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Capacitary estimates of solutions
of semilinear parabolic equations
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Department of Mathematics, Department of Mathematics,
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Abstract

We prove that any positive solution of dyu — Au+u? =0 (g > 1) in RY x (0, 00) with
initial trace (F,0), where F is a closed subset of RY can be estimated from above and below
and up to two universal multiplicative constants, by a series involving the Bessel capacity
C2/q,q - As a consequence we prove that there exists a unique positive solution of the equation
with such an initial trace. We also characterize the blow-up set of u(x,t) when ¢t | 0 , by
using the ”density” of F' expressed in terms of the Cy/, ,-capacity.
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1 Introduction

Let T € (0,00] and Q7 = RN x (0,7] (N > 1). If ¢ > 1 and u € C?(Qr) is nonnegative and
verifies
Ou—Au+u? =0 in Qr, (1.1)

it has been proven by Marcus and Véron [26] that there exists a unique outer-regular positive
Borel measure v in R such that

li Lt) = 1.2
tl_r%u(,t) v, (1.2)

in the sense of Borel measures; the set of such measures is denoted by B (RM). To each of its
element v is associated a unique couple (S,, ) (we write v = (S,, p1,)) where S, the singular
part of v, is a closed subset of RY and pu,, the regular part is a nonnegative Radon measure on
R, = RN\ S,. In this setting, relation (1.2) has the following meaning :

() limiso fp ulst)ds = /R Cdpm, V(€ Co(Ry),

(1.3)
) lim; / u(.,t)dx = oo, YO c RN open, ONS, # 0.
O
The measure v is by definition the initial trace of v and denoted by Tren(u). It is wellknown
that equation (1.1) admits a critical exponent

N

This is due to the fact, proven by Brezis and Friedman [6], that if ¢ > ¢, isolated singularities of
solutions of (1.1) in RY \ {0} are removable. Conversely, if 1 < ¢ < g, it is proven by the same
authors that for any & > 0, equation (1.1) admits a unique solution ugs, with initial data kdo.
This existence and uniqueness results extends in a simple way if the initial data k&g is replaced
by any Radon measure y in RY (see [5]). Furthermore, if k — 00, uss, increases and converges
to a positive, radial and self-similar solution uq, of (1.1) known as the very singular solution of
(1.1). Writing it under the form ue(z,t) = tiﬁf(|x| /\/t), f is a positive solution of
{ Af+5yDf+25f—f1=0 RN
o (1.4)
hm\y\—)oo |y|q_1 f(y) = 0.

The existence, uniqueness and the expression of the asymptotics of f has been studied thoroughly
by Brezis, Peletier and Terman in [7]. Later on, Marcus and Véron proved in [26] that in the
same range of exponents, for any v € ’B:eg(RN ), the Cauchy problem

Ou—Au+u? =0 in Qu,
(1.5)
Trgn(u) = v,

admits a unique positive solution. This result means that the initial trace establishes a one to
one correspondence between the set of positive solutions of (1.1) and ’B:eg(RN )- A key step for
proving the uniqueness is the following inequalities

£ (o —al V) < ula,t) < (= 1) V(@) € Qoo (16)



valid for any a € S,,. As a consequence of Brezis and Friedman’s removability result, if ¢ > ¢, i.e.
in the supercritical range, the key estimate (1.6) cannot hold; actually Problem (1.5) may admit
no solution at all. If v € ’B:eg(RN ), v = (Sy, ), the necessary and sufficient conditions for the
existence of a maximal solution v = %, to Problem (1.5) are obtained in [26] and expressed in
terms of the the Bessel capacity Cy/q 4/, (With ¢’ = ¢/(¢—1)). Furthermore, uniqueness does not
hold in general as it was pointed out by Le Gall [21]. In the particular case where S, = () and
v is simply the Radon measure p,,, the necessary and sufficient condition for solvability is that
p does not charge Borel subsets with €y, -capacity zero. This result was already proven by
Baras and Pierre [4] in the particular case of bounded measures and extended by Marcus and
Véron [26] to the general case. We denote by 91 (R™) the positive cone of the space J4(RY)
of Radon measures which do not charge Borel subsets with zero Cy/, ,-capacity. Notice that
W=2a9(RN) 9t (RY) is a subset of omd (RN) where MY (RY) is the cone of positive bounded

Radon mesures in RY. For such measures, uniqueness always holds and we denote Uy, = Uy,

In view of the already known results concerning the parabolic equation, it is useful to recall
the main advanced results previously obtained for the stationary equation

—Au+u?=0 in Q, (1.7)

in a smooth bounded domain  of RY. This equation has been intensively studied since 1993,
both by probabilists (Le Gall, Dynkin, Kuznetsov) and by analysts (Marcus, Véron). The
existence of a boundary trace for positive solutions, in the class of outer-regular positive Borel
measures on Jf), is proven by Le Gall [20], [21] in the case ¢ = N = 2, by probabilistic methods,
and by Marcus and Véron in [24], [25] in the general case ¢ > 1, N > 1. The existence of
a critical exponent ¢o = (N + 1)/(N — 1) is due to Gmira and Véron [12] who shew that, if
q > qe boundary isolated singularities of solutions of (1.7) are removable, which is not the case
if 1 < ¢ < ¢e. In this subcritical case Le Gall and Marcus and Véron proved that the boundary
trace establishes a one to one correspondence between positive solutions of (1.7) in 2 and outer
regular positive Borel measures on 9€). This fundamental result does not hold in the supercritical
case q > ¢e. In [10] Dynkin and Kuznetsov introduced the notion of o-moderate solution which
means that u is a positive solution of (1.7) such that there exists an increasing sequence of
positive Radon measures on 9Q {j,} belonging to W~2/%4(9Q) such that the corresponding
solutions v = v, of
—Av+0v?i=0 in Q
{ v =, in Of) (18)

converges to u locally uniformly in 2. This class of solutions plays a fundamental role since
Dynkin and Kuznetsov proved that a o-moderate solution of (1.7) is uniquely determined by its
fine trace, a new notion of trace introduced in order to avoid the non-uniqueness phenomena.
Later on, it is proved by Mselati (if ¢ = 2) [33], then by Dynkin (if ¢¢ < g¢ < 2) [8] and
finally by Marcus with no restriction on ¢ [23], that all the positive solutions of (1.7) are o-
moderate. One of the key-stones element in their proof (partially probabilistic) is the fact that
the maximal solution ux of (1.7) with a boundary trace vanishing outside a compact subset
K C 99 is indeed o-moderate. This deep result was obtained by a combination of probabilistic
and analytic methods by Mselati [33] in the case ¢ = 2 and by purely analytic tools by Marcus
and Véron [29], [30] in the case ¢ > ¢.. Defining uy as the largest o-moderate solution of



(1.7) with a boundary trace concentrated on K, the crucial step in Marcus-Véron’s proof (non
probabilistic) is the bilateral estimate satisfied by ux and wy

O™l p(@)Wrk(z) < ug(z) < ax(z) < Cp(z) Wi (). (1.9)

In this expression C' = C(£2, q), p(x) = dist (z,0Q) and Wg(z) is the elliptic capacitary potential
of K defined by

m

>, m(atD)
Wi(a) =327 0T Cyy (2" Ko@), (1.10)

where K,,(z) = KN {z:27™"1 < |z — x| <27™}, the Bessel capacity being relative to RV~1,
Note that, using a technique introduced in [25], inequality T < C?uy implies uj = .

The aim of this article is to initiate the fine study of the complete initial trace problem for
positive solutions of (1.1) in the supercritical case ¢ > ¢g. and to give in particular the parabolic
counterparts of the results of [33], [29] and [30]. The main step is to obtain a kind of parabolic
analogous of the nonlinear potential estimate (1.10)

Extending Dynkin’s ideas to the parabolic case, we introduce the following notion

Definition 1.1 A positive solution u of (1.1) is called o-moderate if their exists an increasing
sequence {j,} C W=249(RN) N b (RY) such that the corresponding solution u := uy,, of

{Btu—Au—i-uq:O m Qoo (L.11)

u(x,0) = pn in RY,
converges to u locally uniformly in Qs.

If I is a closed subset of RY, we denote by % the maximal solution of (1.1) with an initial
trace vanishing on F'¢, and by u; the maximal o-moderate solution of (1.1) with an initial trace
vanishing on F°. Thus uy is defined by

up = sup{uy, : p € W2/HIRN) 1l (RY), u(F°) = 0}, (1.12)

and clearly W=2/¢4(RN) N Mt (RN) can be replaced by M2 (RN)). One of the main goal of
y T P y S g
this article is to prove that wr is o-moderate and more precisely,

Theorem 1.2 For any q > 1 and any closed subset F of RN, ip = up.
We define below a set function which will play a fundamental role in the sequel.

Definition 1.3 Let F be a closed subset of RN . The Cy/q,q -Parabolic capacitary potential Wg
of F is defined by

Wg(z,t) = tqulli(n + 1)%7567%(}’2“ ¢ _ V(z,t) € Qoo, (1.13)
—re ’ (n+1)t

where Fy, = Fy,(x,t) == {y € F:v/nt < |z —y| <+/(n+1)t}.



One of the tool for proving Theorem 1.2 is the following bilateral estimate which is only
meaningful in the supercritical case, otherwhile it reduces to (1.6);

Theorem 1.4 For any q > q. there exist two positive constants C; > Cy > 0, depending only
on N and q such that for any closed subset F of RN, there holds

CoWp(z,t) <up(x,t) <up(z,t) < C1Wp(z,t) V(z,t) € Qoo (1.14)

Such a parabolic estimate is much more difficult to obtain than the corresponding elliptic
one, although some of the techniques we introduce here could simplify the derivation of (1.10).
It is important to notice that the parabolic capacitary potential is equivariant with respect to
the same scaling transformation which let (1.1) invariant in the sense that, for any ¢ > 0,

(T Wp(Ver ) = Wy gz, 1) (1) € Quo. (1.15)

This quasi representation, up to uniformly upper and lower bounded functions, is also interesting
in the sense that it indicates precisely how to characterize the blow-up points of up = up = up.
Introducing an integral expression comparable to W, we show in particular the following results

. F R
}12% Cola.qt <? N Bl(m)> =7 €0,00) = %g%t —tup(z,t) = Cy (1.16)

for some Cy, = C(N,q,~) > 0, and

2 F
limsuquing/q ¢ <— N Bl(az)> < 0o = limsupup(z,t) < oo. (1.17)
TN\ T

T—0 t—0

Our paper is organized as follows. In Section 2 we obtain estimates from above on up. In
Section 3 we give estimates from below on uy. In Section 4 we prove the main theorems and
expose various consequences. In Appendix we derive a series of sharp integral inequalities.

Aknowledgements The authors are grateful to the European RTN Contract N HPRN-CT-
2002-00274 for the support provided in the realization of this work.

2 Estimates from above

Some notations. Let  be a domain in R with a compact C? boundary and 7' > 0. Set B,(a)
the open ball of radius » > 0 and center a (and B,(0) := B,) and

QF=0x(0,T), 2QF=02x0T), Qr=0F, Qwx:=Q%.

Let H®[] (resp. H[.]) denote the heat potential in  with zero lateral boundary data (resp. the
heat potential in R"V) with corresponding kernel

_lz—y|?

(z,y,t) = HY(x,y,t) (vesp.(x,y,t) — H(z,y,t) = (47775)_%6 Tt

We denote by g, :=1+ %, the Brezis-Friedman critical exponent.



Theorem 2.1 Let g > qc. Then there exists a positive constant Cy = C1(N,q) such that for
any closed subset F of RN and any u € C?(Qoo) N C(Quo \ F) satisfying

Ou—Au+u? =0 in Qx

Pi% u(z,t) =0 locally uniformly in F°, (2.1)
there holds
u(z,t) < C1We(x,t) V(z,t) € Qoos (2.2)
where Wg is the (2/q,q')-parabolic capacitary potential of F defined by (1.13).
First we consider the case where F' = K is compact and
K c B, c B,, (2.3)
and then we extend to the general case by a covering argument.
2.1 Global Li-estimates
Let p > 0, we assume (2.3) holds and we put
Trp(K) = {n € C5°(Br1,),0 <1 <1,n=1in a neighborhood of K}. (2.4)
If n € T, ,(K), we set n* =1 —n, ¢ = H[n*]* and
R[] = [VH[n]* + |8:H[n] + AH»)| . (2.5)

We fix T' > 0 and consider the equation on Q7. Throughout this paper C' will denote a generic
positive constant, depending only on N, ¢ and sometimes T, the value of which may vary from
one ocurrence to another. We also use sometimes the notation A ~ B for meaning that there
exists a constant C' > 0 independent of the data such that C~'A < B < C A.

Except in Lemma 2.12 the only assumption on ¢ is ¢ > 1. In the sequel we will obtain
pointwise estimates on the solution expressed in terms of the L?-norm of R[] for n € Trp(K).
Although these estimates could have been immediately turned into capacitary estimates as in
[30], the advantage of keeping them comes from the possibility of performing operations such as
dilations or summations on them. The next key lemma points out the connection between R[7)]
and the the Cy/, o~ capacity of K.

Lemma 2.2 There exists C = C(N,q) > 0 such that
Oﬂwmmyé/]Q<mquﬁ;4mmmagmwm%@ e T (K. (26)
Therefore

inf {[| RONIIY, : 0 € Top(K) } & Oy (K). (2.7)



Proof. There holds 0,H[n] = AH[n], and

, oo C ,
Hinll? = H 1-1/q H e — = 1 It 2.
/ / _loHln)” deds /0 CEOB| oy 7 Il g, 28)

where [WQ"]/, Lq/} y indicates the real interpolation functor of degree 1/q between W2d (RN)
a,q'

and L7 (RN). See [36]. Similarly, and using the Gagliardo-Nirenberg inequality,

// (VD dde < Ol il = Ol (2.9)

Inequality (2.6) follows from (2.8) and (2.9), and (2.7) from the definition of the Bessel capacity
relative to By . O
Lemma 2.3 Assume u is a positive solution of (2.1) in Q. Then there exists C = C(N,q) >0
such that for any T > 0,
/ / WICda i+ / (w¢)(@, T)dz < CIRINY, ¥ € Tr (K. (2.10)
Qr RN

Proof. We recall that there always hold

1

0 < ula,t) < (ﬁ) T Y t) € Qu, (2.11)
and
0 < u(z,t) < (%) T Y(at) € Qu\ By, (2.12)

See [6]. Since 7" vanishes in an open neighborhood Ni, for any open subset N5 such that
K Cc Ny C Ny C N there exist ¢y, > 0and Cy, > 0 such that

* _Ny N
HOl(@0) < Oy e 2, Wat) e Q%

Therefore
lim (u¢)(x,t)dx = 0.

t—0 RN

Thus ¢ is an admissible test function and one has

//QTUquHU dt + /RN(UC)(%T)CM = //QTu(atC—i- A()dz dt. (2.13)

Notice that the two terms on the left-hand side are nonnegative. Put H, = H[n*], then
2¢'—1 2¢'—2 2
OC+A( = QQIHng (OeH, + Al ) + 2¢'(2¢ — 1)an |VH,|%,
2¢'—1 - 2
2¢'H, T (0H, + AH,) + 24 (2¢' — DH 2| VH, [,




because H,» = 1 — H,, hence

u(atc n AC) _ uHi‘j//q [2(],(2(], B 1)Hig/7272q//q|VHn|2 _ 2q/HzZ’7172q//Q(AHn + atHn)] .

Finally, since 2¢' —2 —2¢'/q = 0 and 0 < H,» < 1, there holds

'//QTu(atC—i-AC)dx dt' < CO(q) <//QT“qumdt>1/q (//QTRq'(n)dx dt> 1/q’7

R(n) = |VHy|* + |AH, + 0,H,| .
Using Lemma 2.2 one obtains (2.10). O

where

Proposition 2.4 Under the assumptions of Lemma 2.3, letr >0, p >0, T > (r + p)?
Eripi=A{(m,t) 1 2P+ < (r+p)*}

and Qrypr = Qr \ Ergp. There exists C = C(N,q,T) > 0 such that
/] mma+/umnMgmmw@, Vi€ Toop(K). (2.14)
Qr+p,T RN

Proof. Because K C B, and n* =1 outside B, , and takes value between 0 and 1,

. 1\2 _lz—yl?
(o) 2 B -, o) = (g) [ ey
yl>r+p

1\? 2
2 o=yl
= 1- <—> / e o dy.
Amt ly|<r+p

For (z,t) € Qpypr, Put @ = (r+p)¢, y = (r + p)v and t = (r + p)*r. Then (£, 7) € Q

T
" (r+p)2
and
1\? 2 1\? 2
2 T — 2 —v
<—> / e_%dy = (—) / e_‘§4r‘ dv.
4rt ly|<r+p 4mT lv|<1
We claim that
N
( : )/ i gneq 0 (2.15)
max < ( — e 4 dv: (&1 T =/, .
dnt lv|<1 Lrn?
and ¢ = ¢(N, ﬁ) € (0,1] is actually independent of ﬁwhen large enough. We recall that
1 \2 _le—v)?
— e 4 dv<l1 VT > 0. (2.16)
AT |U‘S1



If the maximum is achieved for some (£, 7) € Q _r iy it is smaller that 1 and
" (r+p)

H[n*|(z,t) > H[1 — XBTer](x’t) >1—-1¢>0, V(x,t) € Qrip1- (2.17)

Let us assume that the maximum is achieved following a sequence {({n,7,)} with 7, — 0 and
|€n] — a > 1, and clearly a = 1. We can assume that &, — £ with |£| =1, then

1 > €n —v|? 1 ) v
< > / e  4m du= ( > / e 4 du.
47T’7'n \v\gl 47T7'n Bl(ﬁn)

But Bl(gn) N Bl(_fn) = 07

W2 W2 W2
/ e 4Tndv+/ e 4Tndv</ e 4 du
Bi(&n) Bi(—¢n) RN
w2 v
e 4mdu = e 4m du.
Bl(fn) Bl(—fn)

. 1 \2 2
lim / e dmdv <1/2.

If the maximum were achieved with a sequence {(&,,7,)} with 7, + |{,] — oo, it would also
imply (2.17), since the integral term in (2.16) is always bounded. Therefore (2.16) holds. Put
C=(1-1¢)71 then

and

This implies

// uqudt—i—/ u(., T)dz < C IR, (2.18)
QT,T RN
and (2.14) follows. O

2.2 Pointwise estimates

In all this subsection w is a positive solution of (2.1) in Q and the assumptions of Lemma 2.3
hold. We give first a rough pointwise estimate.

Lemma 2.5 There exists a constant C = C(N,q) > 0 such that, for any n € T, ,(K),

u(z, (r+2p)%) < %ﬁ]”i%, Vz e RV, (2.19)
(p(r+p))=

Proof. We observe first that

T
/ / uldx dt +/ u(z, T)dx = / u(z, s)dx VT >s>0, (2.20)
s JRN RN RN



and
[ ules)de < CIRMIG,  ¥T> 5> (402
RN
from Proposition 2.4. By the maximum principle u is dominated by the maximal solution v of
(1.1) having the indicatrix function Ip, for initial trace. The function v is the limit, as k — oo,
of the solutions vy with initial data kx, . Since vy < kH[x, ], it follows by Lemma 2.3. Using
the fact that

(2.21)

(o, T+ 5) < H[u(., 8)](z,7) < (Lf /RN u(., s)dz,

drr
we obtain (2.19) with s = (r + p)? and 7 = (r +2p)% — (r + p)% = p(r + p). O

The above estimate does not take into account the fact that w(xz,0) = 0 if |z| > r. It is
mainly interesting if |x| < r. In order to derive a sharper estimate which uses the localization
of the singularity and not only the L?-norm of R[n]. For such a goal, we need some lateral
boundary estimates.

Lemma 2.6 Let v > 74 2p and ¢ > 0 and either N =1 or 2 and 0 < t < ¢y? for some ¢ > 0,
or N >3 and t > 0. Then, for any n € T, ,(K), there holds

t
// udSdr < Csy | R[S, - (2.22)
0o JoB,

where C' > 0 depends on N, q and ¢ if N =1, 2 or depends only on N and q if N > 3.

Proof. First we assume N =1 or 2. Put G7 := B x (—00,0) and 0;G” = 9B, x (—00,0). We
set

~
hy(z) =1— —,
! |z
and let 1, be the solution of
Orthy + Athy =0 in G7,
Py =0 on G, (2.23)
Uy (,0) =h,  inBC.
Thus the function .
b(x,7) = Yy (2, 7°T)
satisfies ~ ~
oy + A =0 in G*
Y =0 on 9,G* (2.24)
¥(,0)=h  in Bf,
and h(z) =1 — |x|71. By the maximum principle 0 < ¢ < 1, and by Hopf Lemma
4
_9% | >0>0, (2.25)

an 0B1 X [—670

10



where 6 = 6(N,c¢). Then 0 <, <1 and

oY
_a—r;/aBn,x[fWQ,O] > 0/y. (2.26)

Multiplying (1.1) by ¥ (z,7 —t) = ¢} (x,7) and integrating on BS x (0,t) yields to

//cqu*dde—i—/c(uh x,t) dm—//aB —zp*de //8B 8—nudad7' (2.27)

Since 9} is bounded from above by 1, estimate (2.22) follovvs from (2.26) and Proposition 2 4
(notice that B¢ x (0,t) C £°), first by taking t = T' = 4* > (r +2p)?, and then for any ¢ < 72

If N > 3, we proceed as above except that we take

ho(z) =1— <|—Z|>N2.

Then v (z,t) = hy(z) and § = N — 2 is independent of the length of the time interval. This
leads to the conclusion. O

Lemma 2.7 I- Let M, a > 0 and n € L®(RY) such that

0<n(z) < Mell a.e. in RY. (2.28)
Then, for anyt > 0,
M _alz? N
0 < Hn|(x,t) < ﬁe dat+1 Ve e R™. (2.29)
dat+1)2

II- Let M, a, b >0 and n € L=(RYN) such that

0<nx)< Memol#1=00% a.e. in RN, (2.30)
Then, for anyt > 0,
a(|z|-b)?
Me™ dat1
0<Hp)(z,t) < ——" vz eRY, vt>o0. (2.31)
(dat +1)2

Proof. For the first statement, put a = %s. Then

N 1 _lef? N
0 <n(z) < M(4ns)z2 —e s = C(4ws) 2 Hldo)(z, s)
(4ms) 2
By the order property of the heat kernel,
T el
0 < Hly)(z, 1) < M(drs) ¥ H[do) (2, ¢ + 5) = M (t : ) et
S

11



and (2.29) follows by replacing s by ia.

a(r— b) +ar?

For the second statement, let @ < a and R = max{e ;7 > 0}. A direct computation

adb?
gives R = e%, and (2.31) implies

aab?

0<n(x) < Mea-a e~dlal’®,

Applying the statement I, we derive

aab?
C a—a - &\1\2
0 < Hnl(x,t) < (67)]\,6 dat+1 vz e RN, vt > 0. (2.32)
dat+1)=2
Since for any € RY and t > 0,
- _ alz|® aab?  a(jz|=b)2
(4dat+ 1) T e dateT <e e (4at + 1) datfl

(2.31) follows from (2.32). O

Lemma 2.8 There exists a constant C = C(N,q) > 0 such that, for any n € T ,(K), there
holds

(2.33)

r 4+ p ’x‘ —r — 2p 7(‘1‘*(T+2P))2
e 1d

2 T
e+ 20)) < Come { e T G

for any x € RN\ B, 3.

Proof. Tt is classical that the Dirichlet heat kernel HP1 in the complement of B; satisfies, for
some C'=C(N) >0
x'—y/\2

c e =y |
HBl(.%',,y/,t,,S,) S C7(t, _ ) (N+2 /2(‘.%, ’ )e 4(,5/75/)7 (234)

for ' > s'. By performing the change of variable 2’ — (r + 2p)z’, t' — (r + 2p)t', for any
z € RV\ B, 19, and 0 <t < T, one obtains

_Jz—yl?

u(z,t) < Cllz] — r — 2p) / /a ¢ My, s)do(y)ds. (2.35)

BT+2p t — S 1+_

The right-hand side term in (2.35) is smaller than

—r—_9 _ (m|=r—2 )2
max C(lz| —r P) B (= (0,1) // u(y, s)do(y)ds.
(t )1+2 aBr«b»Qp

We fix t = (r + 2p)? and |z| > r + 3p. Since

— ux\—i—zpﬁ
s ) 2
max W s E (0, (7' + 2p) )

1 2
o 2
= (|z| —r — 2p)" 27N max c 4N 0<o< (u) ,

12




a direct computation gives

1 2
7 2
max{el—4N:0<a<<T+7p>}
otz

@] =7 —2p

(2N + 4)1+%67(N+2)/2

if r+3p <|z| < (r+2p)(1++v4+2N),
2+N z|—r—
(= o2y (e
r+2p

2
) if |z| > (r+2p)(14++v4+2N).
Thus there exists a constant C(N) > 0 such that

_ (z|=r—2p)*
4s

_(lzl=(r+2p)?
max { < TE 1s€(0,(r+2p)?) p < C(N)p~2 Ve ( 2r+4p ) . (2.36)
s T2
Combining this estimate with (2.22) with v = r + 2p and (2.35), one derives (2.33). O
Lemma 2.9 There exists a constant C = C(N,q) > 0 such that
0 < u(z, (r +2p)%) < C'max { o ; } 6—(‘3‘;;;}9)2 IR
<l : el — 7 — 207 & )V 1p 5
(2.37)
for every x € RN \ B, 3,.
Proof. This is a direct consequence of the inequality
_(lzl=r=20\?* 2 (lz|-r=3p\?
(|z| —r —2p)e ( 2r+4p ) < (T;’P) e ( 2r+4p ) , Vo € Bﬁ+2p, (2.38)
and Lemma 2.8.

U
Lemma 2.10 There exists a constant C = C(N,q) > 0 such that, for any n € T, ,(K), the
following estimate holds

2
—r—3
_ (al=r=3p)?

CMe~ It /
uart) € S Rl Ve €RY. V2 (420, (2.39)
2
where
N
(1+;>2 if |zl <r+3p
y = Y = N+3 . * .
M = M(z,r,p) p(|m(|7j—rp,)2p)N+2 if r+3p < |z| < cj(r+2p) (2.40)
1+ %

if || > i (r+ 2p)
with ¢y =1+ +v4+2N.

13



Proof. 1t follows by the maximum principle
u(e,t) < Hlu(., (r+ 2p)*)](z,t — (r +2p)?).

for t > (r +2p)? and z € RY. By Lemma 2.5 and Lemma 2.9

u(z, (r +2p)?) < CmM{% HR[U]HqL/q/ 7
where N
((r+p)p) 2 if J2| <7+ 3p
M = @(M—T—ZO))NH if r+3p < || SC}‘V(T+2p)
LT if x| > ci(r+2p)

Applying Lemma 2.7 with a = (2r +4p)~2, b = r + 3p and ¢ replaced by t — (r + 2p)? implies

r+ 2p)NM6_ (zl=r—s0)?

u(e,t) < L IRl (2.41)

t3 L
for all z € Bf 3, and t > (r 4 2p)?, which is (2.39). O
The next estimate gives a precise upper bound for u when t is not bounded from below.

Lemma 2.11 Assume that 0 < t < (r + 2p)?, then there exists a constant C = C(N,q) > 0
such that the following estimate holds

1 1 _U=|=r=3p)% /
) <O b g | e
p 2

for any (z,£) € RN\ Byys, x (0, (r + 2p)?].

Proof. Thanks to (2.22) the following estimate is a straightforward variant of (2.33) for any
|lz| = 7+ 2p,

_ (zl=r=20)°
4s ’
u(z,t) < Cs(|z] — 7 — 2p)(r + 2p) max T 0<s<t IR, - (2.43)
s T2
Clearly
— rl=r=20)®
max{ —x——:0<s <t
81+7

@N + D)5 (jz] —r —2p) V273" i 0 < || <7+ 20+ /24N T 2)

= _ (z|=r—2p)2
e 4t

—— if |z] > 7 +2p+ /2t(N +2).
t 2

14



By elementary analysis, if v € B 5,

2
. .
(2| —r—2p)2 (al-r-3p2 | PE * if 2t < p?
e :
20 402 e 2 2
—e T if p* <2t <2(r + 2p)°.
p
However, since
2
Pt <2
t p
we derive . o ,
x|—r—2 z|—r—
(|$| —T’—Qp)ef(‘ \ - p) < _e,(\ \ - 3p) ,
P
and (2.42) follows. O

Lemma 2.12 Assume q > q.. Let r > 0, p > 0 and K be a compact subset of B,y,. If
n € Trp(K), denote by n, the function defined by n,(x) = n(rz) and

Re[n)(x,1) = ([VHE)P + 0] + AHR)|) (,0%)  Y(@,1) € Que.

Then
/ N—L /
IR, = 7" " (1R[] %, - (2.44)
Furthermore
B, N—-2_Bip
Coft(K) =" 71C, " (K r), (2.45)
and
%
2 2 —
T o)) < ) < 0 (140 0) T ). (240

Proof. Estimate (2.44) follows from the change of variable (rz,r%t) = (y,s). Thus it implies
the scaling property (2.47), since there is a one to one correspondence between 7, ,(K) and
T1.2(K/r). In order to prove (2.44) set K' = K/r C By, thus

B, .p ) /
Coor (K = inf {CII% .0 5 C € Toe(KN

Let ¢ € C%(RY) be a radial cut-off function such that 0 < p < 1, p = 1 on By, p = 0 on
RN\ By e, |[Vo| < Crp~ty, and ‘Dqu‘ < Cr2p=2 where C is independent of r
T 142

2\B1 P XBlJrg\Bl’
and p. Let ¢ € C3(RY). Then

V((9) = (V¢ +¢V(, D*((o) = (D’ + ¢D*¢ + 2V V(.

15



Thus HC(bHqu(BHB) < HCHLQ’(RN)’
J;

! 2 q, !
/B |D?(¢¢)|" da < C <1 - %) 1€z -

q/
q r q
Vol o< (14 ) 16l

142

and

Finally
7,,2
1Clparnr < C (1 ; ;) 1Cllpsa

Denote by T the linear mapping ¢ — (¢. Because

w2/ed — [W2,q’7Lq’} ’
1/4,¢'

(here we use the Lions-Petree real interpolation notations and some classical results from [22]),

it follows
r2 1/q
HTH[:(WOQ/Q’QI(]RN),WOQ/Q’(I/(Bl+£)) S C(q) <1 + ﬁ) .
Therefore )
B,.p r2\ a1
Cz/;rqr’ (K)<C <1 + ﬁ) C2/q,q’(K/)'

Thus we get the left-hand side of (2.46). The right-hand side is a straightforward consequence
of (2.47). O

Remark. In the subcritical case 1 < g < g., estimate (2.46) becomes

_2
C’;%T;,(K) < Cmax {TN,,ON} <1 +p ‘1‘1> CQ/q,q'(K/T)- (2.47)

By using Lemma 2.11, it is easy to derive from this estimate that any positive solution u of
(2.1), the initial trace of which vanishes outside 0, satisfies

2N
u(z,t) < Ot a7 min {1, (%) ’ e4t} V(z,t) € Qoo- (2.48)

This upper estimate corresponds to the one obtained in [7]. If F = B, the upper estimate is less
esthetic. However, it is proved in [26] by a barrier method that, if the initial trace of positive
solution u of (2.1), vanishes outside F, and if 1 < g < 3, there holds

u(@,t) SCTTA((e =)V V(@) € Qs fal 2 (2:49)
where f = fi is the unique positive (and radial) solution of
1
Yy S ffa=0 in 0,00
P e (0, 50) 250
f1(0) =0, limy o0 [y[T f(y) =0.
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Notice that the existence of f; follows from [7] since ¢ belongs to the subcritical range on
exponents in dimension one. Furthermore f; has the following asymptotic expansion

fily) = CyE @DV (1 4 o(1))  asy — oo,
2.3 The upper Wiener test

Definition 2.13 We define on RY x R the two parabolic distances 83 and 6 by

621(2,1), (4,9)] = \le — P + |t — s, (2.51)

and

(500[(1',t), (y7 S)] = max{]x - y‘7 V ’t - 8’} (252)
If K c RN and i = 2, 00,

max {dist (z, K), \/W} if i = oo,

5[ (@, 1), K] = inf{&;[(,t), (y,0)] : y € K} = : o
Vdist2(z, K) + |t] if i = 2.

For > 0 and i = 2, 00, we denote by Bg(m) the parabolic ball of center m = (x,t) and radius
[ in the parabolic distance d;.

Let K be any compact subset of RY and %y the maximal solution of (1.1) which blows up
on K. The function g is constructed in [26] as being the decreasing limit of the ug, (e > 0)
when € — 0, where
K. = {z e RY : dist (z, K) < ¢}

and Ug, = limy_,o Ui, k. = Uk, Where uy, is the solution of the classical problem,

Opu, — Aup +uj =0 in Qr,
up =0 on 9Qr, (2.53)
ug(-,0) = kX, in RV,

If (x,t) = m € RN x (0,7T], we set dx = dist(z,K), Dg = max{|z—y| : y € K} and
A= /d% +t=d2[m, K]. We define a slicing of K, by setting d,, = d,(K,t) := v/nt (n € N),

Tn - Edn-l»l (1’) \ Bdn (x)7 vn e N7
thus Tp = B ;(z), and
Kn(x) = KNT,(z) for n e Nand Q,(x) = KN By, ().

When there is no ambiguity, we will skip the z variable in the above sets. The main result of
this section is the following discrete upper Wiener-type estimate.

17



Theorem 2.14 Assume q > q.. Then there exists C = C(N,q,T) > 0 such that

2
-1

C &~ N _n K,
ﬂ[{(.%',t) < t_ﬂ E dn+1q e 402/q7q/ ( ) V(I',t) € QT, (254)
2
n=0

dn+1

where a; is the largest integer j such that K; # 0.

With no loss of generality, we can first assume that x = 0. Furthermore, in considering the

1
scaling transformation wy(y,t) = £a-Tu(v/fy,¢t), with £ > 0, we can assume ¢ = 1. Thus the
new compact singular set of the initial trace becomes K/ V¢, that we still denote K. We also
set a, = a, , Since for each n € N,

1
dy <

1
— < dpi1 — —_—
N R BV

it is possible to exhibit a collection ©,, of points a,, ; with center on the sphere ¥, = {y € RN .
ly| = (dp+1 + dyn)/2}, such that

T, C U By nxilang);  lan; —ankl 2 1/2Vn+1 and #6, < CnN L,

Qn,j €O,

for some constant C'= C(N). If Ky j = Kn N By mg1(an,;), there holds

K= |J U Kuj

0<n<a, an, ;€O

The first intermediate step is based on the quasi-additivity property of capacities developed
in [2].

Lemma 2.15 Let q > q.. There exists a constant C = C(N,q) such that

N 1 K
Z CQ/q,q’(Kw’) <Cn? 10y 4 (7«”) vn € N, (2.55)
an,jegn n—+ 1

where By, j = Bz/\/n—ﬂ(an,j) and Cy/q 4 stands for the capacity taken with respect to RY.

Proof. The following result is proved in [2, Th 3]: if the spheres B pe(bj) are disjoint in RY and
J

G is an analytic subset of J B, (b;) where the p; are positive and smaller than some p* > 0,
there holds

Cofgq(G) £ Coyq (G By, (b)) < ACh ) (G, (2.56)
J

where § = 1 — 2/N(q — 1), for some A depending on N, ¢ and p*. This property is called
quasi-additivity. We define for n € N,

T,=vVn+1T,, K,=+vVn+1K, and Q,=+vVn+1Q,.

18



Since K, ; C B, / \/n_+1(an,j) and the Cy/, , capacities are taken with respect to the balls
BZ/\/n_H(anvj) = B, ;. By Lemma 2.12 with r = p=1/y/n+1

Bnj

N -
2/q7q/(K ’J) < C(TL + 1) 2 CQ/q,q’(Kn,j)a (2.57)

where f(n,j = vn+1K, ; and Bn,j = vn+1B,,. For a fixed n > 0 and each repartition
A of points a,; = v/n+1 ay,; such that the balls Byo(a, ;) are disjoint, the quasi-additivity
property holds in the following sense: if we set

Kya = U Ky, f(mA:\/n—l—lKn,A: U f(n,j and f(n:\/n—FlKn,

an,j €A an,j €A

then

Z CZ/qq nj) < AC2q4/( K p). (2.58)

an jEA

The maximal cardinal of any such repartition A is of the order of Cn~! for some positive
constant C' = C(N), therefore, the number of repartitions needed for a full covering of the set
T,, is of finite order depending upon the dimension. Because K,, is the union of the K, A

> CopgEnj) =) Y Copgy(Knj) < CCosgy(Kn). (2.59)

Gn,; €EOn A anjEA

Since, by Lemma 2.12,

Batnt1) (7 y _ N-—Lr B, Ky, N-—L Ky
Co/a.q ( n) < C’2/qq (Kp) = (n+1)" 1Cz/q,q/ <\/n—+1> S A < 1)’
we obtain (2.55) by combining this last inequality with (2.57) and (2.59). O
Proof of Theorem 2.14. Step 1. We first notice that

urg < Z Z ﬂKn,j' (2.60)

0<n<a, an ;€O

Actually, since K = J,, Uanj K, j, for any 0 < € < ¢, there holds K C |, Uanj K, jc. Because
a finite sum of positive solutions of (1.1) is a super solution,

Uk, < > Y Uk, (2.61)

0<n<a; an, ;€O

Letting successively € and € go to 0 implies (2.60).

Step 2. Let n € N. Since Ky j C By mri(an;) and |2 — anj| = (dn + dn1)/2 = (VR+ 1+
Vv/n)/2, we can apply the previous lemmas with » = 1/y/n+1 and p = r. For n > ny there
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holds t =1 > (r+2p)? =9/(n+1) and |z —a, | = (Vn+1—vn)/2> 2+ Cn)3/vV/n+1)

(notice that ny > 8). Thus

UK, ; (0, 1) < Ce(\/ﬁ—S/\/n—i-l)?/élC;Z,él( 7]) < 063/26716' Kn,j)- (2.62)

2/q q(
Using Lemma 2.15 we obtain, with d,, = d,,(1) = vVn+1

Ak
Z > ug,,(0,1)<C Z I e 1Ch/g g <ﬁ> (2.63)

d
Ny G ;EOR ntl

Finally, we apply Lemma 2.5 if 1 <n < n, and get

Z S ure,,(0.1) <0202/qq <_>

an, ;€O
K,
<C’E d iC — ).
6 ! 2ad (dn-i-l)

(2.64)

For n = 0, we proceed similarly, in splitting K in a finite number of K ;, depending only on
the dimension, such that diam K;; < 1/3. Combining (2.63) and (2.64), we derive

K ON-2 ., K,
ﬂK(O, 1) S C Z dn+1q_1 eizCQ/q,q/ <d—+1> . (265)
n=0 "

In order to derive the same result for any ¢ > 0, we notice that

_ 1
Uk (y,t) =t g 4(yvt,1).

Going back to the definition of d,, = d,,(K,t) = v/nt = d,,(K+/t,1), we derive from (2.65) and
the fact that a,., = a

KVt,1
T(0.6) < Ty e Oy (2 (2:66)
et 1’ /24’ dns1)’
with d,, = d,(t) = y/t(n+1). This is (2.54) with 2 = 0, and a space translation leads to the
final result. O

Proof of Theorem 2.1. Let m > 0 and F,,, = F N B,,. We denote by Upe, the maximal solution
of (1.1) in Qo the initial trace of which vanishes on B,,. Such a solution is actually the unique
solution of (2.1) which satisfies

lim u(x,t) = oo
t—0

uniformly on B¢, for any m’ > m: this can be easily proved by noticing that
1
UBfn f(ya t) = fa-1 UBfn(\/zy’ Et) = UB;/\/Z(ya t)
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Furthermore ,
lim Ugpe (y,t) = lim m_quUBf(y/m,t/mz) =0
m—o0o m m—oo

uniformly on any compact subset of Q.. Since U, + U Be, is a super-solution, it is larger that
ur and therefore up, 1 up. Because Wg, (z,t) < Wg(z,t) and up, < C1Wg,, (z,t), the result
follows. 0

Theorem 2.1 admits the following integral expression.

Theorem 2.16 Assume q > q.. Then there exists a positive constant C7 = C*(N,q,T) such
that, for any closed subset F' of RY, there holds

B C* v t(at+2) 2 N2 1
up(z,t) < t1+1% /\/E e wts 10y 4 (;Fﬂ Bl(x)> sds, (2.67)

where a; = min{n : F' C Bm(aﬂ)}

Proof. We first use

F, F
Co/g.q (ﬁ) = Co/qq (ﬁ N B1> )

F
(I)(S) = CQ/%q/ (; N Bl) Vs > 0. (268)

and we denote

Step 1. The following inequality holds
1P (as) < P(s) < ca®(Bs) Vs>0, V1/2<a<1<p<2, (2.69)

for some positive constants c;, co depending on N and ¢. See [1] and [30]. If 8 € [1, 2],
1 /F F
@(ﬁs) = Cg/q’q/ <E <; N BB)) [ CQ/(LQ, (; N Bﬁ) Z Clq)(S).
If o € [1/2,1],

1 (F F
(I)(C!S) = Cg/q’q/ <E <g N Ba>> [ CQ/(LQ, (; N Ba> S CQq)(S).

Step 2. By (2.69)

F F
Co/q,q <K+1 N Bl> < 204, <g N Bl) Vs € [dpy1, dnyal,

and n < a,. Then

dn+2 2 F
CQ/ SN7F6752/4tC2/q,q/ <; N Bl) sds
d

n—+1

F dnt2 5

> Coyqq (— N B1>/ sV Tt Mg s,
dnt1 i1
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Using the fact that N — qz—l >0, we get,

dn+2 s2 n N*L+1
/ stq%lefﬂsds > 67%2(1n+1q_1 (dnto — dpt1) (2.70)
dn+1
t N-—-2 .
> 2 il e (2.71)
Thus
B C Vt(at+2) No2 &2 1
up(x,t) < — s Te w0y 0 | —F N By | sds, (2.72)
tte Jvi TS
which ends the proof. O

3 Estimate from below
If e M (RY) N MY (RY), we denote by u,, = u, the solution of

Oy, — Auy +ul =0 in Qr,
{ s e (3.1)

u,(.,0)=p  in RV,

The maximal o-moderate solution of (1.1) which has an initial trace vanishing outside a closed
set F' is defined by

Wp = sup {uu :,uef)ﬁ?r(RN)ﬂi)ﬁb(RN), wu(F€) :0}. (3.2)
The main result of this section is the next one

Theorem 3.1 Assume q > q.. There ezists a constant Cy = Co(N,q,T) > 0 such that, for any
closed subset F C RYN, there holds

up(x,t) > CoWp(z,t) V(z,t) € Qr. (3.3)

We first assume that F' is compact, and we denote it by K. The first observation is that if
p € ML(RY), u, € LYQr) (see lemma below) and 0 < u, < H[y] := H,,. Therefore

u, > H, — G [HY], (3.4)

where G is the Green heat potential in Q7 defined by

Gl = [ BN —s)ds= [ [ At =500, s)dyas.

Since the details of the proof are very technical, we present below its main streams. The key
idea is to construct, for any (z,t) € Qr, a measure = p(z,t) € M (RY) such that there holds

H,(x,t) > CWk(x,t) V(z,t) € Qr, (3.5)
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and
G (Hﬂ)q <CH, in Qr, (3.6)

1
with constants C' depends only on N, ¢, and T, then to replace pu by p. = ep with e = (2C) ™ a1
in order to derive

uy, > 27'H, > 271 OWy. (3.7)

From this follows
up > 27MH, > 27 1CW. (3.8)

and the proof of Theorem 3.1 with Cy = 271C.

We recall the following regularity result which actually can be used for defining the norm in
negative Besov spaces [36]

Lemma 3.2 There exists a constant ¢ > 0 such that
—1
¢ ||/‘HW—2/q,q(]RN) < ||HuHLq(QT) < CH/‘Hw—?/q,Q(]RN) (3.9)

for any p € W=2/¢9(RN),

3.1 Estimate from below of the solution of the heat equation

The purely spatial slicing used is the trace on RY x {0} of an extended slicing in Q7 which is
constructed as follows: if K is a compact subset of RN, m = (x,t), we define dg, A, d,, and a;
as in Section 2.3. Let a € (0,1) to be fixed later on, we define 7, for n € Z by

T, = B M\ Bmlm) =1,

and put
Ty =TonN{s:0<s<t}, fornelZ.

We recall that for n € N,

and
K, =KNTy1=KnN(Bq,,, (x)\ Bg,()) .

Let v, € S)ﬁz (RN) N W —2/29(RN) be the g-capacitary measure of the set K, /dp41. See [1, Sec.
2.2]. Such a measure has support in K,,/d, 1 and

1
Vn(Kn/dni1) = Coq,q (Kn/dni1) and HVnHWf?/q,q’(RN) = (02/q,q’(Kn/dn+1)) o (3.10)
We define u,, as follows

N——2_
pin(A) = dp " vn(A)dpgr) VA C K,, A Borel , (3.11)
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and set

at
Mt K = E M,
n=0

and
at
HMt,K = § :Hﬂn
n=0

Proposition 3.3 Let q > q., then there holds

at

1 _n+l1 N*% K
Hy, (1) 2 N § : e d, 102/q,q/ < : > ,
(47Tt) 2 n=0 n

in RN x (0,7).

Proof. Since

1 _le—yP?
Hy,, (x,1) = N e” at dp,
(Art)z JK,

and
ye K, = |r—y| <dnp1,

(3.13) follows because of (3.11) and (3.12).

3.2 Estimate from above of the nonlinear term

We write (3.4) under the form

q

t
’U/M(l',t) > ZHMn(x7t) - /O RNH(mayat - 8) Z Hun(yas) dde

ne’l neAg
=1 —I.

since p, = 0if n ¢ Ax = NN[1,a, and

1 ¢ _le—y?
I = N// (t—s) Fe T | S My, (y,5)| dyds
(4m)=z Jo JRN e
1
= N (Jf + Jé)v
(4m) 2

for some £ € N* to be fixed later on, where

q
lz—y|2

J£=Z// (t— s)*%ef A(t=s) Z H,,(y,s)| dyds,
PEL Ty

n<p+~
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and
q

_lz—yl?
Jy :Z// (t— 8)7%6 i) Z H,,, (y,s)| dyds.
pez’ 7 Ty n>p+t
The next estimate will be used several times in the sequel.
Lemma 3.4 Let 0 < a <b andt > 0, then,
N a a
t~2e 4 if — > 1,
N p2 1 f 2N
max<o ze @ :0<oc<t at<p’+o<bty=eil N
2N\?2 n ! a <1
JE— e 2 1 ——
a 2N —
Proof. Set
2
T(p.o) =0 2
and

Kapt = {(p,0) €[0,00) x (0,] : at < p*> + 0o < bt}.

We first notice that, for fixed o, the maximum of J (., o) is achieved for p minimal. If o € [at, bt
the minimal value of p is 0, while if o € (0, at), the minimum of p is v/at — s.

- Assume first a > 1, then J(Vat —0,0) = eto~Te ds. Thusif 1 < a/2N, the minimal value
_ N a

of J(Vat —o,0) is e i (%) 2 while if a/2N < 1 < a, the minimum is eit=2e i,

- Assume now a < 1. Then

max{J (p,0) : (p,0) € Kapi} = max{ max J(0,0), max J(Vat— o, a)}

o€(at,t] o€(0,at]

N
N 1-2nv (2N 2
=max< (at)"2,e 4+ |—
at
1-2v (2N
= e 4 _—
at

Combining these two estimates, we derive the result. O

ol

Remark. The following variant of Lemma 3.4 will be useful in the sequel: For any 6 > 1/2N
there holds

IS

N
2NO\ 2 _a
<—> e 4 if fa>1. (3.17)

max{J(p,0) : (p,0) € K(a,b,t)} <e "

Lemma 3.5 There exists a positive constant C = C(N,{,q) such that

at 2 K
Jo < Ct—%deﬂq-le*<1+<"*f>+>/4 Co/ < - ) : (3.18)

d
n—1 n+1
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Proof. The set of the p’s for the summation in Jy is reduced to Z N [—£ + 2, 00), thus we write

Jo=Jie+ Jay
where

N _lz—y?
Ju—z// (=) 5T | Y W (0,9

p=2—/4 n<p+e

and

ad _lz—y?
= [[ -0 e T S )
p=1 7;9*

n<p+~
Ifp=2—-4¢...,0,
(y,5) €Ty = ta> ® < |z —y[’ +t—s < ta %,
and, if p > 1
(y,8) €T, = pt < lz—y> +t—s<(p+ 1)t
By Lemma 3.4 and (3.17), there exists C = C(V, ¢, «) > 0 such that

N _lz—y?

e {(t =) 2e 1T (y5) € 7;*} <ot YoM,

ifp=2—4¢,...,0, and

e —yl?

max {(t - s)_%ef =) 1 (y,s) € 7;*} < Ct_%e_l’/zl,

ifp>1. Whenp=2-1/,...,0

p+0—1
[ S, ()
1

for some C' = C(¢, q) > 0, thus

q p+0—1

<C Y H (y,9),
1

N 0 22-2p pti-1
Jie<Ct 2 Y e " Z Hu 1200y
p=2—/
Ll 0 oy
< Ct_EZHHMnH%Q(Q” Z e 1
= p=n—_{+1
.
<cr ZHHMHLQ o

(3.19)

(3.20)

(3.21)

(3.22)

If the set of p’s is not upper bounded, we introduce some parameter 4 > 0 to be made precise

later on. Then

1

pH0—1 N A 44 pro— )
__9qn
[ZHuny, ] [Z o' ] e TH (y.5),
1

26
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with ¢ = q/(¢—1). If, by convention p, = 0 whenever n > a;, we obtain, for some C' > 0 which
depends also on 4,

o0 +0—
5( Z d(p+2l-1)g—p n
Joy < Ct™ Ze B Z - HHMnH%lI(Qt)

p=1
s 5(p+e—1)
AR " oprt=1)9=p
< Ct Z e 9000y P (3.24)
p=(n—L+1)V1

N
2 Z T o)

Notice that we choose d such that §¢¢g < 1. Combining (3.22) and (3.24), we derive (3.18) from
Lemma 3.2, (3.10) and (3.11). O

The set of indices p for which the p, terms are not zero in J; is Z N (—oo, a; — £]. We write

Jy=Ji 0+ Jop

where
_le—y® s !
Ju— Z// (t—s)" Te i Z H,,,(y,s)| dyds,
p=—00 T* n=1Vp+<{
and

q

ey | &
Sy = Z// (t—s)" Te i Z H,,, (v, s) |dyds.

n=p+~

Lemma 3.6 There exists a constant C = C(N,q,¢) > 0 such that
at
_Ng (1+ﬁ0)(n Mt Ng—2 K,
Je<ot=2y dy iy ch — 1, 3.25

where By = (¢ —1)/4 and h = 2q(q+1)/(q — 1)?.
Proof. Since

(y,s) €T, and (2,0) € K, = |y — 2| > (Vn— a ")V, (3.26)

there holds

(Vi—a~P)2 (Vn—a~P)?
H,, (y,5) < (dms) T a pn(Ky) < Ct 2e a0 py(Ko),

by Lemma 3.4. Let {€,} be a sequence of positive numbers such that

o0

A = Ze%/ < 00,

n=1
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then

_lz—y? _ (Vr—a~P)?
Ty < CAVTE Z // (=) Femie ene” T i (Kn)ds dy
p=—00 Ty n=1V(p+¥)
p=0A(n—~) o imaP)? =
/ n a N -
<CATE Znun(K) Z e // (t—5) Y55 dsdy
n=1 T* (327)
/ ad 2 _le—yl?
< CAg/q t_%z 2t (K 2 // (t—s)~ Fe At F(G=) ds dy
n=1 {Up<OT }
o0
< AV G (e
n=1

Set h =2q(q+1)/(¢g—1)? and Q = (1 + q)/2, then ¢(v/n — 1)2 > Q(n — h), for any n > 1. If

(a=D(n=h)} /e 1)? < _lat3)(n=h)y

we choose €, = e 16 , there holds €, %e <e 16 . Finally
O (14Bg)(n—h)
Jp < OPH Y e T (K,
n=1
with 8y = (¢ — 1)/4, which yields to (3.25) by the choice of the . O

In order to make easier the obtention of the estimate of the term J, ,, we first give the proof
in dimension 1.

Lemma 3.7 Assume N =1 and £ is an integer larger than 1. There exists a positive constant

C =C(q,f) > 0 such that

K
Ty, < Ct71/2 TNe — . 3.28

N nzf e\ (329
Proof. 1f (y,s) € T and z € K, (p > 1, n > p = {) , there holds |z —y| > Vt,/p and
ly — 2| > Vt(v/n —/p + 1). Therefore

at—4 at

(Vn—v/pF1)?t
JQZ < C\/_Z / € 4(t s) 71/267 4;{) ,un(Kn)
n= p—l—ﬁ

q

If € € (0, q) is some positive parameter which will be made more precise later on, there holds

X (V- FFD)2e !
—1/2 —¥nr—vpr )t
Z S / € 4s Mn(Kn)
n=p+¢
@ q/qd a
oyt (WA—VPFT)? R PR €/ it/ 75 3 D
<[ B e ) S e T
n=p+¢ n=p+~
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by Holder’s inequality. By comparison between series and integrals and using Gauss integral

SN WA VED g WEmyrED?
Z e ¢ s < e ¢ s dz
p

n=p+~ +t

oo e’x2
:2/ Y (@ + VP F Dda

\/mf\/ﬁ
4s s (VoEE—VpFD)%t T _ed'a?
S—/eiﬁq%—{—Q p+ q4stdﬂj
€q't VBT
<c (P +1)s g WP Ypins
1
<o, /PtDs
t
If we set ¢ = q¢ — €, then
/ = q—2 t _pt__ (Vn—vpF1)?t
Jyy < Ced fapl=3 Z ul (K / (t —s) V25712 T3 g0 is ds
n=0+1 p= 1 0

where C' = C(¢,q) > 0. Since
t 2
/ (t — s)*1/2s*1/2e_‘1(+i3>e_q€%ds
0

1 2
__p  _  (Vn=pF1)
:/ (1—8)_1/28_1/26 EEEDI S 4s ds
0

)

we can apply Lemma A.1 with a = 1/2, b =1/2, A= \/p and B = \/q.(/n — /p +1). In this
range of indices B > \/qe(vp+/{—p+1) > %, thus k = \/ge(¢ — 1) and

< 1/2 _ 1/2
\/A+B\/A+B—p4n (Vi = v/p)

Therefore

¢ — 2 1 _ 1/2 (A 2
/(t—s) 1/2 4 = sy g LAY s < Cpa(v/n — /D) — WEEVEE/A= /D) (3.20)
0

7 :

which implies

G (F) S 2 (/P /e (/= /FFT))?
YIRS DY M"%")ZPTW—\/E)”%‘ PRI (3.30)
n={+1 p=1

where C depends of €, ¢ and £. By Lemma A.2

Nﬁ

Jhy < O3 an -
n=_+1

i (K (3.31)
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K,
Because p,(Ky) = d,‘i+11C2/q 7 (Kjl) (remember N = 1) and diam df:l < n~!, there holds

i (K ><c(*f§)q3un<Kn>:c(%)q3dZan/qq< Kofdury)  (332)

and inequality (3.28) follows. O

Next we give the general proof, unfortunately much more technical. For this task we will
use again the notion of quasi-additivity with separated partitions and all the results presented
in the Appendix.

Lemma 3.8 Assume N > 2 and £ is an integer larger than 1. There exists a positive constant

Cy = Cy(q, N,¢) > 0 such that

N R a N-E K,
Jé,z < Cit™ 2 Ze id, lCz/q’q/ (ﬁ) . (3.33)

Proof. As in the proof of Theorem 2.14, we know that there exists a finite number J, de-
pending only on the dimension N, of separated sub-partitions {#@hn}izl of the rescaled sets

. d d
T, = "THTn by the N-dim balls Bs(a, ;) where a,; = @/";rl Anj, |an ;| = %ﬂ and
|an,j — an k| > n4—_i1 Furthermore #@tn < CnN~1. We denote K, ; = K, N B = (anj)-
J
We write pp, :Z,uﬁ, and accordingly Jé’g :ZJQ’%, where pul = Z n,j, and p, ; are the
h=1 h=1 jeokr
capacitary measures of Ky, j relative to By, ; = Bgy /5, /m(an, j), which means
B B, 1/q
Vn(Kng) = Copo (Kng) and Wl s/ s, ) = (Corie(Bag)) - (3.34)
Thus
a
ooyl | &I
JN_Z// (t—s)"2e 4G9 >33 Hy,, (s |dyds.
n=p+{ h=1 je@ﬁn
We denote
q
w! I EETIL e
Bi= [ 00 BTN 55 B ),
n=p+~ je@?,n
and clearly
J
Toy <CY I3k, (3.35)
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where C' depends only on NV and ¢. For integers n and p such that n > £+ 1, we set

| Vi
Ang = 8{ly =212 2 € Bugy ma(ang)} = ly = angl = 2=

Therefore

> e

SO A

n=p+~{ n=p+4¢ j g@h
1/q' 1/q
at A2
1 n gy j : j : —ag\2
S § E e €q As e q n,j,y 4s /’Ln,J(KnJ)
n=p+ljeol n=p+fje0)

where € > 0 will be made precise later on.

Step 1. We claim that

>y e

n=p+LjEO¢ n

< c\/: (3.36)

where C' depends on €, ¢ and N. If y is fixed in T, we denote by z, the point of T;, which solves
ly — zy| = dist (y,T5,). Thus

~ VD) <yl < HA - VD).

t‘(Z‘Jrl)y. On the axis 0‘}7Z we set e = ‘—%, consider the points by = k\[e where

Let Y =
—n < k < n and denote by G, 5, the spherical shell obtain by intersecting the spherlcal shell T,,
with the domain H,, j which is the set of points in RY limited by the hyperplanes orthogonal

to 045} going through %[e and L\}%ﬂe. The number of points a, ; € Gy, ) is smaller than

C(n+1—|k[)N72, where C depends only on N, and we denote by A, ; the set of j € O, such
that a, j € Gy . Furthermore, if a,, ; € G, elementary geometric considerations (Pythagore’s
theorem) imply that A%L,J}y is greater than t(n+p+ 1 — 2k—vp+1). Therefore

Jn
at A2 at n ed’ (ntp+1-2kpF1/)t
_eg! Sy 9 —
D e SO =) (3)
n=p+LjEO¢ n n=p+Lk=—n
Case N = 2: Summing a geometric series and using the inequality - < 1+ u™! for u > 0,
we obtain
n , ed’ty/pF1
cd'(kvpFI)t eq'ty/n(p+1) e 2sVn
e~ 2sv/n <e m  —
— €q t\/m_l
k=-n e 2svn (3.38)

<eeqt@ <1+ ,25\/5 >
edtv/p+1
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Thus, by comparison between series and integrals,

3 Ze“””<cz<

)

ed/ (Vn—/pT1)?
4s

n=p+LjEO¢ n n= p+£
/ _ 2
cof ey, (3.:39)
p+1
o0 eq’ _ T2
+ Cs / Vre~ e
t\/]3 p+1
Next
p+1 p1
& ,eq/yQt & ,6q'y2t
=2 e as ydy+2/p+1 e i dy (3.40)
0 0
2 __€ /ZQ 1 o0 € l22
_S q4 ZdZ+2 M/ quZ,
t Jo V t 0
and
/OO \/Ee_eq,(ftl\s/m)%dx = 2/00 e_SQ/(y_‘\l/sm)Qtdey
p+1 p+ / 2
B 2/ e (y+x/p+ T)%dy
Poo . iy (3.41)
§4/ T 2dy+4p+1 /
0
3/2
<4 (f) / / /
< : ;
Jointly with (3.39), these inequalities imply
€q )\n
Z e ”<C,/t (3.42)

n=p+£ j€O n

Case N > 2: Because the value of the right- hand side of (3.37) is an increasing value of N, it is

sufficient to prove (3.36) when N is even, say 2

N-2) — § e N,. There holds

n e’ (kvPFT)t eq' (kv/pFI)t
ST (1 ke v <22 (n+1—k)de 2vm (3.43)
k=—n
We set .
1T/
eq' 25} and I; = kz_o(n +1— k)deke,
Since
ekoz B e(kJrl)a — ek
B e —1
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we use Abel’s transform to obtain

1 n
I; = ] (e("‘H)O‘ —(n+ 1%+ (n+2—k)?—(n+1-— k)d) elm>
“ - k=1
1 n [e% (0% & - (6%
S = ((1—d)e( e _(n+ 1) + de kgl (n+1—k)1) e ) :
Therefore the following induction holds
de®
I; < Iy 4. 44
4= o —la (3.44)

In (3.38), we have already used the fact that

de §C<1+—s\/ﬁ>,
e* —1 t\/p

d+1
L<cl1+ (S*/ﬁ> Io.
0
Thus (3.39) is replaced by

e>\2 at d+1 eq’ _ 2
$ oy et o3 (1 () e
tvp

and

n=p+LjEO¢ n n=p+~{
<c Ooe_eq,(flfm)%dm
p+1
Cs \ " [ ed/ (Vo /BET) %t
n (—) J I ™
t\/ﬁ p+1

(3.45)
The first integral on the right-hand side has already been estimated in (3.40), for the second
integral, there holds

/ ) - L / Oo(y+¢m)d+2 L g
p+1 0 oo )
<C/ gy + Ot / e dy
0
/ s (3.46)
<o(3)"” P
t 0
3/2 0 gz
so(3) ot [T
0

Combining (3.40), (3.45) and (3.46), we derive (3.36).
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Step 2. Since T, C T', x [0,t] where I', = By, ,(z) \ Bq,_,(2), (y,8) € T, implies that
|z —y|* > (p— 1)t, thus J5/ satisfies

2
|

o
lz—y
h < // t_s 28 (Q(N 1)+1)/ e 4(t——s)
n]y (1—e)
Y T, sy

—p+5j6®h’n
1 a
1=q
<ot Y D tin(Kay)
n*f—}—lje@h

n (1—e)
XZp / / (= 5)~ ¥ 5@V D402 ey Al = D2 )
Iy

(3.47)

and the constant C' depends on N, ¢ and e. Next we set ¢c = (1 — €)g. Writting

ly — an > =z =y + |2 — anj|* — 20y — x, a0 — ) > pt+ |2 — an ] — 2(y — 2,00, — ),

we get
2 2
¢Ze|y*an,'| q6|1*¢1n7'| t(p+1) 6T2 (y—x,an’-—aw
/ e*Tjdy e / e T / e2q6TdeT(y)dr.
Lp Vip lz—y|=r
For estimating the value of the spherical integral, we can assume that a, j—2 = (0,...,0, |a,; — z|),
y = (y1,-..,yn) and, using spherical coordinates with center at z, that the unit sphere has the

representation SNV~! = {(sin¢.0,cos¢) € RV xR : 0 € SN2 ¢ € [0,7]}. With this repre-
sentation, dS, = rN1sinN 2 ¢dpdo and (y — z,a,; — ) = |an; — x| |y — x| cos ¢. Therefore

<yfzvan,j*1> anj—ac rcos¢
/ quSTd _’I"N 1{51]\7 2{ N 2¢d¢
lz—yl=r

By Lemma A.3

|

(y—5,apj—2) N—1,2ge——5—
/ e 8 () < 06 —
el (14 Hema=el) 2 (3.48)

N—-1

< 05" < : >T a5
jan,j — |

| 2 No1 (|an,j—o|=Vi+D)?

y— an ] N73 S 2 g 4e 4s

/F et dy<Ct'ipa = , (3.49)
P

lan,; — x| 2

Therefore
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and, since |a, ; — z| > Vin,

2

t N N—1)41)/2 ,M )‘n,j,y
// (t —s)" 2 s (@N=D+D/20740=5) ¢~ 4 dy ds
FP

N-3
ViptT [ N @=DW-D41 et (Vi /ipr)?
<07]Jj\,71 /(t—s) 28 2 e 4(t—s) g~ 4e 1s ds (3.50)
n 4 0
tlfq(Nfl) N-—3 1 \/_ 9
2 4 N (g—1)(N-1)+1 _ P (vVn—+/p+1)
< CT?/ (1—s)"2s" 2 e 40-s) g e 1s .
n 4 0

We apply Lemma A.1, with A = \/p, B = /g.(v/n —+vp+1), b = W, a = % and
K= % as in the case N = 1, and noticing that, for these specific values,

1-(¢=DH(N-1)
2

ABIN A+ B2 = p T (Vg (Vi - VP F D)
X (VB + VE(Vi~ VP FD)

(g=1)(N— 1)+N 3

e(n) ()T

where C depends on N, ¢ and . Therefore

N _ N _lz=yI® yl?
// (t—s)"2s ze 4t-se” gt dyds
Fp
1—(q— 1)(N E9)

<Ct(1fq(N71))/2p¥ T2 Va- B\ ? _WVEWA-VED?  (3.51)
_ e 4
- N p Vn

eV 1 (gmn(voy-2

<Ct— = pin (vn = /p)
We derive from (3.47), (3.51),

1—(q=1)(N=1) _ (V/P+vae(vVa—vpT1)>
2 e 4 .

J/h < Ctl_%

n—~_
(a=D(N=1)=2 2¢-3 1-(¢-D(N-1) _ (VP+va(vn—vpF1))?
X Z > pl(Kni)d pr (Vn—yp) 2 e ! -
n=0+1jecok p=1
(3.52)
2q — 3 C(g—1)(N—
By Lemma A.2 with a = 4 , B = W, 6= % and v = ¢., we obtain
n—~0
= 1-(¢-1)(N-1) _ (/F+/Fe(vr—vpFI))? N(g=1)+4=3 _n
meﬁlg(\/ﬁ—\/ﬁ) q o o= P+/4 K P SC’I’L q 4+q 671, (353)
p=1
thus .
t
h 1—Na N(=1) 4 _n
Ty <CH=5 YTt e Yl (K. (3.54)
n=~+1 jg@?’n
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Because B
fin(Knj) = Gy o (K ),

we use the rescaling procedure as in the proof of Lemma 2.15, except that the scale factor is

v/(n+ 1)t instead of v/n + 1 so that the sets T,,, K,, Q, and K, remains unchanged Using

J
again the quasi-additivity and the fact that J} , = ZJQ% , we deduce
h=1
N oen No-2 K
1p—5 -1 -1 n
Jog < C't 2 Z dpi1' e 10y <dn+1> , (3.55)
n=~¢+1
which implies (3.33). O

The proof of Theorem 3.1 follows from the previous estimates on J; and J,. Furthermore
the following integral expression holds

Theorem 3.9 Assume q > q.. Then there exists a positive constants C5 , depending on N ,q
and T, such that for any closed set F, there holds

C* Viat 52 2 r
up(z,t) > QN/ e as" qleQ/q ¢ <— ﬂBl(:c)> sds, (3.56)

where a is the smallest integer j such that F C B (x).

Proof. We distinguish according ¢ = ¢., or ¢ > ¢, and for simplicity we denote B, = B,.(z) for
the various values of r.
Case 1: ¢ = q. <= N — q%l = 0. Because F;, = F'N(Bg,,, \ Bg,) there holds

F, F FN By,
Colad <dn+1> = Cofaa <dn+1 : B1> ~ ol < dni1 > ’

Furthermore, since dy4+1 > dy,

FﬂBdn d,, FﬂBdn
Cuna (i) = Cone (3570%) = O (022,
thus
Co/q,q dor1 > Cy/qq doit NB1) —Coyy a NBy),
it follows

at F at
e TCy )y —"> > e 10y, .
nz:l 2/q,q <dn+1 —nz:l 2/q,q
at
n F 1 n F
> e aC | ——NDB; | —e 1 e aC | ——nNB
_;:1 2l <dn+1 1) Z 2/a4 (dn+1 1)

) n=0
atf
1 n F 1 F
2(1—67)5 e 1C /<—ﬂB1>—e4C /<—mBl>.
] 2/q,q di1 2/4,q NG



Since, by (2.69),

F F F
CQ/q,q’ <? ﬂ Bl) Z CQ/q,q’ <—dn+1 ﬂ B1> 2 02/(],(]/ <g ﬂ Bl) 5

for any s’ € [dy11,dn+2] and s € [dy,, dp41], there holds

n F F dnt1
te”1Cyq ¢ <K+1 N Bl> > Cy/q.q (Kﬂ N B1> / e /4 ds

dn+1 F
> / 6*32/42502/(17(1/ <; N Bl> sds.

This implies
Viag Ja
We(z,t) > (1 — ezll)t(1+]2v)/ 6_52/4’502/(17(1/ <— N B1> sds.
0 S
Case 2: ¢ > q. <= N — qz—l > 0. In that case it is known that

F, 2__N
Co/gq <K:1> ~ d;i:l Coq.q (Fn)
see [1]. Thus
W (z,t) ~ t*l%ie*%cmq, (F).
n=0
Since there holds

02/q,q’ (Fn) = C2/q,q’ (F N Bdn+1) - C2/q,q’ (FN Bdn) )

we derive
N a 1 I\fati1
72 e i Chy (Fr) > (L—e3)t72 Y e 1Cy4 (FNBy,,,)
n=0 n=0

1 N Viae 2
>(1- eZ)t(H?)/ e 7 Cy/qq (FNBs)sds.
0
Because Cy/q o (F'N By) ~ sN_#CQ/,M/ (s'F N By), (3.56) follows.

4 Applications

The first result of this section is the following

Theorem 4.1 Assume N > 1 and g > 1. Then ug = ug.
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Proof. If 1 < q < g, the result is already proved in [26]. The proof in the super-critical case is
an adaptation that we recall, for the sake of completeness. By Theorem 2.16 and Theorem 3.9
there exists a positive constant C', depending on N, ¢ and T such that

HF(x7 t) < CQF(xa t) V(x, t) S QT-

. 1 . . o .
By convexity 4 = up — — (up — uy) is a super-solution, which is smaller than uy if we assume

that up # up. If we set 0 := 1/2 4 1/(2C), then up = 6up is a subsolution. Therefore there
exists a solution u; of (1.1) in Qe such that up < uy < @ < up. If p € ML (RY) satisfies
pu(F€) = 0, then ug, is the smallest solution of (1.1) which is above the subsolution fu,. Thus
ugy < uy < up and finally up < wuy < up, a contradiction. O

If we combine Theorem 2.16 and Theorem 3.9 we derive the following integral approximation
of the parabolic capacitary potential

Proposition 4.2 Assume q > q.. Then there exist two positive constants Cir, C;r, depending
only on N, q and T such that

Viar 2 r
C';t(pr];)/ sN_#efﬂCQ/%q/ <— N Bl(x)> sds < Wp(z,t)
0 ° (4.57)

t(at+2) 2 F
< Cirt(H%)/ sNﬁ%efﬂCQ/%q/ <— N Bl(m)> sds
Vi s

for any (x,t) € Qp.

Definition 4.3 If F is a closed subset of RY, we define the (2/q, q')-integral parabolic capacitary
potential Wr by

Drp(x) 2, F
Wrep(z,t) =t 2 / s g-1g78 /4t02/q7q/ <g N Bl(:c)> sds V(z,t) € Qoo,  (4.58)
0

where Dp(x) = max{|z —y|:y € F}.

An easy computation shows that

Viag 2 F
0 < Wpg(z,t) — t(1+12v)/ stﬁefﬂCQ/q,q/ (— N Bl(az)> sds
0 S

4.59
ta=3)/2(¢=1) | (4.59)

< C—o e DR/t

- Dp(z)
and
(at+2) 2
0< t_(H‘%)/ sNﬁﬁe_TtCQ/%q/ < N By (z ) sds — Wpg(z,t)
0 (4.60)
t(@a=3)/2(¢=1)  p2 ()
< C I

Dp(z)
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for some C'= C(N,q) > 0. Furthermore
L (Dr@ve 5, 2 F
We(z,t) =t q—l/ 57 e Tem 10y <— N Bl(x)> sds. (4.61)
0 T\ sVt

The next result gives a sufficient condition in order ur has not a strong blow-up at some
point x.

Proposition 4.4 Assume q > q. and I is a closed subset of RN . If there exists vy € [0,00) such
that

. F
tiy Coygr (£ 0 B1(0)) = (462
then )
limtaTup(z,t) = Cy, (4.63)
t—0

for some C = C(N,q) > 0.

Proof. Clearly, condition (4.62) implies

: F
}gl(l) CQ/q,q’ <% N Bl($)> =7

for any s > 0. Then (4.63) follows by Lebesgue’s theorem. Notice also that the set of ~ is
bounded from above by a constant depending on N and gq. O

In the next result we give a condition in order the solution remains bounded at some point
x. The proof is similar to the previous one.

Proposition 4.5 Assume q > q. and F is a closed subset of RN. If

_2 F
lim sup 7 = Ca/oq <— N Bl(x)> < 00, (4.64)
T

T—0

then up(x,t) remains bounded when t — 0.

A Appendix

The next highly non-trivial computational estimates, are crucial in the estimate of the term J} ,
in Lemma 3.7 and Lemma 3.8.

Lemma A.1 Let a and b be two real numbers, a > 0 and k > 0. Then there exists a constant
C =C(a,b,k) > 0 such that for any A >0, B > k/A there holds

1
/ (1 - x)—ax—be—A2/4(1—a:)e—BQ/4xdx < Ce—(A+B)2/4A1—aBl—b(A + B)a+b—2. (Al)
0

39



Proof. We first notice that

2
max{e” A=)~ 0 < g < 1} =e - , (A.2)

a2 g2
and this maximum is achieved for zyp = A+B Set ®(x) = (1 —z) % be” H0-91e¢~ 4, thus

1 o 1
/ O(x)dx = / O(z)dx + / O(x)dr = Iop + Jop-
0 0 x0

Put 42 B2
_ il A3
R TE s g (A.3)
then
4ua® — (4u+ B* — A%z + B2 =0. (A.4)
If 0 < & < x( this equation admits the solution
1 2 _
x=uz(u) = - <4u + B — /16u2 — 8u(A2 4 B2) + (A2 — 32)2)
u
o A2 B2 00
/ (1 —z) %2~ be 102 42 dy = —/ (1 —z(uw) "% (u) e "2 (u)du
0 (A+B)2/4
Putting 2’ = 2/(u) and differentiating (A4.4),
4z(1 — z)
2 / 2 2
— (4 B“—A —4xr = = .
4z* 4 8uzx’ — (4u + )r' —dx =0 = —12' = T B A7 _S%um
Thus o bit
o 00 1— —a - —u/
/ B (x)da = 4/ 0~ o(w) T a(w) e tdu (A.5)
0 (A+B)2/a  Au+ B? — A% — 8uz(u)

Using the explicit value of the root x(u), we finally get

o [%S) _ —a+1 —b+1 —u/
/ B(x)da = 4 / (= 2() 7 2@)77 e Mdu (A.6)
0 (A+B)2/4/16u% — 8u(A2 + B2) + (A2 — B2)?

and the factorization below holds
16u? — 8u(A% + B?) + (A% — B?)? = 16(u — (A + B)?*/4)(u — (A — B)?/4).

(A+B)

We set u = v + and obtain

+ (AB + B?)/2 — \/v(v + AB)
2(v+ (A+ B)?/4) ’

|~ o) = + (A2 + AB)/2 + /v v+AB

2(v+ (A+ B)?%/4)

w(u) =

and
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We introduce the relation = linking two positive quantities depending on A and B. It means
that the two sided-inequalities up to multiplicative constants independent of A and B. Therefore

/ " B (w)da = 20-b-4e-(A+B)/4 / “d(w)dv  where

0 0

5 <1) + (AB + B%)/2 — /v(v + AB))l_b <1) + (A2 4+ AB)/2 + /v(v + AB)) o B
)= (vt (A+ B2/ Jo(v t AD) ¢

(A.7)
Case 1: a>1, b > 1. First
(1) + (A+B)2/4)a+b72 (1) + (A +B)2/4)a+b72 (1) + (A +B)2)a+bf2
< ~ (A.8)
v(v+ AB) v(v+ k) v(v+ k)
since a+b—2 >0 and AB > k. Next
1-a
<v 4 (A% + AB)/2 4+ \/olv + AB)) ~ (v+ A(A+ B)'°. (A.9)
Furthermore
+ (A+ B)?/4
v+ (AB + B2)/2 — \/u(v + AB) = B? !
( )/ ( ) v+ B(A+ B)/2+ \/v(v+ AB) (A.10)
Tl G s B)?
7 v+ B(A+B)’
Then
1-b o (v+BA+B)\"!
AB+ B?)/2 -/ AB ~BFY | —— A1l
(0 (4B + BY)/2 = /ulo = 4B)) <v+(A+B)2> (A1)
It follows . -
= A+ B)2\"" B(A+ B))”~
@(U)§0322b<v+( + ) > (U+ ( + ))
v+ A(A+ B) v(v+ k) (A.12)
< OB ( v+ (A+ B)? )al v+ (B2 + AB)!
- v+ A(A+ B) v(v+ k)
where C depends on a, b and . The function v — % is decreasing on (0,00). If we set
> pb=le=vdy < e Vdv
C, = —— and Cy = _—
0 Vu(v+Ek) 0 Vo(v+k)

then
C; < K(B*4+ AB)" ¢,

with K = C1x'~?/Cs. Therefore

o
/ O(z)de < Ce~(ATBI*/ABI-bgl-a( 4 4 B)atb=2, (A.13)
0
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The estimate of J,; is obtained by exchanging (A,a) with (B,b) and replacing = by 1 — x.
Mutadis mutandis, this yields directely to the same expression as in (A.13) and finally

_ (A+B)?

1
/ B(z)dz < Ce— 2 Al-apl-b(q 4 pyrto-2. (A14)
0

Case 2: a > 1, b < 1. Estimates (A.7), (4.8), (A.9), (A.10) and (A.11) are valid. Because
v+ (v+ B(A+ B))’! is decreasing, (A.12) has to be replaced by

(A.15)

d(v) < CBzzb<U+(A+B)2 )“1 (AB+—BQ)H

v+ A(A+ B) v(v+ k)

This implies (A.13) directly. The estimate of J, 4 is performed by the change of variable x —
1—x. If xt1 =1 — z9 , there holds

1 A2 B2 1
Jap = / 71 —z) e Ime A0-m dx = / U (z)dx.
0 0
Then
1 2 [m1_
/ U(z)dr = 207 4e™ ey / U(v)dv where
0 0

 (v+(AB+A2))2— (o T AB)) e (v+ B2+ AB)/2+ Volu+ 4B))
)= (0+ (A1 B)?/4 " \Jolw t AD) ¢

1-b

(A.16)
Equivalence (A.8) is unchanged; (A.9) is replaced by
1-b
<v +(B2+ AB)/2 + ol + AB)) ~ (v+ B(A+ B)"?, (A.17)
(A.10) by
A+ B)?
AB + A%)/2 - AB) ~ a2 A+ B A8
v (AB+ A2~ T AR~ 4L R (A18)
and (A.11) by
l-a o (v+AA+ B\
2)/2 — ~AZ 20 (T ) A.19
<v+(AB+A)/2 w/v(v+AB)) A <U+(A+B)2> (A.19)

Because a > 1, (A.12) turns into

v+ A2+ AB)* Y(v+ B2 + AB)'?
v(v+K)

F(v) < CAZ2( + (A + B)2)p-1L
< Cef(A+B)2/4A272b(A + B)2b72

" 097t 4 (A2 + AB)* 117t 4 (B2 4 AB) byl 4 Ao-1B1-b(A 4 B)a-b

v(v+ k) :

(A.20)
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Because AB > k, there exists a positive constant C, depending on x, such that

/Oo’l)a_b+ (AQ _|_AB)(1—1,Ul—b+ (B2 _{_AB)l—b,Ua—leivdv
0 v(v +£) (A.21)
a-1p71-b a—b [ € v
< CA*'B'"°(A+ B) —_—.
0 v(v + K)
Combining (A.20) and (A.21) yields to
1
/ U(z)de < Ce— S Al-api-b(4 4 B)otb-2, (A.22)
0

This, again, implies that (A.1) holds.

Case 3: max{a,b} < 1. Inequalities (A.7)-(A.11) hold, but (A.12) has to be replaced by

d(v) < CB*% <U +(A+ B)? >a_1 (v+B*+ AB)bil

A(A+ B
v+ A(A + )/ , v(v —L/;;) (A.23)
< CBl—b(A + B)Za-l—b—?»v + (A + AB)
v(v + k)
Noticing that
o pl= v e du ”dv > e dv
C (A*+ AB —
Vo(v+ k) el ) Vo(v+ k)
it follows that (A.13) holds. Finally (A.14) holds by exchanging (A, a) and (B, b). O

Lemma A.2 . Let «, 3, v, § be real numbers and £ an integer. We assume v > 1, § > 0 and
£ > 2. Then there exists a positive constant C such that, for any integer n > £

n—~{
S (Vi — /) e WPV < opapize=in (A.24)
p=1

Proof. The function z — (vz+,/7(v/n—+/x + 1))? is decreasing on [(y—1)"!, c0). Furthermore
there exists C' > 0 depending on ¢, @ and 3 such that p*(y/n — \/1_))5 < Cax(vn—Vx +1)8
for x € [p,p + 1] If we denote by po the smallest integer larger than (y — 1)~!, we derive

po—1 n—{
5= Zp (Vi — yp)Pe PV SN LSS a5 ) e i WAV
=1 p=1 Po
pO*l
< Zpa(\/—_ \/]3)6675(\/5%/’7(\/57\/%1))2
p=l n+1—¢
+C 22 (y/n — /T )P e WV VAV—VETD))? gg

Ppo
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(notice that v/n — vz ~/n—+/z+1 for z <n —{). Clearly

po—1
3 P (Vi — /B e SWPHAVIVITD < i (Vi — v — £)Pe " (A.25)
p=1

for some Cp independent of n. We set y = y(x) = & + 1 — /z/,/7. Obviously

=3 () Em

and their exists € = €(,7) > 0 such that v2v/z > y(x) > ey/z and y/(x) > ¢/\/z. Furthermore

_ﬁ<y+\/m>
= — ,

v

N

Vy =1) = /Ay — Vi + 11—
v—1
_ (=D 4y -2 Am—
V(Y = 1) = Ay + AvVayr+ 11—y
=D+ =2y/Am— 7y’
\/ﬁ

Vi =i =

since y(z) < y/n. Furthermore

n(y—1)+v =2y n— > =1v(Vn+1+n/y7+y)Vn+1—n/y7—y)
~Vn(Vn+1—n/\q—y),

because y ranges between the two values vn +2 — ¢ — v/n+1—£,/5 (which of order of \/n)
and /po + 1 — /po/7. Thus

(V= va) = (VAT = va/yvi-y)".

This implies

n+1—4
/ 2 (/ — /T )PV (VA—VaFT))? gy

Po

y(n+1-20)
<C P (Va1 = /i3 —y) e PV gy
(po)
o 1=y(po)/vn )
< Cna+5/2+1/ (1—2)2F(z+/T+1/n—1-1/,/7) e " dz.
1yt 1-0)/ v

(A.26)
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Moreover

1_y(po):1_i<\/m—@>,

Vi VR v
y(n —€+1) Vn—0+2 n—(l+1
1-——-=1- +
vn v v 2 2
1 0—=2)—l+1 0—2)2— (-1
\/’7 2n n
(A.27)
Let 6 fixed such that 1 — y(n—i\/g—i—l) <f<1- y\(j%o) for any n > pg. Then
1=y(po)/v/n ) 1-y(po)/v/n )
/ (1 _ Z)2a+1(z + 1+ 1/n —_ 1= 1/\/5)667757” dz < Cg/ (1 _ Z)2a+1e*’75"2 dz
0 0
, [1=y(po)/v/n
< CG efwéne / (1 _ Z)2a+1dz
0

< C e max{1,n—"1/2},
Because 70% > 1 we derive
1-y(po)/v/n )
/ (1 =22+ T+ 1/n—1-1/7)Pe 7 dz < On~FPen, (A.28)
0
for some constant C' > 0. On the other hand
0
/ (1—z)%t(z+ 1+1/n—1—1/\/§)5e*75”22dz
1—y(n+1-6)/vn

6
< Cg/ (z+ 1+ 1/n—1-1//7)e .
l—y(n+1-0)/v/n

The minimum of z — (z + /1 +1/n—1—1/,/7)? is achieved when z =1 — y(n + 1 — £) with
corresponding value

VIU+T) +1-4
2n./y

and the maximum of the exponential term is achieved at the same point with value

e—n5+((z—2)ﬁ+1—£)/2(1 +0(1)) = Cve‘"‘s(l + o(1)).

+0(n™?),

We denote
0
Zym=1+1/y/y—+/1+1/n and Ig= / (z — z%n)ﬁe_wstdz.
l—y(n+1-0)/v/n
Since 1 —y(n+1—4¢) > 1/4/2v for n large enough,
6
Iz < /2y (z — z%n)ﬁze_%";dz
l—y(n+1-0)/v/n
/2 ] NN
< 2oz eone?] + 2 (2 = 2y) Lz 00,
2n74 l—y(n+1-0)/vn 2070 Ji_y(nt1-0)/v/n
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But 1 —y(n+1—-2)//n—2y,= (¢ —1)(1 -1/\/7)/2n, therefore
Ig <O Pt 4 BCIn g 4. (A.29)
If 8 <0, we derive
Iﬁ < Clnfﬁflefzsn,

which inequality, combined with (A.26) and (A.28), yields to (A.24). If 5 > 0, we iterate and
get
Iﬁ < Cln_ﬁ_le_‘sn + C{n‘l(Cln_Be_‘S" + (,8 — 1)0{71_1[5,2)

If 5 —1 <0 we derive
Ip < Cin B=le=om 4 ClC{n_l_ﬁe_‘S" = C’gn_ﬁ_le_‘s",

which again yields to (A.24). If 5—1 > 0, we continue this process up we find a positive integer
k such that 8 — k < 0, which again yields to

Iﬁ < Ckn_ﬁ_le_én

and ultimately to (A.24). O

The next estimate is also fundamental for deriving the N-dimensional estimate of J;, , in
Lemma 3.8.

Lemma A.3 For any integer N > 2 there exists a constant cy > 0 such that
em

" mcosf _: N—2
< e —
/0 2 sin” "7 0df < cn 1+ m) 1P Vm > 0. (A.30)

Proof. Put Zn(m) = / emcos9sinN=20dp. Then Zh(m) = / e 9 5inN=2 9 cos § df and
0 0

s s
Y (m) = / €m0 sinN=2 0 cos? 6 df = Ty(m) — / em o0 sinN g dg
0 0
N-1 /(T
=To(m) — —— [ e™°*sinV 20 cosf df
m-_Jo
N-—-1
! .
m 2(m)
Thus Z, satisfies a Bessel equation of order 0. Since Z(0) = 7 and Z4(0) = 0, 717, is the
modified Bessel function of index 0 (usually denoted by Ij) the asymptotic behaviour of which
is well known, thus (A.30) holds. If N =3

= Ig(m) —

T __mcosf17T 2sinh
Is(m):/ emcosgsiné?dez[ em ] — 2SI
0

0 m
For N > 3 arbitrary

T—1d N-3["
T = [ ——(emsNginVN39d9 = ——= | ™50 050 5in™ 4 6 db. A.31
N(m) T dﬁ(e ) sin m e cos 0 sin ( )
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Therefore,

1 ™
Zy(m) = E/o emesY cos 0 df = Th(m),

and, again (A.30) holds since I{)(m) has the same behaviour as Ip(m) at infinity. For N > 5

3—N
= 2

™ N-— T d
In(m) ™% cos @ sinV 5 6}0 + 3/ emeost — (cos g sin™ 5 0) df.
0

m?2 do

m

Differentiating cos 6 sin®™ ~® # and using (A.31), we obtain

4sinhm  4sinhm
I5 (m) = — s

m? m3

while

T(m) = E=IE = (s om) — Ty o)), (A.32)

for N > 6. Since the estimate (A.30) for Zy, Z3, 7, and Z5 has already been obtained, a straigth-
forward induction yields to the general result. O

Remark. Although it does not has any importance for our use, it must be noticed that Zy can
be expressed either with hyperbolic functions if IV is odd, or with Bessel functions if IV is even.
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