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We study the existence and the properties of the reduced measures for the parabolic equations ∂tu -∆u + g(u) = 0 in Ω × (0, ∞) subject to the conditions (P ): u = 0 on ∂Ω × (0, ∞), u(x, 0) = µ and (P ′ ): u = µ ′ on ∂Ω × (0, ∞), u(x, 0) = 0 where µ and µ ′ are positive Radon measures and g a continuous nondecreasing function.

Introduction

Let Ω be a bounded domain of R N , N ≥ 1 and g a nondecreasing continuous function defined on R and vanishing on (-∞, 0]. This article is concerned with the following question: Given a positive Radon measure ν on Ω, does it exist a largest Radon measure µ below it for which the initial value problem

       ∂ t u -∆u + g(u) = 0 in Q T := Ω × (0, T ) u = 0 in ∂ ℓ Q T := ∂Ω × (0, T ) u(., 0) = µ in Ω.
(1.1) admits a solution? Whenever µ exists, it is called the reduced measure associated to ν. A positive Radon measure for which (1.1 ) is solvable is called a good measure. This type of problems is now well understood for nonlinear elliptic equations. This relaxation phenomenon appeared in the measure framework in the paper [START_REF] Vazquez | On a semilinear equation in R 2 involving bounded measures[END_REF] by Vazquez dealing with solving the problem -∆u + e au = µ in R 2 .

(1.2)

He proved that the reduced measures is the sum of the non-atomic part of µ and the atomic part where the coefficients of the Dirac masses at any atom a are truncated from above at 1 the value 2π/a. Recently the general relaxation problems for the nonlinear elliptic equations

-∆u + g(u) = µ in Ω ⊂ R N u = 0 in ∂Ω (1.3) and -∆u + g(u) = 0 in Ω ⊂ R N u = µ in ∂Ω (1.4)
are studied respectively by Brezis, Marcus and Ponce [START_REF] Brézis | Ponce Nonlinear elliptic equations with measures revisited[END_REF] and Brezis and Ponce [START_REF] Brézis | Ponce Reduced measures on the boundary[END_REF]. They prove the existence of a reduced measure µ * and study its properties, in particular its continuity properties with respect to the capacity W 1,2 for problem (1.3 ), or the (N-1)dimensional Hausdorff measure for problem (1.4 ).

In this article we study the initial value problem in this perspective and we prove that for any positive bounded Radon measure µ in Ω there exists a largest measure µ * , smaller than µ such that (1.1 ) is solvable. We study the set of good measures relative to g and prove that any good measure is absolutely continuous with respect to the Hausdorff measure H N . In a similar way we study the Cauchy-Dirichlet problem

       ∂ t u -∆u + g(u) = 0 in Q T := Ω × (0, T ) u = µ in ∂ ℓ Q T := ∂Ω × (0, T )
u(., 0) = 0 in Ω, (1.5) and we prove that the reduced measure is absolutely continuous with respect to the same Hausdorff measure H N .

The proof of many results here follows the ideas borrowed from the theory of reduced measures for elliptic equations as it is developed in [START_REF] Brézis | Ponce Nonlinear elliptic equations with measures revisited[END_REF] and [START_REF] Brézis | Ponce Reduced measures on the boundary[END_REF]. We choose to expose them for the sake of completeness.

Initial value problem

In this section Ω is a bounded domain in R N and ρ(x) = dist (x, ∂Ω). We denote by M(Ω) the set of Radon measures in Ω and, for α ∈ R, by M α (Ω) the subset of µ ∈ M(Ω) satisfying

Ω ρ α (x) d |µ| < ∞.
Thus M α + (Ω) is the positive cone and M 0 + (Ω) the set of bounded measures. For q ∈ [1, ∞), we denote by L q ρ α (Ω) the corresponding weighted Lebesgue spaces. For 0 ≤ τ < σ ≤ T we set Q τ,σ := Ω × (τ, σ), Q σ := Ω × (0, σ) and denote by ∂ ℓ Q τ,σ := ∂Ω × (τ, σ] and ∂ ℓ Q σ := ∂Ω × (0, σ] the lateral boundary of these sets. Throughout this paper we make the following assumption on g g is a nondecreasing continuous function defined on R and vanishing on (-∞, 0]. (2.1)

Definition 2.1 Let µ ∈ M 1 + (Ω). A function u ∈ L 1 (Q T ) is a weak solution of (1.1 ) in Q T if g(u) ∈ L 1 ρ (Q T ) and QT (-u∂ t ζ -u∆ζ + ζ g(u)) dx = Ω ζ dµ, (2.2 
)

for all ζ ∈ C 2,1 ℓ,0 (Q T ), which is the space of functions in C 2,1 (Q T ) which vanish on ∂Ω × [0, T ] ∪ Ω × {T }.
We define in a similar way a weak subsolution (resp. supersolution) of (1.1 ) by imposing the same integrability conditions on u and g(u) and

QT (-u∂ t ζ -u∆ζ + ζ g(u)) dx dt ≤ Ω ζ dµ, (2.3) resp. 
QT

(-u∂ t ζ -u∆ζ + ζ g(u)) dx dt ≥ Ω ζ dµ, (2.4) 
for all positive test functions in the same space. More generally we define a subsolution (resp. supersolution) of equation

∂ t u -∆u + g(u) = 0 in Q T (2.5) as a function u ∈ L 1 loc (Q T ) such that g(u) ∈ L 1 loc (Q T ) and QT (-u∂ t ζ -u∆ζ + ζ g(u)) dx dt ≤ 0, (2.6) resp. 
QT

(-u∂ t ζ -u∆ζ + ζ g(u)) dx dt ≥ 0, (2.7) 
for all positive test functions ζ in the space C 2,1 0 (Q T ).

If a solution of (1.1 ) exists, it is unique, and we shall denote it by u µ . It is not true that problem (1.1 ) can be solved for any positive bounded measure µ although it is the case if µ is absolutely continuous with respect to the N-dimensional Hausdorff measure H N . Definition 2.2 A measure for which the problem can be solved is called a good measure relative to g. The subset of M 1 + (Ω) of good measures relative to g is denoted by G Ω (g). If µ ∈ M 1 + (Ω) belongs to G Ω (g) for any g satisfying (2.1 ), is called a universally good measure. There are many sufficient conditions which insure the solvability of (1.1 ), for example

QT g(E[µ])ρ(x)dx dt < ∞, (2.8) 
where

E[µ] is the heat potential of µ in Ω, that is the solution v of        ∂ t v -∆v = 0 in Q T v = 0 in ∂ ℓ Q T v(., 0) = µ in Ω.
(2.9)

We recall the parabolic Kato inequality

Lemma 2.3 Let W be a domain in Ω × R, v ∈ L 1 loc (W ) and h ∈ L 1 loc (W ) such that -∂ t v + ∆v ≥ h in D ′ (W ).
(2.10)

Then -∂ t v + + ∆v + ≥ hχ [v≥0] in D ′ (W ). (2.11)
Proof. Let {σ j } be a regularizing sequence with compact support in the N + 1 ball Bǫj (0) (ǫ j → 0 as j → ∞), and

v j = v * σ j . If V ⊂ W is such that dist (V, W c ) > 0, v j is defined in V whenever ǫ j < dist (V, W c ). Then -∂ t v j + ∆v j ≥ h j = h * σ j in D ′ (V ), (2.12) 
and everywhere in V . For δ > 0 let

j δ (r) =            0 if r < -δ (r + δ) 2 2δ if -δ ≤ r ≤ 0 r + δ 2 if r > 0. Since -∂ t j δ (v j ) + ∆j δ (v j ) = j ′ δ (v j ) (-∂ t v j + ∆v j ) + j ′′ δ (v j )|∇v j | 2 ≥ j ′ δ (v j )h j , and φ ∈ C ∞ 0 (W ) is nonnegative and has compact support in V , it follows that W j δ (v j ) (∂ t φ + ∆φ) dx dt ≥ W j ′ δ (v j )h j φ dx dt.
Letting j → ∞, and using the fact that j δ and j ′ δ are continuous and, for some subsequence still denoted {ǫ j }, {(v ǫj , h ǫj )} converges to (v, h) in L 1 loc and almost everywhere in W , we derive from the Lebesgue theorem

W j δ (v) (∂ t φ + ∆φ) dx dt ≥ W j ′ δ (v)hφ dx dt. Now j δ (v) converges to v + in L 1 loc and j ′ δ (v(x, t)) converges to 0 if v(x, t) < 0 and to 1 if v(x, t) ≥ 0, i.e. to χ [v≥0]
. Using again the Lebesgue theorem, we obtain

W v + (∂ t φ + ∆φ) dx dt ≥ W χ [v≥0] hφ dx dt, which is (2.11 ).
Remark. In an equivalent way, we can state Lemma 2.3 as follows:

If v ∈ L 1 loc (W ) and h ∈ L 1 loc (W ) are such that ∂ t v -∆v ≤ h in D ′ (W ).
(2.13) and, with S = Ω \ R,

Then ∂ t v + -∆v + ≤ hχ [v≥0] in D ′ (W ). ( 2 
ess lim t→0 Ω u(., t)φ dx = ∞ ∀φ ∈ C 0 (Ω), φ ≥ 0, φ > 0 somewhere on S.
(2.17)

We shall denote ν = tr Ω (u).

The trace operator is order preserving. The proof of the following result is straightforward.

Proposition 2.5 Let u and ũ in L 1 loc (Q T ). 1-Suppose T r Ω (u) = µ and T r Ω (ũ) = μ. Then ũ ≤ u =⇒ μ ≤ µ.
(2.18)

2-Suppose tr Ω (u) = ν ≈ (S, µ) and tr Ω (ũ) = ν ≈ ( S, μ). Then ũ ≤ u =⇒ S ⊂ S and μS c ≤ µ S c .

(2.19)

The next classical results characterize the nonnegative supersolutions or subsolutions. We give their proof for the sake of completeness.

Proposition 2.6 Let u ∈ L 1 (Q T ) be a nonnegative supersolution of (2.5 ) in Q T such that g(u) ∈ L 1 (Q T ). Then there exists a positive Radon measure µ such that µ = T r Ω (u).

Proof. If 0 < σ < τ < T are two Lebesgue points of t → u(., t) L 1 and φ ∈ C 2 0 (Ω), φ ≥ 0, we set Q σ,τ = Ω × (σ, τ ), take ζ(x, t) = χ [σ,τ ] (t)φ(x) (by approximations) and derive from the definition that

Ω u(., τ )φ dx - Ω u(., σ)φ dx + Qσ,τ (-u∆ζ + ζ g(u)) dx dt ≥ 0. (2.20) Set H(σ) = Qσ,τ (-u∆φ + φ g(u)) dx dt
Then H ∈ L 1 (0, τ ) and the mapping

σ → Ψ(σ) = Ω u(., σ)φ dx -H(σ)
is a.e. nondecreasing on (0, τ ] and it admits an essential limit L(φ) ∈ R as σ → 0. Therefore it exists ℓ(φ) = ess lim σ→0 Ω u(., σ)φ dx, and the mapping φ → ℓ(φ) defines a positive Radon measure µ in Ω.

It is possible to get rid of the integrability assumption on u if it is assumed that u vanishes on the boundary and Ω is bounded.

Proposition 2.7 Let u be a positive supersolution of (2.5 ) in Q T which vanishes on ∂ ℓ Q T in the sense that (2.4 ) 

holds for all nonnegative ζ ∈ C 2,1 ℓ,0 (Q T ). If g(u) ∈ L 1 ρ (Q T ), there exists µ ∈ M 1 + (Ω) such that µ = T r Ω (u). Proof. As a test function we take ζ(x, t) = χ [σ,τ ] (t)φ 1 (x)
where φ 1 is the first eigenfunction of -∆ in W 1,2 0 (Ω), φ 1 ≥ 0 and λ 1 the corresponding eigenvalue. Thus (2.20 ) is replaced by

Ω u(., τ )φ 1 dx - Ω u(., σ)φ 1 dx + Qσ,τ (λ 1 u + g(u)) φ 1 dx dt ≥ 0. (2.21) If we set X(τ ) = Qσ,τ uφ 1 dx dt, and 
G(σ) = Qσ,τ φ 1 g(u) dx dt, then (2 
.21 ) reads as

X ′ (σ) + λ 1 X(σ) + G(σ) ≥ X ′ (τ ) a.e. 0 < σ < τ, which yields to d dσ e λ1σ X(σ) - τ σ e λ1t (G(t) -X ′ (τ )) dt ≥ 0.
The conclusion follows as in Proposition 2.6. Notice also that another choice of test function yields to u ∈ L 1 (Ω).

For subsolutions of (2.5 ) we prove the following.

Proposition 2.8 Let u ∈ L 1 (Q T ) be a nonnegative subsolution of (2.5 ) in Q T such that g(u) ∈ L 1 (Q T ).
Then there exists a positive outer regular Borel measure ν on Ω such that ν = tr Ω (u).

Proof. Defining H as in the proof of Proposition 2.6 we obtain that

σ → Ψ(σ) = Ω u(., σ)φ dx + H(σ)
is nonincreasing on (0, τ ] and it admits a limit L * (φ) ∈ (-∞, ∞] as σ → 0. For any ξ ∈ Ω the following dichotomy holds,

(i) either there exists a φ ∈ C 2 0 (Ω) verifying φ(ξ) > 0 such that L(φ) < ∞, (ii) or for any φ ∈ C 2 0 (Ω) verifying φ(ξ) > 0, L(φ) = ∞. The set R(u) of ξ such that (i) occurs is open and there exists µ ∈ M + (R(u)) such that L(φ) = R(u) φ dµ ∀φ ∈ C 0 (R(u)).
The set S(u) = Ω \ S(u) is relatively closed in Ω. Further, if φ ∈ C 0 (Ω) is nonnegative and positive somewhere on S(u), there holds

ess lim t→0 Ω u(., σ)φ dx = ∞.
The outer regular Borel measure ν is defined for any Borel subset E ⊂ Ω by

ν(E) =    E dµ if E ⊂ R(u) ∞ if E ∩ S(u) = ∅.
The next lemma is the parabolic counterpart of an elliptic result proved in [START_REF] Brézis | Ponce Reduced measures on the boundary[END_REF] Lemma 2.9

Let f ∈ L 1 ρ (Q T ) and u ∈ L 1 (Q T ) such that QT u(∂ t ζ + ∆ζ)dx dt = - QT f ζ dx dt (2.22) for every ζ ∈ C 2,1 ℓ,0 (Q T ). Then lim n→∞ n QT ∩{ρ(x)≤n -1 } |u| dx dt = 0. (2.23)
Proof. We assume first that f ≥ 0, then u ≥ 0. Let H be a nondecreasing concave

C 2 function such that H(0) = 0, H ′′ (t) = -1 for 0 ≤ t ≤ 1 and H(t) = 1 for t ≥ 2. Let ξ 0 be the solution of        ∂ t ξ 0 + ∆ξ 0 = -1 in Q T ξ 0 (., T ) = 0 in Ω ξ 0 (x, t) = 0 in ∂Ω × [0, T ]. (2.24) Let w n = n -1 H(nξ 0 ), then -∂w n -∆w n ≥ -nH ′′ (nξ 0 ) |∇ξ 0 | 2 ≥ nχ {ξ 0 ≤n -1 } |∇ξ 0 | 2 . Therefore QT f w n dx dt = - QT u(∂ t w n + ∆w n )dx dt ≥ n QT |∇ξ 0 | 2 udx dt.
But w n ≤ min{ξ 0 , n -1 }, therefore, by the Lebesgue theorem,

0 = lim n→∞ QT f w n dx dt = lim n→∞ n QT |∇ξ 0 | 2 udx dt. Let ǫ > 0, by Hopf lemma on Q T -ǫ , there exists c 1 > 0, c 2 > 0 such that |∇ξ 0 | ≥ c 1 on ∂Ω × [0, T -ǫ]; thus c 2 ξ 0 ≤ ρ ≤ c -1 2 ξ 0 and lim n→∞ n QT -ǫ ∩{ξ0(x)≤n -1 } udx dt = 0.
Clearly we can extend f to be zero for t > T and ũ to be the weak solution of

       ∂ t ũ + ∆ũ = 0 in Q T,T +ǫ ũ(., T ) = u(., T ) in Ω ũ(x, t) = 0 in ∂Ω × [T, T + ǫ].
Notice that it is always possible to assume that T is a Lebesque point of t → u(., t) L 1 inasmuch this function is actually continuous. Replacing T by T + ǫ, we derive (2.23 ). Next, if u has not constant sign, we denote by v the weak solution of

       ∂ t v -∆v = |f | in Q T v(., 0) = 0 in Ω v(x, t) = 0 in ∂Ω × [0, T ].
Then |u| ≤ v and the proof follows from the first case. 

Lemma 2.10 Let f ∈ L 1 ρ (Q T ) and u ∈ L 1 (Q T ) such that - QT u(∂ t ζ + ∆ζ)dx dt ≤ QT f ζ dx dt (2.25) for every ζ ∈ C 2,1 ℓ,0 (Q T ), ζ ≥ 0. Then,
∈ C 2,1 0 (Q T ). Let {γ n } be a sequence of functions in C 2,1 0 (Q T ) such that 0 ≤ γ n ≤ 1, γ n (x, t) = 1 if ρ(x) ≥ n -1 or t ≥ n -1 , ∇γ n L ∞ ≤ Cn, ∆γ n L ∞ ≤ Cn 2 and ∂ t γ n L ∞ ≤ Cn. Given ζ ≥ 0 in C 2,1 ℓ,0 (Q T ), ζγ n is an admissible test function for Kato's inequality (2.26 ), thus - QT (∂ t (ζγ n ) + ∆(ζγ n ))u + dx dt ≤ QT ∩{u≥0} f (ζγ n ) dx dt.
(2.27)

When n → ∞ the right-hand side of (2.27 ) converges to the right-hand side of (2.26 ).

Moreover ∂ t (ζγ n ) = γ n ∂ t ζ + ζ∂ t γ n , ∇(ζγ n ) = γ n ∇ζ + ζ∇γ n and ∆(ζγ n ) = γ n ∆ζ + ζ∆γ n + 2∇ζ.∇γ n . Thus ∂ t (ζγ n ) + ∆(ζγ n ) = γ n ∂ t ζ + ζ∂ t γ n + γ n ∆ζ + ζ∆γ n + 2∇ζ.∇γ n .
Since ζ vanishes on ∂Ω × [0, T ] and is bounded with bounded gradient, there holds

QT (ζ∂ t γ n + ζ∆γ n + 2∇ζ.∇γ n ) u + dx dt ≤ Cn QT ∩{ρ(x)≤n -1 } u + dx dt
which goes to 0 as n → ∞. This implies (2.26 ).

If we deal with subsolution or supersolutions of problem (1.1 ) we have the following results Theorem 2.11 Let µ ∈ M 1 + (Ω) and u be a nonnegative subsolution of (1.1 ). Then the initial trace of u is a positive Radon measure μ such that μ ≤ µ. Furthermore, if (1.1 ) admits a weak solution u µ , there holds u ≤ u µ .

Proof. Step 1. There holds

μ ≤ µ. If σ is a Lebesgue point of t → ũ(., t) L 1 and φ ∈ C 2 0 (Ω), φ ≥ 0, we can take ζ(x, t) = χ [0,σ] (t)φ(x) (by approximations) and derive from (2.3 ) that Ω u(., σ)φ dx + Qσ (-u∆ζ + ζ g(u)) dx dt ≤ Ω φ dµ, (2.28) 
thus, by Proposition 2.8, using the fact that u ∈ L 1 (Q T ) and g(u (2.31)

) ∈ L 1 ρ (Q T ), ess lim σ→0 Ω u(., σ)φ dx ≤ Ω φ dµ. ( 2 
Step 2. There exists u μ and u μ ≤ u µ . For k > 0 set g k (r) = min{g(r), k} and let u = u k μ be the solution of

       ∂ t u -∆u + g k (u) = 0 in Q T := Ω × (0, T ) u = 0 in ∂ ℓ Q T := ∂Ω × (0, T ) u(., 0) = μ in Ω.
(2.32) Defining in the same way u k µ , we obtain

u k μ ≤ u k µ , u k μ ≥ u k ′ μ and u k µ ≥ u k ′ µ ≥ u µ for k ′ > k > 0. If ζ ∈ C 2,1 ℓ,0 (Q T ) is nonnegative, there holds QT ζ g k (u k µ )dx dt = Ω ζ dµ + QT (∂ t ζ + ∆ζ) u k µ dx dt. (2.33)
Clearly u k µ converges to some U ≥ u µ when k → ∞, the right-hand side of (2.33 ) converges to

Ω ζ dµ + QT (∂ t ζ + ∆ζ) U dx dt,
and g k (u k µ ) converges to g(U ) a. e. By Fatou QT ζ g(U )dx dt ≤ lim inf k→∞ QT ζ g k (u k µ )dx dt,
thus, using the monotonicity of g, Next u k μ decreases and converges to some Ũ, g k (u k μ) → g( Ũ ) a.e., and

QT ζ g(u µ )dx dt ≤ QT ζ g(U )dx dt ≤ Ω ζ dµ + QT (∂ t ζ + ∆ζ) U dx dt. ( 2 
QT ζ g( Ũ )dx dt ≤ lim k→∞ QT ζ g k (u k μ)dx dt = Ω ζ dμ + QT (∂ t ζ + ∆ζ) Ũ dx dt. (2.36) Since 0 ≤ ζ g k (u k μ) ≤ ζ g k (u k µ ). In order to prove that lim k→∞ QT ζ g k (u k μ)dx dt = QT ζ g( Ũ)dx dt, (2.37) 
we use the following classical result : Let h n ≥ hn ≥ 0 two sequences of measurable functions in some measured space (G, Σ, dm) which converge a. e. in G to h and h respectively. Then

lim n→∞ G h n dm = G hdm =⇒ lim n→∞ G hn dm = G hdm.
Therefore (2.35 ) implies (2.37 ). From (2.36 ) we get

QT ζ g( Ũ )dx dt = Ω ζ dμ + QT (∂ t ζ + ∆ζ) Ũ dx dt. (2.38)
This relation is valid with any ζ ∈ C 2,1 ℓ,0 (Q T ) with constant sign. It implies in particular that T r Ω ( Ũ ) = μ. Thus u μ exists and Ũ = u μ.

Step 3. We claim that u ≤ u μ. Set w = uu μ, it follows from (2.31 ),

QT (-w∂ t ζ -w∆ζ + (g(u) -g(u μ))ζ) dx dt ≤ 0 (2.39) for any ζ ∈ C 2,1 ℓ,0 (Q T ), ζ ≥ 0.
Using Lemma 2.10 we derive

QT ∩{w + ≥0} (-(∂ t ζ -∆ζ)w + + +(g(u) -g(u μ))ζ) dx dt ≤ 0 (2.40)
We take ζ = ξ 0 given by (2.24 ). Since g is nondecreasing, we derive

QT ∩{w + ≥0} w + dx dt ≤ 0. (2.41) Thus u ≤ u μ ≤ u µ .
Remark. It is noticeable that Step-2 of the proof of Theorem 2.11 can be stated in the following way.

If µ ∈ M 1 + (Ω) is a good measure, any measure μ such that 0 ≤ μ ≤ µ is a good measure. Consider µ ∈ M 1 + (Ω)
. The relaxation phenomenon associated to (1.1 ) can be constructed in the following way. Let {g k } be an increasing sequence of continuous nondecreasing functions defined on R, vanishing on (-∞, 0] and such that

(i) 0 ≤ g k (r) ≤ c k r p + c ′ k ∀r ≥ 0, ∀k > 0 (ii) lim k→∞ g k (r) = g(r) ∀r ∈ R, (2.42) 
for some positive constants c k and c ′ k and p ∈ (1, (N + 2)/(N + 1)). Since (2.8 ) is satisfied, there exists a unique solution u = u k to

       ∂ t u -∆u + g k (u) = 0 in Q T u = 0 in ∂ ℓ Q T u(., 0) = µ in Ω. (2.43)
It is noticeable that, if the assumption µ ∈ M 1 + (Ω) were replaced by µ ∈ M 0 + (Ω), the exponent p in (2.42 ) should have been taken smaller than (N + 2)/N . In the sequel C will denote a positive constant, depending on the data, not on k, the value of which may change from one occurrence to another. Our first result points out the relaxation phenomenon associated to the sequence {u k }. Theorem 2.12 When k → ∞, the sequence {u k } converges in L 1 (Q T ) to a some nonnegative function u * such that g(u * ) ∈ L 1 ρ (Q T ), and there exists a positive measure µ * smaller that µ with the property that

       ∂ t u * -∆u * + g(u * ) = 0 in Q T u * = 0 in ∂ ℓ Q T u * (., 0) = µ * in Ω.
(2.44) Furthermore u * is the largest subsolution of problem (1.1 ).

Proof. By [7, Lemma1.6] there holds

u k L 1 + g k (u k ) L 1 ρ ≤ C Ω ρ dµ, (2.45) 
and, by the maximum principle,

u k ≤ E[µ] in Q T . (2.46)
For any ǫ > 0 we denote

Q ǫ,T = Ω × [ǫ, T ]. Since E[µ] is uniformly bounded in Q ǫ,T
for any ǫ > 0, it follows by the parabolic equations regularity theory that, 

u k is bounded in C 1+α,α/2 (Q ǫ,T ) for any 0 < α < 1. Furthermore, if k ′ > k, g k ′ (u k ) ≥ g k (u k ) thus u k is
g k (u k ) → g(u * ) + λ,
weakly in the sense of measures. Thus for any ζ ∈ C 2,1 ℓ,0 (Q T ), there holds

QT (-u * ∂ t ζ -u * ∆ζ + g(u * )ζ) dx dt = Ω ζ(x, 0) dµ - QT ζ dλ.
(2.47) Since g k (u k ) converges to g(u * ) uniformly in Q ǫ,T for any ǫ > 0, the measure λ is concentrated on Ω × {0}. We denote by λ its restriction to Ω × {0}, set

µ * = µ -λ,
and derive from (2.47 ),

QT (-u * ∂ t ζ -u * ∆ζ + g(u * )ζ) dx dt = Ω ζ(x, 0) dµ * . (2.48)
This implies u * = u µ * and T r Ω (u * ) = µ * , thus µ * is a positive measure. Let v be a nonnegative subsolution of problem (2.2 ). By Proposition 2.8 there exists μ ∈ M 1 + (Ω) such that T r Ω (v) = μ and μ ≤ µ. Since g k (v) ≤ g(v), u is a subsolution for problem (2.43 ). By Theorem 2.11 v ≤ u k := u k,µ . Thus lim k→∞ u k = u * ≥ v.

Theorem 2.13 The reduced measure µ * is the largest good measure smaller than µ.

Proof. Clearly µ * is a good measure smaller than µ. Assume now that μ is a good measure smaller than µ. Then u μ is a subsolution for problem (2.2 ). By (Theorem 2.11)

u µ * is larger than u μ. Thus T r Ω (u μ) = μ ≤ T r Ω (u µ * ) = µ * .
The next technical result characterizes the good measures

Theorem 2.14 Let µ ∈ M + (Ω). Then µ ∈ G Ω (g) if and only if g k (u k ) → g(u) in the weak sense of measures in M 1 (Q T ). Proof. Assume g k (u k ) → g(u) in the weak sense of measures in M 1 (Q T ). Letting k → ∞ in (2.33 ), we obtain (2.2 ) for any ζ ∈ C 2,1
ℓ,0 (Q T ). Thus u * = u µ . Thus µ * = µ and µ is a good measure. Conversely, assume µ is a good measure. By Theorem 2.13, µ * = µ. Thus As in [START_REF] Brézis | Ponce Reduced measures on the boundary[END_REF] an easy consequence of Theorem 2.13 is the following result which points out the fact that µ and µ * differ only on a set with zero N-dimensional Hausdorff measure.

u k → u * = u µ and u k → u µ in L 1 (Ω) and a.e. in Ω. Assume ζ ∈ C 2,1 ℓ,0 (Q T ), ζ ≥ 0. We let k → ∞ in (2.

Corollary 2.15 Let µ ∈ M 1 + (Ω).

There exists a Borel set E ⊂ Ω, with Hausdorff measure

H N (E) = 0, such that (µ -µ * )(E c ) = 0.
Proof. Let µ = µ r + µ s be the Lebesgue decomposition of µ, µ r (resp. µ s ) being the absolutely continuous (resp. singular) part relative to the Hausdorff measure

H N in R N . Both measures are positive. Since µ r ∈ L 1 ρ (Ω), it is a good measure. Then µ r ≤ µ * by Theorem 2.13. Therefore 0 ≤ µ -µ * ≤ µ -µ r = µ s .
Since µ s is singular relative to H N , its support E satisfies H N (E) = 0. This implies the claim.

Corollary 2.16 Let µ ∈ M 1 + (Ω) such that µ(E) = 0 for any Borel set E ⊂ Ω with H N (E) = 0. Then µ is a good measure.

Proof. Let E ⊂ Ω is a Borel set with H N (E) = 0, then µ r (E) = 0. Since µ(E) = 0, it implies µ s (E) = 0. Because the support of µ s is a set with zero N-dimensional Hausdorff,

µ = µ r = µ * . Theorem 2.17 Let µ 1 , µ 2 ∈ M 1 + (Ω). If µ 1 ≤ µ 2 , then µ * 1 ≤ µ * 2 . Furthermore µ * 2 -µ * 1 ≤ µ 2 -µ 1 .
(2.50)

Proof. For k > 0 let u = u k,i (i = 1, 2) be the solution of        ∂ t u -∆u + g k (u) = 0 in Q T u = 0 in ∂ ℓ Q T u(., 0) = µ i in Ω. (2.51) Since µ 1 ≤ µ 2 , u k,1 ≤ u k,2
. By the convergence result of Theorem 2.12, the relaxed solutions

u * i satisfies u * 1 ≤ u * 2 . Since µ * i = T r Ω (u * i ), it follows µ * 1 ≤ µ * 2 .
We turn now to the proof of (2.50

). If ζ ∈ C 2,1 ( Qt ), ζ ≥ 0, which vanishes on ∂ ℓ Q t , we have from the weak formulation Qt (-(u k,2 -u k,1 )(∂ t ζ + ∆ζ) + ζ(g k (u * 2 ) -g k (u * 2 ))) dx dt = Ω ζ(x, 0)d(µ 2 -µ 1 ) - Ω ζ(x, t)(u k,2 -u k,1 )dx
We fix ξ ∈ C 2 0 ( Ω), ξ ≥ 0 and choose for ζ the solution of

       ∂ t ζ + ∆ζ = 0 in Q t ζ = 0 on ∂ ℓ Q t ζ(x, t) = ξ in Ω, .
Then, letting k → ∞, we derive

Ω (u * 2 -u * 1 )(x, t)ξdx ≤ Ω ζ(x, 0)d(µ 2 -µ 1 ).
Finally, if t → 0, using the trace property and the fact that ζ(x, 0) → ξ in C 0 ( Ω), we obtain

Ω ξd(µ * 2 -µ * 1 ) ≤ Ω ξd(µ 2 -µ 1 ).
This implies (2.50 ).

Corollary 2.18 If µ is a good measure, any positive measure ν smaller than µ is a good measure.

Proof.

Let ν ∈ M 1 + (Ω), ν ≤ µ. By (2.50 ) 0 ≤ ν -ν * ≤ µ -µ * . Thus µ = µ * =⇒ ν = ν * . Corollary 2.19 Let µ 1 , µ 2 ∈ M 1 + (Ω). 1-If µ 1 and µ 2 are good measures, then so is inf{µ 1 , µ 2 } and sup{µ 1 , µ 2 }. 2-If E ⊂ Ω is a Borel set and µ ∈ M 1 + Ω), µ * E = [µ E ] * 3-Assume that µ 1 and µ 2 are mutually singular. Then (µ 1 + µ 2 ) * = µ * 1 + µ * 2 . Proof. 1-The fact that inf{µ 1 , µ 2 } is a good measure is clear from Corollary 2.18. Let ν = sup{µ 1 , µ 2 }. Then µ 1 ≤ ν * and µ 2 ≤ ν * . Then ν = sup{µ 1 , µ 2 } ≤ ν * . 2-We recall that µ E (A) = µ(E ∩ A), for any Borel subset A of Ω. We can also write µ E = χ E µ. Since µ ≥ µ * , χ E µ ≥ χ E µ * and also µ * ≥ χ E µ * . Thus χ E µ * is a good measure and [χ E µ] * ≥ χ E µ * by Theorem 2.13. Conversely, [χ E µ] * ≤ χ E µ implies that χ E [χ E µ] * = [χ E µ] * . But χ E µ ≤ µ implies [χ E µ] * ≤ µ * and therefore [χ E µ] * = χ E [χ E µ] * ≤ χ E µ * .
3-If µ 1 and µ 2 are mutually singular, then so are µ * 1 and µ * 2 . Actually,

µ 1 +µ 2 = sup{µ 1 , µ 2 } and µ * 1 + µ * 2 = sup{µ * 1 , µ * 2 }. By assertion 1, [sup{µ * 1 , µ * 2 }] * = sup{µ * 1 , µ * 2 }. Then µ * 1 + µ * 2 is a good measure smaller than µ 1 + µ 2 , thus µ * 1 + µ * 2 ≤ (µ 1 + µ 2 ) * .
Conversely, there exist two disjoint Borel sets A and B such that

µ 1 = χ A µ 1 and µ 2 = χ B µ 2 and µ 1 +µ 2 = χ A µ 1 +χ B µ 2 . Thus (µ 1 + µ 2 ) * = (χ A µ 1 + χ B µ 2 ) * and χ A (µ 1 + µ 2 ) * = (χ A µ 1 + χ A µ 2 ) * = χ A µ * 1 = µ * 1 . Similarly, χ B (µ 1 + µ 2 ) * = (χ B µ 1 + χ B µ 2 ) * = χ B µ * 2 = µ * 2 . Since (µ 1 + µ 2 ) * = χ A∪B (µ 1 + µ 2 ) * = χ A (µ 1 + µ 2 ) * + χ B (µ 1 + µ 2 ) * ,
the result follows.

Theorem 2.20 The set G Ω (g) is a convex lattice. Furthermore

[inf{µ, ν}] * = inf{µ * , ν * }, (2.52 
)

and [sup{µ, ν}] * = sup{µ * , ν * }. (2.53) 
Proof. For the sake of completeness, we present the proofs of these assertions which actually the ones already given in [START_REF] Brézis | Ponce Nonlinear elliptic equations with measures revisited[END_REF]. Let µ 1 , µ 2 ∈ G Ω (g) and ν = sup{µ 1 , µ 2 }. Since µ i ≤ ν, it follows from Theorem 2.17 that

µ i = µ * i ≤ ν * . Thus sup{µ 1 , µ 2 } ≤ ν * which reads ν ≤ ν * , and equality follows. Next, assume θ ∈ [0, 1]. Then µ θ = θµ 1 +(1-θ)µ 2 ≤ ν = sup{µ 1 , µ 2 }. Since ν ∈ G Ω (g),
and any measure dominated by a good measure is a good measure, µ θ ∈ G Ω (g). It follows by Theorem 2.13 that

µ θ = µ * θ . Next, by Corollary 2.19, [inf{µ * , ν * }] is a good measure. Since [inf{µ * , ν * }] ≤ [inf{µ, ν}], it follow by Theorem 2.13 that inf{µ * , ν * } ≤ [inf{µ, ν}] * . (2.54) Conversely, inf{µ, ν} ≤ µ =⇒ [inf{µ, ν}] * ≤ µ * ,
and similarly with ν. Thus [inf{µ, ν}] * ≤ inf{µ * , ν * }.

For the last assertion, by Hahn's decomposition theorem there exist two disjoint Borel sets A and B such that Ω = A ∪ B and sup{µ, ν} = χ A µ + χ B ν. Actually, µ ≥ ν on A and ν ≥ µ on B. This implies also sup{µ * , ν * } = χ A µ * + χ B ν * . Thus, by Corollary 2.19,

[sup{µ, ν}] * = (χ A µ + χ B ν) * = χ A µ * + χ B ν * = sup{µ * , ν * }, since sup{χ A µ * , χ B ν * } = sup{µ * , ν * }. Theorem 2.21 Let µ, ν ∈ M 1 + . Then |µ * -ν * | ≤ |µ -ν| . (2.55) 
Proof. We first assume µ ≥ ν. By Theorem 2.17,

0 ≤ µ * -ν * ≤ µ -ν.
This implies (2.55 ). Next we write sup{µ,

ν} = ν + (µ -ν) + . Since ν ≤ sup{µ, ν}, ν * ≤ [sup{µ, ν}] * = sup{µ * , ν * } by Theorem 2.20. Thus [sup{µ, ν}] * -ν * ≤ sup{µ, ν} -ν = (µ -ν) + . Thus implies (µ * -ν * ) + ≤ (µ -ν) + . Similarly (ν * -µ * ) + ≤ (ν -µ) + .
In order to characterize the universally good measures, we introduce a capacity naturally associated to the weak formulation of problem (2.2 ). This yields to a capacity type characterization of

H N . If K ⊂ Ω is compact, we denote c Ω (K) = inf QT |∂ t ψ + ∆ψ| dx dt : ψ ∈ C 2,1
ℓ,0 ( QT ), ψ(x, 0) ≥ 1 in a neighborhood of K .

(2.56) Theorem 2.22 For every compact K ⊂ Ω, we have

H N (K) = c Ω (K).
(2.57)

Proof. Let K ⊂ Ω be compact.

Step 1. We claim that for any ǫ > 0, there exists

ψ ǫ = ψ ∈ C 2,1 ℓ,0 ( QT ) such that ψ ≥ 0 in Q T , ψ(x, 0) ≥ 1 on K and QT |∂ t ψ + ∆ψ| dx dt ≤ c Ω (K) + ǫ.
(2.58)

Let ξ ∈ C 2,1 ℓ,0 ( QT ) such that ξ(x, 0) ≥ 1 on K and QT |∂ t ξ + ∆ξ| dx dt ≤ c Ω (K) + ǫ/2.
Let {η j } be a regularizing sequence depending only on the space variable and such that the support of η j is contained in the ball B ǫj , with ǫ j → 0 as j → ∞. If we extend ξ in R N × [0, T ] as a C 2,1 -function, we set

f j (x, t) = η j * |∂ t ξ + ∆ξ| (x, t) = Ω η j (x -y) |∂ t ξ + ∆ξ| (y, t)dy.
If j → ∞, {f j } converges to |∂ t ξ + ∆ξ| uniformly in QT . Let v j be the solution of

       ∂ t v j + ∆v j = -f j in Q T v j = 0 in ∂ ℓ Q T v j (., T ) = 0 in Ω.
Clearly v j ≥ 0 in Q T . Let v be the solution of

       ∂ t v + ∆v = -|∂ t ξ + ∆ξ| in Q T v = 0 in ∂ ℓ Q T v(., T ) = 0 in Ω.
By the maximum principle v ≥ max{ξ, 0}, thus v(x, 0) ≥ 1 on K. Because v j (x, 0) → v(x, 0) uniformly on Ω, for any 0 < α < 1, we can fix j α such that v jα (x, 0) ≥ α on K and

f jα L 1 (QT ) ≤ ∂ t ξ + ∆ξ L 1 (QT ) + ǫ/4. Next ψ α = α -1 v jα . Then ψ α ≥ 0 in Q T , and ψ α (x, 0) ≥ 1 on K. Moreover QT |∂ t ψ α + ∆ψ α | dx dt = α -1 QT |∂ t v jα + ∆v jα | dx dt ≤ α -1 QT |∂ t ξ + ∆ξ| dx dt + ǫ/4
≤ α -1 (c Ω (K) + 3ǫ/4) .

Next we fix α = c Ω (K) + 3ǫ/4 c Ω (K) + ǫ and derive (2.58 ).

Step 2. There holds

H N (K) ≤ c Ω (K). (2.59) From (2.58 ), QT (-∂ t ψ -∆ψ) dx dt ≤ QT |∂ t ψ + ∆ψ| dx dt ≤ c Ω (K) + ǫ. But QT (-∂ t ψ -∆ψ) dx dt = Ω ψ(x, 0)dx - ∂ ℓ QT ∂ψ ∂n dS dt ≥ H N (K)
since ψ(x, T ) = 0, ψ(x, 0) ≥ 1 on K, and the normal derivative of ψ on ∂ ℓ Q T is nonpositive. This yields to (2.59 ) because ǫ is arbitrary.

Step 3. For any ǫ > 0 there exists ψ ∈ C 2,1 ℓ,0 ( QT ) such that 0

≤ ψ ≤ 1 + ǫ in Q T , ψ(x, 0) ≥ 1 on K and QT |∂ t ψ + ∆ψ| dx dt ≤ H N (K) + ǫ.
(2.60)

For δ > 0 let K δ = {x ∈ R N : dist (x, K) ≤ δ}. By the regularity of H N , we can choose δ small enough such that

H N (K δ ∩ Ω) ≤ H N (K) + ǫ/5.
We fix ξ ∈ C 2,1 ℓ,0 ( QT ) such that 0 ≤ ξ ≤ 1 and

ξ(x, 0) = 1 if x ∈ K δ/2 0 if x ∈ Ω \ K δ .
Let σ > 0 and

ρ σ (x, t) = 1 - t σ 2 + .
Since |ξ t + ∆ξ| (x, t) = 0 a. e. on {(x, t) : ξ(x, t) = 0} and {(x, t) :

ρ σ (x, t) > 0} ⊂ Ω × [0, σ],
we can choose σ such that We set u = ρ σ -(ρ σξ) + . Because ρ σ is independent of x, the argument developed by Brezis and Ponce [START_REF] Brézis | Ponce Reduced measures on the boundary[END_REF] applies in the sense that ∆u(., t) ∈ M(Ω) and ∆u(., t) = ∆ξ(., t) on {x : ξ(x, t) < ρ σ (t)} and more explicitely ∂ t u + ∆u = ∂ t ξ + ∆ξ on {(x, t) : ξ(x, t) < ρ σ (t)}.

In addition

∂ t u = ∂ t ρ σ -sign + (ρ σ -ξ)(∂ t ρ σ -∂ t ξ),
and ∂ t u = ∂ t ρ σ a.e. on {(x, t) : ξ(x, t) ≥ ρ σ (x, t)}. Because ρ σ is decreasing, we finally obtain ∂ t u + ∆u ≤ 0 on {(x, t) : ξ(x, t) ≥ ρ σ (x, t)}.

We notice that ∂ t u is bounded, and, following [START_REF] Brézis | Ponce Reduced measures on the boundary[END_REF],

∂ t u + ∆u M = (∂ t u + ∆u)χ { ξ≥ρσ } M + (∂ t u + ∆u)χ { ξ<ρσ } M = (∂ t u + ∆u)χ { ξ≥ρσ } M + {ξ<ρσ } |∂ξ + ∆ξ| dx dt = - {ξ≥ρσ } d(∂ t u + ∆u) + {ξ<ρσ } |∂ξ + ∆ξ| dx dt ≤ - QT d(∂ t u + ∆u) + 2 {ξ<ρσ } |∂ξ + ∆ξ| dx dt ≤ - QT d(∂ t u + ∆u) + 2ǫ/5.
(2.61)

Next, by definition, 

- QT d(∂ t u + ∆u) = - QT u(∂ t 1 -∆1) dx dt - Ω (u(x, T ) -u(x, 0))dx - ∂ ℓ QT ∂u ∂n dS dt = Ω u(x, 0)dx - ∂ ℓ QT ∂u ∂n dS dt = Ω ξ(x, 0)dx + ∂ ℓ QT ∩{(x,t):ξ≤ρσ} ∂ξ ∂n dS dt ≤ H N (K δ )/ + ǫ/5 ≤ H N (K) + 2ǫ/5. ( 2 

).

Step 4. There holds c Ω (K) ≤ H N (K).

(2.65)

Actually, (2.60 ) implies c Ω (K) ≤ H N (K) + ǫ.

Letting ǫ → 0 yields to (2.65 ).

Thanks to this result we are able to characterize the universally good measures.

Theorem 2.23 Let µ ∈ M 1 + (Ω). If µ ∈ G Ω (g) for any function g satisfying (2.1 ), then µ ∈ L 1 ρ (Ω). Proof. We follow essentially the proof of [START_REF] Brézis | Ponce Reduced measures on the boundary[END_REF]Th 7].

Step 1. We claim that for every Borel set Σ ⊂ Ω, such that H N (Σ) = 0, there exists a continuous function g verifying (2.1 ) such that µ * = 0 for any µ ∈ M 1 + (Ω) satisfying µ(Σ c ) = 0.

Let {K j } j∈N * be an increasing sequence of compact subsets of Σ such that K = ∪ j K j and µ(Σ \ K) = 0. Since H N (K j ) = 0 for any j ≥ 1, it follows from Theorem 2.22 [Step 3], that there exists

ψ j ∈ C 2,1 ℓ,0 ( QT ) such that 0 ≤ ψ j ≤ 2 in Q T , ψ j (x, 0) ≥ 1 on K j and QT |∂ t ψ j + ∆ψ j | dx dt ≤ 1/j.
In particular,

|∂ t ψ j + ∆ψ j | → 0 a.e. in Q T ,
and, since

ψ j solves        ∂ t ψ j + ∆ψ j = ǫ j in Q T ψ j (x, T ) = 0 in Ω ψ j (x, t) = 0 on ∂ ℓ Q T with ǫ j → 0 in L 1 (Q T ) it follows ψ j → 0 in L 1 (Q T )
and a.e.. Furthermore there exists some

G ∈ L 1 ρ (Q T ) such that ρ -1 |∂ t ψ j + ∆ψ j | ≤ G ∀j ∈ N * .
By a theorem of De La Vallée-Poussin noticed in [START_REF]de la Vallée Poussin Sur l'intégrale de Lebesgue[END_REF], there exists a convex function

h : (-∞, ∞) → [0, ∞) such that h(s) = 0 for s ≤ 0, h(s) > 0 for s > 0, lim t→∞ h(t) t = ∞ and h(G) ∈ L 1 ρ (Q T ).
Let g = h * be the convex conjugate of h. We denote by µ * = µ * (g) the reduced measured associated to g. Since µ * ∈ G Ω (g), we denote by u the solution of the corresponding initial value problem. Taking ψ j as a test function in (2.2 ), we obtain

QT (-u(∂ t ψ j + ∆ψ j ) + ψ j g(u)) dx dt = Ω ψ j (x, 0)dµ * . (2.66) 
We first assume that µ ∈ M 0 (Ω), thus we can take 1 as a test function (this is easily justified by approximations) and obtain ≤ h ρ -1 |∂ t ψ j + ∆ψ j | ρ + g(u)ρ + ψ j g(u)

≤ h(G)ρ + Cg(u)

(2.69) By Lebesgue's theorem, the right-hand side of (2.68 ) tends to 0 when j → ∞. Thus µ * (K j ) = 0, for any j ∈ N * , and finally µ * (Σ) = 0. Next we assume µ ∈ M 1 (Ω). Then there exists an increasing sequence of µ n ∈ M 0 (Ω) with compact support in Ω such that µ n ↑ µ. Using what is proved above, µ * n (Σ) = 0 and, by Theorem 2.17, µ * ≤ µµ n , thus µ * (Σ) ≤ (µµ n )(Σ). Letting n → ∞ implies µ * (Σ) = 0.

Step 2. If µ ∈ M 1 + (Ω) is good, for any Borel set Σ ⊂ Ω, with H N -1 (Σ) = 0, we denote ν = µ Σ . Then there exists g ν such that g * ν = 0. Since ν ≤ µ, ν ∈ G Ω (g), thus ν = ν * = 0 and finally, µ(Σ) = 0. Thus µ ∈ L 1 ρ (Ω). (3.9)

Theorem 3.6 For every compact K ⊂ ∂ ℓ Q T , we have

H N (K) = c ∂ ℓ Q T (K).
(3.10)

Proof. Let K ⊂ ∂ ℓ Q T be compact.

Step 1. For any ǫ > 0 there exists ψ ∈ C 2,1 ℓ,0 ( QT ), ψ ≥ 0 such that -∂ψ(x, t)/∂ν ≥ 1 in some neighborhood of K. Let ξ ∈ C 2,1 ℓ,0 ( QT ) such that -∂ψ(x, t)/∂ν ≥ 1 on K and

QT |∂ t ξ + ∆ξ| dx dt ≤ c ∂ ℓ Q T (K) + ǫ/2.
We extend ξ as a C 2,1 (R N × [0, T ])-function and define f j , v j and v in the same way as in the proof of Theorem 2.22, Step 1. Since f j → ∂ t ξ + ∆ξ uniformly in QT , We set ψ = α -1 v j0 and get

QT |∂ t ξ + ∆ξ| dx dt ≤ α -1 (c ∂ ℓ Q T (K) + 3ǫ/4).
We end the proof as in Theorem 2.22, Step 1.

Step 2. In this step we follow essentially the proof of [4, Lemma 8]. For any ǫ > 0 there exists ψ ∈ C 2,1 ℓ,0 ( QT ), such that 0 ≤ ψ ≤ ǫ, -∂ψ(x, t)/∂ν ≥ 1 in some neighborhood of K and Let δ > 0 and Ñδ (K) = {(x, t) : dist ((x, t), K)}, be such that

H N (N δ (K) ∩ ∂ ℓ Q T ) ≤ H N (K) + ǫ
We take ξ ∈ C 2,1 ℓ,0 ( QT ) such that ξ > 0 in Q T , ∂ξ/∂ν = -1 on N δ/2 (K)∩∂ ℓ Q T and ∂ξ/∂ν = 0 on ∂ ℓ Q T \ N δ , 0 ≤ -∂ξ/∂ν ≤ 1 and ξ/ρ ≤ 1 + ǫ, we first take a > 0 small enough so that The conclusion of the proof is similar.

By an easy adaptation of the proof of Theorem 2.23 we have the following characterization of the universally good measures. 

  .29) It follows that the initial trace ν ≈ (S(u), μ has no singular part (S(u) = ∅) and μ ≤ µ. This implies that φ → m(φ) is a measure dominated by µ that we shall denote by μ. It represents the initial trace of ũ, and we shall denote it by μ = T r Ω (ũ). (2.30) Next we take ζ ∈ C 2,1 ℓ,0 (Q T ), ζ ≥ 0, and get at any Lebesgue point σ as in Proposition 2.6-Proposition 2.8 Qσ,T (-u∂ t ζ -u∆ζ + ζ g(u)) dx dt ≤ Ω u(., σ)ζ dx, we derive, by letting σ → 0, QT (-u∂ t ζ -u∆ζ + ζ g(u)) dx dt ≤ Ω ζ(., 0) dμ.

  .34) Because u µ satisfies (2.2 ), all the three terms in (2.34 ) are equal, U = u µ and lim k→∞ QT ζ g k (u k µ )dx dt = QT ζ g(u µ )dx dt. (2.35)

  a super-solution for the equation satisfied by u k ′ . This implies u k ≥ u k ′ and u * := lim k→∞ u k exists and satisfiesu * ≤ E[µ] in Q T .Because of (2.46 ) uniform boundedness holds also inL p (Q T ),for any p ∈ [1, (N +2)/(N +1)). By the Lebesgue theorem the convergence occurs in L p (Q T ) too, for any p ∈ [1, (N +2)/(N + 1)), and locally uniformly in Q T by the standard regularity theory. By continuity g k (u k ) converges to g(u * ) uniformly in Q ǫ,T , thus u * satisfies ∂ t u * -∆u * + g(u * ) = 0 in Q T and vanishes on ∂ ℓ Q T . By the Fatou theorem QT g(u * )ζ dx dt ≤ lim inf k→∞ QT g k (u k )ζ dx dt, for any ζ ∈ C(Q T ), ζ ≥ 0, and there exists a positive measure λ in Q T such that

  33 ) and derive lim k→∞ QT g k (u k )ζ dx dt = Ω ζ dµ + QT (∂ζ + ∆ζ) u µ dx dt = QT g(u µ )ζ dx dt, (2.49) by (2.2 ). Because {g k (u k) } is uniformly bounded in L 1 ρ (Q T ), the result follows by density.

∂

  ℓ QT ∩{(x,t):ξ≤ρσ} ∂ξ ∂n dS dt + {(x,t):ξ≤ρσ } |ξ t + ∆ξ| dx dt ≤ ǫ/5.

  (∂ t ψ j + ∆ψ j ) + ψ j g(u)) dx dt (2.68) and|-u(∂ t ψ j + ∆ψ j ) + ψ j g(u)| ≤ |∂ t ψ j + ∆ψ j | ρ uρ + ψ j g(u)

  valid in the framework of the lateral bondary reduced measure. The main novelty is the intruction of a new capacity on∂ ℓ Q T . If K ⊂ ∂ ℓ Q T is compact, we denote c ∂ ℓ Q T (K) = inf QT |∂ t ψ + ∆ψ| dx dt : ψ ∈ C 2,1ℓ,0 ( QT ), -∂ψ ∂ν ≥ 1 in some neighborhood of K .

  . Since v and ξ vanishes on∂ ℓ Q T and at t = T , v ≥ ξ, thus 0 ≤ ∂ξ ∂ν ≤ -∂v ∂ν on ∂ ℓ Q T ,and -∂v/∂ν ≥ 1 in some neighborhood of K. For α ∈ (0, 1) we fix j 0 such that -∂v j0 /∂ν ≥ α on K andQT |∂ t v j0 + ∆v j0 | dx dt ≤ QT |∂ t ξ + ∆ξ| dx dt + ǫ/4.

QT

  |∂ t ψ + ∆ψ| dx dt ≤ H N (K) + ǫ and ψ ρ ≤ 1 + ǫ in Q T . (3.11) 

∂

  ℓ QT ∩{ξ<a} ∂ξ ∂ν dS dt + QT ∩{ξ<a} |∂ t ξ + ∆ξ| dx dt < ǫ, and set u = a -(aζ) + . Then, the same method as in Theorem 2.22-Step 3 yields to ∂ t u + ∆u M ≤ H N (K) + 4ǫ/5. (3.12)

Theorem 3 . 7

 37 Let µ ∈ M + (∂ ℓ Q T ). If µ ∈ G ∂ ℓ QT (g) for any function g satisfying (2.1 ), then µ ∈ L 1 (∂ ℓ Q T ).

  Next, we smooth the measure |∂ t u + ∆u| using a space convolution process with the same η j , as in Step 1. One can construct a function ψ ∈ C 2,1 ℓ,0 ( QT ) such that 0 ≤ ψ ≤ 1 + ǫ in QT , ψ(x, 0) ≥ 1 on K and

		.62)
	We finally derive	
	∂ t u + ∆u M ≤ H N (K) + 4ǫ/5.	(2.63)

QT |∂ t ψ + ∆ψ| dx dt ≤ ∂ t u + ∆u M + ǫ/5.

(2.64) Combining (2.63 ) and (2.64 ), one derive (2.

The Cauchy-Dirichlet problem

In this section Ω is again a smooth bounded domain in R N and ρ(x) = dist (x, ∂Ω). We denote by M(∂ ℓ Q T ) the set of Radon measures in ∂ ℓ Q T and by M + (∂ ℓ Q T ), the positive ones. The function g is supposed to satisfy (2.1 ). We consider the Cauchy-Dirichlet problem

for every ζ ∈ C 2,1 0 ( QT ).

Solutions of (3.1 ) are always unique; sufficient conditions for existence are developed in [START_REF] Marcus | Semilinear parabolic equations with measure boundary data and isolated singularities[END_REF].

We define, similarly to the cases of the initial value problem, super and subsolutions of 3.1 .

In which case, the equality sign in 3.2 is replaced by ≥ and ≤ respectively, the integrability conditions on u and g(u) being preserved. As simple example for existence of a solution it is the case when g satisfies

In this formula

(3.4) Definition 3.2 A measure µ for which problem (3.1 ) can be solved is called a good measure relative to g for the Cauchy-Dirichlet problem. The set of good measures is denoted by G ∂ ℓ QT (g), and a universally good measure is a measure which belongs to G ∂ ℓ QT (g) for any g satisfying (2.1 ).

The notion of lateral trace is defined in [START_REF] Marcus | Trace au bord latéral des solutions positives d'équations paraboliques non linéaires[END_REF]. For β > 0, we denote

We shall also denote Σ = Σ 0 = ∂Ω. There exists β 0 > 0 such that for any β ∈ (0, β 0 ], the mapping x ∈ Ω β → (σ(x), ρ(x), where σ(x) is the unique point on ∂Ω which minimizes the distance from x to ∂Ω, is a

, we denote φ β (x, t) = φ(σ(x), t), for any x ∈ Σ β and dS β is the surface measure on Σ β . for the sake of simplicity Theorem 3.4 Let u be a nonnegative subsolution of (3.1 ). Then the lateral boundary trace of u is a positive Radon measure μ such that μ ≤ µ. Furthermore, if (3.1 ) admits a weak solution u µ there holds u ≤ u µ .

We consider now a sequence of functions g k satisfying (2.42 ). For any positive Radon measure µ on

The following result is proved as Theorem 2.12 Theorem 3.5 When k → ∞, the sequence {u k } converges in L 1 (Q T ) to a some nonnegative function u * such that g(u * ) ∈ L 1 ρ (Q T ) and there exists a positive Radon measure µ * smaller that µ with the property that Mutadis mutandis, the reduced measure µ * on the lateral boundary inherits the properties of the reduced measure at initial time and the assertions of Theorems 2.13, 2.14, Corollaries 2.15, 2.16, Theorem 2.17, Corollaries 2.18, 2.19 and Theorems 2.20 and 2.21, are