prop A1]), the second solution φ 2 behaves in the following way

φ 2 (r) = cr (2+β)/(p-1)-1 e -r 2 /4 (1 + •(1)) as r → ∞.
Consequently, by the maximum principle, any solution f of (1.4 ) on R such that

f (r) = •(φ 1 (r)) at infinity, verifies |f (r)| ≤ C|r| (2+β)/(p-1)-1 e -r 2 /4 for |r| ≥ 1. (2.36)
Using the equation, we obtain that

f ′ (r) = e r 2 /4 ∞ r s β |f (s)| p-1 f (s) - 2 + β p -1 f (s) ds, thus |f ′ (r)| ≤ Cr (2+β)/(p-1)-2 e -r 2 /4 for |r| ≥ 1. (2.37) Since f ∈ H 1 loc (R), we derive that for any n ∈ N * , n -n f ′2 - 2 + β p -1 f 2 e r 2 /4 dr ≤ e n 2 /4 (f (n)f ′ (n) -f (-n)f ′ (-n)) .
Because of (2.36 ) and (2.36 ), this last term tends to 0 as n → ∞. Therefore

∞ -∞ f ′2 - 2 + β p -1 f 2 e r 2 /4 dr = 0 =⇒ f = 0,
which end the proof.

Remark. The method of proof used in the case N = 1 and -p -1 < β < -2 is actually valid in any dimension, for any β ≤ -2. But it relies strongly on the fact that f ∈ H 1 loc (R N ), while the other methods use only

f ∈ W 1,1 loc (R N ).
Proposition 2.6 Assume β > max{N (p -1) -2; -N } . Then for any k > 0 there exists a unique solution u k of (2.1 ) with initial data kδ 0 . Furthermore k → u k is increasing and

u ∞ := lim k→∞ u k satisfies u ∞ (x, t) = t -(2+β)/2(p-1) f ∞ (x/ √ t)
, where f ∞ is positive, radially symmetric and satisfies

-∆f ∞ - 1 2 η.∇f ∞ -γf ∞ + |η| β f p ∞ = 0 in R N lim |η|→∞ |η| (2+β)/(p-1) f ∞ (η) = 0. (2.38)
Proof. The existence of u k and the monotonicity of k → u k has already been seen. By the uniform continuity of the u k in any compact subset of QT \ {(0, 0)}, the function u ∞ satisfies lim t→0 u ∞ (x, t) = 0 ∀x = 0.

(2.39)

For ℓ > 0 and u is defined in Q ∞ , we set

T ℓ [u](x, t) := ℓ (2+β)/2(p-1) u( √ ℓx, ℓt). (2.40) If u satisfies equation (2.1 ) in Q ∞ , T ℓ [u] satisfies it too. Because of uniqueness T ℓ [u k ] = u ℓ (2+β)/2(p-1)-N/2 k . (2.41)
Using the continuity of u → T ℓ [u] and the definition of u ∞ , we can let k → ∞ in (2.41 ) and derive (by taking ℓt = 1 and replacing t by ℓ),

T ℓ [u ∞ ] = u ∞ =⇒ u ∞ (x, t) = t -(2+β)/2(p-1) u ∞ (x/ √ t, 1). (2.42) Setting f ∞ (η) = u ∞ (x/ √ t, 1) with η = x/ √ t, it is straightforward that f ∞ satisfies (2.
38 ) (using in particular 2.39 ). Furthermore f ∞ is radial and positive as the u k are.

Lemma 2.7 The function f ∞ satisfies f ∞ (η) = c|η| 2γ-N e -|η| 2 /4 1 + •(|η| -2 ) as |η| → ∞, (2.43) 
for some c = c N,p,β > 0. Furthermore

f ′ ∞ (η) = - c 2 c|η| 2γ+1-N e -|η| 2 /4 1 + •(|η| -2 )
as |η| → ∞.

(2.44)

Proof. Set r = |η| and denote f ∞ (η) = f ∞ (r). Then f ∞ satisfies, f ′′ ∞ + N -1 r + r 2 f ′ ∞ + γf ∞ -r β |f ∞ | p-1 f ∞ = 0 on (0, ∞), (2.45) 
and lim r→∞ r 2γ f ∞ (r) = 0. We consider the auxiliary equation as r → ∞. Next we choose R > 0 large enough so that the maximaum principle applies for equation (2.46 ) on [R, ∞) and the y j are positive on the same interval. For δ > 0, An alternative proof of the existence of f ∞ is linked to calculus of variations. In the case β = 0, this was performed by Escobedo and Kavian [START_REF] Escobedo | Variational problems related to self-similar solutions of semilinear heat equations[END_REF]. This construction is based upon the study of the following functional

f ′′ + N -1 r + r 2 f ′ + γf = 0 on (0, ∞). ( 2 
Y δ = δy 1 +f ∞ (R)y 2 /y 2 (R) is a supersolution for (2.45 ). Furthermore f ∞ (r) = •(Y δ ) at infinity. Letting δ → 0 yields to f ∞ (r) ≤ f ∞ (R) y 2 (R) y 2 (r) ∀r ≥ R. (2.48) Using (2.47 ) we derive 0 ≤ f ∞ (η) ≤ C|η| 2γ-N e -|η| 2 /4 ∀
J(v) = 1 2 R N |∇v| 2 -γv 2 + 2 p + 1 |η| β |v| p+1 K(η)dη, (2.49) 
defined over the functions in

H 1 K (R N ) ∩ L p+1 |η| β K (R N ).
Proposition 2.8 Assume p > 1 and β > N (p -1) -2. Then there exists a positive function

f∞ ∈ H 1 K (R N ) ∩ L p+1 |η| β K (R N ) satisfying -∆ f∞ - 1 2 η.∇ f∞ -γ f∞ + |η| β f p ∞ = 0 in R N .
(2.50)

We recall that the eigenvalues of -K -1 div(K∇.) are the λ k = (N + k)/2, with k ∈ N and the eigenspaces H k are generated by D α φ where φ(η) = K -1 (η) = e -|η| 2 /4 and |α| = k. It is straightforward to check that J is C 1 . In order to apply Ekeland Lemma, we have just to prove that J is bounded from below in H 1 K (R N ). As we shall see it later on, the proof is easy when β < N (p -1)/2, and more difficult when β ≥ N (p -1)/2. Lemma 2.9 For any v ∈ H 1 K (R N ), there holds

1 4 R N 2N + |η| 2 v 2 K(η)dη ≤ R N |∇v| 2 K(η)dη.
Proof. We borrow the proof to Escobedo and Kavian. Put

w = v √ K. Then √ K∇v = ∇w - w 2 η. Hence R N |∇v| 2 K(η)dη = R N |∇w| 2 -w∇w.η + 1 4 w 2 |η| 2 dη.
Because -

R N w∇w.ηdη = N 2 R N w 2 dη,
there holds

R N |∇v| 2 K(η)dη = R N |∇w| 2 + N 2 w 2 + 1 4 w 2 |η| 2 dη.
This implies the formula.

Lemma 2.10 Let p > 1 and β < N (p -1)/2. For any ǫ > 0 there exists C = C(ǫ, p) > 0 and R = R(ǫ, p) > 0 such that

R N v 2 K(η)dη ≤ ǫ R N |∇v| 2 K(η)dη + C R N |v| p+1 |η| β K(η) 2/p+1
.

Proof. For R > 0 there holds

|η|≤R v 2 K(η)dη ≤ |η|≤R |v| p+1 |η| β K(η)dη 2/(p+1) |η|≤R |η| -2β/(p-1) K(η)dη (p-1)/(p+1) . Since β < N (p -1)/2 ⇐⇒ N > 2β/(p -1), we obtain |η|≤R |η| -2β/(p-1) K(η)dη (p-1)/(p+1) = C(R, N, p).
By Lemma 2.9

|η|≥R v 2 K(η)dη ≤ 4 R 2 R N |∇v| 2 K(η)dη.
The estimate follows by taking ǫ = 4R -2 .

It follows from the previous Lemmas that J is bounded from below in the space

H 1 K (R N ) ∩ L p+1 |η| β K (R N ) whenever N (p -1)/2 -2 < β < N (p -1)/2.
Next we consider the case β > 0 and we shall restrict the study to radial functions. Lemma 2.11 Assume β > 0. The functional J is bounded from below on the set

X = v ∈ H 1 K (R N ) ∩ L p+1 |η| β K (R N ) : v ≥ 0, v radial and decreasing .
Proof. For 0 < δ < R, we write

J(v) = J δ,R (v) + J ′ δ,R (v) + J ′′ δ,R (v)
where

J δ,R (v) = 1 2 |η|≤δ |∇v| 2 -γv 2 + 2 p + 1 |η| β |v| p+1 K(η)dη, J ′ δ,R (v) = 1 2 δ<|η|<R |∇v| 2 -γv 2 + 2 p + 1 |η| β |v| p+1 K(η)dη, and 
J ′′ δ,R (v) = 1 2 |η|>R |∇v| 2 -γv 2 + 2 p + 1 |η| β |v| p+1 K(η)dη.
Using Lemma 2.10, we fix R large enough so that

J ′′ δ,R is bounded from below in H 1 K (R N ) ∩ L p+1 |η| β K (R N )
. By Hölder's inequality J ′ δ,R is bounded from below, thus we are left with J δ,R . We assume that v is positive, radial, nonincreasing and v(δ) = c = min{v(x) : |x| ≤ δ}. Then

|v| p+1 = v p+1 = (v -c + c) p+1 ≥ (v -c) p+1 + c p+1 and v 2 ≤ 2(v -c) 2 + 2c 2 , J δ,R ≥ 1 2 |η|≤δ |∇(v -c)| 2 -2γ(v -c) 2 + 2 p + 1 |η| β |v -c| p+1 K(η)dη + L(c),
where

L(c) = c p+1 p + 1 |η|≤δ |η| β K(η)dη -γc 2 |η|≤δ K(η)dη.
Clearly L(c) ≥ M for some M independent of c. Therefore we are reduced to study the functional J δ,R defined by

J δ,R (w) = 1 2 |η|≤δ |∇w| 2 -2γw 2 + 2 p + 1 |η| β |w| p+1 K(η)dη over H 1 0,K (B δ ) ∩ L p+1 |η| β K (B δ ).
Here we can fix δ > 0 small enough so that the first eigenvalue of -K -1 div(K∇.) is larger than 2γ, thus J δ,R (v) is bounded from below in the class of radially symmetric nonincreasing, nonnegative functions v, and so is J. Lemma 2.12 Let v be a radially symmetric function in

H 1 K (R N ) ∩ L p+1 |η| β K (R N ).
Then there exists a radially symmetric decreasing function ṽ ∈ H

1 K (R N ) ∩ L p+1 |η| β K (R N ) such that J(ṽ) ≤ J(v).
Proof. We define the two curves

C 1 = (s, x) ∈ R + × R + : -2 -1 γx 2 + (p + 1) -1 s β x p+1 = 0 = x = 2 -1 (p + 1)γs -β 1/(p-1) ,
and

C 2 = (s, x) ∈ R + × R + : -γx + s β x p = 0 = x = γs -β 1/(p-1) .
For fixed s > 0 the function x → -2 -1 γx 2 +(p+1) -1 s β x p+1 vanishes at x = 0. It has the following properties:

(i) it is decreasing for 0 < x < γs -β 1/(p-1) , (ii) it achieves a minimum at x s = γs -β 1/(p-1) , (iii) and it is increasing for x > γs -β 1/(p-1) with infinite limit. Furthermore it vanishes at xs = 2 -1 (p + 1)γs -β 1/(p-1) . Let v be a radially symmetric positive function. By approximation of radial elements in

H 1 0,K (R N ) ∩ L p+1 |η| β K (R N )
, we can assume that v is C 2 with nondegenerate isolated extrema. We can also assume that the graph of v has at most a countable of intersections with C 2 , a 1 < a 2 < a 3 ... < a k < ..., that the set of points {a k } is discrete, that all the intersections are transverse and that, for every j ≥ 0, v(s) < γs -β 1/(p-1) on (a 2j , a 2j+1 ), where a 0 = 0, and v(s) > γs -β 1/(p-1) on (a 2j+1 , a 2j+2+1 ).

The modifications of the function v is performed by local modification on each interval (a k , a k+1 ):

Step 1-The construction of ṽ on (a 2j , a 2j+1 ) is as follows. Let α 1 < α 2 < ... be the sequence of local extrema of v, with v(α 2i+1 ) local minimum and v(α 2i+2 ) local maximum. By extension, since v ′ (a 2j+1 ) > -β/(p -1)γ 1/(p-1) a -(β+p-1)/(p-1) 2j+1

, v(a 2j+1 ) is a local maximum of v on (a 2j , a 2j+1 ). If max{(α 2i+1 ) : i ≥ 1} ≤ v(a 2j+1 ), then ṽ = max{v, v(a 2j+1 )}. If max{v(α 2i+1 ) : i ≥ 1} > v(a 2j+1 ), we define the increasing sequence {α Thus we can assume that the local maxima of v are less than v(a 2j+1 ) on the last interval (α 2i d +1 , a 2j+1 ). Next we define the function ṽ by ṽ = max{v, v(α 2i0+1 } on (a 2j , α 2i0+1 ), ṽ = max{v, v(α 2i1+1 } on (α 2i0+1 , α 2i1+1 ). By induction, ṽ = max{v, v(

α 2i d-1 +1 } on (α 2i d-1 +1 , α 2i d +1 ).
Finally ṽ = max{v, v(a 2j+1 )} on the last interval (α 2i d +1 , a 2j+1 ). The function ṽ is Lipschitz continuous, nonincreasing and, because v(s) ≤ ṽ(s) ≤ γs -β 1/(p-1) , there holds

a2j ≤|η|≤a2j+1 |∇ṽ| 2 -γṽ 2 + 2 p + 1 |η| β |ṽ| p+1 K(η)dη ≤ a2j ≤|η|≤a2j+1 |∇v| 2 -γv 2 + 2 p + 1 |η| β |v| p+1 K(η)dη.
(2.51)

Step 2-The construction of ṽ on (a 2j+1 , a 2j+2 ) follows the same principle. Let β 1 < β 2 < ... < β d be the sequence of local minima of v on this interval. Furthermore v(a 2j+1 ) is the minimum of v on (a 2j+1 , a 2j+2 ) and v ′ (a 2j+2 ) < -β/(p -1)γ 1/(p-1) a -(β+p-1)/(p-1) 2j+2

.

On (a 2j+1 , β 1 ) we set ṽ = min{v, v(a 2j+1 )}. On (β 1 , β 2 ), ṽ = min{v, ṽ(β 1 )}. By induction ṽ = min{v, ṽ(β i )} on (β i , β i+1 ). On the last interval (β d , b 2j+2 ), ṽ = min{v, ṽ(β d )}. Because ṽ ≤ v on this interval and x → -2 -1 γx 2 + (p + 1) -1 s β x p+1 is increasing above the curve C 2 , we obtain similarly

a2j+1≤|η|≤a2j+2 |∇ṽ| 2 -γṽ 2 + 2 p + 1 |η| β |ṽ| p+1 K(η)dη ≤ a2j+1≤|η|≤a2j+2 |∇v| 2 -γv 2 + 2 p + 1 |η| β |v| p+1 K(η)dη.
(2.52)

By construction ṽ is nonincreasing. Combining (2.51 ) and (2.52 ), we obtain J(ṽ) ≤ J(ṽ).

Proof of Proposition 2.8. It follows from the previous lemmas that J is bounded from below on X and the function φ = K -1 belongs to X. Furthermore

J(tφ) = (N -2γ)t 2 4 K -1 (η)dη + |t| p+1 p + 1 φ p (η)dη.
Since β > N (p -1) -2 ⇐⇒ N -2γ < 0, the infimum m of J over radially symmetric functions is negative but finite and achieved by a decreasing function. Let {v n } ⊂ X a sequence such that

J(v n ) ↓ m. Then {v n } remains bounded in H 1 K (R N ) ∩ L p+1 |η| β K (R N ).
Up to a subsequence we can assume that v n converges weakly in H 1 K (R N ) and in L p+1 |η| β K (R N ) and strongly in L 1 K (R N ) to some function v. Moreover this convergence holds a.e., and, since v n ∈ X the same holds with v. Going to the limit in the functional yields to

J(v) ≤ lim inf n→∞ J(v n ) = m; thus v is a critical point.
The following uniqueness result holds. Proposition 2.13 Assume p > 1 and β > N (p -1) -2. Then f ∞ = f∞ . Furthermore f ∞ is the unique positive solution of (2.38 ).

Proof. We first prove that f∞ is the unique positive radial solution of (2.50 ) belonging to

H 1 K (R N ) ∩ L p+1 |η| β K (R N
). We denote r = |η| and f∞ (η) = f∞ (r). Let f be another solution in the same class. Thus there exists {r n } converging to ∞ such that f (r n ) → 0. For ǫ > 0, set fǫ = f∞ + ǫ. For n ≥ n 0 , large enough, w + (r n ) = 0, thus, as in the proof of Proposition 2.1,

Br n   ∇ f - f fǫ ∇ fǫ 2 + ∇ fǫ - fǫ f ∇ f 2   Kdη + γ Br n ǫ fǫ ( f 2 -f 2 ǫ ) + Kdη + Br n |η| β ( f p-1 -f p-1 ǫ )( f 2 -f 2 ǫ ) + Kdη ≤ 0.
We let successively r n → ∞ with Fatou's lemma, and ǫ → 0 with Lebesgue's theorem, since ǫ/ fǫ ≤ 1 and ( f 2 -

f 2 ǫ ) + ≤ f 2 + f 2 ∞ ∈ L 1 K (R N ). We get R N   ∇ f - f f∞ ∇ f∞ 2 + ∇ f∞ - f∞ f ∇ f 2 + |η| β ( f p-1 -f p-1 ∞ )( f 2 -f 2 ∞ ) +   Kdη ≤ 0,
which implies f ≤ f∞ . In the same way f∞ ≤ f . By Lemma 2.7,

f ∞ ∈ H 1 K (R N ) ∩ L p+1 |η| β K (R N ). Thus f ∞ = f∞ .
We end this section with a classification result Theorem 2.14 Assume p > 1 and β > N (p -1) -2 and let u be a positive solution of (2.1 ) which satisfies (2.27 ). Then, (i) either there exists k ≥ 0 such that u = u k , (i) or u = u ∞ .

Proof. Because of (2.27 ), the initial trace tr(u) of u is is a outer regular Borel measure concentrated at 0 (see [START_REF] Marcus | Initial trace of positive solutions to semilinear parabolic inequalities[END_REF]). Then either the initial trace is a Radon measure, say kδ 0 , and we get (i), or

lim t→0 Bǫ u(x, t)dx = ∞, (2.53)
for every ǫ > 0. This implies u ≥ u ∞ as in [START_REF] Marcus | The initial trace of positive solutions of semilinear parabolic equations[END_REF]. Notice that, in this article, this estimate is performed in the case β = 0, but the proof in the general case is the same. In order to prove that u ≤ u ∞ , we consider, for ǫ > 0, the minimal solution v := v ǫ of

∂ t v -∆v + |x| β |v| p-1 v = 0 in Q T tr(v) = ν Bǫ , (2.54) 
where ν Bǫ is the outer regular Borel measure such that ν Bǫ (E) = 0 for any Borel set E ⊂ R N such that E ∩ Bǫ = ∅, and ν Bǫ (E) = ∞ otherwhile. This solution is constructed as the limit, when m → ∞ of the solution v ǫ,m of (2.1 ) verifying v ǫ,m (., 0) = mχ Bǫ . Clearly u ≤ v ǫ . Furthermore, for any ℓ > 0,

T ℓ [v ǫ,m ] = v ǫ/ √ ℓ,mℓ (2+β)/2(p-1) =⇒ T ℓ [v ǫ ] = v ǫ/ √ ℓ =⇒ T ℓ [v 0 ] = v 0 , (2.55) 
where v 0 = lim ǫ→0 v ǫ . This, and the fact that lim t→0 v 0 (x, t) = 0 for every

x ∈ R N \ {0}, imply that v 0 (x, t) = t -(2+β)/2(p-1) f ∞ (x/ √ t) = u ∞ (x, t). At the end, since u ≤ v ǫ =⇒ u ≤ v 0 , it follows u ≤ u ∞ .

Existence of very singular solutions

In this section, we study the singular set of the solution u ∞ , in the case of strongly degenerate potential (1.9 ), using some variant of the local energy estimate (abr. L.E.E.) method in the spirit of Saint-Venant's principle. The L.E.E. technique was first used for singular solutions of quasilinear parabolic equations in [START_REF] Shishkov | Propagation of perturbation on a singular Cauchy problem for degenerate quasilinear parabolic equations[END_REF]. An adaption of this method to the study of conditions of removability of the point singularities of solutions of the quasilinear parabolic equations of diffusion-strong absorption type was presented in [START_REF] Galaktionov | Higher order quasilinear parabolic equations with singular initial data[END_REF]. In [START_REF] Shishkov | The balance between diffusion and absorption in semilinear parabolic equations[END_REF] there was elaborated a variant of the L.E.E. method, which allowed to find sharp conditions on the time dependent absorption potential, guaranteing existence of very singular solutions of the Cauchy problem to diffusion-strong absorption type equation with point singularity set. Here we provide a new application of the L.E.E. method in describing the transformation of V.S.S solution into the R.B. solution in terms of the flatness of the absorption potential in the space variables.

We consider the sequence of the Cauchy problems

u t -∆u + h(|x|)|u| p-1 u = 0 in R N × (0, T ), p > 1, (3.1) 
u(x, 0) = u 0,k (x) = M k exp(-2 -1 µ 0 N k)δ k (x), (3.2) 
where δ k is a regularized Dirac measure:

δ k ∈ C(R N ), δ k ⇀ δ weakly in the sense of measures as k → ∞, supp δ k ⊂ {x : |x| ≤ exp(-µ 0 k)} ∀k ∈ N, (3.3) 
where the constant µ 0 > 0 will be defined later on, and

M k = exp exp k ∀k ∈ N. (3.4) 
Without loss of generality we suppose that

δ k 2 L2(R N ) ≤ exp(µ 0 N k). (3.5) 
We write the potential h in the equation (3.1 ) under the form,

h(s) = exp(-ω(s)s -2 ) ∀s ≥ 0, (3.6) 
where ω(s) ≥ 0 is arbitrary nondecreasing function on [0, ∞).

Theorem 3.1 Let the function ω(s) defined in (3.6 ) satisfy additionally the following Dini-like condition

d1 0 ω(s)s -1 ds ≤ d 2 < ∞, d 1 = const > 0, (3.7) 
and the following technical condition

sω ′ (s) ω(s) ≤ 2 -α 0 ∀s ∈ (0, s 0 ), s 0 > 0, 0 < α 0 = const < 2. ( 3.8) 
Then the following a priori estimate of solutions u k of the problem (3.1 ), (3.2 ), (3.5 ), holds uniformly with respect to k ∈ N,

R N |u k (x, t)| 2 dx ≤ C 1 t exp C 2 Φ -1 t C 3 -2 , (3.9) 
where the constants

C 1 > 0, C 2 > 0, C 3 > 0 do not depend on k. Here Φ -1 (s) is the inverse function to s → Φ(s) := s 0 ω(r) r dτ.
Let us define the following families of domains

B(s) := {x : |x| < s}, Ω(s) := R N \ B(s), Q t2 t1 (s) := Ω(s) × (t 1 , t 2 ), ∀s > 0, ∀0 ≤ t 1 < t 2 ≤ T. Let u(x, t) ≡ u k (x, t
) be a solution of the problem (3.1 ), (3.2 ) under consideration. We introduce the energy functions

I(s, τ ) := τ 0 Ω(s) |∇ x u| 2 + h(|x|)|u| p+1 dx dt, (3.10) and J 
(s, t) = Ω(s) |u(x, t)| 2 dx, E(s, t) = B(s) |u(x, t)| 2 dx. (3.11) 
Lemma 3.2 The energy functions J(s, t), I(s, t) defined by (3.10 ), (3.11 ) corresponding to an arbitrary solution u = u k of problem (3.1 ), (3.2 ) satisfy the following a priori estimate

J(s, t) + I(s, t) ≤ ctg(s) := ct s 0 r -(N -1)(p-1) p+3 h(r) 2 p+3 dr -p+3 p-1 , ∀s ≥ exp(-µ 0 k), (3.12) 
uniformly with respect to k ∈ N.

By c, c i we denote different positive constants, which depend on known parameters N, p, α 0 , d 2 only, and their value may change from lines to lines.

Proof. Multiplying equation (3.1 ) by u and integrating in Q t2 t1 (s), we obtain the following starting relation after standard computations,

2 -1 Ω(s) |u(x, t 2 )| 2 dx + Q t 2 t 1 (s) |∇ x u| 2 + h(|x|)|u| p+1 dx dt = = 2 -1 Ω(s) |u(x, t 1 )| 2 dx + t2 t1 |x|=s u ∂u ∂n dσ dt := R 0 + R 1 . (3.13)
Let us estimate R 1 from above. Using Holder's and Young's inequalities we have

|x|=s u(x, t) ∂u ∂n dσ ≤ cs (N -1)(p-1) 2(p+1) 
|x|=s

|∇ x u| 2 dσ 1/2 |x|=τ |u| p+1 dσ 1 p+1 ≤ ≤ cs (N -1)(p-1) 2(p+1) h(s) -1 p-1 |x|=s |∇ x u| 2 + h(s)|u| p+1 dσ p+3 2(p+1)
.

Integrating in t, we get

τ 0 |x|=s u ∂u ∂n dσ dt ≤ cs (N -1)(p-1) 2(p+1) h(s) -1 p-1 τ p-1 2(p+1) × τ 0 |x|=s |∇ x u| 2 + h(s)|u| p+1 dσ dt p+3 2(p+1) . (3.14)
It is easy to see that

- d ds I(s, τ ) = τ 0 |x|=s |∇ x u| 2 + h(s)|u| p+1 ds, - d ds J(s, t) ≥ 0.
Because of the property (3.3 ) satisfied by u 0,k , and estimate (3.14 ), we derive the following inequality from relation (3.13 ) with

t 2 = t, t 1 = 0, s ≥ exp(-µ 0 k), J(s, t) + I(s, t) ≤ c t p-1 2(p+1) h(s) -1 p+1 s (N -1)(p-1) 2(p+1) - d ds (I(s, t) + J(s, t)) p+3 2(p+1) . (3.15) 
Solving this ordinary differential inequality (abr. O.D.I.) with respect to the function I(s, t) + J(s, t), we deduce that estimate (3.12 ) holds for arbitrary s ≥ exp(-µ 0 k).

Next, we define s k > 0 by the relation

g(s k ) = M ε0 k = exp(ε 0 exp k), (3.16) 
where 0 < ε 0 < 1 will be defined later on. Now we have to guarantee that

s k ≥ exp(-µ 0 k) := s k ∀k > k 0 (ε 0 , α 0 , ν 0 , p). (3.17) 
Using [1, Lemma A1], it follows from the definitions (3.6 )of function h(.) and (3.12 ) of function g(.), that the next estimate holds,

2α 0 p + 3 p+3 p-1 g 1 (s) ≤ g(s) ≤ 4 p + 3 p+3 p-1 g 1 (s), (3.18) 
where

g 1 (s) = s N -1-3(p+3) p-1 ω(s) p+3 p-1 exp 2 (p-1) ω(s) s 2
, α 0 is constant from condition (3.8 ). The following simpler estimate follows from (3.18 ):

exp ω(s) s 2 2 (p -1) (1 -ν 0 ) ≤ g(s) ≤ exp ω(s) s 2 2 (p -1) (1 + ν 0 ) , (3.19) 
for any s ∈ (0, s 0 ), where s 0 = s 0 (ν 0 ) → 0 as ν 0 → 0. As a consequence of definition (3.16 ) of s k , and using (3.19 ), we get, 

ω(s k ) s 2 k 2(1 -ν 0 ) (p -1) ≤ ε 0 exp k. ( 3 
s k ≥ 2(1 -ν 0 ) ε 0 (p -1) 1 α 0 exp - k α 0 . (3.22)
Next we define µ 0 from (3.2 ) and set µ 0 = 2α -1 0 . It follows from (3.22 ) that (3.17 ) is satisfied for all k > k 0 = k 0 (ε 0 , α 0 , ν 0 , p). As result we derive that estimate (3.12 ) obtained in Lemma 3.2 is valid for s = s k , i.e. J(s k , t) + I(s k , t) ≤ ctg(s k ) ∀k ≥ k 0 = k 0 (ε 0 , α 0 , ν 0 , p).

(3.23)

In order to find estimates characterizing the behaviour of the energy function E(s k , t) with respect to the variable t > 0, we introduce the nonnegative cut-off function ϕ k ∈ C 1 (R) defined by

ϕ k (s) = 1 if s < s k , ϕ k (s) = 0 if s ≥ 2s k , ϕ ′ k (s) ≤ cs -1 k . (3.24)
Multiplying (3.1 ) by u k ϕ 2 k (|x|) and integrating with respect to x, we get

2 -1 d dt R N u 2 (x, t)ϕ 2 k (|x|)dx + R N |∇ x (uϕ k )| 2 dx + R N h(|x|)ϕ 2 k |u| p+1 dx ≤ R N u 2 (x, t)|∇ x ϕ k (|x|)| 2 dx := R 1 . (3.25)
By (3.24 ) and (3.23 ), we obtain 

R 1 ≤ c 1 s -2 k s k <|x|<2s k |u(x, t)| 2 dx ≤ c 1 s -2 k J(s k , t) ≤ c 2 s -2 k tg(s k ). ( 3 
d dt R N u 2 (x, t)ϕ 2 k dx + d 0 s -2 k B(2s k ) u 2 (x, t)ϕ 2 k dx ≤ cs -2 k tg(s k ), d 0 > 0. (3.27) If we set ψ k (t) := R N |u k (x, t)| 2 ϕ 2 k (|x|)dx,
it is straightforward that (3.27 ) implies that the following O.D.I. holds,

ψ ′ k (t) + d 0 s -2 k ψ k (t) ≤ cs -2 k tg(s k ); (3.28)
furthermore, we can rewrite (3.28 ) under the form

ψ ′ k (t) + d 0 2 s -2 k ψ k (t) + 2 -1 d 0 s -2 k ψ k (t) -2cs -2 k tg(s k ) ≤ 0. (3.29)
Using the relations (3.2 ), (3.5 ) satisfied by u k,0 , we see that ψ k verifies,

ψ k (0) ≤ R N |u k,0 (x)| 2 dx ≤ M k . (3.30)
At last, we define the t k by

t k = γω(s k ) (3.31)
where ω is the function in (3.6 ) and γ > 0 is a parameter which will be made precise in the next lemma.

Lemma 3.3 There exists a constant γ > 0, which does not depend on k, such that any solution ψ k of problem (3.29 ), (3.30 ) satisfies the following a priori estimate

ψ k (t k ) ≤ 2d -1 0 c t k g(s k ) ∀ k > k(ε 0 , ν 0 ), (3.32) 
for some t k ≤ t k , where t k is defined by (3.31 ).

Proof. Let us assume that (3.32 ) is not true, and for any γ > 0 there exist k ≥ k 0 such that

ψ k (t) > 2d -1 0 ctg(s k ) ∀t : 0 < t < γω(s k ) ≡ t k . (3.33) 
This relation combined with (3.29 ) implies the following inequality,

ψ ′ k (t) + d 0 2 s -2 k ψ k (t) ≤ 0 ∀t : 0 < t ≤ γω(s k ).
Solving this O.D.I. and using (3.30 ), we get

ψ k (t) ≤ ψ k (0) exp - d 0 t 2s 2 k ≤ M k exp - d 0 t 2s 2 k ∀t ≤ γω(s k ). (3.34)
We derive easily the next estimate from (3.34 ) and (3.33 ) 

M k exp -d 0 γω(s k ) 2s 2 k ≥ 2d -1 0 cg(s k )γω(s k ). ( 3 
(s -1 k ) ≤ 1 α 0 ln ε 0 (p -1) 2(1 -ν 0 ) + k α 0 , (3.40) 
we deduce the following inequality from (3.39 ), (3.40 ) and (3.38 ),

(

-ε 0 ) exp k ≥ d 0 γ(p -1)ε 0 4(1 + ν 0 ) exp k + ln(2d -1 0 cγ) -(2 -α 0 ) k α 0 - (2 -α 0 ) α 0 ln ε 0 (p -1) 2(1 -ν 0 ) . (3.41) 1 
If we define γ 0 by the equality

(1 -ε 0 ) = d 0 γ(p -1)ε 0 8(1 + ν 0 ) ⇔ γ = (1 -ε 0 )(1 + ν 0 )8 d 0 (p -1)ε 0 := γ 0 , (3.42) 
then inequality (3.41 ) yields to

(2 -α 0 ) α 0 k ≥ (1 -ε 0 ) exp k + ln(2d -1 0 cγ 0 ) - (2 -α 0 ) α 0 ln ε 0 (p -1) 2(1 -ν 0 ) .
It is clear that we can find k = k(ε 0 , ν 0 ) < ∞ such that the last inequality becomes impossible for k ≥ k, contradiction. Consequently, (3.33 ) does not hold for γ = γ 0 and estimate (3.32 ) is true with γ = γ 0 .

Proof of Theorem 3.1. Comparing definition (3.11 ) of E(s, t) and definition of ψ k , we easily see that

E(s k , t) ≤ ψ k (t) ⇒ E(s k , t k ) ≤ ψ k (t k ). (3.43)
Therefore, using estimates (3.12 ), (3.32 ) and (3.43 ), we obtain 

R N |u k (x, t k )| 2 dx = E(s k , t k ) + J(s k , t k ) ≤ (d -1 0 c + c)t k g(s k ). ( 3 
) ≤ γ 0 ω(s k )M ε0 k ≤ γ 0 ω(s 0 ) exp(ε 0 exp k), (3.45) 
where γ 0 is defined by (3.42 ) and s 0 > 0 by (3.8 ). We obtain easily from (3.45 )

(cd -1 0 + c)t k g(s k ) ≤ exp ε 0 + ln(γ 0 ω(s 0 )(c + cd -1 0 )) exp k exp k . (3.46) Let k 1 be the smallest integer such that ln γ 0 ω(s 0 )(c + cd -1 0 ) ≤ ε 0 exp k 1 , (3.47) 
equivalently

k 1 = ln ε -1 0 ln γ 0 ω(s 0 )(c + cd -1 0 ) + 1,
where [a] denote integer part of a. Then it follows from (3.46 )

(cd -1 0 + c)t k g(s k ) ≤ exp(2ε 0 exp k) ∀k > k 1 . (3.48) If we fix ε 0 such that 2ε 0 ≤ e -1 , (3.49) 
then the next estimate follows from (3.44 ) and (3.45 )-(3.49 )

R N |u k (x, t k )| 2 dx ≤ M k-1 , (3.50) 
for all k ≥ max{k 0 , k, k 1 }, where k 0 is from (3.17 ), k -from (3.32 ), and k 1 from (3.47 ). Estimate (3.50 ) is the final step of the first round of computations. For the second round, we begin by definiting s k-1 analogously to s k :

g(s k-1 ) = M ε0 k-1 = exp(ε 0 exp(k -1)). ( 3 

.51)

From estimate (3.12 ), we obtain

J(s k-1 , t) + I(s k-1 , t) ≤ ctg(s k-1 ), (3.52) 
since s k-1 > s k . Analogously to ϕ k , we define the function ϕ k-1 and set

ψ k-1 (t) := R N |u k (x, t)| 2 |ϕ k-1 (x)| 2 dx.
In the same way as (3.28 ), the following O.D.I. follows 

ψ ′ k-1 (t) + d 0 s -2 k-1 ψ k-1 (t) ≤ cs -2 k-1 tg(s k-1 ) ∀t > t k . (3.53) Using (3.50 ), we derive ψ k-1 (t k ) ≤ M k-1 , t k ≤ t k . ( 3 
ψ k-1 (t k + t k-1 ) ≤ 2d -1 0 c(t k + t k-1 )g(s k-1 ), (3.55) 
where t k-1 ≤ t k-1 := γ 0 ω(s k-1 ) and γ 0 is defined in (3.42 ). It is clear that

E(s k-1 , t) ≤ ψ k-1 (t) ∀t ≥ t k , consequently E(s k-1 , t k + t k-1 ) ≤ ψ k-1 (t k + t k-1 ) ≤ 2d -1 0 c(t k + t k-1 )g(s k-1 ). (3.56)
From (3.52 ), we deduce 

J(s k-1 , t k + t k-1 ) + I(s k-1 , t k + t k-1 ) ≤ c(t k + t k-1 )g(s k-1 ). ( 3 
R N |u k (x, t k + t k-1 )| 2 dx ≤ (cd -1 0 + c)(t k + t k-1 )g(s k-1 ), (3.58) 
and we use this last estimate for performing a similar third round of computations. Iterating this process j times, we deduce

R N u k x, k-j i=k t i 2 dx ≤ (cd -1 0 + c) k-j i=k t i g(s k-j ). ( 3 

.59)

In particular, we can take j = kl, where l ∈ N satisfies

l ≥ l 0 := max{k 0 , k, k 1 }. (3.60) 
Then we obtain:

R N u k x, l i=k t i 2 dx ≤ (cd -1 0 + c) l i=k t i g(s l ). (3.61) 
Next, we have to estimate from above the sum of the t i for which there holds

l i=k t i ≤ l i=k γ 0 ω(s i ), (3.62) 
where s i is defined by g(s i ) = M ε0 i . By the same way as in (3.37 ), we obtain

s 2 i ≤ 2(1 + ν 0 )ω(s i ) (p -1)ε 0 exp(-i) ≤ 2(1 + ν 0 )ω(s 0 ) (p -1)ε 0 exp(-i) ∀i ≥ l 0 ,
where l 0 is the integer appearing in (3.60 ), and from this inequality follows

s i ≤ 2(1 + ν 0 )ω(s 0 ) (p -1)ε 0 1/2 exp - i 2 := C 1 exp - i 2 .
(3.63) Therefore, using the monotonicity of the function ω, we derive

l i=k ω(s i ) ≤ l i=k ω C 1 exp - i 2 ≤ - l-1 k ω C 1 exp - s 2 ds ≤ 2 C1 exp(-l-1 2 ) C1 exp(-k 2 ) y -1 ω(y)dy ≤ 2 C1 exp(-l-1 2 ) 0 y -1 ω(y)dy := 2Φ C 1 exp(- l -1 2 
) .

(3.64)

As a consequence of (3.62 ) and (3.64 ), we get

l i=k t i ≤ l i=∞ t i ≤ 2γ 0 Φ C 1 exp(- l -1 2 ) := T l . (3.65)
The Dini condition (3.7 ) implies that T l → 0 as l → ∞. Next, we deduce from (3.61 ) that

R N |u k (x, T l )| 2 dx ≤ C 2 T l g(s l ), C 2 = cd -1 0 + c ∀k ≥ l ≥ l 0 . (3.66)
Using the fact that s l : g(s l ) = M ε0 l and (3.66 ), we derive

R N |u k (x, T l )| 2 dx ≤ C 2 T l exp(ε 0 exp l). (3.67) Because (3.65 ) implies exp l = eC 2 1 Φ -1 T l 2γ 0 -2 , (3.68) 
we get the following inequality by plugging this last relation into (3.67 ):

R N |u k (x, T l )| 2 dx ≤ C 2 T l exp e • ε 0 C 2 1 Φ -1 T l 2γ 0 -2 ∀l ≥ l 0 .
At last, combining last estimate with (3.68 ), we obtain

R N |u k (x, t)| 2 dx ≤ C 2 t exp e 2 • ε 0 C 2 1 Φ -1 t 2γ 0 -2 ∀t > 0, which ends the proof. Example 3.4 Assume ω(s) = s 2-α0 , 0 < α 0 < 2. Then Φ(s) = s 0 s 1-α0 ds = s 2-α0 2 -α 0 ⇒ Φ -1 (s) = (2 -α) 1 2-α 0 s 1 2-α 0 .
Consequently, estimate (3.9 ) reads as follows,

R N |u k (x, t)| 2 dx ≤ C 1 t exp C 2 C 3 2 -α 0 2 2-α 0 t -2 2-α 0 ∀t > 0.

Razor blades

In this section we consider potential h(|x|) of the form e -ℓ(x) (= e -ω(|x|)/|x| 2 as in (3. Proof. By assumption (4.2 ), property (1.2 ) is fulfilled. Thus for k > 0 there exists u := u k solution of (4.1 ), (1.3 ). Moreover, for any k > 0 there exists a solution U k of (4.4 ) (see [START_REF] Véron | Singularities of Second Order Quasilinear Equations[END_REF]); the mapping k → U k is increasing and U = lim k→∞ U k exists, because of Keller-Osserman estimate. U is the minimal solution of -∆V + e -ℓ(x) V p = 0 in R N \ {0}, Since any u k is bounded from above by Ū , the local equicontinuity of the u k in QT \ {(0, 0)} implies that u ∞ satisfies lim t→0 u ∞ (x, t) = 0 for all x = 0.

Step 1: Formation of the razor blade. The Case 1: 1 < p < 1 + 2/N . For ǫ > 0, e -ℓ(|x|) ≤ e -ℓ(ǫ) for |x| ≤ ǫ. Therefore ∂ t u -∆u + e -ℓ(ǫ) |u| p-1 u ≥ 0, in B ǫ × (0, ∞). 

v ǫ = 0 in ∂B ǫ × (0, ∞) v ǫ (x, 0) = ∞δ 0 in B ǫ , (4.9)
where the initial condition is to be understood in the sense lim k→∞ kδ 0 . We put w ǫ (x, t) = ǫ 2/(p-1) e -ℓ(ǫ)/(p-1) v ǫ (ǫx, ǫ 2 t).

Then w ǫ = w is independent of ǫ and solves Therefore u(0, 1) ≥ v ǫ (0, 1) = ǫ -2/(p-1) e ℓ(ǫ)/(p-1) w(0, ǫ -2 ). (4.11)

The longtime behaviour is given in [START_REF] Gmira | Asymptotic behaviour of the solution of a semilinear parabolic equation[END_REF] where it is proved lim τ →∞ e λ1τ w(0, τ ) = κφ 1 (0).

In this formula φ 1 is the first eigenfunction of -∆ in W 1,2 0 (B 1 ), λ 1 the corresponding eigenvalue and κ > 0. Thus u(0, 1) ≥ δǫ -2/(p-1) e ℓ(ǫ)/(p-1) e λ1ǫ -2 φ 1 (0), (4.12)

for some δ > 0, if ǫ is small enough. If we assume lim

ǫ→0 2 p -1 ln ǫ -1 + ℓ(ǫ) p -1 -λ 1 ǫ -2 = ∞, (4.13) 
it implies u(0, 1) = ∞ =⇒ u(0, t) = ∞ ∀t > 0. Since U is the minimal solution of (4.5 ) verifying (4.6 ), it follows that U = Ũ .

13 )

 13 on {η : (ρb)/2 |η| < ρ}; and the same inequality holds true on {η : ρ < |η| < (ρb)/2}, up to interverting a and b. For any M > 1, we can choose b > 0 such that for any b < ρ < a, the right-hand side of (2.13 ) is positive and maximum principle applies in B ρ \ B b . Thus M Z ≥ F a in Γ. Furthermore, the previous comparison still holds if we take ρ = a, which implies α = (ab)/2. Therefore, using the explicit value of C lim sup |η|→a (a -|η|) 2/(p-1) F a (η) ≤ M 2(p + 1) min{a pβ , b pβ }(p -1) 2 1/(p-1)

  .46) By[10, Prop A1], (2.46 ) admits two linearly independent solutions defined on (0, ∞), y 1 and y 2 such that y 1 (r) = r -2γ (1 + •(1)) and y 2 (r) = r 2γ-N e -r 2 /4 (1 + •(1)), (2.47)

  2i d +1 } by v(α 2i0+1 ) = max{v(α 2i+1 ) : i ≥ 1}, v(α 2i1+1 ) max{v(α 2i+1 ) : i > i 0 }, and by induction, v(α 2i d +1 ) max{v(α 2i+1 ) : i > i d-1 }.

  .20) Integrating (3.8 ), we deduce that ω satisfies ω(s) ≥ s 2-α0 ∀s > 0. (3.21) Combining (3.21 ) and (3.20 ) we derive:

  .26) Using (3.25 ),(3.26 ) and Poincaré's inequality we derive the following differential inequality,

4 . 1 . 2 ). 3 )

 4123 6 )) and equation (1.1 ) is written under the form∂ t u -∆u + e -ℓ(|x|) |u| p-1 u = 0 in R N × (0, ∞),(4.1)where ℓ ∈ C(R N ) is positive, nonincreasing and lim r→0 ℓ(r) = ∞. Our main result is the followingTheorem Assume p > 1 and ℓ satisfies lim inf x→0 |x| 2 ℓ(x) > 0. (4Then the solution u k of the problem (1.1 ), (1.3 ), exists for any k > 0 and u ∞ := lim k→∞ is a solution of (4.1 ) in Q ∞ \ {0} × R + with the following properties,lim t→0 u ∞ (x, t) = 0 ∀x = 0 and lim x→0 u ∞ u(x, t) = ∞ ∀t > 0. (4Furthermore t → u ∞ (x,t) is increasing and lim t→∞ u ∞ (x, t) = U (x) for every x = 0 where U = lim k→∞ U k and U k solves -∆U k + e -ℓ(x) U p k = kδ 0 in D ′ (R N ). (4.4)

V

  (x)dx = ∞ ∀ǫ > 0. (4.6)If we denote by Ū the maximal solution of (4.5 ), it is classical that Ū = lim ǫ→0 Ūǫ where-∆ Ūǫ + e -ℓ(x) Ū p ǫ = 0 in R N \ Bǫ lim |x|→ǫ Ūǫ (x) = ∞.(4.7)

(4. 8 )

 8 and u ≥ v ǫ in B ǫ × (0, T ) where v ǫ solves    ∂ t v ǫ -∆v ǫ + e -ℓ(ǫ) |v ǫ | p-1 v ǫ = 0 in B ǫ × (0, ∞)

∂

  t w -∆w + |w| p-1 w = 0 in B 1 × (0, ∞) w = 0 in ∂B 1 × (0, ∞) w(x, 0) = ∞δ 0 in B 1 .

16 )

 16 (4.14) Moreover, the unit ball B 1 can be replaced by any ball B R and λ 1 by λ R = R -2 λ 1 . Therefore the sufficient condition for a Razor blade is that it exists some c > 0 such thatlim ǫ→0 ℓ(ǫ)cǫ -2 = ∞.The general case. If p > 1 is arbitrary, we consider β > 0 such that β > N (p -1) -2, and we write e -ℓ(x) = |x| β e -ℓ(x)-β ln |x| .For R > 0 small enough x → l(x) := ℓ(x) + β ln |x| is positive, increasing and satisfies the same blow-up condition (4.2 ) as ℓ. Clearly u k is bounded from below on B R × (0, ∞) by the solution ũ := ũk of     ∂ t ũ -∆ũ + |x| β e -l(x) |ũ| p-1 ũ = 0 in B R × (0, ∞) ũ = 0 in ∂B R × (0, ∞) ũ(x, 0) = kδ 0 in B R .

( 4 . 17 )

 417 Therefore, for 0 < ǫ < R, ũ∞ is bounded from below on B ǫ × (0, ∞) by the solution v ǫ of     ∂ t v ǫ -∆v ǫ + |x| β e -l(ǫ) |v ǫ | p-1 v ǫ = 0 in B ǫ × (0, ∞) v ǫ = 0 in ∂B ǫ × (0, ∞) v ǫ (x, 0) = ∞δ 0 in B ǫ .

(4. 18 )

 18 If we set w ǫ (x, t) = ǫ (2+β)/(p-1) e -ℓ(ǫ)/(p-1) v ǫ (ǫx, ǫ 2 t),then w ǫ = w is independent of ǫ and    ∂ t w -∆w + |x| β |w| p-1 w = 0 in B 1 × (0, ∞) w = 0 in ∂B 1 × (0, ∞) w(x, 0) = ∞δ 0 in B 1 .

  ǫ 0 > 0. Therefore Ũ is a solution of the stationary equation(4.4 ) in R N \ {0} with a strong singularity at 0. For k > 0 and ǫ > 0 there exists k(ǫ) > 0 such thatBǫ U k(ǫ) dx = k. Let v := v k,ǫ be the solution of ∂ t v -∆v + e -ℓ(x) |v| p-1 v = 0 in Q T , v(., 0) = U k(ǫ) χ Bǫ in R N . (4.28) Since v k,ǫ (., 0) ≤ U k(ǫ) (.), the maximum principle implies v k,ǫ ≤ U k(ǫ) . If we let ǫ → 0, v k,ǫconverges to the solution u k with initial data kδ 0 . Furthermore k(ǫ) → ∞ as ǫ → 0. Thereforeu k (x, t) ≤ U (x) ∀(x, t) ∈ Q T . (4.29) Letting successively k → ∞ and t → ∞ implies Ũ(x) ≤ U (x) ∀x ∈ R N . (4.30)

  |η| ≥ 1.

	Plugging this estimate into (2.45 ), we derive (2.43 ) from standard perturbation theory for second
	order linear differential equation [2, p. 132-133]. Finally, (2.44 ) follows directly from (2.43 ) and
	(2.45 ).
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By a straightforward adaptation of the result of [START_REF] Gmira | Asymptotic behaviour of the solution of a semilinear parabolic equation[END_REF], there still holds lim τ →∞ e λ1τ w(0, τ ) = κφ 1 (0) for some κ > 0. The remaining of the proof is the same as in case 1 < p < 1 + 2/N .

Step 2: Asymptotic behaviour. A key observation is that, for any τ > 0 and any

We give the proof in the case 1 < p < 1 + 2/N , the general case being similar. By step 1

If we fix τ and use [START_REF] Gmira | Asymptotic behaviour of the solution of a semilinear parabolic equation[END_REF], there exists ǫ 0 such that w(y, ǫ -2 τ ) ≥ 2 -1 κe -λ1ǫ -2 τ φ 1 (y) for ǫ ≤ ǫ 0 and

for some constant c > 0. If τ is small enough, the right-hand side of (4.22 ) tends to infinity as ǫ → 0, so does the left-hand side. This implies (4.20 ). For any k > 0 and any ǫ > 0, there exists

When ǫ → 0, φ m (.) → kδ 0 weakly in M(R N ). By standard approximation property, v(ǫ, k) → v 0,k which is a solution of

Step 3: Identification of the limit.