
HAL Id: hal-00282444
https://hal.science/hal-00282444

Submitted on 27 May 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Online Safety Monitoring Using Safety Modes
Jérémie Guiochet, David Powell, Étienne Baudin, Jean-Paul Blanquart

To cite this version:
Jérémie Guiochet, David Powell, Étienne Baudin, Jean-Paul Blanquart. Online Safety Monitoring
Using Safety Modes. Workshop on Technical Challenges for Dependable Robots in Human Environ-
ments, May 2008, PASADENA, United States. pp.1-13. �hal-00282444�

https://hal.science/hal-00282444
https://hal.archives-ouvertes.fr

Online Safety Monitoring Using Safety Modes

Jérémie Guiochet, David Powell andÉtienne Baudin
Université de Toulouse

LAAS-CNRS
France

{name}@laas.fr

Jean Paul Blanquart
EADS Astrium

Toulouse, France
jean-paul.blanquart@astrium.eads.net

Abstract— Robotic systems have to carry out more and
more complex tasks, including ones where humans can
be endangered. Residual design faults in such systems,
as well as the inevitability of physical faults and interac-
tion faults during operation, motivate the use of safety
monitors to prevent catastrophic failures. In this paper,
we consider the design of such safety monitors for multi-
functional robotic systems. We present an approach and a
formalization of the process for determining safety rules.
It consists in identifying safety modes, according to the
different tasks carried out by the monitored system. In
practice, each safety mode is related to one or several
functional modes and is specified by apermissiveness
vector that defines the authorized domains of variation
of key physical variables. The set of safety modes can
be partially ordered according to their authorization
vectors and can thus be represented as a directed acyclic
graph. This graph is used to automatically build a model
representing safety modes and their transitions, which
can be implemented in an independent safety monitor. A
case study has been carried out on a mobile manipulator
robot, working in a factory alongside humans.

Index Terms— Dependability, Safety, Online Monitor-
ing, Robot, Autonomy

To carry out more and more complex tasks, robotic
systems are being given increasing authority and auton-
omy. This raises major dependability concerns, partic-
ularly for systems operating in the presence of humans.
Despite the use of fault removal and prevention tech-
niques, it is impossible to guarantee avoidance of all
development faults or, of course, of physical faults and
interaction faults arising during deployment. Thus, it is
necessary to design systems capable of fulfilling their
mission (reliability) and avoiding catastrophic failures
(safety) despite the presence of faults [1]. Following
this logic of accepting the inevitability of faults, we
propose the use of an independent subsystem to carry
out online verification of global safety properties in
order to provide end-to-end protection against faults
activated or occurring at run-time. In this paper, we

will refer to the independent subsystem as thesafety
monitor [2], and to the functional system as themoni-
tored system. Such safety monitors exist in many crit-
ical application domains: transportation [3], space [4],
medical systems [5], [6], civil engineering [7], nuclear
power plants [8], and multi-purpose robotics [9]. Many
expressions are used to denote such a safety moni-
tor: Monitoring and Safing Unit[10], Protection Sys-
tem[11], Safety Manager[7], Checker[9], [12], Safety
Bag[3] Guardian Agent[6]. The safety monitor obtains
information about the state of the monitored system and
the environment either by directly reading the values
of key variables maintained by the monitored system
or by using dedicated additional sensors. It decides
whether the observed situation is safe or not according
to a set of monitoring rules. If a hazardous situation is
detected, the safety monitor triggers a forward recovery
procedure to put the monitored system in a safe state.

Most of the literature on safety monitors focusses on
system architecture and on how assertion-checking can
be integrated into the architecture [13]. But none we are
aware of addresses the process leading to the identifica-
tion, definition and expression of the safety assertions
to be checked. Moreover, for the above cited systems,
safety rules are checked continuously, without taking
account the fact that systems can perform diverse tasks
where the appropriate safety rules can change according
to the tasks be carried out. This is particularly important
with multi- functional robots, especially those including
autonomous abilities.

The contribution presented in this paper aims to over-
come these issues. We propose a structured approach
based on the concept ofsafety modes. A systematic and
formalized approach is proposed to improve the safety
rule identification process, and to partially automate the
production of safety rules. The use of modes integrates
the fact that systems can carry out tasks with different
safety rules. For each functional mode of the monitored

system, the safety monitor activates the corresponding
safety mode, and checks a specific set of monitoring
rules. An additional aspect of the proposed method is
that it helps designers to specify reaction strategies that
are more flexible than emergency stop, which leads to
improved availability and efficiency.

In Section I of this paper, we formalize the con-
cept of safety modes and define two types of safety
rules: permissiveness rules and context rules. Section II
discusses the management of safety modes and, in
particular, the transitions between safety modes. Sec-
tion III develops our preliminary case study on a mobile
manipulator robot, working in a factory alongside hu-
mans. It demonstrates that safety modes do simplify
the specification process, and that most hazardous
situations can be handled by reaching a safety mode
in which the monitored system remains partially func-
tional. Some examples coming from this case study are
used throughout the paper to illustrate theoretical and
formal aspects. Finally, Section IV discusses lessons
learnt and future work that needs to be carried out.

I. SAFETY MODES

The objective of safety modes is to describe the
dynamics of the safety monitor, identifying different
sets of safety rules activated according to the current
tasks of the system. We propose a formal notation for
mode specification, and also a partial order relation
between modes that facilitates the production of safety
rules.

A. Background

In the literature, the termmode is mainly used to
describe different configurations of a system, in which
different control laws are applied [14]. In particular,
modes allow discrete changes from one control law to
another. Relatively few works link the notions of safety
rules and functional modes of operation.

In [15], four functional modes of a manipulator robot
arm are defined from the combinations of two discrete
variables, each with two possible values: the maximum
speed of the arm (slow or fast), and the choice of
motion control (automatic or guided by a human).
The control laws are different in each mode. Some
transitions between modes require the introduction of
an intermediate mode, in order to respect safety criteria.
In particular, the transitions from the automatic modes
to the manual modes require an intermediate mode in
which the arm is stopped. In [16], three modes are
used to manage, within asafety manager, the in-flight

testing of an experimental neural network for fly-by-
wire flight control. The three modes are:nominal(with
conventional flight control),research(neural network
flight control), andfailure (research mode with injected
faults). When the pilot pushes a button in the nominal
mode, the research mode is engaged if the necessary
conditions (about flight parameters, hardware, software,
communication buses) are fulfilled. If any of these con-
ditions does not hold, the safety manager automatically
returns to the nominal mode. From the research mode,
the pilot can engage the failure mode. The monitoring
rule set of this mode is a superset of the research mode
rule set with two additional rules.

Those two approaches illustrate that in many sys-
tems, operational and safety modes are tightly linked.
Our approach is similar in that it consists in defining
some discrete modes, in which is applied a specific set
of safety rules that aims to prevent the system from
reaching an unsafe state. The main difference is in
that we introduce safety modes as a first-class concept
distinct from functional aspects and propose a general
method for specifying them.

B. Definitions

We define asafety modeas a state of the safety
monitor, in which a specific set of monitoring rules is
applied. The safety monitor obtains information about
the monitored system and its environmental context,
determines the current safety mode, and checks if the
conditions of a safe execution are fulfilled. Functional
mode changes that do not impact safety do not lead to
a change in safety mode. Hence, there is a one to many
binary association between safety modes and functional
modes.

For each safety mode and each transition between
safety modes, the safety rules that are checked may be
different. We distinguish two types of rules. The first
type arepermissiveness rules, that define the functional
capabilities allowed for the current safety mode. This
type of rule checks that some functional variables do
not violate the domains of variation authorized in the
current safety mode. For example, speed ranges [0, 1]
m.s−1 and [0, 2] m.s−1 for a mobile robot are two
possible authorized domains. However, permissiveness
rules do not deal with context or environment. The
second type of rules,context rules, are intended for
monitoring the system with respect to hazardous situa-
tions, either related to the environmental conditions, or
the state of critical resources.

C. Permissiveness rules

Safety modes are defined on the basis of safety-
relevant functional variables that have ranges of autho-
rized variations. We define theauthorization variable
Af , associated to a functional variablef , to denote the
authorized domainof variation of f . Af may take on
different valuesA(i)

f at different times, thus leading to
a variable constraint on the functional variablef . A
domain that can be authorized is called anadmissible
domain. Each admissible domain off is a member of
the powerset (set of all possible subsets) of the domain
of f , notedP(dom(f)). The setAf = {A

(1)
f , ..., A

(k)
f }

of admissible domains off is thus a family of sets over
dom(f).

Definition 1: The set of admissible domains
for a functional variablef is defined asAf =

{A
(1)
f , ..., A

(m)
f }, where∀i, A

(i)
f ∈ P(dom(f))

A property of a family of sets is that it is partially
ordered under the inclusion relation, so the elements
of Af can be represented as a directed acyclic graph,
which we call thepermissiveness graph. Two nodes
A

(i)
f , A

(j)
f in the permissiveness graph are linked by a

directed arc (fromA
(i)
f to A

(j)
f) if A

(i)
f includesA

(j)
f

as a sub-domain. In this case, we say thatA
(i)
f is more

permissivethanA
(j)
f , since it allows a wider variation

of safety-relevant functional variablef . Conversely,
A

(j)
f is said to be morerestrictive thanA

(i)
f .

Definition 2: An admissible domainA(i)
f is more

permissive (or, less restrictive) than A
(j)
f if A

(i)
f ⊇

A
(j)
f .

Paths on the permissiveness graph represent possible
reaction strategies in the face of detected hazardous
situations, under the premise that more restricted do-
mains of safety-relevant functional variables are safer
than more permissive ones. To allow feasible changes
of a functional variable, the permissiveness graph must
be weakly connected. Thus, if two admissible domains
are not ordered by the inclusion relation, they must
either include, or be included by, another admissible
domain.

Definition 3: A set of admissible domains forf is
said to befeasible if
∀i, j,

(

A
(i)
f * A

(j)
f

)

∧
(

A
(i)
f + A

(j)
f

)

⇒ ∃k,
(

A
(k)
f ⊇ A

(i)
f ∪ A

(j)
f

)

∨
(

A
(k)
f ⊆ A

(i)
f ∩ A

(j)
f

)

Let us consider a few simple examples. Let
BaseSpeed (type real) be the speed of the base of
a mobile robot, such thatdom(BaseSpeed) ⊆ R+.
Let us consider three admissible domains (in this case,
intervals) forBaseSpeed:

ABaseSpeed =











A
(1)
BaseSpeed = [0, 0]m.s−1

A
(2)
BaseSpeed = [0, 1]m.s−1

A
(3)
BaseSpeed = [0, 2]m.s−1

The first possible value of the authorization vari-
able ABaseSpeed defines a constraint of no move-
ment (BaseSpeed = 0), whereas the other two de-
fine two different upper speed limits. In this case,
the admissible domains form a totally-ordered set:
A

(3)
BaseSpeed ⊃ A

(2)
BaseSpeed ⊃ A

(1)
BaseSpeed, ranging from

the most permissive to the most restrictive constraint
on BaseSpeed.

As a second example, consider a functional vari-
ableGripperState (typeenum) representing the state
of a gripper at the tip of a robot arm, such that
dom(GripperState) = {Open,Closed}. We can con-
sider three admissible domains forGripperState:

AGripperState =











A
(1)
GripperState = {Open}

A
(2)
GripperState = {Closed}

A
(3)
GripperState = {Open,Closed}

The first and second values ofAGripperState denote
obligatory positions of the the gripper, whereas the
third value indicates that both positions are autho-
rized. Here,AGripperState is only partially-ordered with
A

(3)
GripperState representing the most permissive domain

and A
(1)
GripperState and A

(2)
GripperState being alternative

less permissive domains.
Alternatively, authorized gripper actions might be

designated by means of an authorization variable
AGripperTransition pertaining to a functional variable
GripperTransition representing transition events be-
tween gripper states where a possible set of values for
AGripperTransition might be:

AGripperTransition =
{

A
(1)
GripperTransition = ∅

A
(2)
GripperTransition = {open, close}

In this third example, the first value of
AGripperTransition forbids any change in state of
the gripper, whereas the second value allows both
possible transitions. The domainA(2)

GripperTransition is

evidently more permissive thanA(1)
GripperTransition.

All the three examples lead to sets of admissible
domains that can be represented as weakly-connected

directed acyclic graphs, and are thus feasible sets in the
sense of Definition 3.

The notion of a set of admissible domains for a single
safety-relevant functional variablef can be generalized
to considervectorsof n safety-relevant variables,~f =

(f1, ..., fn) such thatA~f
= {A

(1)
~f

, ..., A
(m)
~f

} denotes a

set ofm admissible domains for~f . A~f
is a subset of

the Cartesian product of the sets of admissible domains
for each element of~f : A~f

⊆ Af1
× ... ×Afn

.

We define~F to be the vector ofall the safety-relevant
variables of a given systemS. Each admissible domain
A

(i)
~F

defines asafety modemi of systemS.

Definition 4: A safety mode mi of a systemS
with a vector of safety-relevant functional variables
~F = (f1, ..., f| ~F |) is defined by an affectation of

authorized domains for each element of~F ,A
(i)
~F

=
(

A
(i)
f1

, ..., A
(i)
f| ~F |

)

. We callA(i)
~F

the permissiveness vec-

tor associated with modemi.

Safety modes can be partially ordered by permissive-
ness by direct extension of Definition 2, applied to the
modes’ permissiveness vectors.

Definition 5: A safety modemi is morepermissive
(respectively, lessrestrictive) thanmj if A

(i)
~F

⊇ A
(j)
~F

,

i.e., if ∀k ∈ [1, |~F |], A
(i)
fk

⊇ A
(j)
fk

. We use the notation
mi ≻ mj to denote the permissiveness relation between
safety modes.

The permissiveness vector of a given safety mode
defines the domains that must be respected in that mode
by the set of safety-relevant functional variables of the
system. Formally, we express this as thepermissiveness
rule associated with the safety mode:

Definition 6: Permissiveness rule: in safety mode
mi with associated permissiveness vectorA

(i)
~F

, the
permissiveness rule is defined as the boolean function:
P (mi) = (∀k ∈ [1, |~F |], fk ∈ A

(i)
fk

)

The notion of a set offeasible safety modesfollows
by direct extension of Definition 3.

Definition 7: A set of safety modes for systemS is
said to befeasible if:
∀i, j,

(

A
(i)
~F

* A
(j)
~F

)

∧
(

A
(i)
~F

+ A
(j)
~F

)

⇒ ∃k,
(

A
(k)
~F

⊇ A
(i)
~F

∪ A
(j)
~F

)

∨
(

A
(k)
~F

⊆ A
(i)
~F

∩ A
(j)
~F

)

An admissible set of safety modes is one in which it
is possible for the system to change safety modes with-
out necessarily falsifying a permissiveness rule, i.e.,
there are no discontinuities in the admissible domains
of the system’s safety-relevant functional variables.

As a simple example, consider a mobile
robot equipped with a gripper on a manipulator
arm. We consider four safety-relevant functional
variables: BaseSpeed, GripperTransition
(defined as previously), ArmStatus (type
enum) where dom(GripperTransition) =
{folded, unfolded}, and ArmForce (type real)
wheredom(BaseSpeed) = R+.

We wish to define the following six safety modes for
this system:

• FastMove: the robot can move at maximum speed,
assuming that no human beings are in its vicinity.
While moving fast, its arm must be in the folded
position.

• SlowMove: the robot can move at reduced speed,
even if there are human beings in its vicinity.

• FastWork: the robot can use the full functionality
of its manipulator arm, as long as its base is
stationary and there are no human beings in its
vicinity.

• CollaborativeWork: the robot can use its arm at
reduced speed in the vicinity of or in collabora-
tion with a human being, as long as its base is
stationary.

• MoveAndWork: the robot can use its arm at re-
duced speed while moving, as long as no human
beings are in its vicinity and any load it manipu-
lates is not dangerous.

• Stop: the base and the arm of the robot are
stationary; any load in the gripper must not be
dropped.

Table I defines the permissiveness vectors over the
four safety-relevant variables defined previously.

Figure 1 shows the permissiveness graph that can be
generated automatically from the set of safety modes
defined in Table I. It can be seen that the set of safety
modes isfeasible(the permissiveness oriented graph is
weakly connected) and that safety modeStop is the
most restrictive safety mode (it appears as a sink node
on the graph).

D. Context rules

As previously presented, permissiveness rules do not
include external conditions, and particularly hazardous
situations induced by non-controllable variables. We

TABLE I

EXAMPLE OF SAFETY MODES AND ASSOCIATED PERMISSIVENESS VECTORS

Safety-related Safety Modes
functional variables FastMove SlowMove Stop CollaborativeWork FastWork Move&Work

BaseSpeed [0,2] [0,1] [0,0] [0,0] [0,0] [0,1]
ArmStatus {folded} {folded} {folded} {folded,unfolded} {folded,unfolded} {folded,unfolded}
ArmForce [0,10] [0,10] [0,10] [0,50] [0,120] [0,120]

GripperTransition {∅} {∅} {∅} {open, close} {open, close} {open, close}

FastMove

CollaborativeWork

FullWorkMoveAndWork

Stop

SlowMove

Fig. 1. Graph of safety modes with permissiveness relation order (a→ b: a is more permissive than b)

introduce the notion ofcontext rulesto define external
conditions that must be respected to ensure safety.
For instance, the presence of a human in the robot’s
vicinity can be considered as acontext variablethat
could be used in such a context rule. Context rules
can be defined using the same formal notation as for
permissiveness rules. For instance, let us consider
the context variableHumanDistance, which is the
distance between the robot and the closest human.
This information is safety-relevant for instance in the
FastMove mode of the previous example where the
robot can reach speeds that could cause injury in case
of collision. Context rules for different safety modes
can defined in terms of differentHumanDistance
ranges such as [0,+∞], [50, +∞], and [200,+∞]
cm. For example, the context rule for theFastMove
mode in Figure 1 would beC(FastMove) =

(HumanDistance ∈ A
(3)
HumanDistance), where

A
(3)
HumanDistance = [200,+∞], i.e., we specify that

in the safety modeFastMove the distance to any
humans cannot be under 200 cm. In this example,
only one context variable is used in the rule, but in
general, the context rule could include constraints
on many other context variables (e.g., natural light
intensity or cluttering level of environment, which
both have a high impact on the robot’s abilities to
sense its environment and plan a safe trajectory).

Formally, we define~G = (g1, ..., g| ~G|) to be the
vector of safety-relevant context variables related to the
environment of systemS.

Definition 8: The set of admissible domains
for a context variablegk is defined asAgk

=

{A
(1)
gk

, ..., A
(m)
gk

}, where∀i, A
(i)
gk

∈ P(dom(gk))

Definition 9: A context vector for safety modemi

is an affectation of authorized domains for each element
of ~G,A

(i)
~G

=
(

A
(i)
g1

, ..., A
(i)
g| ~G|

)

.

Definition 10: Context rule: in safety modemi, it
must be the case thatC(mi) is true, with C(mi) =

∀k ∈ [1, | ~G|], gk ∈ A
(i)
gk

E. Safety mode automaton

Permissiveness and context rules are used to detect
if the system is entering a hazardous state. These rules
can be used both for checking conditions that must be
maintained in a a safety mode (mode conditions) and
for checking conditions that must be fulfilled to allow
transitions between safety modes (guard conditions).
Mode conditions and guard conditions are obtained
from the permissiveness and context vectors of the
safety modes. Practically, the guard condition on a
transition between safety modesm1 and m2 depends
on the permissiveness relation betweenm1 and m2

(defined in Definition 5) which implies three types of
transition (an example is presented in Figure 2):

1) To a more permissive safety mode:m2 ≻ m1.
The monitored system increases its functional
abilities, but some contextual conditions have to
be fulfilled (e.g., absence of humans). According

to the permissiveness relation,A(2)
~F

⊇ A
(1)
~F

,
thus, reachingm2 from m1, theP (m1) rule still
remainstrue. In that case, only theC(m2) rule
has to be checked for this transition (consider,
for instance, a transition fromSlowMove to
FastMove in Figure 1).

2) To a less permissive safety mode:m2 ≺ m1. As
functional abilities decrease the permissiveness
rule of the targeted mode (m2) must be checked.
For example, if the monitored system has to enter
the Stop mode, it has to stop its base and arm
before the acceptance of the transition by the
safety monitor.

3) To an incomparable safety mode:m2 � m1 and
m2 � m1. In this case the guard condition is de-
fined by identifying a path in the permissiveness
graph, passing through less permissive interme-
diate modes. The resulting guard condition is a
logicaland of all guard conditions along the path
to the final mode.

With these three types of transition, all the transi-
tion conditions can be determined. However, all the
transitions are not functionally interesting. For that
reason, some transitions may be manually specified
as forbidden. In Figure 2, transitions to more or less
permissive safety modes are represented by solid ar-
rows, whereas transitions between incomparable safety
modes are represented by dashed arrows. An illustration
is the case of transition fromCollaborativeWork to
SlowMove mode. Here, the intermediate modeStop
is used to evaluate the final guard condition:P (Stop)∧
C(SlowMove). The transitions that are not represented
are forbidden.

To ease readability, the request of the monitored
systemchangeMode(mi) on each transition condition
is not represented on the automaton of Figure 2.
For example, using statechart notation, the transition
from Stop to SlowMove should be annotated
with: changeMode(SlowMove)[P (SlowMove],
i.e., a transition is activated on event
changeMode(SlowMove), guarded by the condition
P (SlowMove).

II. FROM SAFETY MODES TOSAFETY RULES

Once safety modes, permissiveness and context vec-
tors have been specified, it is necessary to analyze how
the safety monitor will react if the induced conditions
are not fulfilled. Whereas previous sections can be
applied in a generic way, this section is highly linked
with the design of the system, because it requires

knowledge about which reaction strategies are possible.
However, we present in this section some guidelines to
implement safety modes and safety rules.

A. Activation of the safety modes

Since the safety rules to be ensured by the safety
monitor depend on the current safety mode, one fun-
damental issue remains the identification of the current
safety mode. This can be done by the observation
of the physical attributes of the monitored system to
deduce the corresponding safety mode. This approach
has a major disadvantage: in some cases the safety
monitor cannot identify the current safety mode. This
issue is studied in the diagnosis community, where
graph algorithms are used to identify system state
given a set of observation variables. Of course our
approach can integrate this approach, but we decided
to first focus on the monitoring of safety rules, and
to simplify the approach, we make some assumptions.
First, we assume that the monitored system has been
designed with a set of functional modes, linked with
a many-to-one relation to the safety modes. Second,
we have chosen to be notified by the monitored system
about its mode change requests. This assumption avoids
any ambiguity. The drawback of this solution is the
required confidence given to the monitored system,
which may send erroneous information and particularly
wrong mode change requests. In that case, it should be
demonstrated that in any case of mismatch, the safety
monitor will put the system in a safe state. This may
lead to a lower availability but guarantees a higher
safety.

B. Mode condition violation

In every safety mode, the monitor should be able
to detect if there is a violation of the corresponding
mode conditions, of type P or C. When it is not
possible for the system to ensure both, the system
cannot remain in the same safety mode, so the safety
monitor must force a transition towards a safe state,
i.e., a less permissive safety mode. To do this, we
propose the concept of afall-back mode, in which
actions are undertaken to reach conditions of a less
permissive safety mode (for example, a fall-back mode
might correspond to activation of emergency braking).
A limit can be set on the time spent in the fall-back
mode. If that time limit is exceeded, the safety monitor
attempts to force a transition towards an even less
permissive mode, e.g., aStop mode. As a last resort,
the safety monitor should put the monitored system in

SlowMove

FastMove

Stop

FastWork

C(MoveAndWork)

P(SlowMove) and

CollaborativeWork

P(CollaborativeWork) and

C(FullWork)

P(CollaborativeWork) and C(MoveAndWork) P(SlowMove) and C(FastMove)

C
(FastM

ove)
C
(M

ov
eA

nd
W

or
k)

P(Slow
M

ove)

MoveAndWork

P(C
ollaborativeW

ork)

C
(M

oveA
ndW

ork

P(Stop)

C
(Slow

M
ove)

P(S
to

p)

C
(C

ol
la

bo
ra

tiv
eW

or
k)

C
(M

v
&

W
k

)

P(S
lo

w
M

ov
e)

P(C
ol

la
bo

ra
tiv

eW
or

k)

C
(F

ul
lW

or
k)

P(Stop) and C(SlowMove)

P(Stop) and C(CollaborativeWork)

P
(S

to
p

)

Fig. 2. Generated safety modes automaton (only guard conditions are shown as transition labels)

an ultimate fall-back mode, such asEmergencyStop,
from which it may not be possible to recover, but which
guarantees safety. Many levels of fall-back modes can
be considered, but particular attention should be given
to reaction time constraints (stopping the robot has to
be fast in case of a hazardous situation).

The statechart in Figure 3 is an example. Only
three safety modes are represented (FastMove,
SlowMove, andStop), and three fall-back modes are
introduced (ControlledMovement, ControlledStop,
EmergencyStop). As a first reaction, the safety mon-
itor tries to control the speed. If it is not possible
to reach theSlowMove mode, theControlledStop
mode is activated. As a last resort,EmergencyStop is
activated.

A protocol must be defined to allow communication
between the monitored system and the safety monitor.
Indeed, in case of activation of a fall-back mode,
the actions initiated by the safety monitor must be
taken into account by the monitored system. To ensure
full independence between the safety monitor and the
monitored system, actions such asreduceSpeed() (it is
not specified here how speed can be reduced), should
be engaged by the safety monitor and the monitored
system should be aware of this action to integrate it in
its motion planning for instance.

C. Transition condition violation

We now analyze potential violations of a guard con-
dition. As before, three types of transition are identified:
a transition to a more permissive mode, to a less
permissive mode, and to a mode that is not comparable.
Indeed, in case of achangeMode() request, the guard
condition can include a permissiveness rule (P rule), a

context rule (C rule), or both, and the reaction of the
safety monitor is described in a generic way.

1) Transition towards a more permissive safety mode
(C rule): A transition towards a more permissive mode
is allowed if the environment has changed in such a
way that it respects more restrictive contextual condi-
tions (for instance there are no humans, no hazardous
obstacles). If C rules are not fulfilled, the safety monitor
should keep the system in the same mode, and reject
the request for changing the mode. This implies that the
monitored system does not switch to its desired func-
tional mode, and can integrate this rejection in its future
plans. Again, as for mode conditions (previous section),
a protocol needs to be defined for the monitored system
to receive and react to mode change requests rejected
by the safety monitor.

2) Transition towards a less permissive safety mode
(P rule): Switching to a less permissive mode is
guarded by P rules, i.e., functional variables need to
be restricted (for instance, speed has to be reduced) to
satisfy the P rules before mode switching is allowed.
If those conditions are not verified, this means that
the monitored system wants to reach such a mode,
but is unable to do so. Then, the safety monitor
has to react to impose the conditions mandated by
the more constrained environment. This is again done
through the notion of fall-back modes, as described
in Section II-B. For example, consider the transition
from fastMove to SlowMove on Figure 3. If the
guard conditionP [SlowMove] is not fulfilled when
the mode change is requested, the safety monitor can
engage theControlledMovement fall-back mode pre-
visously defined for handling the violation of the mode
condition ofFastMove. For example, considering the

changeMode()
[P(Stop)]

changeMode()
[C(SlowMove)]

changeMode()
[P(SlowMove)]

changeMode()
[C(FastMove)]

[P(SlowMove)]

[! P(FastMove) OR
! C(FastMove)]

delay(t1)
[! P(SlowMove)]

ControlledMovement

do / reduceSpeed()

ControlledStop

do / EngageBreaks()

EmergencyStop

do / removePower()
Stop

SlowMove

FastMove

delay(t2)
[! P(Stop)] [P(Stop)]

Fall back modes Safety modes

changeMode()
[! P(SlowMove)]

Fig. 3. Statechart representation of safety modes and fall-back modes

transition fromFastMove to SlowMove on Figure 3.
If the guard conditionP (SlowMove) is not fulfilled
when the mode change is requested the safety monitor
can engage theControlledMovement fall-back mode
previously defined for handling a violation of the mode
condition ofFastMove

3) Transition towards a non comparable safety mode
(P and C rules): In the third case, a distinction should
be made between P and C rules. Indeed, if a C rule is
not verified, this means that the environment conditions
do not fulfill the requirement, so the system should stay
in its current mode (as previously presented). If a P rule
is not satisfied, then the safety monitor will take over to
force the monitored system through one or several fall-
back modes until a more restrictive P rule is fulfilled.

III. A PPLICATION TO A MOBILE MANIPULATOR

ROBOT

This section presents an application of the proposed
method on a paper case study based on a use case
defined in the PHRIENDS project1. The system and
its environment are first defined, then the method is
applied.

A. Definition of the system and its environment

The considered system is a mobile robot with a
manipulator arm. The user can order the robot to pick
up a specific object from a specific location and then
to carry it to another location and to place it there,

1PHRIENDS (Physical Human Robot Interaction: Dependability
and Safety) is a project supported by the European Community
under the 6th Framework Program, http://www.phriends.eu

or give it to him. Considering these tasks, we assume
a high-level of interaction between the robot and the
human. First, they both work in the same work space,
which is often avoided: robots are usually enclosed in
a specific area, or must follow a dedicated trajectory.
Second, collaborative work is possible: the robot is able
to take an object from the hand of a human, and the user
can physically stop the robot during a task by catching
any part of the robot arm. The considered environments
are workshops or factories. Tasks can be summed up
with the following UML use cases where the robot can:

• move to a location (holding or not a load),
• give an object to the user,
• take an object from the user’s hand,
• place an object in a specified location,
• take an object from a specified location,

and the user can:

• physically guide the robot arm to a location,
• pause and resume a task by physically stopping

and releasing the arm,
• abort a task by physically stopping the arm.

In its first version, the chosen application will not
be able to work with the arm while moving the base.
The arm for this application is the LWR (LightWeight
Robot) developed by the DLR (German Aerospace
Center) and built by KUKA, which is a seven degree
of freedom arm composed of torque and motor position
sensors [17]. In this paper and in [18], authors present
different control laws, and more particularly, the ones
that have been implemented for this arm in the low-
level controller: position control, low impedance con-

trol and zero gravity control. The first one is a classical
robotic control law, whereas the second one is based
on a position-force law allowing the system to propose
a variable stiffness around a fixed position. The latter
control law compensates on each joint the effect of
gravity so that a human can guide the robot as if it
had no weight. The mobile base will be considered as
a wheel base plateform, able to navigate in an area
where there are other mobile objects such as humans
(as described in [19]).

B. Application of the method and results

The first step is to identify safety modes and safety-
relevant functional variables considering all scenarios.
We use UML sequence diagrams [20] as in Figure II.
In a sequence diagram, interactions can be represented
with messages as well as activities (for the robotic
system for instance). This diagram can be used at a
very first step of a project with a low level of detail.
Only one scenario is presented here.

Safety modes are identified by a cross analysis of
the possible deviations based on this diagram such as
in [21], and of a preliminary risk analysis identifying
hazardous situations. Figure 4 presents the main human
robot interactions and robot activities during execution
of the use case “take an object from a specified loca-
tion”. In the presented scenario, the human gives an
order to the robot to pick up an object which is at a
specified location. Design choices are not presented on
this diagram (such as the means to locate the position),
but the level of description is sufficient to find the safety
modes. During this scenario, a user wants to interrupt
the task by physically stopping the arm (catching any
part of the robot arm). Three actions are then possible,
the user can: physically guide the robot arm to a
location, abort the robot task, or pause the task and
resume it when he wants. In our case, the user chooses
to physically guide the robot arm to a location (which
can be different from the first one). Finally, the robot
holds the object with the gripper and moves the arm in
the transportation position (arm folded is required for
moving the mobile base).

For each step of the sequence diagram, we
identify the corresponding safety modes which are
presented on the right side of figure 4. Identification
of the safety-relevant functional variables is based
on this diagram, but also on a preliminary risk
analysis. Eight such variables have been identifified:
BaseSpeed, BaseAcceleration, BaseForce,
ArmSpeed, ArmAcceleration, ArmForce,

GripperTransition, ArmStatus. Permissiveness
vectors are then associated with each safety mode by
defining authorized domains for each these variables,
as presented in the Table II (only a subset of variables
is presented here).

Authorized domains for speed and acceleration of
the robot base are obtained from expert studies (for in-
stance the speed is limited at0.25m/s in standard [22],
but in [23], the authors show that up to2m/s the LWR
robot cannot provoke any damage). We use herek1 and
k2 as proportionally factors to limit the speed of the
robot, wherek2 > k1 > 0, anddist is the difference
between the real distance to the closest human and a
constant safety distance.

ArmForce and BaseForce are two variables re-
lated the torque of the joints and the wheel motors.
ForArmForce, we keep the standard recommendation
which is a maximum force of125N . The appropriate
domain forBaseForce is the subject of future work.

For boolean or enumerated variables, we use the
same notation as presented previously in Section I-
C. ForArmStatus, values arefolded andunfolded.
Two admissible domains forArmStatus are de-
fined: A

(1)
ArmStatus = {folded}, which means that

the arm has to be folded, andA(2)
ArmStatus =

{folded, unfolded} for when the arm is free to move
between folded and unfolded positions. As previously
presented,AGripperTransition has two values:{∅} and
{open, close}, which mean respectively that any transi-
tion of gripper state is forbidden, or that both transitions
are allowed.

As presented in Table III, two safety-relevant context
variables have been identified to detect hazardous sit-
uations. The first one is the safe distance with respect
to the closest human,HumanDistance, which has
currently been fixed at2m in FastMove safety mode,
and0.5m in SlowMove safety mode. The second one,
is the hazardous nature of the load, which impacts the
functional abilities of the robot (for instance, holding a
hazardous load will constraint the mobile base and the
arm to move slowly).

The resulting permissiveness graph is the same as
that in Figure 1, without the modeMoveAndWork,
and is then used to build the mode automaton in Fig-
ure 5. As previously presented, this automaton is com-
posed of transitions with plain lines which are directly
derived from the permissiveness and context vectors,
and transitions with dotted lines for induced transition
conditions. Once this automaton is built, the next objec-
tive is to build the final automaton showing transitions

user

Robotic system

pick up Object at Location

receive and interpret order

calculate mobile base trajectory to

Location

move mobile base to Location

locate Object

change control mode

to low impedance

physically stop the arm

during arm movement

stop the manual guidance

detect end of guidance and switch in

automatic control mode

locate Object

close the gripper

move arm to a pregrasp position

(gripper opened)

calculate fine positioning to grasp

the Object

fine positioning of the mobile base

move arm to transport position

holding the Object

detect Object and calculate arm

trajectory movement

start to move arm to a pregrasp

position (gripper opened)

order (1. I show you how to pick up,

or 2. abort command, or

3. resume command) -> 1

robot is in zero gravity control mode

with brakes offphysically guide the robot to point

in the correct gripper position

collision detection

start guiding
robot is in zero gravity control mode

with brakes engaged

Safety modes

Stop

FastMove

or SlowMove

SlowMove

Stop

FullWork

FullWork

RestrictedWork

Fig. 4. Sequence diagram of the use case “take an object from aspecified location”

TABLE II

CASE STUDY SAFETY MODES AND ASSOCIATED PERMISSIVENESS VECTORS

Safety-related Safety Modes
functional variables FastMove SlowMove Stop CollaborativeWork FastWork

BaseSpeed [0,k2 ∗ dist] [0,k1 ∗ dist] [0,0] [0,0] [0,0]
ArmStatus {folded} {folded} {folded} {folded,unfolded} {folded,unfolded}
ArmForce [0,10] [0,10] [0,10] [0,50] [0,120]

GripperTransition {∅} {∅} {∅} {open, close} {open, close}

TABLE III

CASE STUDY SAFETY MODES AND ASSOCIATED CONTEXT VECTORS

Safety related Safety Modes
context variables FastMove SlowMove Stop CollaborativeWork FastWork
HazardousLoad {False} {False} {True,False} {True,False} {False}
HumanDistance [2, +∞] [0.5, +∞] [0, +∞] [0, +∞] [0, +∞]

P(Stop) & C(SM)

C
(S
M
)

P
(S
M
)

C
(F
M
)

Stop

SlowMove

FastMove

P
(S
top)

CollaborativeWork

FastWork

P
(S
to
p)

C
(S
M
)

P
(C
W
)

C
(F
W
)

P(Stop) & C(CW)

P
(S
to
p)

C
(F
W
)

C
(FM
)

P
(S
to
p
)

Fig. 5. Safety mode automaton withoutchangeMode() request events (only guard conditions are shown as transition labels)
cm
() [C

(F
astM

ove)]

[P(SlowMove)]

[! P(Slow
Move) OR

 ! C(Slow
Move)]

cm
() [P

(S
top)]

cm
() [C

(S
low
M
ove)]

cm
() [P

(S
low
M
ove)]

[! P(F
astMo

ve) O
R ! C

(FastM
ove)]

delay(t1)
[! P(SlowMove)]

ControlledMovement

do / reduceMobility()

ControlledStop

do / engageStop()

EmergencyStop

do / removePower()
Stop

SlowMove

FastMove

delay(t2)
[! P(Stop)] [P(Stop)]

Fall back modes
Safety modes

cm()
 [!P(

Slow
Mov

e)]

cm() [!P(Slo
wMove)]

cm
() [C

(F
astM

o
v
e)]

cm
() [P

(S
top)]

Fig. 6. Partial safety mode automaton with fall-back modes.cm(x): abbreviation of request to change mode to ”x” (”x” omitted avoid
cluttering the figure)

and fall-back modes in case of condition violations.
We only present in Figure 6 a subset of the whole
resulting statechart. As previously presented, when P
or C conditions are violated the monitor switches to a
fall-back mode in which actions are executed to impose
conditions of a less permissive mode. For instance, in
theFastMove mode, if P or C conditions are violated,
or if a request to change mode toSlowMove occurs but
conditions are not fulfilled, we have defined a fall-back
mode ControlledMovement, which is a transitional
mode to reach theSlowMove conditions. After a fixed
delay (heret1), if the conditionsP (SlowMove) are
still not fulfilled then the monitor switches to another

fall-back mode,ControlledStop, to stop all movement
of the robot.

In each fall-back mode, actions are performed
to fulfill conditions. For instance, in the
ControlledMovement mode, the action
reduceMobility() can act on base speed, base
acceleration but also stop the arm if any movement
has been engaged (which is forbidden because the arm
must be folded in this mode). Hence, in every fall-back
mode, actions depend on which constraint is violated
and are design-dependent. Ideally, the monitor should
be able to observe and to act completely independently
from the functional channel. Nevertheless, this is

rarely possible as the robot cannot be fully redundant
in terms of sensors and actuators. Hence, this step of
the safety mode approach should be taken in account
during design of the functional system.

IV. D ISCUSSION

The application of the approach on the case study
gives evidence to the applicability of the proposed
formalism. The terminology and the notation have
been systematically applied. An important point is the
difference between functional and context variables that
has been proposed. This segregation is fundamental
for building a safety mode automaton with a partial
order permissiveness relation based both on P and C
conditions, and for determining transition conditions.
This is a key point in our approach. Determination of
safety modes, and functional and context variables, is
a process that can be used to supplement risk analysis
methods. In our case, we use sequence diagrams, and
expert reviews to determine hazards. We are currently
studying a systematic approach to link risk analysis to
our safety mode approach.

Another point that needs to be further developed
is the consistency of safety limits between the safety
monitor and the functional system. Indeed, the safety
monitor should engage reactions in case of hazardous
situations, but it should let the functional system react
first. For instance, when a human enters in the robot
trajectory, the functional system should react, and only
if the situation does not change, then the monitor has
to react. This can be done defining different limits for
human distance, for example, or by using a timeout to
trigger mode switching.

Some limitations have been identified during the
last step of the approach, which is the definition of
the reactions of the safety monitor. First, we need to
consider in more detail the perception capabilities of the
safety monitor. Indeed, speed monitoring can be done
through sensors, but detection that the system is about
to open the gripper while that is forbidden cannot be
done with a sensor. This means that the safety monitor
should should be informed about internal requests of
the system, which can decrease independence between
the two channels. Second, if reactions from the monitor
are performed (for instance, a forced change of control
law, or forced stop of all movement), this should be
made known to the functional system, to rebuild a plan
for instance. Both of these current limitations point to
the need for further work on the architecture level [13]
and on the protocol between monitored system and

safety monitor. This is also related to our proposal
for the use offall-back modes, which are transitional
modes where actions are performed to impose less
permissive conditions. Such modes depend on the ob-
servation and reaction means available for the monitor
(which are constrained by the architecture and the inter-
channel protocol).

Currently, a small number of safety modes has been
considered, and simple authorization domains have
been proposed. For instance, all the domains of con-
tinuous variables (speed, force, etc.) are totally ordered
([0, 0] ⊂ [0, 1] ⊂ [0, 2]). This implies that it is possible
to switch to a more permissive mode without checking
any permissiveness condition (if speed is in[0, 1], it
is also true that speed is in[0, 2]). Nevertheless, we
should consider that sometimes, domains will not be
totally ordered, and have for instance unordered (but
overlapping) domains such as[0, 20] and [15, 30]. In
order to determine transition conditions, intermediate-
modes might be added, such as in this case, the interval
[15, 20]. Transition conditions are then more complex
and are difficult to determine manually.

Finally, the safety monitor approach implies an ex-
tension of system with additional possibilities to change
the system state. New risks can then be introduced, so
particular attention needs to be paid to integrity of the
monitor itself. Our study is based on the assumption
that the monitor will not fail dangerously, but we
also have to prove that there is not any inconsistency
between the monitor and the system, which could lead
to hazardous situations.

V. CONCLUSION

We have presented in this paper a formal framework
to facilitate the specification of safety rules used by an
independent safety monitor. Our approach is based on
the safety mode concept, which associates a specific
rule set to each functional behavior of the monitored
system. A graph representing the partial order between
safety modes according to a permissiveness relation
allows the automatic determination of transition condi-
tions. In addition, each safety mode can be associated
with a fall back mode aimed at enforcing safe execution
conditions.

A case study was carried out on a mobile manipulator
robot. This did not reveal any inconsistencies and
confirmed that the formal framework is indeed useful.
However, a real implementation has yet to be done.
Moreover, some issues presented in Section IV are still
open and are the subject of ongoing work. The main

issue to be clarified is the protocol between the safety
monitor and the monitored system for observation,
reaction and mode synchronization. In the near future,
we aim to apply our approach to another robotic system
and, in another domain, to an autonomous satellite.

ACKNOWLEDGMENT

This work was partially supported by Astrium Satellites
France and by the PHRIENDS Specific Targeted Research
Project, funded under the 6th Framework Programme of
the European Community under Contract IST-045359. The
authors are solely responsible for its content. It does not
represent the opinion of the European Community and the
Community is not responsible for any use that might be made
of the information contained therein.

REFERENCES

[1] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr,
“Basic concepts and taxonomy of dependable and secure
computing,” IEEE Transactions on Dependable and Secure
Computing, vol. 1, no. 1, pp. 11–33, 2004.

[2] S. Roderick, B. Roberts, E. Atkins, and D. Akin, “The ranger
robotic satellite servicer and its autonomous software-based
safety system,”IEEE Intelligent Systems, vol. 19, no. 5, pp.
12–19, 2004.

[3] P. Klein, “The safety-bag expert system in the electronic
railway interlocking system Elektra,”Expert Systems with
Applications, vol. 3, pp. 499–506, 1991.

[4] J. Blanquart, S. Fleury, M. Hernerk, and C. Honvault, “Soft-
ware safety supervision on-board autonomous spacecraft,”in
Proceedings of the 2nd European Congress Embedded Real
Time Software (ERTS’04), 2004.

[5] K. Wika and J. Knight, “A safety kernel architecture,” Uni-
versity of Virginia - Department of Computer Science, Tech.
Rep. CS-94-04, 1994.

[6] J. Fox and S. Das,Safe and sound - Artificial Intelligence
in Hazardous Applications. AAAI Press - The MIT Press,
2000.

[7] C. Pace and D. Seward, “A safety integrated architecturefor
an autonomous safety excavator,” inInternational Symposium
on Automation and Robotics in Construction, 2000.

[8] S. Daly and S. Orme, “The reliability of the sizewell ‘b’
reactor protection system,”Electrical and Control Aspects of
the Sizewell B PWR, 1992., International Conference on, pp.
208–214, 1992.

[9] F. Py and F. Ingrand, “Dependable execution control for
autonomous robots,” inIEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS),Sendai, Japan, 2004.

[10] D. Berthelier, C. Chicher, M. Narmada, D. Dalemagne,
O. Boudillet, C. Veltz, R. Chemel, M. Yu, and G. De Ri-
vals Mazeres, “Automated Transfer Vehicle (ATV) criti-
cal software overview,” in53rd International Astronautical
Congress of the International Astronautical Federation (IAF),
Houston, TX; USA, 2002.

[11] D. Essame, J. Arlat, and D. Powell, “Tolérance aux fautes
dans les systèmes critiques,” LAAS-CNRS, Tech. Rep. 00151,
2000.

[12] M. Kim, I. Lee, U. Sammapun, J. Shin, and O. Sokolsky,
“Monitoring, checking, and steering of real-time systems,” in
2nd International Workshop on Run-time Verification, 2002.

[13] E. Baudin, J.-P. Blanquart, J. Guiochet, and D. Powell,
“Independant safety systems for autonomy,” LAAS-CNRS,
Toulouse, France, Tech. Rep. 07710, 2007.

[14] F. Maraninchi and Y. Rémond, “Mode-automata: About
modes and states for reactive systems,”Lecture Notes in
Computer Science, vol. 1381, pp. 185–200, 1998.

[15] D. Henrich and S. Kuhn, “Modeling intuitive behavior for safe
human/robot coexistence cooperation,” inProceedings of the
International Conference on Robotics and Automation, 2006.

[16] M. Perhinschi, M. Napolitano, G. Campa, B. Seanor,
J. Burken, and R. Larson, “Design of safety monitor schemes
for a fault tolerant flight control system,”IEEE Transactions
on Aerospace and Electronic Systems, vol. 42, no. 2, pp. 562–
571, 2006.

[17] A. Albu-Schaffer, C. Ott, and G. Hirzinger, “A unified
passivity-based control framework for position, torque and
impedance control of flexible joint robots,”The International
Journal of Robotics Research, vol. 26, no. 1, pp. 23–39, 2007.

[18] G. Hirzinger, A. Albu-Schaffer, M. Hahnle, I. Schaefer, and
N. Sporer, “On a new generation of torque controlled light-
weight robots,” inProceedings 2001 ICRA. IEEE Interna-
tional Conference on Robotics and Automation, vol. 4, 2001,
pp. 3356–3363.

[19] R. Alami, M. Krishna, and T. Siméon, “Provably safe motions
strategies for mobile robots in dynamic domains,” inAu-
tonomous Navigation in Dynamic Environment: Models and
Algorithms. in C. Laugier, R. Chatila (Eds.), Springer Tracts
in Advanced Robotics, 2007.

[20] OMG, “2nd revised submission to OMG RFP ad/00-09-02 -
Unified Modeling Language : Superstructure - version 2.0,”
Object Management Group, 2003.

[21] J. Guiochet, G. Motet, C. Baron, and G. Boy, “Toward
a human-centered uml for risk analysis - application to a
medical robot,” inProc. of the 18th IFIP World Computer
Congress (WCC), Human Error, Safety and Systems Develop-
ment (HESSD04), C. Johnson and P. Palanque, Eds. Kluwer
Academic Publisher, 2004, pp. 177–191.

[22] ISO10218-1, “Robots for industrial environments – safety
requirements – part 1: Robot,” International Organizationfor
Standardization, Tech. Rep., 2006.

[23] S. Haddadin, A. Albu-Schäffer, and G. Hirzinger, “Dummy
crash-tests for the evaluation of rigid human-robot impacts,” in
IARP-IEEE/RAS-EURON Workshop on Technical Challenges
for Dependable Robots in Human Environments, Roma, Italy,
2007.

