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Department of Mathematics, Department of Mathematics,
Technion, Haifa, ISRAEL Univ. of Tours, FRANCE

1 Introduction

Let T € (0,00] and Q7 = RN x (0,T] (N > 1). If ¢ > 1 and u € C?(Qr) is nonnegative and
verifies
Ou—Au+u? =0 in Qr, (1.1)

it has been proven by Marcus and Véron [20] that there exists a unique v € B"% (RY), the set
of outer-regular positive Borel measures in RY, such that

%Lr}éu(.,t) =v, (1.2)

in the sense of Borel measures. To each such measure v is associated a unique couple (S, ;)
(and we write v ~ (S,, i1,,)) where S is a closed subset of RY, the singular part of v, and p,,, the
regular part is a nonnegative Radon measure on R, = RY \ S,. In this setting, relation (1.2 )
has the following meaning :

() Timgo fp ul.t)Cds = /R Cdm, Ve € Co(Ry),

(1.3)
(i7) im0 / u(., t)dx = oo, YO Cc RN open, ONS, # 0.
@

The measure v is by definition the initial trace of u and denoted by Trgw~(u). Conversely, in
the subcritical range of exponents

1<g<g =1+ N/2,

it is proven by the same authors that, for any v € 8" (RN), the Cauchy problem

Tren(u) = v,
admits a unique solution. A key step for proving the uniqueness is the following inequalities

V@D £z — af /VE) < u(z,t) < ((g — 1))~ H@D Y(2,t) € Qoo (1.5)



for any a € S,, where f is the unique positive solution of
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(1.6)
limy, e [y7 7Y f(y) = 0.

The existence, the uniqueness and the asymptotics of f has been proved by Brezis, Peletier and
Terman in [5]. The role of the critical exponent ¢. was pointed out by Brezis and Friedman
[6] who proved that if ¢ > q., the supercritical range, any solution of (1.1 ) which vanishes
at t = 0 for any z € RY \ {0} must be identically zero. As a consequence, in this range of
exponents, Problem (1.4 ) may admit no solution at all. If v € B7% (RN, v ~ (S,, ), the
necessary and sufficient conditions for the existence of a maximal solution v = w, to Problem
(1.4 ) are obtained in [20], and expressed in terms of the the Bessel capacity Cy/q 4, (With
¢ = q/(q—1)). Furthermore, uniqueness does not hold in general as it was pointed out by Le
Gall [16]. In the particular case where S, = () and v ~ p,, then the necessary and sufficient
condition for solvability is that p, does not charge Borel subsets with Cy, s-capacity zero. This
result was already proven by Baras and Pierre [4] in the particular case v bounded and extended
by Marcus and Véron [20] in the general case. We shall denote by me (RY) the positive cone
of the space M4 (RY) of Radon measures which does not charge Borel subsets with zero Cs /'
capacity Notice that W~2/¢4(R) N 9% (RYN) is a subset of o (RY); here M (RY) is the cone
of positive bounded Radon mesures in RY. For such measures, uniqueness always holds and we
denote u, = u,.

The associated stationary equation in a smooth bounded domain 2 of RV
—Au+u!=0 in (1.7)

has been intensively studied since 1993, both by probabilists (Le Gall, Dynkin, Kuznetsov) and
by analysts (Marcus, Véron). The existence of a trace for positive solutions, in the class of
outer-regular positive borel measures on df is proved by Le Gall [?], [?] in the case ¢ = N = 2,
by probabilistic methods, and then by Marcus and Véron in [20], [?]the general case ¢ > 1,
N > 1. The existence of a critical exponent ¢o = (N 4+ 1)/(N — 1) is due to Gmira and Véron.
In [?] Dynkin introduced the notion of o-moderate solution which means that u is a positive
solution of (1.7 ) such that there exists an increasing sequence of positive Radon measures on
9Q {pn} belonging to W=2/99(9Q) such that the corresponding solutions v = v, of

_ q— ;
{ Av+v 0 in Q (1.8)

v =y, in 02

converges to u locally uniformly in 2. This class of solutions plays a fundamental role because
Dynkin and Kuznetsov proved that a o-moderate solution of (1.7 ) is uniquely determined by
its fine trace, a new notion of trace introduced in order to avoid the non-uniqueness phenomena.
Later on, it is proved by Mselati (if ¢ = 2 and then by Dynkin (if ¢¢ < ¢ < 2)), that all the
positive solutions of (1.7 ) are o-moderate. The key-stone element in their proof is the fact that
the maximal solution wx of (1.7 ) the boundary trace of which vanishes outside a compact subset
K09 is indeed o-moderate. This deep result was obtained by a combination of probabilistic



and analytic methods by Mselati in the case ¢ = 2 and by purely analytic methods by Marcus
and Véron [21].

Following Dynkin we can define

Definition 1.1 A positive solution u of (1.1 ) is called o-moderate if their exists an increasing
sequence {j,} C W=249(RN) NG (RY) such that the corresponding solution u := u,,, of

Ou—Au+u!=0 in Qx
(1.9)
uw(z,0) = p, in RY,
converges to u locally uniformly in Qeo.

If F'is a closed subset of RY, we denote by % the maximal solution of (1.1 ) with an initial
trace vanishing on F, and by uy the maximal o-moderate solution of (1.1 ) with an initial trace
vanishing on F°. Thus up is defined by

up = sup{uy : p € ML (RY), u(F) = 0}, (1.10)

where MY (RY) := W=2249(RY) 0 98 (RY). One of the main goal of this article is to prove
that ur is o-moderate and more precisely,

Theorem 1.2 For any q > 1 and any closed subset F of RN, ip = up.
We define below a set function which will play an important role in the sequel.

Definition 1.3 Let F be a closed subset of RY. The Ca)q,q -capacitary potential Wg of F is
defined by

Wr(z,t) = 75—1/(11—1)z:(n + 1)N/2—1/(q—1)e—n/402/q7q, <Fn> Y(z,t) € Quo, (1.11)
e (n+ 1)t

where Fy, = Fy,(z,t) == {y € F:v/nt < |z —y| <+/(n+ 1)t}
One of the tool for proving Theorem 1.2 is the following bilateral estimate

Theorem 1.4 For any q > q. there exist two positive constants C1 > Cy > 0, depending only
on N and q such that for any closed subset F' of RN, there holds

CoWp(z,t) <up(z,t) <up(x,t) < C1Wp(z,t) Y(z,t) € Q- (1.12)

This representation of wg, up to uniformly upper and lower bounded functions, is also interesting
in the sense that it indicates precisely what are the blow-up point of wr. Introducing an integral
expression comparable to Wr we show, in particular, the following results

. F o —1/(g—1)—
lim, Co/.q <7' : Bl(m)) =7€000) = jimt Y Dap(a,t) = Cy (1.13)



for some C' = C(N,q) > 0, and

F
lim sup 72/(q_1)02/q7q/ < N By (:U)) < 00 = limsupup(z,t) < oo. (1.14)
T

7—0 t—0

Our paper is organized as follows. In Section 2 we obtain estimates from above on ug. In
Section 3 we give estimates from below on up. In Section 4 we prove the main theorems and
expose various consequences. In Appendix we derive a series of sharp integral inequalities.

Aknowledgements The authors are grateful to the European RTN Contract N° HPRN-CT-
2002-00274 for the support provided in the realization of this work.

2 Estimates from above

Some notations : Let € be a domain in RV with a compact C? boundary and T' > 0. Set B,(a)
the open ball of radius » > 0 and center a (and B, (0) := B,) and

Q2 =0 x(0,T), 9,Q%=00x(0,T), Qr:=Q% , Qu:=Q% .

Let H®[] (resp. H[.]) denote the heat potential in  with zero lateral boundary data (resp. the
heat potential in R"V) with corresponding kernel

(@,y,t) = H(2,y,t)  (vesp.(z,y,t) = H(z,y,t) = (47t) N exp(— |z — y[* /41)).
We denote by ¢. := 1+ 2/N, the parabolic critical exponent.

Theorem 2.1 Let ¢ > q.. Then there exists a positive constant C; = C1(N,q) such that for
any closed subset F of RN and any u € C*(Qoo) N C(Quo \ F) satisfying

ou—Au+ul =0 in Qx 2.1)
limy o u(x,t) =0 locally uniformly in F°€, .
there holds
u(z,t) < C1Wr(z,t) Y(z,t) € Quo, (2.2)
where W is the (2/q, q')-capacitary potential of F defined by (1.11 ).
First we shall consider the case where F' = K is compact and
K C B, C B,, (2.3)

and then we shall extend to the general case by a covering argument.



2.1 Global Li-estimates
Let p > 0, we assume (2.3 ) holds and we put
T, p(K) ={n e C5°(Br1,),0 <1 <1,n=1in a neighborhood of K}. (2.4)
IfneT,(K) weset n* =1—1n, (= H[*]?¢" and
R(n) = [VH[]? + |OH[n] + AH[y)|. (25)

We fix T' > 0 and shall consider the equation on ). Throughout this paper C will denote a
generic positive constant, depending only on N, ¢ and sometimes 7', the value of which may
vary from one ocurrence to another. Except in Lemma 2.12 the only assumption on ¢ is ¢ > 1.

Lemma 2.2 There ezists C = C(N,q,T) > 0 such that

[ ma? dde < il (2.6)
Qr
Proof. There holds 0,H[n] = AH[n], and
[] omid ava= [ oo, <y (27)
Or t 0 t LY (@®N) t [WZq’,Lq’]l/q,q, :
where [W27‘1/, Lq/} y indicates the real interpolation functor of degree 1/q between W24 (RY)
a9
and L7 (RN) [29]. Similarly, and using the Gagliardo-Nirenberg inequality,
[ﬂgvmmWWMﬁsmwmmywmwzmwmmf (2.8)
T
Inequality (2.6 ) follows from (2.7 ) and (2.8 ). O

Lemma 2.3 There exists C = C(N,q,T) > 0 such that

/ / wiCde dt + / (uC) (2, T)dz < Col|n| ), - (2.9)
Qr RN
Proof. We recall that there always hold
1 1/(g—1)
0 <u(zx,t) < <t(q—1)> V(z,t) € Qoo (2.10)
and (see [6] e.g.)
C 1/(g—1)
0 <u(zx,t) < <t—|—(|l‘|—7‘)2> V(z,t) € Qoo \ By (2.11)

Since n* vanishes in an open neighborhood N7, for any open subset N5 such that K C Ny C
Ny C N there exist ¢y, > 0and Cy, > 0 such that

H[W*](%t) S CN2 eXp(_C/\/'2 t)) V(ZL‘,t) € QJQ\“/Z
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Therefore

lim (u¢)(x,t)dx = 0,
t—0 JpN

and ( is an admissible test function, and one has

//QTqud:cdt+/RN(UC)(QS,T)d:c = //QTu(atC+AC)d:cdt. (2.12)

Notice that the three terms on the left-hand side are nonnegative. Put H,» = H[n*], then
O+ AC = 2¢/H2 TN (O H, + AH,e) + 24/ (24 — DY 2| VH, |,
2¢/—1 -
= 2¢/H,? " (9H, + AH,) + 2¢'(2¢' — 1)HZ 2| VH,|?,

because H,+ = 1 — H,,, hence

u(atc n AC) _ uHii{//q |:2q,(2q/ B 1)Hig/72—2q//q|VHn‘2 . 2q/Hiz’7172q//fI(AHn + atHn)} .

Since 2¢' —2 —2¢'/qg =0 and 0 < H,» <1,

‘//QTu(atC‘FAC)dZ‘ dt‘ < C(q) <//QTqud$dt)1/q (//QTRq'(n)dx dt> 1/q’,

R(n) = |VHy[* + |AH, + 0,H,| .
Using Lemma 2.2 one obtains (2.9 ). O

where

Proposition 2.4 Letr >0, p>0, T > (r + p)?
Erpi={(z,t) |z +t < (r+p)?}

and Qripr = Qr \ Ergp. There exists C = C(N,q,T) > 0 such that

// uwldz dt +/ w(z, T)dx < C'C2B/T+”,(K). (2.13)
N a9
Qr+p,T R
Proof. Because K C B, and n* = 1 outside B, , and takes value between 0 and 1,
7)o, ) > H Iz, 1) L) (~ke — l/41)
H[n*](xz,t) > H[1 — x r,t) = <> / exp(—|x — y|*“/4t)dy,
Pree At ly|>r+p

1 \N/2 ,
. () [ el -yl /any
Amt ly|<r+p

For (z,t) € Er4p, put & = (1 + p)&, y = (r+ p)v and t = (r + p)?7. Then (£,7) € & and

1\ N2 , 1\ N2 ,
— exp(—|z — Ady = | — / exp(—|& — v|?/47)dv.
(m) /ymp p(—|z — yl?/4t)dy <4M) el vl
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We claim that

N/2
max {( ! ) /||<1 exp(—|¢ — v[*/4r)dv - (€,7) € 51} =/, (2.14)

dnr

and £ = ¢(N) € (0,1]. We recall that

1\ N2
< > / - exp(—|€ —v|*/4T)dv <1 V7 > 0. (2.15)

arr
If the maximum is achieved for some (£, 7) € &, it is smaller that 1 and
H[n*](x,t) > H[1 — XBHLP](.r,t) >1—-0>0, VY(z,t) € &Eqp. (2.16)

Let us assume that the maximum is achieved following a sequence {(&,,7n)} with 7, — 0 and
|€n] | 1. We can assume that &, — £ with ‘{‘ =1, then

N/2 N/2
()" = () o
47T7'n |v|§1 47TTn Bl(fn)

But Bl(fn) N Bl(_gn) = ®7

/ eI /4 gy +/ e 1P /4 gy, < / eI A gy,
Bi(&n) Bi(—¢n) RN
/ 6_|U|2/4T”dv _ / e_|”|2/47”dv.
Bi(én) B1(—¢n)

1 \MV? )
lim < ) / eIy < 1/2.

If the maximum were achieved with a sequence {(&,,7,)} with |7,| — oo, it would also imply
(2.16 ), since the integral term in (2.15 ) is always bounded. Therefore (2.15 ) holds. Put
C=(1-¢7" then

and

This implies

q q/
//Qr,TU dx dt‘f‘/RNU(.,T)dx < C‘|n”||w2/q7q/(RN). (2.17)

If we replace 1 by 7, a sequence of functions which satisfies

B, . /
Oy ) = T 11300 vy 5

we obtain (2.13 ). O



2.2 Pointwise estimates

We give first a rough pointwise estimate.
Lemma 2.5 There exists a constant C = C(N,q) > 0 such that

colrn (K)

/94 N 2.18)
u(z, (r+2p)?) < , VreRY. (

0 (4200 = G

Proof. Step 1 We claim that

T
/ / uldzx dt —l—/ u(z, T)dx = / u(z,s)de VT > s> 0. (2.19)
s RN RN RN

By the maximum principle u is dominated by the solution v with initial trace the indicatrix
function Ip,. The function v is the limit, as k — oo, of the solutions v; with initial data ky .
Since vy < kH[x,, |, it follows Hence

/ u(., s)dz < CCQB/’“*”,(K) VT > 5> (1 + p)?, (2.20)
RN a9

by Lemma 2.3. Using the fact that

w(z, 7+ s) < Hlu(.,s)](xz,7) < <1>N/2 /]RN u(., s)dx,

4T

we obtain (2.18 ) with s = (r + p)? and 7 = (r +2p)? — (r + p)? = p(r + p). O

The above estimate does not take into account the fact that u(z,0) = 0 if |x| > r. It is
mainly interesting if |x| < r. In order to derive a sharper estimate which uses the localization
of the singularity and not only its Cy/, ,-capacity, we need some lateral boundary estimates.

Lemma 2.6 Let v > 1+ 2p and ¢ > 0 and either N =1 or 2 and 0 < t < ¢y for some ¢ > 0,
or N >3 and t > 0. Then there holds

t
/ / udSdr < C57Cy 7 (K). (2.21)
0 JoB, ’

where C' > 0 depends on N, q and ¢ if N =1, 2 or depends only on N and q if N > 3.

Proof. Let us assume that N =1 or 2. Put G7 := B X (-00,0) and 9,G” = 9,BS x (—00,0).
Set

hy(z) =1— —,
! ||
and let 1, be the solution of
Orhy + Apy =0 in G7,
1y =0 on 0,G7, (2.22)

¥, (,0)=h,  in B

8



Thus the function B
U, 7) =y (y2,7°7)
satisfies ~ _
O+ A =0 in G!
Yp=0  on G (2.23)
(.,0)=h in B,

and h(z) = 1 — |#|~!. By the maximum principle 0 < ¢ < 1, and by Hopf Lemma

94
_8%8fo[—0,0] >0>0, (2.24)
where § = §(NV,c). Then 0 <, <1 and
9y
_TI:GBSX[*VQ,O} >0/7. (2.25)

Multiplying (1.1 ) by 9, (z,7 —t) = ¢J(z,7) and integrating on B x (0,t) yields to

i t b t o
/ / qu;‘dxd7+/ (uhy)(z,t)dx — / / —uq/)*deT = —/ / —udodr.  (2.26)
0 S B% 0 JOB on"7 0 JoB, on

Since 93 is bounded from above by 1, (2.21 ) follows from (2.25 ) and Proposition 2.4 (notice
that BS x (0,t) C &), first by taking t =T = 72 > (r +2p)?, and then for any t < 2.

If N > 3, we proceed as above except that we take

ma== (@)

Then v (z,t) = hy(z) and § = N — 2 is independent of the length of the time interval. This
leads to the conclusion. g

Lemma 2.7 I- Let M, a > 0 and n € L (RY) such that
0<n(x)< Me_a|m|2, a.e. in RY, (2.27)

Then, for anyt > 0,

M

—alz)?/(4at+1) N
el D ., VzeRY. (2.28)

0 < Hin(z,t) <

II- Let M, a, b> 0 and n € L®(RYN) such that

_1)\2
alel-b2

0<n(z)<Me a.e. in RY, (2.29)
Then, for anyt >0,

Mefa(\x|fb)i/(4at+1)

0 < Hn)(z,t) <

N
S PR /e Vo e RV, vt > 0. (2.30)



Proof. For the first statement, put a = 1/4s. Then

1

—|T 2 S
s V2" [2l/4s — C'(47s)N/?H[bo) (w, 5).

0 < n(x) < M(4ms)N/?

By the order property of the heat kernel,

N/2
0 < Hy)(z,t) < M(drs)N/H[oo) (2, £ + ) = M (tj ) elel ()
S

and (2.28 ) follows by replacing s by 1/4a.

a(r—b)i+dr2 :

For the second statement, let @ < a and R = max{e r > 0}. A direct computation

gives R = ¢%@*/(a=3) "and (2.30 ) implies
0<nz) < M adb?/(a—a) —alz|*
Applying the statement I, we obtain

Cea&bg/(a—&)

—alz|?/(4at+1) N
(dat + 1)]\7/26 , Ve eRY, Vi>D0. (2.31)

0 < Hn](x,t) <

Since for any € RY and ¢t > 0,
(4at + 1)—N/2€—a|x\2/(4at+1) < e—adb2/(a—d) (4at + 1)—N/2€—a(\x|—b)2/(4at+1)’
(2.30 ) follows from (2.31 ). O

Lemma 2.8 There exists a constant C = C(N,q) > 0 such that

2 rte ‘.T|—T—2p x|—(r+2p))? /4(r+2p)% ~Br
u(w, (r +2p) )Scma’({(yw\_r T (g e 20) 20 0B (),

(2.32)
for any x € RN\ B,43,.

Proof. We recall that the Dirichlet heat kernel HP1 in the complement of B; satisfies, for some
C=C(N)>0

HBi (! yf 1) < ol — o) D2 (|~ Dexp(—|a’ —o/P/4( — ), (233)

for ¢ > s’. By performing the change of variable 2’ — (r + 2p)2’, t' +— (r + 2p)?t’, for any
xeRN \ B2, and 0 <t < T, one obtains

e~ le—yl?/4(t—s)
u(z,t) < C(|lz] —r —2p) / /83 (f— )i/ ————u(y, s)do(y)ds. (2.34)
r4+2p

The right-hand side term in (2.34 ) is smaller than

Cllzl =7 = 20) —(lal-r—20)2/4(0-5) }/t/
max e \F=T 5 :5€(0,t u(y, s)do(y)ds.
{ (t — s)1+N/2 (0,%) o Jo, ., (y, s)do(y)

10




We fix t = (r + 2p)? and |z| > r + 3p. Since

o (lel—r—20)2/15 )
max WSG(O,(T+2P))

—1/40 2
— —2-N € . T+ 2p

a direct computation gives
e~ /4o r+2p 2
maX{Ul_’_m:O<0’<<’x|_T_2p>
(2N + 4)1+N/2e=(N+2)/2 if 7+ 3p < |z| < (r +2p)(1 + V4 + 2N),
|$‘ _T_2p 2N _ —r—9 2 t-40))2 .
lZl=r—2p e~ ((lzl=r=20)/C@r+4p))* if |z| > (r + 2p)(1 + V4 + 2N).

r+2p
Thus there exists a constant C(N) > 0 such that

—(lz[-r—2p)?/4s
Max {61+N/2 15 € (0, (r + 2/))2)} < C(N)p_2_N6_(‘$|_(T+2p))2/4(r+2p)2. (2.35)
S

Combining this estimate with (2.21 ) with v = r + 2p and (2.34 ), one derives (2.32 ). O

Lemma 2.9 There exists a constant C = C(N,q) > 0 such that

3 1 2 2
< 2 < (r+p) — (|| —r—3p)2/4(r+2p)2 ~Bro
0 < u(x,(r+2p)°) _C’max{p(|x| ) g o), e 02/q,q'(K)’
(2.36)

for every x € RN \ B, 3,.

Proof. This is a direct consequence of the inequality

2
(2] — r — 2p)e—al=r+20)? /404207 < C(r;—p)e—(lml—(r+3ﬁ))2/4(r+20)2’ Vo€ By, (2.37)
and Lemma 2.8. O

Lemma 2.10 There ezists a constant C = C(N,q) > 0 such that the following estimate holds

Onpe(lel-r=302 /2t

u(z,t) < T Cyit(K), Yo € RN, Wt > (r+2p)?, (2.38)
where
(1+1r/p)N/? if x| <r+3p
M= M(z,r,p) =< (r+p)N3/p(lz] —r —20)"*2  ifr+3p<|a| < COn(r+2p) (239)
L+7/p if |z| > Cn(r+2p)

with Cy =14 V4 +2N.

11



Proof. 1t follows by the maximum principle
u(e,t) <Hlu(., (r + 2p)*)](2,t — (r +2p)%).
for t > (r +2p)? and € RV. By Lemma 2.5 and Lemma 2.9

u(z, (1 +20)) < CroNteol-r=99* 4020 CBrt ),

2/q,¢’
where
((r+p)p)~N/2 if [z <r+3p
M=q (r+p3/p(lz| —r—2p)"*? if r+3p < |z| < Cn(r+2p)
1/(r+p)"'p if |z[ > Cn(r+2p)

Applying Lemma 2.7 with a = (2r + 4p)~2, b = r + 3p and t replaced by t — (r + 2p)? implies

2p)N M
(e, t) < 20PN ot e 1) (2.40)
for all z € By 5, and t > (r + 2p)2, which is (2.38 ). O

The next estimate gives a precise upper bound for v when t is not bounded from below.

Lemma 2.11 Assume that 0 < t < (r + 2p)? for some ¢ > 0, then there exists a constant
C = C(N,q) > 0 such that the following estimate holds

1 1 2
—(|z|—r—3p)2 /4t ~Brip
u(z,t) SC(T+p)maX{($|—r—2p)N+1’ptN/2}6 CQ/q,q,(K), (2.41)

for any (z,1) € RN \ Byyg, x (0, (r + 20)?]
Proof. By using (2.21 ) the following estimate is a straightforward variant of (2.32 ) for any
¥ =1+ 2p,

e~(zl—r=20)2 /43 5
U(x,t) S Cg(‘$| —T—2p)(7"+2p)max{sl+N/2 0 < Sét CZ/qfqzlp(K)' (242)

Clearly

o—(lal—r—20) /15
max W :0< s S t

(2N + 4)HN2(|z| —r = 2p) " N2e=(N42/2 if 0 < |z| <7+ 2p + /2t(N + 2)

=9 o—(al-r—20)2/4t
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By elementary analysis, if z € Br s,

—p2/4¢ . 2
pe P~/ if2t<p
2 2
(|z| —r — Qp)e—(\xl—r—%) /4t < o= (lxl—r—3p)%/4t 9t
g Ze A i g2 < 9t < 2(r + 2p)2.

p

However, since

Be—P2/4t < %7

t P
we derive

(o] — r — 2p)e—el=r=207/4t < Ct ~(lal=r=30)2/at
p

from which inequality (2.41 ) follows. O

Lemma 2.12 Assume q > q.. Then there exists a constant C' depending on N and q such that
for any r > 0 and p > 0, and any Borel set £ C B,, there holds

2/(g—1)
C;;T(;,(E) < orN-2/(a-1) <1 + ;) C’g/%q/(E/?”), (2.43)

where Cy/q o (E) = C5Z7q/ (E).

Proof. By the scaling property of Bessel capacities (see [1]), since ¢ > g,

B — - B T
oyl (B) = P/t (),

for any Borel set E C B,. It is sufficient to prove (2.43 ) when E' = E/r C B; is a compact set,
thus

Bi,, . /
02/1(;q//p(E,) = 1nf{HCH?/V2/M, (€ C§(Bl+r/p),0 <(<1,{(=1on E’}.
Let ¢ € C?(RY) be a radial cut-off function such that 0 < p < 1, p = 1 on By, p = 0 on
p
RN\ Bigpm V9| < CrpfleHp/r\Bl and ‘Dng‘ < C’r2p*2xBl+p/r\Bl, where C' is independent

of r and p. Let ¢ € C3(RY). Then
V(o) = (Vo + ¢V(, D*(() = (D> + ¢D*¢ + 2V = V(.

Thus HCqﬁHLq/(BHp/T) < HCHLq’(RN)’

q/
/ ’r’ '
[ ol ar<c <1+ ) e
Bitp/r P

and
2

! q, !
|D2(¢o)|" dx < C (1 + ;2) €12, -

P

13



Finally
2

T
1l arnn < C (1 T pz) 1Cllara -

Denote by 7 the linear mapping ¢ — (¢. Because

welad — [w2d 1]
1/q.q’

(here we use the Lions-Petree real interpolation notations and results from [17]), it follows

r2 1/q
1T g ra oy weraa g, < €(@) (1 " p2>

Therefore

Biipp 2 1/(g—1) )
02/117(1/ (E) S C 1 + F CQ/q,q’(E )

Thus we get (2.43 ). O

Remark. In the subcritical case 1 < g < g, estimate (2.43 ) becomes

CFlp) < O {1,V (1-4570070). e

By using Lemma 2.11, it is easy to derive from this estimate that for any positive solution u of
(2.1 ), the initial trace of which vanishes outside 0, there holds

2| 2/(¢—1)—-N )
u(z,t) < Ct~/@ D min{ 1, (ﬁ) eIzl /4t V(z,t) € Qoo (2.45)

This upper estimate corresponds to the one obtained in [5]. If F = B, the upper we estimate
is less esthetic. However, it is proved in [20] by a barrier method that, if the initial trace of
positive solution u of (2.1 ), vanishes outside F, and if 1 < ¢ < 3, there holds

u(w, t) <MD fi((Ja) = 1) /VE) V(,t) € Qoo 2] > 1, (2.46)
where = f] is the positive solution belonging to C?([0,c)) of
f”+gf’+if—fq:0 in (0, 00)
2 g—1 ’ (2.47)
J/(0) = 0, Timy—oq [y @Y f(y) = 0.

Notice that the existence of f; follows from [5] since ¢ is the critical exponent in 1 dim. Fur-
thermore f; has the following asymptotic expansion

Aily) = CyB=/aNe v /A1 4 o(1))) as y — .
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2.3 The upper Wiener test

Definition 2.13 We define on RY x R the two parabolic distances 6o and do by

621(2,1), (9, 8)] = \lo — P + |t — 51, (2.48)

and
dool(, 1), (y, 8)] := max{|z — y|, /|t — s|}. (2.49)
If K c RN and i = 2,00,

max {dist (z,K), \/M} if i = oo,

5i[($at)’K] :inf{(si[(m?t)v(y)())] inK}: . e
Vdist2(z, K) + |t] if i = 2.

For > 0 and i = 2, 00, we denote by Blﬁ(m) the parabolic ball of center m = (z,t) and radius
0 in the parabolic distance &;.

Let K be any compact subset of R and g the maximal solution of (1.1 ) which blows up
on K. The function ug is obtained as the decreasing limit of the g, (e > 0) when € — 0, where

K= {z ¢ RN : dist (z, K) < ¢}
and Uk, = limy_.o up k. = Uk, where uy, is the solution of the classical problem,

Orup, — Auy, + uz =0 in Qr,
U = 0 on agQT, (250)
uk (-, 0) = kX, in RV,

If (z,t) = m € RY x (0,7T], we set dx = dist(z,K), Dgx = max{lzr —y| : y € K} and
A= w/d%( +t = d3[m, K]. We define a slicing of K, by setting d,, = d,,(K,t) := v/nt (n € N),
T, = Ba,,, (%) \ Bg,(z), VYneN,
thus Ty = B ;(z), and
Kn(z) = KNTy(x) forn € Nand Q,(x) = KN By,,, ().

When there is no ambiguity, we shall skip the x variable in the above sets. The main result of
this section is the following discrete upper Wiener-type estimate.

Theorem 2.14 Assume q > q.. Then there exists C = C(N,q,T) > 0 such that

C K N-2/(g-1) —n Ky,
ﬂK(IE,t) S Wzdi\g—f/(q l)e /402/(17(1/ <d+1> V(l‘,t) € QT, (251)
n=0 n

where a; is the largest integer j such that K; # (.
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With no loss of generality, we can first assume that x = 0. Furthermore, in considering the
scaling transfoprmation wu,(y,t) = 61/(q_1)u(\/2y, ¢t), with £ > 0, we can assume t = 1. Thus the
new compact singular set of the initial trace becomes K/v//, that we shall still denote K. We
shall also set a,, = a, 1 Since for each n € N,

1 1
——— <dpy1 —dp < ———,
N B/ |
it is possible to exhibit a collection ©,, of points a, ; with center on the sphere 3, = {y € RN -
‘Z/| - (dn+1 + dn)/2}7 such that
T, C U Bl/\/m(amj), lan,; — ank| > 1/2vVn+1 and #0O, < cnN
an,jeen
for some constant C' = C(N). If Ky j = Kn N By, mg7(an,;), there holds
K= |J U Kus
0<n<ay an,;€On
The first intermediate step is related to the quasi-additivity property of capacities.
Lemma 2.15 Let g > q.. There exists a constant C' = C(N,q) such that

SO (Kay) < o@D NRCy, L (ViK,) Yne N, (2.52)
Gn, ;€O

where By, j = B2/m(an7j) and Cy,q o stands for the capacity taken with respect to RV,

Proof. The following result is proved in [2, Th 3]: if the spheres B 0 (bj) are disjoint in R and
J

G is an analytic subset of | J B, (b;) where the p; are positive and smaller than some p* > 0,
there holds

Cofgq(G) £ Coygy(GN By, (b)) < ACh) (G, (2.53)

J

where §# = 1 — 2/N(q — 1), for some A depending on N, ¢ and p*. This property is called
quasi-additivity. We define for n € N,

T, = /nT,, K,=+nK, and Q, =+/nQ,.
Since Kn,j C By, mgi(an,;), the Cy/y o capacities are taken with respect to the balls By ), mrq(an,j) =
B, ;. By Lemma 2.12 with r = p=+v/n+1

Bnj —1)— %
Cg/q’fq/(Kn,j) < Ccpl/a-1) N/2C2/q7q,(Kn’j)’ (2.54)

where f(n,j = /nK, ; and ij = \/nB,, ;. For a fixed n > 0 and each repartition A of points
an,j = v/nayj such that the balls By (ay, ;) are disjoint, the quasi-additivity property holds in
the following sense: if we set

Koa= |J Knj» Kna=vnKun= |J Kn; and K, =vnK,,

anijA an,jeA
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then

Z C2/qq n,j <AC2/qq( nA) (255)

Qn EA

The maximal cardinal of any such repartition A is of the order of Cn™~! for some positive
constant C' = C(N), therefore, the number of repartitions needed for a full covering of the set
T,, is of finite order depending upon the dimension. Because K, is the union of the K, A

Z Z 02/qq n,j <CC2/qq( n) (2.56)

A apjEA
Combining (2.54 ) and (2.56 ), we obtain (2.52 ). O
Proof of Theorem 2.14. Step 1. We first notice that

k<Y Y Uk, (2.57)

0<n<aj an,;€EOn

Actually, since K = |, Uan ; K, j, for any 0 < € < ¢, there holds K., C |, Uan ; K, j.. Because
a finite sum of positive solutions of (1.1 ) is a super solution,

ﬂKE, < Z Z ﬂije. (258)

0<n<ay a, €O,

Letting successively €’ and € go to 0 implies (2.57 ).

Step 2. Let n € N. Since Ky j C By pri(an;) and |2 — anj| = (dn + dn1)/2 = (VR+ 1+
\/n)/2, we can apply the previous lemmas with r = 1/y/n+ 1 and p = r. For n > ny there
holds t =1> (r+2p)2=9/(n+1) and |z — an;| = (Vn+1—n)/2 > (2+ Cn)(3/vVn+1)

(notice that ny > 8). Thus

ug,;(0,1) < Ce(\/ﬁ—3/¢n+1)2/405}n,2/ (Knj)
< Cebe/ACy o (K g) (2.59)

< Cnl/(q_l)_N/Q _n/4c2/q,q’(Kn,j)a

which implies
Z UK, ; (0,1) < CnN/Z*I/(qfl)e*"/4C’2/q7q/(Kn)

an,je(%

Using the fact that

- — o/ (a— K,
C’2/q,q’ (Kn> ~ (dn-l-l\/ﬁ)N 2/(a=1) C’2/q,q’ <> )

dn+l

for any n € N,, we derive

Z N uk,,(0,1)<C Z ANV ey, <dn+1> (2.60)

N=Ny an ;€O N="N 5
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Finally, we apply Lemma 2.5 if 1 <n < n, and get

Z > ug,,(0,1) <CZC’2/qq <d+1>

G, ;€O
< dN/2 1/(¢-1) —n/4C Ky
E : n+1 2/a,q' dos1 )

For n = 0, we proceed similarly, in splitting K7 in a finite number of K ;, depending only on
the dimension, such that diam K;; < 1/3. Combining (2.60 ) and (2.61 ), we derive

Ky
x(0,1) <CZdN/2 YD e=n/dcy <dn+1> (2.62)

In order to derive the same result for any ¢ > 0, we notice that
u(y,t) =tV a(yvi 1),

Going back to the definition of d,, = d,,(K,t) = v/nt = d,(K+/t,1), we derive from (2.62 ) and
the fact that a,, = a

KVt,1
aK K
T (0,1) < Cr VDY (4 N2V, () , (2.63)
n—0 dn+1

which can also read as (2.51 ) with x = 0, and a space translation leads to the final result.
O

Proof of Theorem 2.1. Let m > 0 and F},, = F N B,,. We denote by Upe, the maximal solution
of (1.1 ) in Q the initial trace of which vanishes on B,,. Such a solution is actually the unique
solution of (2.1 ) which satisfies

%i_r% u(z,t) = 0o

uniformly on B¢ ,, for any m’ > m: this can be checked by noticing that
Upe o(y,t) = (/T DUge (Viy, tt) = Upe )

Furthermore
lim Uge (y,t) = lim m~ /@) UBc( /m,t/m?) =0

m—0o0 m—00

uniformly on any compact subset of Q... Since ug,, + U Be, 1s a super-solution, it is larger that
ur and therefore up, T up. Because Wg, (z,t) < Wg(z,t) and up, < C1Wg,, (z,t), the result
follows. O

Theorem 2.1 admits the following integral expression.
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Theorem 2.16 Assume q > q.. Then there exists a positive constant Cf = C*(N,q,T) such

that, for any closed subset F' of RN, there holds
B C* t(at+2) i - B 1
up(z,t) < m/ﬂ e~ /A gN=2/(q I)C'Q/%q/ <8Fﬂ Bl(x)> sds,

where a; = min{n : F' C Bm(x)}

F, F
CQ/q’q/ (dn+1) = CQ/q’q/ (dn+1 " Bl) ’

F
@(3) = CQ/q,q/ (S N Bl> Vs > 0.
Step 1. The following inequality holds (see [1] and [23])
a®(as) < P(s) <ca®(Bs) Vs>0,Vl/2<a<1<p[5<2

Proof. We first use

and we denote

for some positive constants cj, ca depending on N and ¢. If 8 € [1,2],

1 /F F
(I)(ﬁs) = CQ/q#I’ <ﬁ <$ N Bﬁ)) ~ Cg/qg/ (8 N Bﬁ) > Cl(I)(S).
Ifa e [1/2, 1],
1 (F F
@(CES) - CQ/q’q/ (a (S ﬁ Ba)> ~ C2/q7q/ (8 ﬂ BO() S CQ(I)(S).
Step 2. By (2.66 )

F F
C2/q,q’ <dn+1 N Bl) < CQCQ/%q/ <S N Bl> Vse [dnJr]_, dn+2],

and n < a,. Then

dn+2 F
02/ SN_Q/(q_1)€_82/4tCQ/q7q/ <S N B1> sds

dnt1

F dnt2
> Colqq ( N B1>/d GN=2/(a=1) /4t ¢ 1o

dn+1
Using the fact that N —2/(¢ — 1) > 0, we get,

n+1

dn
/ +2SN—2/(q—1)€—32/4t8d5 > 6—(n+2)/4an;12/(qf1)+1(
dn+1

dpt2 — dpt1)
U N—2/(g—1) —n/4
> 462dn+1/(q )6 n/ )
Thus

_ c HatD) o or(ge1) . —s?/at 1
uF(mJ)SW g s e Co/gq ;FﬂBl sds,

which ends the proof.
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3 Estimate from below

If pemt (RY) N9t (RY), we denote u, = u,p, that is the solution of

at’u, — Au + uq =0 in QT)
0 pT U (3.1)
u,(.,0)=p  in RY.

The maximal o-moderate solution of (1.1 ) which has an initial trace vanishing outside a closed
set F' is defined by

Up = sup {uu tpe M RY) N MO RY), u(F°) = 0} . (3.2)
The main result of this section is the next one

Theorem 3.1 Assume q > q.. There exists a constant Cy = Co(N,q,T) > 0 such that, for any
closed subset F' C RN, there holds

up(x,t) > CoWp(x,t) VY(z,t) € Qp. (3.3)

We first assume that F' is compact, and we shall denote it by K. The first observation is
that if € ML (RY), u, € LY(Qr) (see lemma below) and 0 < u,, < H[y] := H,,. Therefore

u, > H, — G [HY], (3.4)
where G is the Green heat potential in Q7 defined by

t ¢
G = [ BN —s)ds = [ [ ot =5 s)dyas.
Since the details of the proof are very technical, we shall present its main line. The key idea
is to construct, for any (z,t) € Qr, a measure p = pu(z,t) € ML (RY) such that there holds
H,(x,t) > CWk(z,t) Y(z,t) € Qr, (3.5)

and
G (H#)q <CH, in Qr, (3.6)

with constants C' depends only on N, ¢, and T, then to replace p by pe = eu with € =
(2C)~1/(@=1) in order to derive

uy,, > 27 H,, > 27 CWk. (3.7)

From this follows
up > 27'H,, > 271 CW. (3.8)

and the proof of Theorem 3.1 with Cy = 271C.

We recall the following regularity result which actually can be used for defining the norm in
negative Besov spaces [29]

Lemma 3.2 There exists a constant ¢ > 0 such that
¢ Hipllw-2raageny < 1Bull Lo < clilly-2/eo@n (3.9)

for any p € W=2/04(RN).
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3.1 Estimate from below for the heat equation
3.1.1 The extended slicing

If K is a compact subset of RV, m = (z,t), we define dg, A, d,, and a; as in Section 2.3. Let
a € (0,1) to be fixed later on, we define 7,, for n € Z by

Bi/m(m) \ B? m(m) ifn>1,
7;1, pr—

Bi_n\/( )\ B2, wyp(m) ifn <0,

and put
T, =T, N{s:0<s<t}, forneZ.

We recall that for n € N,,

Qn=KnpB — K N By, ()

t(n—l—l)(m)

and
K, =KN7Ty1=KnN(Bq,,, (x)\ Bq,(z)) .

Let v, € 9, (RY) N W—2/24(RN) be the g-capacitary measure of the set K, /d,1 (see [1, Sec.
2.2]). Such a measure has support in K, /d,,+1 and

1
Un(Kn/dnt1) = CQ/q,q’(Kn/dnJrl) and ||Vn||w—2/q,q’(RN) = (CQ/q,q’ (Kn/dnJrl)) /q- (3.10)
We define p,, as follows

pn(A) = ¥y, (A)dyyr) VA C K, A Borel (3.11)
and set
at
peK = fn,
n=0
and
Hyiy e = ZH,Un (3.12)
Proposition 3.3 Let ¢ > q., then there holds
1 N— 2/( 1) K,
—(n+1)/4 q—
H,UftK('r t) Z (47Tt N/2Z / d CQ/qu/ KH 5 (313)
in RN x (0,7).
Proof. Since
1 2
- - —lz—yl"/4t
H,,, (x,t) CoLE /Kne dpip, (3.14)
and
yEKn:> ‘.’L'—y‘ Sdn-‘rl?
(3.13 ) follows because of (3.11 ) and (3.12 ). O
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3.2 Estimate from above for the nonlinear term

We write (3.4 ) under the form

q

(x,t) ZHM (z,1) / RNH x,y,t Z Hy, (y,5) | dyds (3.15)
ne” neAK
=1 — I

since pp, = 0if n ¢ Ax = NN, 4], and

q
1 / / “N/2—| 4
I, < (t—s) e~ lv=yl*/4(t=s) H, (y,s)| dyds
(AmV2 Jy Jan n;:}( . (3.16)

1
< - /
—= (471_)]\[/2 (JK + JZ);

for some ¢ € N* to be fixed later on, where
14

Jo= Z// (t — )~ N/2e—lo—yl*/4(t=s) Z H,,(y,s)| dyds,

pEZL | n<p+£

and

J) Z// (t —s)~N/2e~l2= yl*/A(t=s) Z H,, (y,s)| dyds.

pEZL | n>p+L

The next estimate will be used several times in the sequel.
Lemma 3.4 Let 0 < a <b andt > 0, then,

—N/2p—a/d ;¢ & L4
e if 5N > 1,

oN\ /2 N a
AR IS R et
<at> c Zf2N*

maX{U_N/Qe_p2/4U 0<o <t at < ,02 +o< bt} = el/4

Proof. Set
T(p,0) = o N2 /o

and

Kapt = {(p,0) €[0,00) x (0,4] : at < p*> + o < bt}.
We first notice that, for fixed o, the maximum of 7 (., o) is achieved for p minimal. If o € [at, bt]
the minimal value of p is 0, while if o € (0, at), the minimum of p is Vat — s.

- Assume first a > 1, then J(v/at —o,0) = el/tg—N/te—at/40 thyg if 1 < a/2N the mini-

mal value of J(vat —o,0) is e =2NV/4(2N/at)N/2 while, if a/2N < 1 < a, the minimum is
e1/44—N/2p—a/4.
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- Assume now a < 1. Then

max{J (p,0) : (p,0) € Kaps} = max{ max J(0,0), max J(vat—o, 0)}

o€(at,t] o€(0,at]
= max {(at)_N/Q, e(l_zN)/4(2N/at)N/2}
_ 6(1_2N)/4(2N/at)N/2.
Combining these two estimates, we derive the result. O

Remark. The following variant of Lemma 3.4 will be useful in the sequel: For any 6 > 1/2N
there holds

N/2
max{J(p,0): (p,0) € K(a,b,t)} < e/* <2tN@> et if fa > 1. (3.17)

Lemma 3.5 There ezists a positive constant C = C(N,¥,q) such that

at
Jf < Ct*N/ZZdiV—:lQ/(q_l)6_(1+(n—£)+)/4 CQ/qu/ <Cf(—7:1) . (318)
n=1 n

Proof. The set of p for the summation in J; is reduced to Z N [—¢ + 2,00) and we write
Jo=J1e+ Joy

where
0
Jie = Z // (t—s)*N/2e*|“*y|2/4(tfs) Z Hy,, (v, 5)
p=2-0" 7 I n<p+t
and

e 2
Ji=3" / / () VA | S R ()
p=1 I3

n<p+4

Ifp=2—-4¢,...,0,
* 2—2p 12 o —2p
Y — — Y
(y,8) € 1) = ta <le—y|"+t—s<ta

and, if p > 1
(y,5) €T, = pt < lz—yP+t—s<(p+ 1)t

By Lemma 3.4 and (3.17 ), there exists C' = C(N, ¥, «) > 0 such that
max {(t - s)fN/Qef‘xfyPM(t*S) (y,s) € 7;)*} < Ot N2 (3.19)
ifp=2—-4¢,...,0, and

max {(t — s)*N/267|x7y|2/4(t75) :(y,8) € ’];*} < Ct=N2ep/4 (3.20)
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ifp>1. Whenp=2-1/¢,...,0

pt+l—1 q p+l—1
> Hu,(y.s)| <C Z HY (y,s (3.21)
1
for some C' = C(¢,q) > 0, thus
0 a2—2 prel
Jie < Ct N2 Z s Z [ Q1)
p=2—/
-1 0
— —al—2p
<O By D o (3:22)
n=1 p=n—~_{+1
22
<t NPee “ZHHMHM @)
n=1

If the set of p’s is not upper bounded, we introduce d > 0 to be made precise later on. Then
T rpte—1 ] 4/ pye—1

p+L—1
[ > Hy,(y,9) el N et (y,s), (3.23)
1 1 1

with ¢’ = ¢/(¢—1). If, by convention p,, = 0 whenever n > a;, we obtain, for some C' > 0 which
depends also on 4,

00 p+l—1

Joy < C’t*N/ZZe(‘;(pH*Uq*p)/“ Z e—0an/4 ||HL, HLq ©

R - n t
p:l n=1

)

< Ct—N/2Z ”HMnH%Q(Qt) e—0an/4 Z O (p+t—1)g—p)/4 (3.24)
n=1 p=(n—L0+1)V1

< Ct—N/Qze—(l+(n—K)+)/4 HH

n=1

Hn H%Q(Qt) .

Notice that we choose 0 such that §fg < 1. Combining (3.22 ) and (3.24 ), we derive (3.18 )
from Lemma 3.2, (3.10 ) and (3.11 ). O

The set of indices p for which the j,, terms are not zero in Jj is Z N (—o0, a; — £]. We write

Jy=J10+ o
where .
o= Z // (t —s) "N 2e7lom u/4(t—s) Z H,, (y,s)| dyds,
p=—00 T* n=1Vp+{
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and
at—4

Joy = Z//T (t — s)N/2e7lo= yl*/4(t—) Z H,., (y,s) |dyds.

n=p+~¢

Lemma 3.6 There exists a constant C = C(N,q,¢) > 0 such that
K,
Ji, < Ct Na/2§ - (180) (- M+ /Agh a2 o <” ) 3.25

where Bo = (¢ —1)/4 and h = 2q(q+1)/(q — 1)*.
Proof. Since

(y,s) € 7, and (2,0) € K,, = |y — 2| > (V/n — a P, (3.26)
there holds

H,, (y,5) < (4ms)N2e=(Vrmam?Pt/hs ) () < O N2em Ve %y, (K,
by Lemma 3.4. Let ¢, > 0 such that

o0

A = Ze%/ < 00,
n=1
then
, < CAYT ¢=Na2 Z / / ~N/2-le—yl? /4(t—5) Z de=alVi-a) /4,8 (K, \ds dy
p=—00 n= 1V(p+€)
p=0A(n—~)
SCAg/q/t—Nq/Q 6771 q K e —q(v/n—a™P) /4// t—s N/26 le—y|?/4(t— S)dsdy
; ph(Kn) Z - )
< CAZ/q’t—Nq/QZE;Lq'u Je—a(/i-1) /4// )= N/2e= =yl /4(t9) g iy
n=1 p<OT

< CAg/q'tl—Nq/QZGEQM%(Kn)efq(\/Hfl) /4
n=1
(3.27)
Set h =2q(q+1)/(¢—1)? and Q = (1 + q)/2, then q(v/n — 1)*> > Q(n — h)4 for any n > 1. If
we choose €, = e_(q_l)("_h)+/16q, there holds 67?16_‘1(\/5_1)2/4 < ela+3)(n=h)+/16 Finally

e S CHTNIEY ol g (),

n=1

with By = (¢ — 1)/4, which yields to (3.25 ) by the choice of the py,. O

In order to make easier the obtention of the estimate of the term J} ,, we first give the proof
in dimension 1.
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Lemma 3.7 Assume N =1 and £ is an integer larger than 1. There exists a positive constant
C =C(q,?) > 0 such that

at 3 3 Kn
Jé’g < Ct_l/QZe_”Mdfst)/(q 1)02/”/ () . (3.28)

d
it n+1

Proof. 1f (y,s) € 7T, and z € K, (p > 1, n > p = () , there holds |z —y| > \/Z\/ﬁ and
ly — z| > Vt(v/n — v/p+ 1). Therefore
ai—~ at

t
T, < C\/EZ} / ert/A=s) [ S sl WAVt Asy ()
p=1 pJo n=p+~£

If € € (0, q) is some positive parameter which will be made more precise later on, there holds

q
at

Z 8_1/26_(\/ﬁ_m)2t/4sun(Kn)

n=p+~{
a q/d a
< Z e—€d' (Vn—+/pF1)*t/4s Z §74/2e= (4= )(Vn—v/pTI)")t/4s 0 ()¢ ).
n=p+~{ n=p+~£

by Hoélder’s inequality. By comparison between series and integrals and using Gauss’ integral

at o0
S et WAV s < / - (Va—VPFD)?t/4s

n=p+~ ptt
S
= 2/ e~ AT/ (g 4\ /pF 1)da
VpHi—/pH1
0o
< ﬁe—eq’(\/m—\/m)%/&s + 2\/m e—eq’xgt/4sdx
T oeq't N/ AN

< o PHYS ey (vre-vryees
- t

<oy /Pt
= t
If we set ¢c = q¢ — ¢, then
00 n—/ t
by < Ctlii=u2 3 (e, )3 pla-2)/2 / (1t — 5)~ 12512 pt/A(=3) =ae (VA= D2)t/ds g
7 n=~0+1 p=1 0

where C' = C(¢,q) > 0. Since
t
/ (t — 5)~1/25~1/2Pt/A(t=9) g=ac (V- VEFI)t/ s g
0

1
:/ (1 _S)—1/28—1/26—}7/4(1—8)e—qe(\/ﬁ—x/p+l)2/4$ds7
0
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we can apply Lemma A.1 with a =1/2,b=1/2, A= /p and B = \/g.(v/n — v/p+1). In this
range of indices B > \/qe(v/p + 0 —/p+1) > \/qe(¢ — 1)/p, thus k = /(¢ — 1) and

1/4,. —1/2 - 1/2
\/A+B\/A+B— W= V)

Therefore

' _ o\ 1/2.—q/2 —pt/A(t—s) ,—q(v/n—/p+1)?t/4s < 1/4(\F \f) —(VPHVae(Vn—/p+1))? /
(t s) S e e ds
0

NG
(3.29)
which implies
T, < Ot Z pn (Ko Z Ca-3)/4(fyy — )2 WPHEVA-VITDR/A (3 30)
n=0+1 p=1
where C depends of €, ¢ and £. By Lemma A.2
at

Jop < CHU2 N plemi el (1) (3.31)

n=~0+1

Because p,(Ky) = dflqﬂg)/(q*l)qu’q,(Kn/dnH) (remember N = 1) and diam K, /d,,+1 < 1/n,
there holds

H(Kn) < OV pn(Kn) = OV P I 00 oy (K i) (332)
and inequality (3.28 ) follows. O

Next we give the general proof. For this task we shall use again the quasi-additivity with
separated partitions.

Lemma 3.8 Assume N > 2 and ¢ is an integer larger than 1. There exist a positive constant
Cy = Ci(q,N,?) > 0 such that f

at B Kn
Ty < CrtmNRY emnligh 2@ Ng,, ( y +1) (3.33)
n=~{

Proof. As in the proof of Theorem 2.14, we know that there exists a finite number J, depending
only on the dimension N, of separated sub-partitions {#@Zn}gzl of the sets T, by the N-dim

balls Bz, /m1(an,;) where |an ;| = (dpt1+dn)/2 and |an,; — ank| = Vt/2y/n + 1. Furthermore
J

#@ifn < CnN~1 We denote K, ; = KnNB ) mrr(an,;). We write pin, = p! and accordingly
h=1

575 :ZJQ;, where p* = Z fn,j, and gy, ; are the capacitary measures of K, ; relative to

h=1 jg@)’;’n
B, ;= Bﬁt/5\/ﬁ(an,j), which means

B By, i 1/q
Vg (Kng) = Cyit s (Kng) - and gl —siaa i,y = (Corie (Bng)) (3.34)
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Thus

—L

n=p+{ h=1 jE@h

We denote
) q
=5[] et | 5 b s
p=1 Ty n=p+l jeor,

and clearly
J
Toe < CY Ik, (3.35)
where C depends only on N and ¢. For integers n and p such that n > £+ 1, we set

Anjy=1inf{ly —z|: z € B\/Z/\/m(amj)} =y —anj| — \/i/\/m

Therefore
Z/e'“'/“sdu Z 2/ e\yz|/4sdﬂ ()
n=p+¢ n=p+( jeol
1/q
[ memn| [ % et i
n=p+{jeop n=p+{jeol

where € > 0 will be made precise later on.

Step 1 We claim that

i 3 ‘EQ’A?Lay/“SgC\/? (3.36)

n:p'f‘éjegt,n

where C' depends on €, ¢ and N. If y is fixed in T},, we denote by z, the point of T}, which solves
ly — 2| = dist (y, T5,). Thus

—Vp+ 1) <ly—zl <t(Vn-yb)

Let Y = y/t(p+ 1)/ |y|- On the axis 0Y we set e = Y/ |Y|, consider the points by = (kv/t//n)e
where —n < k < n and denote by G, the spherical shell obtain by intersecting the spherical
shell T, with the domain H, ; which is the set of points in R limited by the hyperplanes
orthogonal to 0y going through ((k + 1)vt/y/n)e and ((k — 1)y/t/\/n)e. The number of points
an,j € G is smaller than C(n + 1 — |k|)N =2, where C depends only on N, and we denote by
A, i the set of j € ©4,, such that a, ; € G, . Furthermore, if a, ; € G, ; elementary geometric
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colilsidferations (Pythagore’s theorem) imply that )\7217 ;18 greater than t(n+p+1—2k\/p +1/y/n).
Therefore

at at n
2 et 20 3 3 (1 e O
’)’L=p+£ jegi,n n=p+€ k=—n

Case N = 2. By summing a geometric series and using the inequality ¢“/(e* —1) < 1+ 1/u for
u > 0, we obtain

S et (WVFFL)i/25/ < e/l 20 e U VP 2ov
= e W1 25y _ |
k=—n (3.38)
< ecd'ty/npt1)/2s (1 n M) .
- eq'ty/p+1

Thus, by comparison between series and integrals,

at at
E g e UM/t < O E (1 + Sﬁ) e—ed (Vn—vpH1)*t/4s
a tv/p

n:p“réjeet,n n=p+~¢
e / e (o)t 4s g (3.39)
p+1
L O [T et (Va5 gy
typ p+1

Next
OO —eq' (/x—/pF1)>t/4s OO —eq' (y—/pF1)3t/4s
e p dr =2 e T\WTvP ydy
p+1 Vp+1
o0 ' 9 o0 ' 9
= 2/0 eVt sydy +2./pF 1/0 emed vt/ s gy (3.40)

o o
= % e—<d'?* /454, + 24/ L + 1)8/ efeqlzz/zidz,
t Jo t 0

/OO \/Eefeq/(\f*\/p‘i’ilﬂt/élsdx _ 2/00 efeq/(yf /T )Qt/4sy2dy
. Ve

B 2/ e~ IVt (Y /p 1)y
0

& ’,2 o )
< 4/ e—€q'y t/4sy2dy + 4(p + 1)/ e~y t/4sdy
0 0

3/2 [ , > /
<4 (;) / el /420, 4+ 4(p + 1)\/§/ e~c?Z* /4
0 0

(3.41)

and
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Jointly with (3.39 ), these inequalities imply

ag
oY e <o /B (3.42)

n=p+€j€9t,n

Case N > 2 Because the value of the right-hand side of (3.37 ) is an increasing value of NV, it is
sufficient to prove (3.36 ) when N is even, say (N —2)/2 = d € N,.. There holds

Z (n+1-— ’k|)d€eq’(k\/p+l/)t/25\/ﬁ < 2Z(n +1-— k)deeq/(k\/p+1/)t/2s\/ﬁ (3.43)
k=—n k=0
We set .
a=eq (x/p—i- 1/) t/2sy/n  and I; = Z(n + 1 — k)dere,
k=0
Since
e _ elk+a _ ko

we use Abel’s transform to obtain

I;= ! (e(”“)a — (n+1)4+ i (n+2-k)?—(n+1-k)) eka>

k=1

((1 —d)etDe _ (n 4+ 1)% 4 deo‘z ((n +1-— k)d_l) eko‘) )
k=1
Therefore the following induction holds

I < de

_eO(i

i, (3.44)

In (3.38 ), we have already used the fact that

de §C(1+S\/ﬁ>,
e —1 t\/;B

d+1
L<c 1+(5\/ﬁ> Io.
tvp
Thus (3.39 ) is replaced by

i Z —eq' X2 . /4s . sy/n i —eq' (/n—/pF1)2%t/4s
e n,j,y <C Z 1+ V e ¢ D
p

n=p+{j€EO¢n n=p+{

<c / % e (Vi Pt/4s g
p+1

and

CS dtl & ’ 2
N < > / A1) /2 =/ (Vi) /45 g
p

(3.45)

30



The first integral on the right-hand side has already been estimated in (3.40 ), for the second
integral, there holds

/OO (A1) /2 —eq! (Va—/pTT)2t/4s g _ /Oo(y+\/m)d+2eeq’y2t/4sd$
p+1
< C/ d+2 —eq’yQt/4sdy + Cp(d+2)/2/ooe—eq’y2t/4sdy
0
( )2+d/2/ (d+1)/26—eq/z2/4dz
= 7 ;

+C< ) i pld+2)/2 / T2 /ag,
0

(3.46)
Combining (3.40 ), (3.45 )) and (3.46 ), we derive (3.36 ).

Step 2 Since T, C I'p x [0,t] where I'y, = By, (z)\ Ba,_, (¥), (y,s) € 7,7 implies that |z — yl?
(p — 1)t, thus Jée satisfies

Jih < Ot q/zzpq 1)/2 / / (t — )~ N/2g—N=1)+1)/2 |y /4(t—s)

X Z Z e X5 (1= 6/4‘3#;11]( K, ;)dsdy

—P+€]6617

< ot(t-9)/2 Z Z ,u,w )

n=~¢+1 je@h

n—~¢
x S pla-v/2 / / (t — )~ N2~ @N=D+1)/2~[o—y* /4(t=5) =0, (1= /45 gy
p=1 Ty

(3.47)

and the constant C' depends on N, ¢ and e. Next we set ¢c = (1 — €)g. Writting
Y = ans” =z =y + |2 = ani* — 2y — 2, a0 — 2) = pt+ |z — an;|* — 2y — v, an,; — ),

we get

5 24 t(p+1) 24
/ C*Q€|y*an,j| /45dy — e*qem*an,ﬂ / 5/ e 4e” / s/ €2qe<y*$van,j71’>/43d5’r(y)dr
Lp Vip lz—y|=r

For estimating the value of the spherical integral, we can assume that a,, j—x = (0,...,0, |ap; — x|),
y = (y1,-..,yn) and, using spherical coordinates with center at x, that the unit sphere has the
representation SV! = {(sinq§ o,cos0) € RVN"I xR : 0 € SN2 ¢ € [0,7]}. With this repre-
sentation, dS, = r¥1sinV 2 ¢ dpdo and (y — z,an; — ) = |an; — 7| |y — x| cos ¢. Therefore

™
/ e?qs(y—z,anﬂ-—x)/&sdsr(y) _ ’I”N_l |SN—2‘ / quE\an,j—z\rcosqﬁ/&s sinN_2 b do.
|z—yl=r 0
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By Lemma A.3

pN=12qer|an,j—z|/4s

(1 +7|an, —a| /s)N 172

[ emtranaiings, ) < €
lz—yl

(N—1)/2 (3.48)
S Cs(Nfl)/z <T> 62q€r|an,jfz|/4s.
|an,; — |
Therefore
e(lan, j—z|—+/t(p+1))2/4s
/ e—dely—an;|° s dy < CHN+D/Ap(N - 3)/45( DP2et ’ 2p , (3.49)
Tp ’an,j - x| b/
and, since |a, ; — x| > V/n,
/ / N2 g~ (a(N=1)+1)/2 =y 4(=9) ¢ ~9X2 .45 gy
FP
N-3)/4 gt
< C\/M/ (t— 5)—N/25—((q—1)(N—1)+1)/2€—pt/4(t—8)e—qe(\/ﬁ—\/t(pﬂ))2/48d3
B 0
t(1=a(N=1))/2,(N=3)/4 /1 N 2
_ §)N/24—((a=1)(N=1)+1)/2,—p/4(1=5) o —qe(v/n—/p+1)? /4s
<C g 1)/4 /0(1 s) s e e .

(3.50)

We apply Lemma A.1, with A = \/p, B = \/g(v/n —p+1), b= ((¢ — 1)(IN — 1) +1)/2,
a=N/2and k = /q:({ —1)/8 as in the case N = 1, and noticing that for these specific values,

AlaBI=b (A + B)ath=2 = p(2- N/4(\F(\f_m))(1 (g—1)(N—1)/2
(f+@(\f—\/F))((qfl)(NﬂHNfs)/z

cofs)" ()
P n

where C' depends on N, ¢ and . Therefore
t
/ / (t — 5)_N/QS_N/QS—|$—y\2/4(t—s)e—qe\y—z|2/4sdy ds
FI’

1—q(N—=1))/2,(N—3)/4 N/4—1/2 _ (1—(g—1)(N—1)/2
A A <”> <M) o~ (VBT (VAP /4
B p

L(N—1)/1 NG
< CtA=a(N=1))/2=1/4p ((a=DN=-1)=2)/4( / \/@(1—(q—1)(N—l)/26—(\/15+\/CF(\/ﬁ—vp+1))2/4‘
(3.51)
We derive from (3.47 ), (3.51 ),
J/h < Ctl—Nq/2
n—~_
% Z Z n((a=1)( -2)/4 Z,J(Knu)z: (29— 3/4(\f_\[) (= 1D(N=1)/2— (VPG (Vn—vpF1))? /4,
n= Z+1]e®h’ p=1
(3.52)
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By Lemma A.2 with a = (2¢ —3)/4,8=(1—(¢—1)(N —1)/2,5 =1/4 and y = ¢, we obtain

n—~¢
Zp(Qq—3)/4(\/ﬁ _ \/15)(1—(<1—1)(N—1)/26—(\/17+\/<ﬁ(\/ﬁ—\/p+1))2/4 < OnW(@=1)+q=3)/4¢—n/4
p=1
(3.53)
thus
at
il < CHmNa2 Y DN emn S T (K g). (3.54)
n=~¢+1 je@ﬁn
Because
5 ¢\ V/2-1/(a-1)
pin,j (K ) = Co oy (K j) = <n n 1> Cofgq (V' + 1Ky /V1)
and diam (v/n + 1K, ;//t) < 2, there holds
g\ Ne-D/2-1
050 < (£) Ol (o), (3.59
we obtain
at
_ n B
Th <o N2 N en/d Y Cyut (Kn,j)
n=~0+1 je@hn
o , tt’ N/2-1/(q—1) (3.56)
<ot §/ (n> CoJaq (VAK/ V).

by using (2.52 ) in Lemma 2.15. Since Cy g o (vVAEKy/VE) < (dngrv/n/VON = GDCy 0 0 (K /dnt),
we finally derive

at
_ N-2/(g—1) _
il < CeN2 N @ m T e/t N (K ). (3.57)
n=0+1 je@gn
J
Using again the quasi-additivity and the fact that J; , = ZJQ”E , we deduce
h=1
ag
_ N-2/(g—1) _
Ty < C'N2NT @ @ e n/AGy (K ), (3.58)
n=~(+1
which implies (3.33 ). O

The proof of Theorem 3.1 follows from the previous estimates on J; and Jy. Furthermore
the following integral expression holds
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Theorem 3.9 Assume q > q.. Then there exists a positive constants C5 , depending on N ,q
and T, such that for any closed set I, there holds

> & Vie —s2 /4t gN—2/(q—1) ¢ r B d (3.59)
@F(iﬂat)_m ) € $ 2/q,9' ;m 1(x) | sds, .

where ay is the smallest integer j such that F' C B\/ﬁ(x)

Proof. We shall distinguish according ¢ = ¢., or ¢ > ¢., and for simplicity we shall denote
B, = B,(x) for the various values of r.

Case 1: ¢ = q. <= N —2/(q —1) = 0. Because I, = F N (By,,, \ Bg,) there holds

F, F Fn Bdn
Colad <dn+1> = Cofaa <dn+1 " B1> ~ Coladt ( dpi1 ) ’

Furthermore, since dy+1 > dp,

Fn By, dn F N By, F
Cour (g0 ) = Coma (250 ) < Conr (301),

F F F
Co/fgq (%L) > Coqq (dn+1 N B1> — Coyqq <dn n B1> ,

at at

3 —n/4 Fn —n/4 F —n/4 F
Ze Coaa \ g )2 Ze Co/g. oo By ) - Ze Cojq d, N By

thus

it follows

n=1 dn+1 n=1 n+l n=1
Zat / I / aztl / F
> e~/4(C. /(ﬁB>—6_14 e AC. /<ﬂB>
et 2/q,q drst 1 Z 2/q,q A1 1
at—l
F F
> (1 —e1/4 e 4C /< ﬂB)—e_1/4C /<HB>.
> ( );:1: 2/q,q drs1 1 2/q,q Vi 1

Since, by (2.66 ),

F F F
02/%(1/ <5l ﬂ Bl) Z 02/%(1/ <dn+1 ﬂ Bl> Z C2/q’q/ (5 ﬂ Bl> 5

for any s’ € [dy11,dn12] and s € [d,,, dj11], there holds

F F it
te="/4C /<OB> > C /<0B>/ e~ 5 Mg ds
2/a4 dpi1 V) = aa dpi1 ! .

dn+1 F
> /d 6732/4)&02/(17(1/ <8 N B1> sds.

This implies
Viay F
Wg(z,t) > (1 - 6_1/4)t_(1+N/2)/ 6_82/47502/(1,(1/ ( N Bl) sds.
0 S
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Case 2: ¢ > q. <= N —2/(q—1) > 0. In that case it is known [1] that

F, _1)-N
Co/qq < > ~ di/Jr((i? Y Co/qq (Fn)

dn+1
thus
at
Wz, t) m t NN ey 0 0 (F).
n=0
Since
C2/t1,q’ (Fn) 2 C2/q,q’ (F N Bdn+l) - C2/q,q’ (Fn Bdn) )
and again
at a;—1
tiN/2Zein/4CZ/q,q’ (Fn) > (1— e VAN Z e /" Ch/qq (F 0 Ba,yy)
n=0 n=0
Viay
> (1 — e V/A)—(14N/2) / e~ 1Cy,. . (F 1 By)sds.
0
Because Cy/q o (F'N Bg) ~ sN*Q/(qfl)CQ/%q/ (sT'F N By), (3.59 ) follows. O

4 Applications

The first result of this section is the following
Theorem 4.1 Assume N > 1 and g > 1. Then ug = ug.

Proof. If 1 < q < ¢, the result is already proved in [20]. The proof in the super-critical case is an
adaptation that we shall recall, for the sake of completeness. By Theorem 2.16 and Theorem 3.9
there exists a positive constant C, depending on N, ¢ and T such that

EF(CU,ZL/) S@F(xat) V(a:,t) € QT
o r . : o .
By convexity @ = up — 2—(uF — up) is a super-solution, which is smaller than uy if we assume
that up # up. If we set 0 := 1/2 4 1/(2C), then ug = 0ur is a subsolution. Therefore there
exists a solution uy of (1.1 ) in Qo such that ug < ug < @ < up. If p € ML(RY) satisfies
pu(F€) = 0, then ug, is the smallest solution of (1.1 ) which is above the subsolution fu,. Thus
ugy < up < up and finally up < uy < up, a contradiction. O

If we combine Theorem 2.16 and Theorem 3.9 we derive the following integral approximation
of the capacitary potential
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Proposition 4.2 Assume q > q.. Then there exist two positive constants C’I, Cg, depending
only on N, q and T such that

Viay F
C;t—(1+N/2)/ SN—2/(Q—1)6—32/4tC’2/q7q/ <S N Bl(az)> sds < Wp(z,t)

0 (4.60)
< Cirt(HN/z)/
Vit

t(at+2)
' 3N72/(q71)6732/4t02/q7q/ (Z N B1 (.I')) sds

for any (z,t) € Qr.

Definition 4.3 If F is a closed subset of RN, we define the (2/q,q') integral capacitary potential
Wr by

Dp(z) F
Wiz, t) = t—l—N/2/ SN—2/((1—1)6—52/4t02/q’q/ <s N B, (:13)) sds Y(z,t) € Quo, (4.61)
0

where Dp(z) = max{|z —y|:y € F'}.

An easy computation shows that

Viar )
0< WF(.Z', t) — t(1+N/2)/ sN=2/(a=1)g—s /4t02/ < N Bl ) ds

0 520 (4.62)
ot ta=3)/2(a~ e~D¥@)/4t
Dr(z)
and
\/t(at+2) F
0< t—(1+N/2)/ SN—Q/(q—1)€—52/4t02/q’q/ (S N Bl($)> sds — Wrp(z,t)
O (4=3)/2(a=1) .
<o Dy
- DF(.T})
for some C'= C(N,q) > 0. Furthermore
Dp(x)/Vt
Wr(x,t) = t_l/(q_l)/ sN_2/(q_1)e_82/4C2/q,q/ (if N By (m)) sds. (4.64)
0 s

The following result gives a sufficient condition in order g has not a strong blow-up at some
point x.

Proposition 4.4 Assume q¢ > q. and F is a closed subset of RN . If there exists v € [0,00) such

that .
71_11{(1) CQ/q,q’ (’7’ N Bl(l’)) =, (465)
then
2111r1(1)tl/(q Vap(z,t) = Cr, (4.66)

for some C = C(N,q) > 0.
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Proof. Clearly, condition (4.65 ) implies

. F
Hm Ca/q,q <\/is N Bl(l‘)) =

for any s > 0. Then (4.66 ) follows by Lebesgue’s theorem. Notice also that the set of « is
bounded from above by a constant depending on N and gq. O

In the next result we give a condition in order the solution remains bounded at some point
x. The proof is similar to the previous one.

Proposition 4.5 Assume q > q. and F is a closed subset of RN . If

lim sup 7_2/(‘7_1)02/%(]/ (F N By (m)) < 00, (4.67)
T

T—0

then up(x,t) remains bounded when t — 0.

A Appendix

The next estimate is crucial in the study of semilinear parabolic equations.

Lemma A.1 Let a and b be two real numbers, a > 0 and x > 0. Then there exists a constant
C =C(a,b, k) > 0 such that for any A >0, B > k/A there holds

1
/ (1 - l_)faxfbefAQ/4(17:13)67B2/4:1:dx < Cef(A+B)2/4AlfaBlfb(A + B)a+b72_ (Al)
0

Proof. We first notice that
max{e_A2/4(1_x)e_BQ/4x 0<z<1}= e~ (A+B)*/4 (A.2)

and it is achieved for zg = B/(A + B). Set ®(z) = (1 — ) a—be=A*/4(1-2)~B*/4z {hyg

1 xo 1
/ O(x)dr = / O (z)dx + / O(x)de = Iop + Jop-
0 0 T

0

Put 12 B2
_ ndl A.
R T (A.3)
then
4uz?® — (4u+ B®> — A*)z + B> =0. (A.4)

If 0 < & < x¢ this equation admits the solution

= o(u) = é (4u+ B>~ 4° — /1607 — 8uA% § B?) + (A% — B2)?)

o
/ (1 — x)~ag—be=A*/A0-2)=B*/4z gy —/ (1 —z(u) % (u)"be "2 (u)du
0 (A+B)2/4
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Putting 2’ = 2/(u) and differentiating (A.4 ),

4x(1 — x)
9 2 42 _ —
42 + Suxaz’ — (4u + B —A)37,_495_0:_:6,_4u+B2—A2—8um'
Thus +1 b+1
z0 o0 1-— @ B —td
/ & () — 4 / U olu) 7 alw) — e tdu (A.5)
A (ArByz/a  Au+ B — A2 — 8ux(u)

Using the explicit value of the root z(u), we finally get

o 00 _ —a+1 —b+1 _—u
/ & () da = 4/ (1 —z(u)) x(u) e "du ’ (A.6)
0 (A+B)2/4+/16u% — 8u(A2 + B2?) + (A2 — B2)?

and the factorization below holds
16u? — 8u(A% + B?) + (A? — B?)> = 16(u — (A + B)*/4)(u — (A — B)?/4).
We set u = v + (A + B)?/4 and obtain

v+ (AB + B%)/2 — \/v(v+ AB)
2(v+ (A+ B)?2/4) ’

x(u) =

and

| o) = v—i—(AQ—l—AB)/Q—i—\/m'
2(v+ (A+ B)?/4)
We introduce the relation = linking two positive quantities depending on A and B. It means
that the two sided-inequalities up to multiplicative constants independent of A and B. Therefore

/ " () = 200~ (A+B)/4 / “(v)dv where

0 0

- (vr@BEBY2- oot AB))l_b (v+ (42 + AB)/2 + \/olv + AB)) e 3
)= (0 + (A+ B4 \/u(v t AB) ¢

(A.7)
Case 1: a>1, b > 1. First
(v+ (A+ B)2/4)*+"7? _(orAr B)?/4)"™"7 (v (A+ B2 A8
v(v + AB) N v(v + K) - v(v + K) .
sincea+b—2>0and AB > k. Next
l1—a
(v V(A2 £ AB)/2 4+ olo 1 AB)) ~ (v+ A(A+ B) . (A.9)
Furthermore
v+ (A+ B)?/4
v+ (AB + B%)/2 — \/v(v+ AB) = B?
v+B(A+B2)/2+\/v(v+AB) (A.10)
~ it (A+ B)
v+ B(A+ B)
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Then

— b—1
(v + (AB+ B?)/2 — \/v(v+ AB))1 "~ B2 (%) (A.11)

It follows

b(v) < CB> < +(A+ B)? )‘“ (v+B(A+B)""

v+ A(A+ B) v(v + K)
v+ (A+ B)? >“‘1 o1 4 (B2 4+ AB)Y!
v+ A(A+ B) v(v + K)

where C depends on a, b and k. The function v — (v + (A + B)?)/(v+ A(A+ B)) is decreasing
on (0,00). If we set

(A.12)

< CBQ—Qb <

o o pb=le=vdy and O > e Vdv
1= — 2 = ———
0 Vo(v+k) 0 Vu(v+ k)

then
C) < K(B*+ AB)" ¢,

with K = C1x'~?/Cy. Therefore
0
/ &(z)dr < Ce~(ATB)?/AB1-bgl-a(4 4 B)atb=2 (A.13)
0

The estimate of J,; is obtained by exchanging (A,a) with (B,b) and replacing = by 1 — x.
Mutadis mutandis, this yields directely to the same expression as in A.13 and finally

1
/ ®(2)da < Ce~ATBI/Ag1-apl=b g 4 Byatb=2 (A.14)
0

Case 2: a > 1, b < 1. Estimates (A.7 ), (A.8 ), (A.9), (A.10 ) and (A.11 ) are valid. Because
v (v+ B(A+ B))*"! is decreasing, (A.12 ) has to be replaced by

Ay >H B+ B) (A1)

by s omon (DHE) L

This implies (A.13 ) directly. The estimate of J,; is performed by the change of variable
rz—1—x. If z1 =1 — 2y, there holds

1 1
Jap = / x (1 — x)_be_A2/4xe_Bg/4(l_x)dx = / U(x)dx.
0 0

Then

xT

x1 1
/ U (z)dx = 2b_a_4e_(A+B)2/4/ U(v)dv where
0

0
(v Bt A2 T AB)) v+ (B2 + AB)/2+ \/ulu + AB)) 3
)= (v+ (A+ B)2/4)> " Ju(v + AB) ¢

1-b

(A.16)
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Equivalence (A.8 ) is unchanged; (A.9 ) is replaced by

(v+ (B2 + AB)j2+ \/W)H ~ (v 4+ B(A+B)"", (A.17)
(A.10 ) by ,
v+ (AB + A2)/2 — \/o(v + AB) zAQme, (A.18)
and (A.11) by
—a v a—1
<1) + (AB + A%) /2 — \/v(v + AB))1 ~ A2 (W) (A.19)

Because a > 1, (A.12 ) turns into

po1 (V+ A%+ AB)* (v + B? + AB)'?
v(v+ k)

U(v) < CA2 (v 4+ (A+ B)?)

< Cef(A+B)2/4A272b(A + B)2b72
" 097 4 (A2 + AB)* 1=t 4 (B2 4 AB) byl 4 Ao—1B1-b(A 4 B)a-b

v(v+K)
(A.20)
Because AB > k, there exists a positive constant C, depending on &, such that
/oo ,Uafb 4 (A2 _i_AB)aflvlfb 4 (B2 _’_AB)lfbvafl J——
0 v(v + k) (A.21)
a—1p1-b ab [77 € Vdv
< CA*'B'7°(A+ B) _.
0 v(v+K)
Combining (A.20 ) and (A.21 ) yields to
T
/ U(z)de < Ce~(A+B)?/4pl-apBl=b( A 4 B)atb-2, (A.22)
0

This, again, implies that (A.1 ) holds.

Case 3: max{a,b} < 1. Inequalities (A.7 )-(A.11 ) hold, but (A.12 ) has to be replaced by

d(v) < CB* % < vt (A+B) >a_1 (v+ B+ AB)""

A(A+ B
v+ A(A+ E,a ) v(v —le) (A.23)
< CBl—b(A + B)2a+b—3v + (A + AB)
v(v + K)
Noticing that
o yl=ae=vdy 1—a [ e Ydv
—— < C(A>+ AB —_—_—
0 Vou(v+k) ( ) 0 Vu(v+k)
it follows that (A.13 ) holds. Finally (A.14 ) holds by exchanging (A, a) and (B,b). O

40



Lemma A.2 . Let «, 3, 7, § be real numbers and £ an integer. We assume v > 1, § > 0 and
£ > 2. Then there exists a positive constant C' such that, for any integer n > ¢

Zp (Vn — /p)Pe 0 WPHVAVR= VPt )? < Opa—B/2e—on, (A.24)

p_

Proof. The function z — (v/z+,/7(yv/n—+/x + 1))? is decreasing on [(y—1) "', c0). Furthermore
there exists C' > 0 depending on £, o and 3 such that p*(v/n — \/p)? < Ca*(y/n — Vo +1)°
for 2 € [p,p + 1] If we denote by po the smallest integer larger than (y — 1), we derive

po—1 n—~¢

n—~{
SZZ (/= /p e (WVPHVIVI—VPiT )?/4 — Z+Zp (v —/p)° e~ 0 (V/PHvA(Vn—pTT))?
p=1

po—1
< Y PO (Vii — p)Pe VI VIFD)?
p=1

n+1—~¢
L C 2%(yn — /2 )Pe SV AWI=VatD))? gy

Po

(notice that /n — /x =~ /n — vz + 1 for x <n —¢). Clearly

po—1
S P (VR — /B )P S VAV < Cne (i — v — )P (A.25)

p_

for some Cp independent of n. We set y = y(x) = vx + 1 — /z/,/7. Obviously

@) 1< 1 1 > .

x) == — T )

Y 2\Vz+1 Ve =

and their exists € = €(,7) > 0 such that v2v/z > y(x) > ey/z and y/(z) > ¢/\/z. Furthermore

(y+\/7y +1 - )
VT =
v—1
Vil =) =V —vaivwi+1-v
Vi =i = oA

n(y —1) +v — 2y /An — vy
Va(y =1) = Ay + vy +1 -y
n(y —1) +v — 2y n — yy?

N

~

since y(z) < y/n. Furthermore

n(y —1)+v =2y n -’ =1v(Vn+1+n/A+y)Vn+1—-n/y7—y)

Ut A
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because y ranges between vn +2 — ¢ —v/n +1 — (/7 =~ \/n and \/po + 1 — \/po\/7. Thus
(Vi - vE) = (Va+T-vi/yi-y).

This implies

n+1—+¢
/ 29 (/ — /T e S (VA—VETDP g

Ppo
y(n+1-2)

<o [ (T ) e
e 1=y(po)/vn )
< C’no‘+5/2+1/ (1—2)2 4+ /1+1/n—1~ 1/\ﬁ)5e*75m dz.
1—y(n+1-£)//n
(A.26)
Moreover
y(po) 1 ( \/170>
1- =1—-—(Vpo+1—"——=|,
Vi Vi AV Vi
L yln—£+1) L Vn—0+2 N Vn—0+1
vn vn VY , ,
1 0—2)—¢+1 -2 —U—-1
L (1 D I U )
Nal 2n 8n
(A.27)
_yln—t+1) _ y(po)
Let 6 fixed such that 1 T <f<1 Jn for any n > pg. Then
1-y(po)/v/n ) 1-y(po)/v/n )
/ (1—2)2 4+ /1+1/n—1- l/ﬁ)ﬁe_75"Z dz < C@/ (1 — z)2etle=0n2" g,
0 [
, [17y(Po)/v/n
< CH e*ﬁ/zﬁné / (1 _ z)2a+1dz
0
< C e max{1,n"2"1/2},
Because 762 > 1 we derive
1=y(po)/v/n ,
/ (1—2)2Ht (2 4+ /1+1/n—1-1/,/7)Pe 7" dz < Cn~Pe=, (A.28)
0

for some constant C' > 0. On the other hand
0
/ (1— 22 24+ /T +1/n—1-1//7) ez
1-y(n+1-4)/v/n

6
< Cg/ (z+ 1+ 1/n—1-1/ /7).
1-y(n+1-0)/\/n

The minimum of z — (2 4+ /1+1/n — 1 —1/,/7)? is achieved at 1 — y(n + 1 — £) with value

VIE+1) +1 -4
2n./y

+0(n™?),
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and the maximum of the exponential term is achieved at the same point with value

e_n5+(<z—2)ﬁ+1—€)/2(1 +0(1)) = Cve_ms(l +o(1)).

We denote
0
Zym=1+1/y/y—+/1+1/n and Ig= / (z — z%n)ﬁe—vénzﬂdz.
1—y(n+1-0)/vn
Since 1 —y(n+ 1 —¥¢) > 1/4/2~ for n large enough,
0 2
Ig <27y (2 — 2yn)P2e™ 77" dz
1-y(n+1-£)/v/n
/2 6 V2 0
= ; [(Z — 2y )P 10m Ak (2 — 2ym) T tee™0n d
2nv0 l—y(n+1=0)/vn 2070 Ji_y(nt1-0)/vn

But 1 —y(n+1—-40)/v/n—2y,=—1)(1—-1/,/7)/2n, therefore
I/g < Clniﬁileién + ,80{7171[/3_1. (A29)
If 8 <0, we derive
Iﬁ S Cln—ﬁ—le—dn’

which inequality, combined with (A.26 )and (A.28 ), yields to(A.24 ). If 5 > 0, we iterate and
get
Is<Cin P le™m L Cin Y (CinPe™ + (B — 1)Cin 5 0)

If 6 —1 <0 we derive
Iz < Cin B te™om 4 Clcin_l_’ge_‘sn = Cyn P~le™om,

which again yields to (A.24 ). If 3—1 > 0, we continue up we find a positive integer k such that
8 — k <0, which again yields to
Ig < Ckn_ﬁ_le_‘s"

and to (A.24 ). O

The next estimate is fundamental in deriving the N-dimensional estimate.

Lemma A.3 For any integer N > 2 there exists a constant cy > 0 such that
m

" mcosf _:. N—2 €
/0 e sin GdHSCN—(1+m)(N_1)/2 Vm > 0. (A.30)
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™ ™
Proof. Put Iy(m) = / em s sinN=20dh. Then Th(m) = / e 5% cos § df and
0 0

Iy (m) = / ™80 cos? 0 df = To(m) — / emeos9sin2 0 dg
0 0
1 s
=To(m) — — [ e™%coshdb
7? 0
= Ty(m) — - Ty(m).

Thus Z, satisfies a Bessel equation of order 0. Since Z3(0) = 7 and Z4(0) = 0, 717, is the

modified Bessel function of index 0 (usually denoted by Ij) the asymptotic behaviour of which
is well known, thus (A.30 ) holds. If N =3

T mcosf™ :
— 2 sinh
Ig(m):/ emCOSGSiDHdH:[ ¢ ] il
0 m

0 m
For N > 3 arbitrary
T—1d N-3 /[T
In(m) = ; E@(emcose) sinV 3 0dh = . ™59 cos 0 sinN 4 0 do. (A.31)
Therefore,

1 ™
Zy(m) = m/o €59 cos 0 df = Th(m),

and, again (A.30 ) holds since I)(m) has the same behaviour as Ip(m) at infinity. For N > 5

3—N ™ N-=-3 [T d
In(m) = — €™ %% cos  sin’V P 0} . + — /0 emcose@ (cosf sin?V=? 9) do.
Differentiating cos fsin™ ~® # and using (A.31 ), we obtain
4sinhm  4sinhm
I5 (m) = m2 - m3 )
while (N 3)(V —5)
In(m) = (In-a(m) —In—2(m)), (A.32)

m2
for N > 6. Since the estimate (A.30 ) for Zy, Z3, 74 and Z5 has already been obtained, a
straigthforward induction yields to the general result. O

Remark. Although it does not has any importance for our use, it must be noticed that Zy can
be expressed either with hyperbolic functions if IV is odd, or with Bessel functions if IV is even.
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