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Diffusion versus absorption in semilinear elliptic equations

We study the limit behaviour of a sequence of singular solutions of a nonlinear elliptic equation with a strongly degenerate absorption term at the boundary of the domain. We give sharp conditions on the level of degeneracy in order the pointwise singularity not to propagate along the boundary.

Introduction

Let Ω be a bounded C 2 domain in R N . If q > 1 and H ∈ C(Ω) is a positive function, it is well-known that there exists a maximal solution U to -∆u + H(x)u q = 0 in Ω.

(1.1)

Furthermore, if H(x) ≤ H(ρ(x)) where H is nonincreasing, ρ(x) = dist(x, ∂Ω) and

1 0 H(s)ds < ∞, (1.2) 
then it is proved in [START_REF] Ratto | Scalar curvature and conformal deformations of the hyperbolic space[END_REF] that U is a large solution in the sense that lim

ρ(x)→0 U (x) = ∞. (1.3) If (1.
2) holds, it is possible to construct a minimal large solution U , and in many cases U = U (see [START_REF] Ratto | Scalar curvature and conformal deformations of the hyperbolic space[END_REF], [START_REF] Véron | Large solutions of elliptic equations with strong absorption[END_REF]). Let K be the Poisson kernel in Ω and a ∈ ∂Ω. If Ω H(x)K q (x, a)ρ(x)dx < ∞ (1.4) then for any k > 0 there exists a unique weak solution u = u k,a to -∆u + H(x)u q = 0 in Ω u = kδ a on ∂Ω (1.5) 1 in the sense that u ∈ L 1 (Ω) ∩ L q ρ (Ω) and Ω (-u∆ζ + ζH(x)u q ) dx = -k ∂ζ ∂n (a) (1.6) for any ζ ∈ W 2,∞ (Ω) ∩ W 1,∞ 0 (Ω) (see [START_REF] Gmira | Boundary singularities of solutions of nonlinear elliptic equations[END_REF]). Furthermore, the mapping k → u k,a is increasing. Since u k,a ≤ U it converges to some u ∞,a which is a positive solution of (1.1) in Ω. A natural question is to identify u ∞,a . The following result is proved in [START_REF] Marcus | Boundary trace of positive solutions of nonlinear elliptic inequalities[END_REF] Theorem 0. Assume 0 < H(x) ≤ exp(-τ /ρ(x)) ∀x ∈ Ω (1.7)

for some τ > 0, then u ∞,a = U .

This result means that the pointwise boundary blow-up at a has propagated along the whole ∂Ω. In this article we give conditions which prevents this phenomenon and we prove the following.

Theorem 1.

Let Ω be a bounded domain in R N flat in the neighborhood of some boundary point a. Assume

lim inf ρ(x)→0 ρ θ (x) ln(H(x)) > -∞ (1.8) 
for some 0 < θ < 1. Then lim x→x0 u ∞,a (x) = 0 for any x 0 ∈ ∂Ω \ {a}.

This means that the singularity remains localized at the point a. This theorem is a consequence of a much more general result in which the flatness condition of H near the boundary is expressed by mean of a Dini condition. This condition allows to replace (1.8) by

H(x) ≥ h(ρ(x)) and ln(1/h(ρ(x)) ∈ L 1 (Ω) (1.9)
Contrary to the complete boundary blow-up phenomenon under assumption (1.7) which is obtained by constructing local subsolutions, the proof of Theorem1 is performed by local energy methods in the spirit of Saint-Venant principle. Similar results of propagations or confinement of singularities have been proved for parabolic equations of the type

∂ t u -∆u + exp(-ω(t)/t)u q = 0 ∈ R N + × (0, ∞) (1.10) 
(q > 1) in [START_REF] Marcus | Initial trace of positive solutions to semilinear parabolic inequalities[END_REF] and [START_REF] Shishkov | The balance between diffusion and absorption in semilinear parabolic equations[END_REF]. 

Aknowledgements

The general result

Let

Ω ⊂ R N + = {(x 1 , x ′ ) ∈ R N : x 1 > 0} be a bounded domain with C 2 boundary ∂Ω, such that Γ γ : {(0, x ′ ) : |x ′ | ≤ 2γ} ⊂ ∂Ω, (0, 2γ) × Γ γ ⊂ Ω. (2.1)
for some γ > 0. Let q > 1 and H ∈ C(Ω) be a nonnegative function satisfying (1.4). We consider the following boundary value problem:

-∆u + H(x)u q = 0 in Ω u = Kj δ on ∂Ω, (2.2) 
where δ = δ 0 is the Dirac measure at 0, { Kj } is positive increasing sequence: Kj → ∞ as j → ∞. Then for arbitrary j ∈ N problem (2.2) has a unique solution u j (x) ([2] [START_REF] Véron | Singularities of Solutions of Second Order Quasilinear Equations[END_REF]) and the sequence {u j } is increasing. Furthermore, since there exists a maximal solution U of equation (2.2) which also satisfies lim ρ(x)→0 U (x) → ∞, u j is smaller than U for any j. Our aim is to find sharp conditions on H, guaranteeing that the limit solution u ∞ = lim j→∞ u j has a boundary singularity localized at {0} and satisfies lim x→y u ∞ (x) = 0 for all y ∈ ∂Ω \ {0}. We shall assume that

H(x) ≥ h(ρ(x)) ∀x ∈ Ω, (2.3) 
for some positive nondecreasing function h that we shall write under the form

h(s) = exp - ω(s) s ∀ s ∈ (0, γ). (2.4)
Our main result is the following.

Theorem 2. Assume ω is a nondecreasing continuous function satisfying the technical condition

s γ1 ≤ ω(s) ≤ ω 0 = const < ∞ ∀ s ∈ (0, γ), 0 < γ 1 < 1, (2.5) 
and the Dini condition,

c 0 ω(s) s ds < ∞, (2.6) 
and let h and H be subjects to (2.3) and (2.4). If u j is the solution of problem (2.2), then u ∞ = lim j→∞ u j is a solution of (1.1) with a boundary singularity at 0 and which satisfies lim

x→y u(x) = 0 ∀ y ∈ ∂Ω \ {0}. (2.7) 
Since the solution u j on (2.2) is a decreasing function of the potential H, we shall assume in the sequel that H(x) = h(ρ(x)) for all x ∈ Ω, thus the equation under consideration will be -∆u + h(ρ(x))u q = 0 in Ω, (

and u j denotes the solution subject to the boundary condition u = Kj δ on ∂Ω.

(2.9)

Energy a priori estimates

The proof of Theorem 2 is based on some new variant of the local energy estimates method. For the study of the localized singular boundary regimes for the quasilinear second order parabolic equations energy method was first used in [START_REF] Shishkov | Blow-up boundary regimes for general quasilinear parabolic equations in multidimensional domains[END_REF]. An adaptation of these methods to the study of the localization principle of initial singularities of singular solutions of parabolic equations with a strong absorption and a degenerate t-dependent potential was elaborated in [START_REF] Shishkov | The balance between diffusion and absorption in semilinear parabolic equations[END_REF]. Here we propose the "elliptic" version of the above mentioned result.

Ω s := {x ∈ Ω : ρ(x) > s}, s ∈ R 1 + , Ω s := {x ∈ Ω : 0 < ρ(x) < s}, s ∈ R 1 + , Ω s (τ ) := Ω s ∩ {x = (x 1 , x ′ ) : |x ′ | > τ }, τ > 0, 0 < s < γ.
Because ∂Ω is C 2 , there exists s > 0 such that, for any 0 < s ≤ s, ∂Ω s ∩ Ω = ∂Ω s is C 2 . Notice also that we can assume that ρ(x) = x 1 for any x ∈ [0, 2γ] × Γ γ . If u is a solution of (2.8) we set

I(s) := Ωs (|∇u| 2 + h(ρ(x))|u| q+1 ) dx, s > 0.
(2.10)

Lemma 2.1. The function I satisfies

I(s) ≤ d 1 s 0 h(r) 2 q+3 dr -q+3 q-1 ∀ 0 < s ≤ s, (2.11) 
where constant d 1 does not depend u.

Proof. Multiplying equation (2.2) by u and integrating on Ω s (0 < s ≤ s,), we get

I(s) = ∂Ωs u ∂u ∂ -→ n dσ ≤ ∂Ωs |∇u| 2 dσ 1/2 ∂Ωs |u| 2 dσ 1/2 .
(2.12) By Hölder's inequality,

∂Ωs |u| 2 dx 1/2 ≤ (mes ∂Ω s ) q-1 2(q+1) h(s) -1 q+1 ∂Ωs h(ρ(x))|u| q+1 dσ 1 q+1
. (2.13) Substituting estimate (2.13) in (2.12) and using Young inequality we obtain

I(s) ≤ c 1 h(s) -1 q+1 ∂Ωs (|∇u| 2 + h(ρ(x))|u| q+1 ) dσ 1-q-1 2(q+1)
.

(2.14)

Because ∂Ω is C 2 , dI(s) ds = - ∂Ωs (|∇u| 2 + h(ρ(x))|u| q+1 ) dσ. (2.15)
Substituting this equality in (2.14) we derive that I satisfies the differential inequality

I(s) ≤ c 1 h(s) -1 q+1 (-I ′ (s)) 1-q-1 2(q+2) .
Solving this inequality we obtain estimate (2.11).

Let ũj , j = 1, 2, . . ., be the solution of equation (2.8) subject to the regularized boundary condition: ũj = Kj δ j on ∂Ω, (2.16)

where the δ j are C 1 -smooth functions such that:

       supp δ j ⊂ {x ′ ⊂ R N -1 : |x ′ | < j -1 }, 0 ≤ δ j (x ′ ) ≤ 2j N -1 , δ j q+1 Lq+1(R N -1 ) ≤ 2j q(N -1) , ∇ x ′ δ j 2 L2(R N -1 ) ≤ 2j N +1 , δ j L1(R N -1 ) = 1 and δ j (x ′ ) ⇀ δ(x) as j → ∞.
(2.17)

The next lemma provides a global energy estimate on ũj .

Lemma 2.2. The solution ũj of problem (2.8), (2.16) satisfies

Ω (|∇ũ j | 2 + h(ρ(x))|ũ j | q+1 ) dx ≤ K j , (2.18 
)

with K j ≤ c( Kq+1 j γj q(N -1) + K2 j γj N +1 + K2 j γ -1 j N -1
), where the constant c > 0 does not depend on j.

Proof. Let us introduce a C 2 cut-off function ζ such that ζ(r) = 1 if r ≤ 0, ζ(r) = 0 if r ≥ γ (γ is from condition (2.1)). Let us denote for simplicity ũj = u. If we multiply (2.2) by v j (x) = u(x) -Kj δ j (x ′ )ζ(x 1 )
and integrate on Ω, we obtain for all j > j 0 = γ -1 , since v j (x) = 0 on ∂Ω,

Ω (|∇u| 2 + h(ρ(x))|u| q+1 ) dx = Ω Kj (∇u, ∇(δ j (x ′ )ζ(x 1 ))) dx + Ω h(ρ(x))u q Kj δ j (x ′ )ζ(x 1 ) dx := A 1 + A 2 . (2.19)
By Young's inequality and properties (2.17), we derive 1) .

|A 1 | ≤ 1 2 Ω |∇u| 2 dx + c 1 K2 j (γj N +1 + γ -1 j N -1 ), |A 2 | ≤ 1 2 Ω h(ρ(x))u q+1 dx + c 1 Kq+1 j γj q(N -
(2.20) Estimate (2.18) follows from (2.19), (2.20)with

K j = g( Kj ) := 2c 1 ( Kq+1 j γj q(N -1) + K2 j γj N +1 + K2 j γ -1 j N -1 ). (2.21)
We introduce a family of cut-off functions ζ s with

   ζ s (r) = 1 if r ≤ s, ζ s (r) = 0 if r ≥ 2s d dr ζ s (r) ≤ c 2 s -1 ∀ s > 0, (2.22)
and define the additional family of energy functions, for any solution of (2.8),

J(s, τ ) := Ω 2s (τ ) (|∇u| 2 + h(ρ(x))|u| q+1 )ζ s (ρ(x)) dx, J(s) := J(s, 0). (2.23)
We shall denote by I j (s) and J j (s, τ ) the energy functions I(s) and J(s, τ ) associated with the solution ũj (x).

Lemma 2.3. The following differential inequality holds:

J j (s, τ ) ≤ d 2 s - d dτ J j (s, τ ) + d 3 F (I j (s), h(s), s) ∀ τ ∈ (j -1 , 2γ), ∀ s ∈ (0, γ),
(2.24) where the constants d 2 , d 3 do not depend on j and F (I, h, s) is defined by

F (I, h, s) := I 1-q-1 2(q+1) s q+3 2(q+1) h 1 q+1 + I 1-q-1 q+1 s 2 q+1 h 2 q+1
.

(2.25)

Proof. We consider (2.2) satisfied by u = ũj , multiply the equation by ũj ζ s (ρ(x)) and integrate on the domain Ω 2s (τ ), 2γ > τ > j -1 . As result we have the following

J j (s, τ ) = Ω 2s (τ ) (|∇u| 2 + h(ρ(x))|u| q+1 )ζ s (ρ(x)) dx = Γ 2s (τ ) u ∂u ∂n ζ s (ρ(x)) dσ - Ω 2s (τ )\Ω s (τ )
(∇u, ∇ζ s (ρ(x)))u dx

:= R 1 + R 2 , (2.26) where Γ 2s (τ ) = {ρ(x) < 2s, |x ′ | = τ }. Let us estimate the terms R 1 , R 2 from above. |R 1 | ≤ Γ 2s (τ ) |∇u| 2 ζ s dσ 1/2 Γ 2s (τ ) u 2 ζ s dσ 1/2 := R (1) 1 1/2 R (2) 1 1/2 . (2.27) We decompose R (2) 
1 as follows

R (2) 1 = Γ 2s (τ )\Γ s (τ ) u 2 ζ s dσ + Γ s (τ ) u 2 ζ s dσ := R (2,1) 1 + R (2,2) 1
.

In order to estimate R

(2,1) 1

, we use a standard trace interpolation inequality (see e.g. [START_REF] Gilbarg | Partial Differential Equations of Second Order[END_REF]), and get

|x ′ |=τ u(x 1 , x ′ ) 2 dσ ′ ≤ c 1 τ <|x ′ |<2γ |∇ x ′ u(x 1 , x ′ )| 2 dx ′ 1/2 τ <|x ′ |<2γ u(x 1 , x ′ ) 2 dx ′ 1/2 + c 2 τ <|x ′ |<2γ u(x 1 , x ′ ) 2 dx ′ ∀ τ < γ, ∀ x 1 ∈ (s, 2s).
Integrating the last inequality in x 1 over (s, 2s), we obtain

R (2,1) 1 ≤ c 1 Ω 2s (τ )\Ω s (τ ) |∇u| 2 dx 1/2 Ω 2s (τ )\Ω s (τ ) u 2 dx 1/2 + c 2 s -1 Ω 2s (τ )\Ω s (τ ) u 2 dx := c 1 R (2,1,1) 1 1/2 R (2,1,2) 1 1/2 + c 2 R (2,1 ,2) 1 . 
(2.28) By Hölder's inequality,

R (2,1,2) 1 ≤ d 4 Ω 2s (τ )\Ω s (τ ) u q+1 dx 2 q+1 mes(Ω 2s (τ ) \ Ω s (τ )) q-1 q+1 ≤ d 5 s q-1 q+1 h(s) -2 q+1 Ω 2s (τ )\Ω s (τ ) h(ρ(x))|u| q+1 dx 2 q+1
.

(2.29) Therefore it follows from (2.28) and (2.29),

R (2,1) 1 ≤ d 6 s q-1 q+1 h(s) -2 q+1 Ω 2s (τ )\Ω s (τ ) h(ρ(x))|u| q+1 dx 2 q+1 +d 7 s q-1 2(q+1) h(s) -1 q+1 Ω 2s (τ )\Ω s (τ ) |∇u| 2 dx 1/2 Ω 2s (τ )\Ω s (τ ) h(ρ(x))|u| q+1 dx 1 q+1 ≤ d 8 s q-1 2(q+1) h(s) -1 q+1 R1-q-1 2(q+1) + d 8 s -q-1 q+1 h(s) -2 q+1 R1-q-1 q+1 , where R = Ω 2s (τ )\Ω s (τ ) (|∇u| 2 + h(ρ(x))|u| q+1 ) dx.
Using the definition of I j (s) we derive

R (2,1) 1 ≤ d 8 s q-1 2(q+1) h(s) -1 q+1 (I j (s) -I j (2s)) 1-q-1 2(q+1) + d 8 s -q-1 q+1 h(s) -2 q+1 (I j (s) -I j (2s)) 1-q-1 q+1 . (2.30) Since u(0, x ′ ) = u j (0, x ′ ) = 0 ∀ x ′ : j -1 < |x ′ | < γ, we derive by Poincaré's inequality, R (2,2) 1 = Γ s (τ ) u 2 dσ ≤ d 9 s 2 Γ s (τ ) ∂u ∂x 1 2 dσ ≤ d 9 s 2 Γ s (τ )
|∇u| 2 dσ.

(2.31) Plugging (2.30) and (2.31) into (2.27) and using Young's inequality leads to

|R 1 | ≤ d 10 Γ 2s (τ ) |∇u| 2 ζ s dσ 1/2 s q-1 2(q+1) h(s) -1 q+1 (I j (s) -I j (2s)) 1-q-1 2(q+1) + s q-1 q+1 h(s) -2 q+1 (I j (s) -I j (2s)) 1-q-1 q+1 + s 2 Γ s (τ ) |∇u| 2 dσ 1/2 ≤ d 11 s Γ 2s (τ ) |∇u| 2 ζ s dσ + s -1+ q-1 2(q+1) h(s) -1 q+1 (I j (s) -I j (2s)) 1-q-1 2(q+1) + s -1+ q-1 q+1 h(s) -2 q+1 (I j (s) -I j (2s)) 1-q-1 q+1 . (2.32)
The last terms to estimate is R 2 . By Hölder's inequality and (2.22), we have,

|R 2 | ≤ cs -1 Ω 2s (τ )\Ω s (τ ) |∇u| 2 dx 1/2 Ω 2s (τ )\Ω s (τ ) u 2 dx 1/2 := cs -1 (R (1) 
2

) 1/2 R (2) 2 1/2 .
(2.33) From (2.28), the term R

(2)

2 coincides with R (2,1,2) 1 ; thus R (2) 2 satisfies R (2) 2 ≤ d 5 s q-1 q+1 h(s) -2 q+1 Ω 2s (τ )\Ω s (τ ) h(ρ(x))|u| q+1 dx 2 q+1
.

(2.34) using (2.34) and Young's inequality, we derive from (2.33),

|R 2 | ≤ c 1 s -(1-q-1 2(q+1) ) h(s) -1 q+1 Ω 2s (τ )\Ω s (τ ) (|∇u| 2 + h(ρ(x))|u| q+1 ) dx 1-q-1 2(q+1)
.

(2.35) Thus, due to estimates (2.32) and (2.35), it follows from (2.26),

J j (s, τ ) ≤ cs Γ 2s (τ ) |∇u| 2 ζ s dσ + c 1 s -q+3 2(q+1) h(s) -1 q+1 (I j (s) -I j (2s)) 1-q-1 2(q+1) + c 2 s -2 q+1 h(s) -2 q+1 (I j (s) -I j (2s)) 1-q-1 q+1 . (2.36)
It is easy to see that

Γ 2s (τ ) (|∇u j | 2 + h(ρ(x))|u j | q+1 )ζ s dσ ≤ -c d dτ J j (s, τ ), (2.37) 
where c does not depend on τ, s, j. Substituting (2.37) into (2.36) we obtain (2.24).

In order to estimate from above the function F (I j (s), h(s), s) in the right-hand side of (2.24), we first prove the following technical result. Then the following inequality holds:

s 0 exp - aω(t) t dt ≥ s 2 aω(s)(1 + 2 a µ(s))
exp -aω(s) s .

(2.38)

Proof. Since µ(0) = 0, an integration by parts yields to

s 0 t exp - aω(t) t dt = s 2 2 exp -aω(s) a + a 2 s 0 exp - aω(t) t (tω ′ (t)-ω(t)) dt.
Due to the monotonicity of ω(t), inequality (2.38) follows from the last relation.

Using Lemma 2.4 and identity (2.4), we obtain

s 0 h(r) 2 q+3 dr ≥ c 0 s 2 ω(s) exp - 2 q + 3 ω(s) s , (2.39) 
where c 0 > 0 does not depend on j, s, and this transforms (2.11) into

I j (s) ≤ d 1 c q+3 q+1 0 ω(s) q+3 q-1 s 2(q+3) q-1 exp 2 (q -1) ω(s) s := C ω(s) q+3 q-1 s 2(q+3) q-1 h(s) -2 q-1 . (2.40)
Substituting this estimate into (2.25) we derive

F (I j (s), h(s), s) ≤ C 1 h 0 (s) -2 q-1 ω(s) (q+3)(q+3) 2(q-1)(q+1) s (q+3)(3q+5) 2(q+1)(q-1) + ω(s) 2(q+3) (q+1)(q-1) s 2(3q+5) (q+1)(q-1) ∀ s > 0, ∀ j ∈ N.
(2.41) In turn, (2.4), assumption (2.5) jointly with (2.41) yields to

F (I j (s), h(s), s) ≤ C 2 (δ)h(s) -2 q-1 -δ ∀ s > 0, ∀ δ > 0, (2.42)
where C 2 (δ) → ∞ as δ → 0. Plugging this inequality into (2.24), we finally obtain

J j (s, τ ) ≤ d 2 s - d dτ J j (s, τ ) + d 3 C 2 (δ)h(s) -2 q-1 -δ ∀ δ > 0, ∀ s > 0, ∀ τ ∈ (j -1 , 2γ).
(2.43)

Proof of Theorem 2

Our proof will be based on the careful analysis of the vanishing properties of the energy functions J j (s, τ ), satisfying inequality (2.43). Notice that J j (s, τ ) satisfies the following initial condition, which follows from (2.18), (2.21)

J j (s, j -1 ) ≤ K j = g( Kj , j) ∀ j ∈ N, (2.44) 
Let us fix j large enough. If 0 < δ 0 < 1, we shall define s j by the identity

F 0 (s j ) := d 3 C 2 (δ 0 )h(s j ) -2 q-1 -δ0 = K ε j , (2.45) 
where 0 < ε < 1 will be made explicit later on. Then it follows from (2.43), (2.44) that J j (s j , τ ) satisfies the following differential inequalities

J j (s j , τ ) ≤ d 2 s j - d dτ J j (s j , τ ) + K ε j ∀ τ > j -1 , J j (s j , j -1 ) ≤ K j .
(2.46)

Let us define now the value τ j by the identity

J j (s j , j -1 + τ j ) = 2K ε j , (2.47) 
where ε has been introduced in (2.45). In order to find an upper estimate for τ j , we observe that

J j (s j , τ ) > 2K ε j ∀ τ ∈ (j -1 , j -1 + τ j ).
Therefore, (2.46) reads as

J j (s j , τ ) ≤ 2d 2 s j - dJ j (s j , τ ) dτ ∀ τ ∈ (j -1 , j -1 + τ j ). (2.48) 
Solving this differential inequality and taking into account the initial condition into (2.46), we obtain

J j (s j , τ ) ≤ K j exp - τ -j -1 2d 2 s j ∀ τ ∈ (j -1 , j -1 + τ j ).
(2.49) By (2.47) and (2.49), 2K ε j ≤ K j exp -τ j 2d 2 s j .

Consequently, τ j satisfies the following upper bound:

τ j ≤ 2d 2 s j (-ln 2 + (1 -ε) ln K j ). (2.50) 
Next, we notice that

Ω(j -1 +τj) (|∇u j | 2 + h(ρ(s))|u j | q+1 ) dx ≤ I j (s j ) + J j (s j , j -1 + τ j ). (2.51) 
with Ω(τ ) := {x : |x ′ | > τ }. From estimate (2.40), it follows

I j (s j ) ≤ C 3 (δ 0 )h(s j ) -2 q-1 -δ0 , (2.52) 
where δ 0 has been introduced in (2.45) and C 3 (δ 0 ) depends on various parameters of the problem, but not on j. Using now the definition (2.45) of s j and (2.47) of τ j , we deduce, from (2.51) and (2.52),

Ω(j -1 +τj ) (|∇u j | 2 + h(ρ(x))|u j | q+1 ) dx ≤ (2 + C 3 (δ 0 ) d 3 C 2 (δ 0 ) )K ε j . (2.53) 
Because of (2.21), we can fix the sequence { Ki } such that

K i = e e i , i = 1, 2, . . . , j, . . . . (2.54) 
Actually, Ki ≈ e e i /(q-1) . We fix ε (see definition (2.45) in order the next inequality be satisfied for j large enough,

(2 + C 4 )K ε j ≤ K j-1 , C 4 := C 3 (δ 0 ) d 3 C 2 (δ 0 ) . (2.55) 
Because of (2.54), (2.55) is equivalent to

ln(2 + C 4 ) + ε exp j ≤ e -1 exp j, (2.56) 
and it is sufficient to take ε = (2e) -1 , in order condition (2.56) be satisfied for all j ≥ j 0 = 1 + ln 2 + ln ln(2 + C 4 ). With such a choice of ǫ and K j , s j is uniquely defined by identity (2.45). Therefore, from (2.53) and (2.55), it follows

Ω(j -1 +τj ) (|∇u j | 2 + h(ρ(x))u q+1 j ) dx ≤ K j-1 , (2.57) 
which will be the starting point for the second round of computations. From the first round, we can obtain sharper upper estimates of τ j , s j defined by (2.45), (2.47). First, (2.45) gives,

d 3 C 2 exp 2 q -1 + δ 0 ω(s j ) s j = K ε j =⇒ ε 2 ln K j ≤ 2 q -1 + δ 0 ω(s j ) s j ≤ ε ln K j ∀ j > j ′ = j ′ (C 2 ). (2.58)
From (2.58), (2.5) and (2.54) we obtain,

s j ≤ 2 δ 0 + 2 q -1 ε -1 (ln K j ) -1 ω(s j ) ≤ 2 δ 0 + 2 q -1 ω 0 exp(-j), (2.59) 
and, by the monotonicity of ω(s), ω(s j ) ≤ ω(C 5 exp(-j)), C 5 = 2 δ 0 + 2 q -1 ω 0 .

(2.60)

As for τ j , we deduce from (2.50) and (2.58):

τ j ≤ 2d 2 (1 -ε)s j ln K j ≤ C 6 ω(s j ), C 6 := 4d 2 (1 -ε)(δ 0 + 2 q-1 ) ε .
(2.61) Substituting (2.60) into (2.61) we get:

τ j ≤ C 6 ω(C 5 exp(-j)).
(2.62)

Thus we can initiate the second circle of computations. We define s j-1 similarly to (2.45) by the identity

F 0 (s j-1 ) = d 3 C 2 (δ 0 )h(s j-1 ) -2 q-1 -δ0 = K ε j-1 , (2.63) 
with ε = 1/2e). Then J j (s j-1 , τ ) satisfies, instead of (2.46), the following differential inequality,

J j (s j-1 , τ ) ≤ d 2 s j-1 - d dτ J j (s j-1 , τ ) + K ε j-1 ∀ τ > τ j , J j (s j-1 , j -1 + τ j ) ≤ K j-1 .
(2.64)

Observe that the initial value condition follows from estimate (2.57) resulting first round of computations. Next we define τ j-1 by the following analog of (2.47) J j (s j-1 , j -1 + τ j + τ j-1 ) = 2K ε j-1 .

(2.65) Thus, we obtain the following analog of (2.48):

J j (s j-1 , τ ) ≤ 2d 2 s j-1 - d dτ J j (s j-1 , τ ) ∀ τ ∈ (j -1 + τ j , j -1 + τ j + τ j-1 ). (2.66)
Solving this inequality with the initial condition of (2.64), we obtain, in the same way as for (2.49),

J j (s j-1 , τ ) ≤ K j-1 exp - τ -τ j -j -1 2d 2 s j-1 ∀ τ ∈ (j -1 + τ j , j -1 + τ j + τ j-1
). (2.67) Definition (2.65) of τ j-1 and estimate (2.67) lead to the following estimate of τ j-1

τ j-1 ≤ 2d 2 s j-1 (-ln 2 + (1 -ε) ln K j-1 ), (2.68) 
and finally, to the estimates on s j-1 and τ j-1 , (i) s j-1 ≤ C 5 exp(-(j -1))

(ii) τ j-1 ≤ C 6 ω(C 5 exp(-j + 1)).

(2.69)

The final energy estimate, similar to (2.57) with index j -1 follows, Ω(j -1 +τj+τj-1)

(|∇u j | 2 + h(ρ(x))|u j | q+1 ) dx ≤ K j-2 .
(2.70)

The described circles of computations can be repeated i times with a unique restriction on i already observed, namely j -i ≥ j 0 = 1 + ln 2 + ln ln(2 + C 4 ). Thus, performing (j -j 0 ) times our computation, we obtain at end

Ω(j -1 + j i=j 0 τi) (|∇u j | 2 h(ρ(x))|u j | q+1 ) dx ≤ K j0 . ( 2 

.71)

The key point in our construction is to prove that j -1 + j i=j0 τ i remains uniformly bounded. It is clear from (2.69)-(ii) that, because of the monotonicity of ω,

j i=j0 τ i ≤ C 6 j i=j0 ω(C 5 exp(-i)) ≤ C 6 j j0-1 ω(C 5 exp(-s)) ds ≤ C 6 C -1 5 C5 exp(-j0+1) C5 exp(-j) r -1 ω(r) dr ≤ C 7 ∀ j ∈ N.
(2.72)

The last estimate follows from condition (2.6). Moreover, from (2.6) follows that C 7 = C 7 (j 0 ) → 0 as j 0 → ∞. Therefore for arbitrary small ν > 0 we can find j 0 = j 0 (ν) such that

Ω(ν) (|∇u j | 2 + h(ρ(x))|u j | q+1 ) dx ≤ K j0(ν)
∀ j > j 0 .

(2.73)

Validity of the statement of Theorem 2 follows from (2.73) by standard way. First of all (2.73) yields

u j H 1 (Ω(ν),∂Ω(ν)∩Ω) ≤ c = c(ν) ∀ j ∈ N, (2.74) 
where for arbitrary set S ⊂ ∂Ω by H 1 (Ω, S) we denote, as usually, the closure in the norm H 1 (Ω) of the set C 1 (Ω, S) := {f ∈ C 1 (Ω) : f | S = 0}. Therefore for arbitrary ν > 0 limiting solution u(x) is weak limit of some subsequence {u i (x)} in the space H 1 (Ω(ν), ∂Ω(ν) ∩ Ω). As result:

u ∈ H 1 (ω(ν), ∂Ω(ν) ∩ Ω) ∀ ν > 0, (2.75) 
thus, u satisfies boundary condition (2.7) in the weak sense. Next, since h(ρ(x)) ≥ 0, each function u j (x) is subsolution of Laplace equation:

∆u j ≥ 0 ∀ x ∈ Ω, ∀ j ∈ N.
(2.76) Therefore due to well known inner a priory estimate (see, for example [START_REF] Gilbarg | Partial Differential Equations of Second Order[END_REF]):

( sup

Ω(2ν) u j ) 2 ≤ c 1 (ν) Ω(ν) |u j (x)| 2 dx ∀ ν > 0, ∀ j ∈ N, (2.77) 
where c 1 = c 1 (ν) does not depend on j ∈ N. From (2.73) and (2.77) follows:

sup

Ω(ν) u j ≤ c 2 = c 2 (ν) ∀ j ∈ N, ∀ ν > 0.
(2.78)

Next, function u j (x) is the solution of the boundary problem: ∆u j = f j (x) := h(ρ(x))u j (x) q in Ω(ν) (2.79) u j | ∂Ω(ν)∩Ω = 0, ∀ j > j 0 (ν), (2.80) where, due to (2.78),

f j Lp(Ω(ν)) ≤ c 3 (ν) ∀ j ∈ N, ∀ p > 1.
(2.81) Therefore due to classical local L p a priory estimate (see, for example, [START_REF] Gilbarg | Partial Differential Equations of Second Order[END_REF]), -∆u + H(x)u q = 0 in Ω ′ u = kδ a on ∂Ω ′ (2.85) satisfy u ∞,a := lim k→∞ u k,a a solution in Ω ′ ? has u ∞,a zero limit on ∂Ω ′ \ {a} ?

u j W
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Lemma 2 . 4 .

 24 Let a > 0 and ω(s) be a nonnegative nondecreasing function satisfying the following condition: µ(s) := s ω(s) → 0 as s → 0.

Problem 1 .

 1 Although the construction should be much more technical, it looks clear that local flatness condition on ∂Ω near a must be of a technical aspect. Problem 2. A related problem is the following. Let k > 0, r > 0 and u = u k be the solution of -∆u + H(x)u q = 0 in Ω u = kχ Γr (a) on ∂Ω (2.84) where a ∈ ∂Ω and Γ r (a) = B r (a) ∩ ∂Ω. Are conditions (2.5)(2.6) sufficient in order to garantee that u ∞ := lim k→∞ u k satisfies lim x→y u ∞ (y) = 0, for all y ∈ Ω \ Γ r (a). Problem 3. Assume Ω and Ω ′ are two bounded C 2 domains such that ∂Ω and ∂Ω ′ are tangent at some point a. Assume also that Ω ⊂ Ω ′ ∪ {a} and H ∈ C(Ω ′ ) is positive in Ω, vanishes on Ω ′ \ Ω. Under what condition on H and the tangency order of ∂Ω and ∂Ω ′ , is the solution u = u k,a of

  2,p (Ω(2ν)) ≤ c 4 (ν)∀ j ∈ N, ∀ p > 1,(2.82)Finally, it follows from to (2.75) and (2.83), that u satisfies the boundary condition (2.7) in a strong sense.

	as consequence,		
	u ∈ C 1,λ (Ω(ν))	∀ ν > 0.	(2.83)