
HAL Id: hal-00282460
https://hal.science/hal-00282460

Submitted on 27 May 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Surveillance en ligne de la sécurité basée sur les modes
de sécurité

Jérémie Guiochet, David Powell, Étienne Baudin, Jean-Paul Blanquart

To cite this version:
Jérémie Guiochet, David Powell, Étienne Baudin, Jean-Paul Blanquart. Surveillance en ligne de la
sécurité basée sur les modes de sécurité. Lambda mu 16 - 16e Congrès de Maîtrise des Risques et de
Sûreté de Fonctionnement, Oct 2008, Avignon, France. pp.1-7. �hal-00282460�

https://hal.science/hal-00282460
https://hal.archives-ouvertes.fr

SURVEILLANCE EN LIGNE DE LA SÉCURITÉ BASÉE SUR LES MODES DE SÉ CURITÉ
ONLINE SAFETY MONITORING USING SAFETY MODES

Jérémie Guiochet, David Powell and Étienne Baudin Jean-Paul Blanquart

Université de Toulouse EADS Astrium

LAAS-CNRS Toulouse{name}�laas.fr jean-paul.blanquart�astrium.eads.net
Résumé

Les systèmes informatiques réalisent des tâches de plus en plus complexes, dont certaines peuvent mettre l’humain en danger. L’inévitable
présence de fautes résiduelles de développement, de fautes physiques ou d’interaction activées pendant la vie opérationnelle, conduit à
l’utilisation de systèmes indépendants de surveillance de la sécurité pour prévenir les défaillances catastrophiques. Nous présentons dans ce
papier une approche et une formalisation du processus de détermination des règles de sécurité implémentées dans de tels dispositifs. Cette
approche se base sur l’identification de modes de sécurité, dépendants des différentes tâches réalisées par le système sous surveillance.
Chaque mode de sécurité est lié à un ou plusieurs modes fonctionnels, et est spécifié par un vecteur de permissivité, qui définit des domaines
de variations autorisées de certaines variables physiques. L’ensemble des modes de sécurité est partiellement ordonné et représenté avec un
graphe acyclique orienté. Ce graphe est ensuite utilisé pour construire un modèle spécifiant les transitions entre les modes de sécurité. Ceci
fournit la base de l’implémentation du comportement du système de surveillance. Un cas d’étude a été réalisé sur un robot mobile équipé d’un
bras manipulateur, travaillant en milieu humain au sein d’une usine.
Mots clés : Sûreté de fonctionnement, Mode de sécurité, Surveillance en ligne, Robotique

Summary

Computer systems have to carry out more and more complex tasks, including ones where humans can be endangered. Residual design faults
in such systems, as well as the inevitability of physical faults and interaction faults during operation, motivate the use of safety monitors to
prevent catastrophic failures. We present an approach and a formalization of the process for determining safety rules. It consists in identifying
safety modes, according to the different tasks carried out by the monitored system. In practice, each safety mode is related to one or several
functional modes and is specified by a permissiveness vector that defines the authorized domains of variation of key physical variables. The
set of safety modes can be partially ordered according to their authorization vectors and can thus be represented as a directed acyclic graph.
This graph is used to automatically build a model representing safety modes and their transitions, which can be implemented in an independent
safety monitor. A case study has been carried out on a mobile manipulator robot, working in a factory alongside humans.
Keywords : Dependability, Safety mode, Online Monitoring, Robotics

1 Introduction

To carry out more and more complex tasks, computer systems are
being given increasing authority and autonomy. This raises major de-
pendability concerns, particularly for systems operating in the pres-
ence of humans such as robotic systems [1]. Despite the use of
fault removal and prevention techniques, it is impossible to guarantee
avoidance of all development faults or, of course, of physical faults
and interaction faults arising during deployment. Thus, it is neces-
sary to design systems capable of fulfilling their mission (reliability)
and avoiding catastrophic failures (safety) despite the presence of
faults [2]. Following this logic of accepting the inevitability of faults,
we propose the use of an independent subsystem to carry out online
verification of global safety properties in order to provide end-to-end
protection against faults activated or occurring at run-time. In this
paper, we will refer to the independent subsystem as the safety mon-
itor [3], and to the functional system as the monitored system. Such
safety monitors exist in many critical application domains: transporta-
tion [4], space [5], medical systems [6, 7], civil engineering [8], nu-
clear power plants [9], and multi-purpose robotics [10]. Many expres-
sions have been used to denote such a safety monitor: Monitoring
and Safing Unit [11], Protection System [12], Safety Manager [8],
Checker [10, 13], Safety Bag [4] Guardian Agent [7]. The safety
monitor obtains information about the state of the monitored system
and the environment either by directly reading the values of key vari-
ables maintained by the monitored system or by using dedicated ad-
ditional sensors. It decides whether the observed situation is safe or
not according to a set of monitoring rules. If a hazardous situation is
detected, the safety monitor triggers a forward recovery procedure to
put the monitored system in a safe state.

Most of the literature on safety monitors focusses on system
architecture and on how assertion-checking can be integrated into
the architecture [14]. But none that we are aware of addresses the
process leading to the identification, definition and expression of the
safety assertions to be checked. Moreover, for the above cited sys-
tems, the same safety rules are checked continuously, without taking
account the fact that systems can perform diverse tasks where the
appropriate safety rules can change according to the tasks be car-
ried out. This is particularly important with multi-functional robots,
especially those including autonomous decisional capabilities.

The contribution presented in this paper aims to overcome these
issues. We propose a structured approach based on the concept of
safety modes. A systematic and formalized approach is proposed
to improve the safety rule identification process, and to partially au-
tomate the production of safety rules. The notion of safety modes
acknowledges the fact that systems can carry out tasks with different
safety rules. For each functional mode of the monitored system, the
safety monitor activates the corresponding safety mode, and checks
a specific set of monitoring rules. An additional aspect of the pro-
posed method is that it helps designers to specify reaction strategies
that are more flexible than emergency stop, which leads to improved
availability and efficiency. A preliminary case study has been car-
ried out on a mobile manipulator robot developed for the PHRIENDS
project1. In the considered scenario, the user can order the robot to
pick up a specific object from a specific location and then to carry
it to another location and to place it there, or give it to him. Con-
sidering these tasks, we assume a high-level of interaction between
the robot and the human. First, they both work in the same work
space, which is often avoided: robots are usually enclosed in a spe-
cific area or must follow a dedicated trajectory. Second, collaborative

1PHRIENDS (Physical Human Robot Interaction: Dependability and Safety) is a project supported by the European Community under the
6th Framework Program, http://www.phriends.eu.

work is possible: the robot is able to take an object from the hand of
a human, and the user can physically stop the robot during a task by
catching any part of the robot arm. The considered environments are
workshops or factories. Examples coming from this case study are
used throughout the paper to illustrate theoretical and formal aspects

In Section 2 of this paper, we formalize the concept of safety
modes and define two types of safety rules: permissiveness rules
and context rules. Section 3 discusses the management of safety
modes and, in particular, the transitions between safety modes. Fi-
nally, Section 4 discusses the benefits of safety modes with respect
to simplification of the specification process. The paper concludes by
lessons learnt and future work.

2 Safety Modes

The objective of safety modes is to describe the dynamics of the
safety monitor, identifying different sets of safety rules activated ac-
cording to the current tasks of the system. We propose a formal no-
tation for safety mode specification, and also a partial order relation
between modes that facilitates the production of safety rules.

2.1 Background

In the literature, the term mode is mainly used to describe differ-
ent configurations of a system, in which different control laws are
applied [15]. In particular, modes allow discrete changes from one
control law to another. Relatively few works link the notions of safety
rules and functional modes of operation.

In [16], four functional modes of a manipulator robot arm are de-
fined from the combinations of two discrete variables, each with two
possible values: the maximum speed of the arm (slow or fast), and
the choice of motion control (automatic or guided by a human). The
control laws are different in each mode. Some transitions between
modes require the introduction of an intermediate mode to respect
safety criteria. In particular, the transitions from the automatic modes
to the manual modes require an intermediate mode in which the arm
is stopped. In [17], three modes are used to manage, within a safety
manager, the in-flight testing of an experimental neural network for
fly-by-wire flight control. The three modes are: nominal (with con-
ventional flight control), research (neural network flight control), and
failure (research mode with injected faults). When the pilot pushes
a button in the nominal mode, the research mode is engaged if the
necessary conditions (about flight parameters, hardware, software,
communication buses) are fulfilled. If any of these conditions does
not hold, the safety manager automatically returns to the nominal
mode. From the research mode, the pilot can engage the failure
mode. The monitoring rule set of this mode is a superset of the re-
search mode rule set with two additional rules.

Those two approaches illustrate that in many systems, opera-
tional and safety modes are tightly linked. Our approach is similar in
that it consists in defining some discrete modes, in which is applied
a specific set of safety rules that aims to prevent the system from
reaching an unsafe state. The main difference is in that we introduce
safety modes as a first-class concept distinct from functional aspects
and propose a general method for specifying them.

2.2 Definitions

We define a safety mode as a state of the safety monitor, in which
a specific set of monitoring rules is applied. The safety monitor ob-
tains information about the monitored system and its environmental
context, determines the current safety mode, and checks if the condi-
tions of a safe execution are fulfilled. Functional mode changes that
do not impact safety do not lead to a change in safety mode. Hence,
there is a one to many binary association between safety modes and
functional modes.

For each safety mode and each transition between safety modes,
the safety rules that are checked may be different. We distinguish
two types of rules. The first type are permissiveness rules, that de-
fine the functional capabilities allowed for the current safety mode.
This type of rule checks that some functional variables do not violate
the domains of variation authorized in the current safety mode. For
example, speed ranges [0, 1] m.s−1 and [0, 2] m.s−1 for a mobile
robot are two possible authorized domains. However, permissive-
ness rules do not deal with context or environment. The second type

of rules, context rules, are intended for monitoring the system with
respect to hazardous situations, either related to the environmental
conditions, or the state of critical resources.

2.3 Permissiveness rules

Safety modes are defined on the basis of safety-relevant functional
variables that have ranges of authorized variations. We define the
authorization variable Af , associated to a functional variable f , to
denote the authorized domain of variation of f . Af may take on

different values A
(i)
f at different times, thus leading to a variable con-

straint on the functional variable f . A domain that can be authorized
is called an admissible domain. Each admissible domain of f is a
member of the powerset (set of all possible subsets) of the domain
of f , noted P(dom(f)).

Definition 1 The set of admissible domains for a functional vari-
able f is defined as Af = {A

(1)
f

, ...,A
(m)
f

}, where ∀i, A
(i)
f

∈

P(dom(f))

Af is thus a family of sets over dom(f). A property of a family of sets
is that it is partially ordered under the inclusion relation, so the ele-
ments of Af can be represented as a directed acyclic graph, which

we call the permissiveness graph. Two nodes A
(i)
f , A

(j)
f in the per-

missiveness graph are linked by a directed arc (from A
(i)
f

to A
(j)
f

)

if A
(i)
f

includes A
(j)
f

as a sub-domain. In this case, we say that

A
(i)
f

is more permissive than A
(j)
f

, since it allows a wider variation of

safety-relevant functional variable f . Conversely, A
(j)
f

is said to be

more restrictive than A
(i)
f .

Definition 2 An admissible domain A
(i)
f

is more permissive (or,

less restrictive) than A
(j)
f if A

(i)
f ⊇ A

(j)
f .

Paths on the permissiveness graph represent possible reaction
strategies in the face of detected hazardous situations, under the
premise that more restricted domains of safety-relevant functional
variables are safer than more permissive ones. To allow feasible
changes of a functional variable without any discontinuity, the permis-
siveness graph must be weakly connected. Thus, if two admissible
domains are not ordered by the inclusion relation, they must either
include, or be included by, another admissible domain.

Definition 3 A set of admissible domains for f is said to be feasible
if:
∀i, j,

“

A
(i)
f

* A
(j)
f

”

∧
“

A
(i)
f

+ A
(j)
f

”

⇒ ∃k,
“

A
(k)
f

⊇ A
(i)
f

∪ A
(j)
f

”

∨
“

A
(k)
f

⊆ A
(i)
f

∩ A
(j)
f

”

Let us consider a few simple examples. Let BaseSpeed (typereal) be the speed of the base of a mobile robot, such that
dom(BaseSpeed) ⊆ R+. Let us consider three admissible domains
(in this case, intervals) for BaseSpeed:

ABaseSpeed =

8

>

>

<

>

>

:

A
(1)
BaseSpeed

= [0, 0]m.s−1

A
(2)
BaseSpeed

= [0, 1]m.s−1

A
(3)
BaseSpeed

= [0, 2]m.s−1

The first possible value of the authorization variable ABaseSpeed

defines a constraint of no movement (BaseSpeed = 0), whereas
the other two define two different upper speed limits. In this case,
the admissible domains form a totally-ordered set: A

(3)
BaseSpeed ⊃

A
(2)
BaseSpeed

⊃ A
(1)
BaseSpeed

, ranging from the most permissive to
the most restrictive constraint on BaseSpeed.

As a second example, consider a functional variable
GripperState (type enum) representing the state of a gripper at the
tip of a robot arm, such that dom(GripperState) = {Open,Closed}.
We can consider three admissible domains for GripperState:

AGripperState =

8

>

>

<

>

>

:

A
(1)
GripperState = {Open}

A
(2)
GripperState = {Closed}

A
(3)
GripperState = {Open,Closed}

The first and second values of AGripperState denote oblig-
atory positions of the gripper, whereas the third value indicates
that both positions are authorized. Here, AGripperState is only

partially-ordered with A
(3)
GripperState representing the most per-

missive domain and A
(1)
GripperState

and A
(2)
GripperState

being al-
ternative less permissive domains. Alternatively, authorized grip-
per actions might be designated by means of an authorization
variable AGripperTransition pertaining to a functional variable
GripperTransition representing transition events between gripper
states where a possible set of values for AGripperTransition might
be:

AGripperTransition =

(

A
(1)
GripperTransition = ∅

A
(2)
GripperTransition = {open, close}

In this third example, the first value of AGripperTransition forbids
any change in state of the gripper, whereas the second value al-

lows both possible transitions. The domain A
(2)
GripperTransition is

evidently more permissive than A
(1)
GripperTransition.

The three examples all lead to sets of admissible domains that
can be represented as weakly-connected directed acyclic graphs,
and are thus feasible sets in the sense of Definition 3.

The notion of a set of admissible domains for a single safety-
relevant functional variable f can be generalized to consider vec-
tors of n safety-relevant variables, ~f = (f1, ..., fn) such that A~f

=

{A
(1)
~f

, ...,A
(m)
~f

} denotes a set of m admissible domains for ~f . A~f
is

a subset of the Cartesian product of the sets of admissible domains
for each element of ~f : A~f

⊆ Af1
× ...×Afn

. We define ~F to be the
vector of all the safety-relevant variables of a given system S. Each

admissible domain A
(i)
~F

defines a safety mode mi of system S.

Definition 4 A safety mode mi of a system S with a vector of
safety-relevant functional variables ~F = (f1, ..., f|~F |) is defined by

an affectation of authorized domains for each element of ~F , A
(i)
~F

=
`

A
(i)
f1

, ...,A
(i)
f|~F |

´

. We call A
(i)
~F

the permissiveness vector associ-

ated with mode mi.

Safety modes can be partially ordered by permissiveness by direct
extension of Definition 2, applied to the modes’ permissiveness vec-
tors.

Definition 5 A safety mode mi is more permissive (or, less restric-
tive) than mj if A

(i)
~F

⊇ A
(j)
~F

, i.e., if ∀k ∈ [1, |~F |],A
(i)
fk

⊇ A
(j)
fk

. We
use the notation mi ≻ mj to denote the permissiveness relation
between safety modes.

The permissiveness vector of a given safety mode defines the do-
mains that must be respected in that mode by the set of safety-
relevant functional variables of the system. Formally, we express this
as the permissiveness rule associated with the safety mode.

Definition 6 Permissiveness rule: in safety mode mi with associ-
ated permissiveness vector A

(i)
~F

, the permissiveness rule is defined

as the boolean function: P (mi) = (∀k ∈ [1, |~F |], fk ∈ A
(i)
fk

)

The notion of a set of feasible safety modes follows by direct
extension of Definition 3.

Definition 7 A set of safety modes for system S is said to be feasi-
ble if:
∀i, j,

“

A
(i)
~F

* A
(j)
~F

”

∧
“

A
(i)
~F

+ A
(j)
~F

”

⇒ ∃k,
“

A
(k)
~F

⊇ A
(i)
~F

∪ A
(j)
~F

”

∨
“

A
(k)
~F

⊆ A
(i)
~F

∩ A
(j)
~F

”

An admissible set of safety modes is one in which it is
possible for the system to change safety modes without nec-
essarily falsifying a permissiveness rule, i.e., there are no dis-
continuities in the admissible domains of the system’s safety-
relevant functional variables. As an example, consider the mo-
bile robot equipped with a gripper on a manipulator arm. We
have identified four safety-relevant functional variables: BaseSpeed,
GripperTransition (defined as previously), ArmStatus (typeenum) where dom(GripperTransition) = {folded, unfolded}, and
ArmForce (type real) where dom(BaseSpeed) = R+. The identi-
fication of the safety-relevant functional variables is based on a pre-
liminary risk analysis and UML sequence diagrams as in [18].

We wish to define the following six safety modes for this system:

• FastMove: the robot can move at maximum speed, assuming
that no human beings are in its vicinity. While moving fast, its
arm must be in the folded position.

• SlowMove: the robot can move at reduced speed, even if
there are human beings in its vicinity.

• FastWork : the robot can use the full functionality of its manip-
ulator arm, as long as its base is stationary and there are no
human beings in its vicinity.

• CollaborativeWork : the robot can use its arm at reduced
speed in the vicinity of or in collaboration with a human be-
ing, as long as its base is stationary.

• MoveAndWork : the robot can use its arm at reduced speed
while moving, as long as no human beings are in its vicinity
and any load it manipulates is not dangerous.

• Stop: the base and the arm of the robot are stationary; any
load in the gripper must not be dropped.

Table 1 defines the permissiveness vectors over the four safety-
relevant variables defined previously. Figure 1 shows the permis-
siveness graph that can be generated automatically from the set of
safety modes defined in Table 1. It can be seen that the set of safety
modes is feasible (the permissiveness oriented graph is weakly con-
nected) and that safety mode Stop is the most restrictive safety mode
(it appears as a sink node on the graph).

2.4 Context rules

As previously presented, permissiveness rules do not include exter-
nal conditions, and particularly hazardous situations induced by non-
controllable variables. We introduce the notion of context rules to
define external conditions that must be respected to ensure safety.
For instance, the presence of a human in the robot’s vicinity can be
considered as a context variable that could be used in such a context
rule. Context rules can be defined using the same formal notation
as for permissiveness rules. For instance, let us consider the con-
text variable HumanDistance, which is the distance between the
robot and the closest human. This information is safety-relevant for
instance in the FastMove mode of the previous example where the
robot can reach speeds that could cause injury in case of collision.
Context rules for different safety modes can be defined in terms of
different HumanDistance ranges such as [0, +∞], [0.5 , +∞], and
[2, +∞] meters. For example, the context rule for the FastMove

mode in Figure 1 would be C(FastMove) = (HumanDistance ∈

A
(3)
HumanDistance), where A

(3)
HumanDistance = [2,+∞], i.e., we

specify that in the safety mode FastMove the distance to any hu-
mans cannot be under 2 meters. In this example, only one context
variable is used in the rule, but in general, the context rule could in-
clude constraints on many other context variables (e.g., natural light
intensity or cluttering level of environment, which both have a high
impact on the robot’s abilities to sense its environment and plan a
safe trajectory).

Formally, we define ~G = (g1, ..., g|~G|) to be the vector of safety-

relevant context variables related to the environment of system S.

Definition 8 The set of admissible domains for a context vari-
able gk is defined as Agk

= {A
(1)
gk

, ...,A
(m)
gk

}, where ∀i, A
(i)
gk

∈
P(dom(gk))

Definition 9 A context vector for safety mode mi is an af-
fectation of authorized domains for each element of ~G, A

(i)
~G

=
`

A
(i)
g1

, ..., A
(i)
g
|~G|

´

.

Definition 10 Context rule: in safety mode mi, it must be the case
that C(mi) is true, with C(mi) = (∀k ∈ [1, | ~G|], gk ∈ A

(i)
gk

)

As presented in Table 2, two safety-relevant context variables
have been identified in our case study to detect hazardous situa-
tions. The first one is the safe distance with respect to the closest
human, HumanDistance, which has currently been fixed at 2 me-
ters in FastMove safety mode, and 0.5 meters in SlowMove safety
mode. The second one is the hazardous nature of the load, which
impacts the functional abilities of the robot (for instance, holding a
hazardous load will constrain the mobile base and the arm to move
slowly).

Table 1 : Example of safety modes and associated permissiveness vectors
Safety modes Safety related functional variables

BaseSpeed ArmStatus ArmForce GripperTransition
FastMove [0,2] {folded} [0,10] {∅}
SlowMove [0,1] {folded} [0,10] {∅}

Stop [0,0] {folded} [0,10] {∅}
CollaborativeWork [0,0] {folded,unfolded} [0,50] {open, close}

FastWork [0,0] {folded,unfolded} [0,120] {open, close}
Move&Work [0,1] {folded,unfolded} [0,120] {open, close}

FastMove

CollaborativeWork

FullWorkMoveAndWork

Stop

SlowMove

Figure 1 : Graph of safety modes with permissiveness relation order (a → b: a is more permissive than b)

2.5 Safety mode automaton

Permissiveness and context rules are used to detect if the system is
entering a hazardous state. These rules can be used both for check-
ing conditions that must be maintained in a safety mode (mode condi-
tions) and for checking conditions that must be fulfilled to allow tran-
sitions between safety modes (guard conditions). Mode conditions
and guard conditions are obtained from the permissiveness and con-
text vectors of the safety modes. Practically, the guard condition on
a transition between safety modes m1 and m2 depends on the per-
missiveness relation between m1 and m2 (defined in Definition 5)
which implies three types of transition (an example is presented in
Figure 2):

1. To a more permissive safety mode: m2 ≻ m1. The monitored
system increases its functional abilities, but some contextual
conditions have to be fulfilled (e.g., absence of humans). Ac-
cording to the permissiveness relation, A

(2)
~F

⊇ A
(1)
~F

, thus,

reaching m2 from m1, the P (m1) rule still remains true. In
this case, only the C(m2) rule has to be checked for this tran-
sition (consider, for instance, a transition from SlowMove to
FastMove in Figure 1).

2. To a less permissive safety mode: m2 ≺ m1. As functional
abilities decrease, the permissiveness rule of the targeted
mode (m2) must be checked. For example, if the monitored
system has to enter the Stop mode, it has to stop its base
and arm before the acceptance of the transition by the safety
monitor.

3. To an incomparable safety mode: m2 � m1 and m2 � m1. In
this case, the guard condition is defined by identifying a path
in the permissiveness graph, passing through less permissive
intermediate modes. The resulting guard condition is a logical
and of all guard conditions along the path to the final mode.

With these three types of transition, all the transition conditions
can be determined. However, all the transitions are not function-
ally interesting. For that reason, some transitions may be manu-
ally specified as forbidden. In Figure 2, transitions to more or less
permissive safety modes are represented by solid arrows, whereas
transitions between incomparable safety modes are represented by
dashed arrows. An illustration is the case of the transition from
CollaborativeWork to SlowMove mode. Here, the intermediate
mode Stop is used to evaluate the final guard condition: P (Stop) ∧
C(SlowMove). The transitions that are not represented are forbid-
den.

To ease readability, the request of the monitored system
changeMode(mi) on each transition condition is not represented
on the automaton of Figure 2. For example, using statechart no-
tation, the transition from Stop to SlowMove should be annotated
with: changeMode(SlowMove)[P (SlowMove], i.e., a transition is

activated on event changeMode(SlowMove), guarded by the con-
dition P (SlowMove).

3 From Safety Modes to Safety Rules

Once safety modes, and permissiveness and context vectors have
been specified, it is necessary to analyze how the safety monitor will
react if the induced conditions are not fulfilled. Whereas previous
sections can be applied in a generic way, this section is highly linked
with the design of the system, because it requires knowledge about
which reaction strategies are possible. However, we present in this
section some guidelines to implement safety modes and safety rules.

3.1 Activation of the safety modes

Since the safety rules to be ensured by the safety monitor depend on
the current safety mode, one fundamental issue remains the identifi-
cation of the current safety mode. This can be done by the observa-
tion of the physical attributes of the monitored system to deduce the
corresponding safety mode. This approach has a major disadvan-
tage: in some cases the safety monitor may not be able to identify the
current safety mode. This issue is studied in the diagnosis commu-
nity, where graph algorithms are used to identify system state given a
set of observation variables. Of course our method can integrate this
approach, but we decided to first focus on the monitoring of safety
rules. To simplify our method, we make some assumptions. First,
we assume that the monitored system has been designed with a set
of functional modes, linked with a many-to-one relation to the safety
modes. Second, we have chosen to be notified by the monitored sys-
tem about its safety mode change requests. This assumption avoids
any ambiguity. The drawback of this solution is the required con-
fidence given to the monitored system, which may send erroneous
information and particularly wrong mode change requests. In that
case, it should be demonstrated that in any case of mismatch, the
safety monitor will put the system in a safe state. This may lead to a
lower availability but guarantees a higher safety.

3.2 Mode condition violation

In every safety mode, the monitor should be able to detect if there
is a violation of the corresponding mode conditions, of type P or C.
When it is not possible for the system to ensure both, the system
cannot remain in the current safety mode, so the safety monitor must
force a transition towards a safe state, i.e., a less permissive safety
mode. To do this, we propose the concept of a fall-back mode, in
which actions are undertaken to reach conditions of a less permis-
sive safety mode (for example, a fall-back mode might correspond
to activation of emergency braking). A limit can be set on the time

Table 2 : Case study safety modes and associated context vectors
Safety modes Safety related context variables

HazardousLoad HumanDistance
FastMove {False} [2, +∞]
SlowMove {False} [0.5, +∞]

Stop {True,False} [0, +∞]
CollaborativeWork {True,False} [0, +∞]

FastWork {False} [0, +∞]
Move&Work {False} [0, +∞]

SlowMove

FastMove

Stop

FastWork

C(MoveAndWork)

P(SlowMove) and

CollaborativeWork

P(CollaborativeWork) and

C(FullWork)

P(CollaborativeWork) and C(MoveAndWork) P(SlowMove) and C(FastMove)

C
(FastM

ove)
C
(M

ov
eA

nd
W

or
k)

P(Slow
M

ove)

MoveAndWork

P(C
ollaborativeW

ork)

C
(M

oveA
ndW

ork

P(Stop)

C
(Slow

M
ove)

P(S
to

p)

C
(C

ol
la

bo
ra

tiv
eW

or
k)

C
(M

v
&

W
k

)

P(S
lo

w
M

ov
e)

P(C
ol

la
bo

ra
tiv

eW
or

k)

C
(F

ul
lW

or
k)

P(Stop) and C(SlowMove)

P(Stop) and C(CollaborativeWork)

P
(S

to
p

)

Figure 2 : Generated safety modes automaton (only guard conditions are shown as transition labels)

spent in the fall-back mode. If that time limit is exceeded, the safety
monitor attempts to force a transition towards an even less permis-
sive mode, e.g., a Stop mode. As a last resort, the safety monitor
should put the monitored system in an ultimate fall-back mode, such
as EmergencyStop, from which it may not be possible to recover,
but which guarantees safety. Many levels of fall-back modes can be
considered, but particular attention should be given to reaction time
constraints (stopping the robot has to be fast in case of a hazardous
situation).

The statechart in Figure 3 is an example. Only three
safety modes are represented (FastMove, SlowMove, and Stop),
and three fall-back modes are introduced (ControlledMovement,
ControlledStop, EmergencyStop). As a first reaction, the safety
monitor tries to control the speed. If it is not possible to reach the
SlowMove mode, the ControlledStop mode is activated. As a last
resort, EmergencyStop is activated.

A protocol must be defined to allow communication between the
monitored system and the safety monitor. Indeed, in case of activa-
tion of a fall-back mode, the actions initiated by the safety monitor
must be taken into account by the monitored system. To ensure full
independence between the safety monitor and the monitored system,
actions such as reduceSpeed() (it is not specified here how speed
can be reduced) should be engaged by the safety monitor. However,
the monitored system should be made aware of this action so as to
take it into account in its future plans.

3.3 Transition condition violation

We now analyze potential violations of a guard condition. As before,
three types of transition are identified: a transition to a more per-
missive mode, to a less permissive mode, and to a mode that is not
comparable. Indeed, in case of a changeMode() request, the guard
condition can include a permissiveness rule (P rule), a context rule
(C rule), or both, and the reaction of the safety monitor is described
in a generic way.

3.3.1 Transition towards a more permissive safety
mode (C rule)

A transition towards a more permissive mode is allowed if the envi-
ronment has changed in such a way that it respects more restrictive

contextual conditions (for instance there are no humans, no haz-
ardous obstacles). If C rules are not fulfilled, the safety monitor
should keep the system in the current mode, and reject the mode
change request. This implies that the monitored system does not
switch to its desired functional mode, and can integrate this rejection
in its future plans. Again, as for mode conditions (previous section),
a protocol needs to be defined for the monitored system to receive
and react to mode change requests rejected by the safety monitor.

3.3.2 Transition towards a less permissive safety
mode (P rule)

Switching to a less permissive mode is guarded by P rules, i.e., func-
tional variables need to be restricted (for instance, speed has to be
reduced) to satisfy the P rules before mode switching is allowed. If
those conditions are not verified, this means that the monitored sys-
tem wants to reach such a mode, but is unable to do so. Then, the
safety monitor has to react to impose the conditions mandated by
the more constrained environment. This is again done through the
notion of fall-back modes, as described in Section 3.2. For exam-
ple, consider the transition from FastMove to SlowMove on Fig-
ure 3. If the guard condition P [SlowMove] is not fulfilled when
the mode change is requested, the safety monitor can engage the
ControlledMovement fall-back mode previsously defined for han-
dling the violation of the mode condition of FastMove. For exam-
ple, considering the transition from FastMove to SlowMove on Fig-
ure 3. If the guard condition P (SlowMove) is not fulfilled when
the mode change is requested the safety monitor can engage the
ControlledMovement fall-back mode previously defined for han-
dling a violation of the mode condition of FastMove. Only a sub-
set of the whole diagram is given here for readability. Mode change
requests are represented by cm().

3.3.3 Transition towards a non comparable safety
mode (P and C rules)

In the third case, a distinction should be made between P and C
rules. Indeed, if a C rule is not verified, this means that the environ-
ment conditions do not fulfill the requirement, so the system should
stay in its current mode (as previously presented). If a P rule is not
satisfied, then the safety monitor will take over to force the monitored

cm
() [C

(F
astM

ove)]

[P(SlowMove)]

[! P(Slow
Move) OR

 ! C(Slow
Move)]

cm
() [P

(S
top)]

cm
() [C

(S
low
M
ove)]

cm
() [P

(S
low
M
ove)]

[! P(F
astMo

ve) O
R

! C(F
astMo

ve)]

delay(t1)
[! P(SlowMove)]

ControlledMovement

do / reduceMobility()

ControlledStop

do / engageStop()

EmergencyStop

do / removePower()
Stop

SlowMove

FastMove

delay(t2)
[! P(Stop)] [P(Stop)]

Fall back modes
Safety modes

cm()
[!P(S

lowM
ove)]

cm() [!P(Slo
wMove)]

Figure 3 : Partial safety mode automaton with fall-back modes. cm(x): abbreviation of request to change mode to "x" ("x" omitted avoid
cluttering the figure)

system through one or several fall-back modes until a more restrictive
P rule is fulfilled.

4 Discussion

The application of the approach on the case study gives evidence
to the applicability of the proposed formalism. The terminology and
the notation have been systematically applied. An important point
is the difference between functional and context variables that has
been proposed. This segregation is fundamental for building a safety
mode automaton with a partial order permissiveness relation based
both on P and C conditions, and for determining transition condi-
tions. This is a key point in our approach. Determination of safety
modes, and functional and context variables, is a process that can
be used to supplement risk analysis methods. In our case, we use
sequence diagrams, and expert reviews to determine hazards. We
are currently studying a systematic approach to link risk analysis to
our safety mode approach.

Another point that needs to be further developed is the consis-
tency of safety limits between the safety monitor and the functional
system. Indeed, the safety monitor should trigger reactions in case
of hazardous situations, but it should let the functional system react
first. For instance, when a human appears in in the robot trajectory,
the functional system should react, and only if the situation does not
change, then the monitor has to react. This can be done defining
different limits for human distance, for example, or by using a timeout
to trigger mode switching.

Some limitations have been identified during the last step of the
approach, which is the definition of the reactions of the safety mon-
itor. First, we need to consider in more detail the perception capa-
bilities of the safety monitor. Indeed, speed monitoring can be done
through sensors, but detection that the system is about to open the
gripper while that is forbidden cannot be done with a sensor. This
means that the safety monitor should should be informed about in-
ternal requests of the system, which can decrease independence
between the two channels. Second, if reactions from the monitor
are performed (for instance, a forced change of control law, or forced
stop of all movement), this should be made known to the functional
system, to rebuild a plan for instance. Both of these current limita-
tions point to the need for further work on the architecture level [14]
and on the protocol between monitored system and safety monitor.
This is also related to our proposal for the use of fall-back modes,
which are transitional modes where actions are performed to impose
less permissive conditions. Such modes depend on the observation
and reaction means available to the monitor (which are constrained
by the architecture and the inter-channel protocol).

Currently, a small number of safety modes has been consid-
ered, and simple authorization domains have been proposed. For
instance, all the domains of continuous variables (speed, force, etc.)
are totally ordered ([0, 0] ⊂ [0, 1] ⊂ [0, 2]). This implies that it is
possible to switch to a more permissive mode without checking any
permissiveness condition (if speed is in [0, 1], it is also true that speed
is in [0, 2]). Nevertheless, we should consider that, sometimes, do-
mains will not be totally ordered, and have for instance unordered
(but overlapping) domains such as [0, 20] and [15, 30]. In order to
determine transition conditions, intermediate modes might be added,
such as in this case, the interval [15, 20]. Transition conditions are
then more complex and are difficult to determine manually.

Finally, the safety monitor approach implies an extension of the
system with additional possibilities to change the system state. New
risks can thus be introduced, so particular attention needs to be paid
to integrity of the monitor itself. Our study is based on the assumption
that the monitor will not fail dangerously, but we also have to prove
that there is not any dangerous inconsistency between the monitor
and the monitored system.

5 Conclusion

We have presented in this paper a formal framework to facilitate the
specification of safety rules used by an independent safety monitor.
Our approach is based on the safety mode concept, which associates
a specific rule set to each functional behavior of the monitored sys-
tem. A graph representing the partial order between safety modes
according to a permissiveness relation allows the automatic determi-
nation of transition conditions. In addition, each safety mode can be
associated with a fall back mode aimed at enforcing safe execution
conditions.

A case study was carried out on a mobile manipulator robot and
furnished very interesting results. This did not reveal any inconsis-
tencies, and confirmed that the formal framework is indeed useful.
However, a real implementation has yet to be done. Moreover, some
issues presented in Section 4 are still open and are the subject of
ongoing work. The main issue to be clarified is the protocol between
the safety monitor and the monitored system for observation, reac-
tion and mode synchronization. In the near future, we aim to apply
our approach to another robotic system and, in another domain, to
an autonomous satellite.

Acknowledgment

This work was partially supported by Astrium Satellites France and
by the PHRIENDS Specific Targeted Research Project, funded under

the 6th Framework Programme of the European Community under
Contract IST-045359. The authors are solely responsible for its con-
tent. It does not represent the opinion of the European Community
and the Community is not responsible for any use that might be made
of the information contained therein.

References

[1] J. Guiochet, G. Motet, B. Tondu, and C. Baron, “Sécurité des
systèmes de la robotique médicale,” Techniques de l’ingénieur,
vol. SE2, no. Sécurité et gestion des risques, 2007.

[2] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Ba-
sic concepts and taxonomy of dependable and secure comput-
ing,” IEEE Transactions on Dependable and Secure Computing,
vol. 1, no. 1, pp. 11–33, 2004.

[3] S. Roderick, B. Roberts, E. Atkins, and D. Akin, “The ranger
robotic satellite servicer and its autonomous software-based
safety system,” IEEE Intelligent Systems, vol. 19, no. 5, pp. 12–
19, 2004.

[4] P. Klein, “The safety-bag expert system in the electronic railway
interlocking system Elektra,” Expert Systems with Applications,
vol. 3, pp. 499–506, 1991.

[5] J. Blanquart, S. Fleury, M. Hernerk, and C. Honvault, “Soft-
ware safety supervision on-board autonomous spacecraft,” in
Proceedings of the 2nd European Congress Embedded Real
Time Software (ERTS’04), 2004.

[6] K. Wika and J. Knight, “A safety kernel architecture,” University
of Virginia - Department of Computer Science, Tech. Rep. CS-
94-04, 1994.

[7] J. Fox and S. Das, Safe and sound - Artificial Intelligence in
Hazardous Applications. AAAI Press - The MIT Press, 2000.

[8] C. Pace and D. Seward, “A safety integrated architecture for an
autonomous safety excavator,” in International Symposium on
Automation and Robotics in Construction, 2000.

[9] S. Daly and S. Orme, “The reliability of the Sizewell ‘B’ reac-
tor protection system,” Electrical and Control Aspects of the

Sizewell B PWR, 1992., International Conference on, pp. 208–
214, 1992.

[10] F. Py and F. Ingrand, “Dependable execution control for au-
tonomous robots,” in IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS),Sendai, Japan, 2004.

[11] D. Berthelier, C. Chicher, M. Narmada, D. Dalemagne,
O. Boudillet, C. Veltz, R. Chemel, M. Yu, and G. De Ri-
vals Mazeres, “Automated Transfer Vehicle (ATV) critical soft-
ware overview,” in 53rd International Astronautical Congress of
the International Astronautical Federation (IAF), Houston, TX;
USA, 2002.

[12] D. Essame, J. Arlat, and D. Powell, “Tolérance aux fautes dans
les systèmes critiques,” LAAS-CNRS, Tech. Rep. 00151, 2000.

[13] M. Kim, I. Lee, U. Sammapun, J. Shin, and O. Sokolsky, “Mon-
itoring, checking, and steering of real-time systems,” in 2nd In-
ternational Workshop on Run-time Verification, 2002.

[14] E. Baudin, J.-P. Blanquart, J. Guiochet, and D. Powell, “Inde-
pendant safety systems for autonomy,” LAAS-CNRS, Toulouse,
France, Tech. Rep. 07710, 2007.

[15] F. Maraninchi and Y. Rémond, “Mode-automata: About modes
and states for reactive systems,” Lecture Notes in Computer
Science, vol. 1381, pp. 185–200, 1998.

[16] D. Henrich and S. Kuhn, “Modeling intuitive behavior for safe
human/robot coexistence cooperation,” in Proceedings of the
International Conference on Robotics and Automation, 2006.

[17] M. Perhinschi, M. Napolitano, G. Campa, B. Seanor, J. Burken,
and R. Larson, “Design of safety monitor schemes for a fault
tolerant flight control system,” IEEE Transactions on Aerospace
and Electronic Systems, vol. 42, no. 2, pp. 562–571, 2006.

[18] J. Guiochet, G. Motet, C. Baron, and G. Boy, “Toward a human-
centered UML for risk analysis - application to a medical robot,”
in Proc. of the 18th IFIP World Computer Congress (WCC),
Human Error, Safety and Systems Development (HESSD04),
C. Johnson and P. Palanque, Eds. Kluwer Academic Publisher,
2004, pp. 177–191.

