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1 Introduction

Let T ∈ (0,∞] and QT = RN × (0, T ] (N ≥ 1). If q > 1 and u ∈ C2(QT ) is nonnegative and
verifies

∂tu−∆u+ uq = 0 in QT , (1.1)

it has been proven by Marcus and Véron [20] that there exists a unique ν ∈ Breg
+

(RN ), the set
of outer-regular positive Borel measures in RN , such that

lim
t→0

u(., t) = ν, (1.2)

in the sense of Borel measures. To each such measure ν is associated a unique couple (Sν , µν)
(and we write ν ≈ (Sν , µν)) where S is a closed subset of RN , the singular part of ν, and µν , the
regular part is a nonnegative Radon measure on Rν = RN \ Sν . In this setting, relation (1.2 )
has the following meaning :

(i) limt→0

∫
Rν
u(., t)ζdx =

∫
Rν

ζdµν , ∀ζ ∈ C0(Rν),

(ii) limt→0

∫
O
u(., t)dx = ∞, ∀O ⊂ RN open, O ∩ Sν 6= ∅.

(1.3)

The measure ν is by definition the initial trace of u and denoted by TrRN (u). Conversely, in
the subcritical range of exponents

1 < q < qc = 1 +N/2,

it is proven by the same authors that, for any ν ∈ Breg
+

(RN ), the Cauchy problem{
∂tu−∆u+ uq = 0 in Q∞,

T rRN (u) = ν,
(1.4)

admits a unique solution. A key step for proving the uniqueness is the following inequalities

t−1/(q−1)f(|x− a| /
√
t) ≤ u(x, t) ≤ ((q − 1)t)−1/(q−1) ∀(x, t) ∈ Q∞, (1.5)
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for any a ∈ Sν , where f is the unique positive solution of ∆f +
1
2
y.Df +

1
q − 1

f − f q = 0 in RN

lim|y|→∞ |y|2/(q−1) f(y) = 0.
(1.6)

The existence, the uniqueness and the asymptotics of f has been proved by Brezis, Peletier and
Terman in [5]. The role of the critical exponent qc was pointed out by Brezis and Friedman
[6] who proved that if q ≥ qc, the supercritical range, any solution of (1.1 ) which vanishes
at t = 0 for any x ∈ RN \ {0} must be identically zero. As a consequence, in this range of
exponents, Problem (1.4 ) may admit no solution at all. If ν ∈ Breg

+
(RN ), ν ≈ (Sν , µν), the

necessary and sufficient conditions for the existence of a maximal solution u = uν to Problem
(1.4 ) are obtained in [20], and expressed in terms of the the Bessel capacity C2/q,q′ , (with
q′ = q/(q − 1)). Furthermore, uniqueness does not hold in general as it was pointed out by Le
Gall [16]. In the particular case where Sν = ∅ and ν ≈ µν , then the necessary and sufficient
condition for solvability is that µν does not charge Borel subsets with C2/q,q′-capacity zero. This
result was already proven by Baras and Pierre [4] in the particular case ν bounded and extended
by Marcus and Véron [20] in the general case. We shall denote by Mq

+
(RN ) the positive cone

of the space Mq(RN ) of Radon measures which does not charge Borel subsets with zero C2/q,q′-
capacity Notice that W−2/q,q(RN )∩Mb

+(RN ) is a subset of Mq
+
(RN ); here Mb

+(RN ) is the cone
of positive bounded Radon mesures in RN . For such measures, uniqueness always holds and we
denote uν = uν .

The associated stationary equation in a smooth bounded domain Ω of RN

−∆u+ uq = 0 in Ω, (1.7)

has been intensively studied since 1993, both by probabilists (Le Gall, Dynkin, Kuznetsov) and
by analysts (Marcus, Véron). The existence of a trace for positive solutions, in the class of
outer-regular positive borel measures on ∂Ω is proved by Le Gall [?], [?] in the case q = N = 2,
by probabilistic methods, and then by Marcus and Véron in [20], [?]the general case q > 1,
N > 1. The existence of a critical exponent qe = (N + 1)/(N − 1) is due to Gmira and Véron.
In [?] Dynkin introduced the notion of σ-moderate solution which means that u is a positive
solution of (1.7 ) such that there exists an increasing sequence of positive Radon measures on
∂Ω {µn} belonging to W−2/q,q′(∂Ω) such that the corresponding solutions v = vµn of{

−∆v + vq = 0 in Ω
v = µn in ∂Ω

(1.8)

converges to u locally uniformly in Ω. This class of solutions plays a fundamental role because
Dynkin and Kuznetsov proved that a σ-moderate solution of (1.7 ) is uniquely determined by
its fine trace, a new notion of trace introduced in order to avoid the non-uniqueness phenomena.
Later on, it is proved by Mselati (if q = 2 and then by Dynkin (if qe ≤ q ≤ 2)), that all the
positive solutions of (1.7 ) are σ-moderate. The key-stone element in their proof is the fact that
the maximal solution uK of (1.7 ) the boundary trace of which vanishes outside a compact subset
K∂Ω is indeed σ-moderate. This deep result was obtained by a combination of probabilistic
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and analytic methods by Mselati in the case q = 2 and by purely analytic methods by Marcus
and Véron [21].

Following Dynkin we can define

Definition 1.1 A positive solution u of (1.1 ) is called σ-moderate if their exists an increasing
sequence {µn} ⊂W−2/q,q(RN ) ∩Mb

+(RN ) such that the corresponding solution u := uµn of{
∂tu−∆u+ uq = 0 in Q∞

u(x, 0) = µn in RN ,
(1.9)

converges to u locally uniformly in Q∞.

If F is a closed subset of RN , we denote by uF the maximal solution of (1.1 ) with an initial
trace vanishing on F c, and by uF the maximal σ-moderate solution of (1.1 ) with an initial trace
vanishing on F c. Thus uF is defined by

uF = sup{uµ : µ ∈ M
q
+(RN ), µ(F c) = 0}, (1.10)

where M
q
+(RN ) := W−2/q,q(RN ) ∩ Mb

+(RN ). One of the main goal of this article is to prove
that uF is σ-moderate and more precisely,

Theorem 1.2 For any q > 1 and any closed subset F of RN , uF = uF .

We define below a set function which will play an important role in the sequel.

Definition 1.3 Let F be a closed subset of RN . The C2/q,q′-capacitary potential WF of F is
defined by

WF (x, t) = t−1/(q−1)
∞∑

n=0

(n+ 1)N/2−1/(q−1)e−n/4C2/q,q′

(
Fn√

(n+ 1)t

)
∀(x, t) ∈ Q∞, (1.11)

where Fn = Fn(x, t) := {y ∈ F :
√
nt ≤ |x− y| ≤

√
(n+ 1)t}.

One of the tool for proving Theorem 1.2 is the following bilateral estimate

Theorem 1.4 For any q ≥ qc there exist two positive constants C1 ≥ C2 > 0, depending only
on N and q such that for any closed subset F of RN , there holds

C2WF (x, t) ≤ uF (x, t) ≤ uF (x, t) ≤ C1WF (x, t) ∀(x, t) ∈ Q∞. (1.12)

This representation of uF , up to uniformly upper and lower bounded functions, is also interesting
in the sense that it indicates precisely what are the blow-up point of uF . Introducing an integral
expression comparable to WF we show, in particular, the following results

lim
τ→0

C2/q,q′

(
F

τ
∩B1(x)

)
= γ ∈ [0,∞) =⇒ lim

t→0
t−1/(q−1)uF (x, t) = Cγ (1.13)
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for some C = C(N, q) > 0, and

lim sup
τ→0

τ2/(q−1)C2/q,q′

(
F

τ
∩B1(x)

)
<∞ =⇒ lim sup

t→0
uF (x, t) <∞. (1.14)

Our paper is organized as follows. In Section 2 we obtain estimates from above on uF . In
Section 3 we give estimates from below on uF . In Section 4 we prove the main theorems and
expose various consequences. In Appendix we derive a series of sharp integral inequalities.

Aknowledgements The authors are grateful to the European RTN Contract N◦ HPRN-CT-
2002-00274 for the support provided in the realization of this work.

2 Estimates from above

Some notations : Let Ω be a domain in RN with a compact C2 boundary and T > 0. Set Br(a)
the open ball of radius r > 0 and center a (and Br(0) := Br) and

QΩ
T := Ω× (0, T ), ∂`Q

Ω
T = ∂Ω× (0, T ), QT := QRN

T , Q∞ := QRN

∞ .

Let HΩ[.] (resp. H[.]) denote the heat potential in Ω with zero lateral boundary data (resp. the
heat potential in RN ) with corresponding kernel

(x, y, t) 7→ HΩ(x, y, t) (resp.(x, y, t) 7→ H(x, y, t) = (4πt)−N/2 exp(− |x− y|2 /4t)).

We denote by qc := 1 + 2/N , the parabolic critical exponent.

Theorem 2.1 Let q ≥ qc. Then there exists a positive constant C1 = C1(N, q) such that for
any closed subset F of RN and any u ∈ C2(Q∞) ∩ C(Q∞ \ F ) satisfying{

∂tu−∆u+ uq = 0 in Q∞

limt→0 u(x, t) = 0 locally uniformly in F c,
(2.1)

there holds
u(x, t) ≤ C1WF (x, t) ∀(x, t) ∈ Q∞, (2.2)

where WF is the (2/q, q′)-capacitary potential of F defined by (1.11 ).

First we shall consider the case where F = K is compact and

K ⊂ Br ⊂ Br, (2.3)

and then we shall extend to the general case by a covering argument.
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2.1 Global Lq-estimates

Let ρ > 0, we assume (2.3 ) holds and we put

Tr,ρ(K) = {η ∈ C∞0 (Br+ρ), 0 ≤ η ≤ 1, η = 1 in a neighborhood of K}. (2.4)

If η ∈ Tr,ρ(K), we set η∗ = 1− η, ζ = H[η∗]2q′ and

R(η) = |∇H[η]|2 + |∂tH[η] + ∆H[η]| . (2.5)

We fix T > 0 and shall consider the equation on QT . Throughout this paper C will denote a
generic positive constant, depending only on N , q and sometimes T , the value of which may
vary from one ocurrence to another. Except in Lemma 2.12 the only assumption on q is q > 1.

Lemma 2.2 There exists C = C(N, q, T ) > 0 such that∫ ∫
QT

(R(η))q′ dx dt ≤ C‖η‖q′

W 2/q,q′ . (2.6)

Proof. There holds ∂tH[η] = ∆H[η], and∫ ∫
QT

|∂tH[η]|q
′
dx dt =

∫ T

0

∥∥∥t1−1/q∂tH[η]
∥∥∥q′

Lq′ (RN )

dt

t
≤ ‖η‖q′

[W 2,q′ ,Lq′ ]
1/q,q′

(2.7)

where
[
W 2,q′ , Lq′

]
1/q,q′

indicates the real interpolation functor of degree 1/q between W 2,q′(RN )

and Lq′(RN ) [29]. Similarly, and using the Gagliardo-Nirenberg inequality,∫ ∫
QT

|∇(H[η])|2q′ dx dt ≤ C‖η‖q′

W 2/q,q′‖η‖
q′

L∞ = C‖η‖q′

W 2/q,q′ . (2.8)

Inequality (2.6 ) follows from (2.7 ) and (2.8 ). �

Lemma 2.3 There exists C = C(N, q, T ) > 0 such that∫ ∫
QT

uqζdx dt+
∫

RN

(uζ)(x, T )dx ≤ C2‖η‖q′

W 2/q,q′ . (2.9)

Proof. We recall that there always hold

0 ≤ u(x, t) ≤
(

1
t(q − 1)

)1/(q−1)

∀(x, t) ∈ Q∞. (2.10)

and (see [6] e.g.)

0 ≤ u(x, t) ≤
(

C

t+ (|x| − r)2

)1/(q−1)

∀(x, t) ∈ Q∞ \Br. (2.11)

Since η∗ vanishes in an open neighborhood N1, for any open subset N2 such that K ⊂ N2 ⊂
N 2 ⊂ N1 there exist cN2

> 0 and CN2
> 0 such that

H[η∗](x, t) ≤ CN2
exp(−cN2

t), ∀(x, t) ∈ QN2
T .
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Therefore
lim
t→0

∫
RN

(uζ)(x, t)dx = 0,

and ζ is an admissible test function, and one has∫ ∫
QT

uqζdx dt+
∫

RN

(uζ)(x, T )dx =
∫ ∫

QT

u(∂tζ + ∆ζ)dx dt. (2.12)

Notice that the three terms on the left-hand side are nonnegative. Put Hη∗ = H[η∗], then

∂tζ + ∆ζ = 2q′H2q′−1
η∗ (∂tHη∗ + ∆Hη∗) + 2q′(2q′ − 1)H2q′−2

η∗ |∇Hη∗ |2,

= 2q′H2q′−1
η∗ (∂tHη + ∆Hη) + 2q′(2q′ − 1)H2q′−2

η |∇Hη|2,

because Hη∗ = 1−Hη, hence

u(∂tζ + ∆ζ) = uH2q′/q
η∗

[
2q′(2q′ − 1)H2q′−2−2q′/q

η∗ |∇Hη|2 − 2q′H2q′−1−2q′/q
η∗ (∆Hη + ∂tHη)

]
.

Since 2q′ − 2− 2q′/q = 0 and 0 ≤ Hη∗ ≤ 1,∣∣∣∣∫ ∫
QT

u(∂tζ + ∆ζ)dx dt
∣∣∣∣ ≤ C(q)

(∫ ∫
QT

uqζdx dt

)1/q (∫ ∫
QT

Rq′(η)dx dt
)1/q′

,

where
R(η) = |∇Hη|2 + |∆Hη + ∂tHη| .

Using Lemma 2.2 one obtains (2.9 ). �

Proposition 2.4 Let r > 0, ρ > 0, T ≥ (r + ρ)2

Er+ρ := {(x, t) : |x|2 + t ≤ (r + ρ)2}

and Qr+ρ,T = QT \ Er+ρ. There exists C = C(N, q, T ) > 0 such that∫ ∫
Qr+ρ,T

uqdx dt+
∫

RN

u(x, T )dx ≤ CC
Br+ρ

2/q,q′(K). (2.13)

Proof. Because K ⊂ Br and η∗ ≡ 1 outside Br+ρ and takes value between 0 and 1,

H[η∗](x, t) ≥ H[1− χBr+ρ
](x, t) =

(
1

4πt

)N/2 ∫
|y|≥r+ρ

exp(−|x− y|2/4t)dy,

= 1−
(

1
4πt

)N/2 ∫
|y|≤r+ρ

exp(−|x− y|2/4t)dy.

For (x, t) ∈ Er+ρ, put x = (r + ρ)ξ, y = (r + ρ)υ and t = (r + ρ)2τ . Then (ξ, τ) ∈ E1 and(
1

4πt

)N/2 ∫
|y|≤r+ρ

exp(−|x− y|2/4t)dy =
(

1
4πτ

)N/2 ∫
|υ|≤1

exp(−|ξ − υ|2/4τ)dυ.
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We claim that

max

{(
1

4πτ

)N/2 ∫
|υ|≤1

exp(−|ξ − υ|2/4τ)dυ : (ξ, τ) ∈ E1

}
= `, (2.14)

and ` = `(N) ∈ (0, 1]. We recall that(
1

4πτ

)N/2 ∫
|υ|≤1

exp(−|ξ − υ|2/4τ)dυ < 1 ∀τ > 0. (2.15)

If the maximum is achieved for some (ξ̄, τ̄) ∈ E1, it is smaller that 1 and

H[η∗](x, t) ≥ H[1− χBr+ρ
](x, t) ≥ 1− ` > 0, ∀(x, t) ∈ Er+ρ. (2.16)

Let us assume that the maximum is achieved following a sequence {(ξn, τn)} with τn → 0 and
|ξn| ↓ 1. We can assume that ξn → ξ̄ with

∣∣ξ̄∣∣ = 1, then(
1

4πτn

)N/2 ∫
|υ|≤1

e−|ξn−υ|2/4τndυ =
(

1
4πτn

)N/2 ∫
B1(ξn)

e−|υ|
2/4τndυ.

But B1(ξn) ∩B1(−ξn) = ∅,∫
B1(ξn)

e−|υ|
2/4τndυ +

∫
B1(−ξn)

e−|υ|
2/4τndυ <

∫
RN

e−|υ|
2/4τndυ

and ∫
B1(ξn)

e−|υ|
2/4τndυ =

∫
B1(−ξn)

e−|υ|
2/4τndυ.

This implies

lim
n→∞

(
1

4πτn

)N/2 ∫
B1(ξn)

e−|υ|
2/4τndυ ≤ 1/2.

If the maximum were achieved with a sequence {(ξn, τn)} with |τn| → ∞, it would also imply
(2.16 ), since the integral term in (2.15 ) is always bounded. Therefore (2.15 ) holds. Put
C = (1− `)−1, then ∫ ∫

Qr,T

uqdx dt+
∫

RN

u(., T )dx ≤ C ‖ηn‖q′

W 2/q,q′ (RN )
. (2.17)

If we replace η by ηn, a sequence of functions which satisfies

C
Br+ρ

2/q,q′(K) = lim
n→∞

‖ηn‖q′

W 2/q,q′ (RN )
,

we obtain (2.13 ). �
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2.2 Pointwise estimates

We give first a rough pointwise estimate.

Lemma 2.5 There exists a constant C = C(N, q) > 0 such that

u(x, (r + 2ρ)2) ≤
CC

Br+ρ

2/q,q′(K)

(ρ(r + ρ))N/2
, ∀x ∈ RN . (2.18)

Proof. Step 1 We claim that∫ T

s

∫
RN

uqdx dt+
∫

RN

u(x, T )dx =
∫

RN

u(x, s)dx ∀T > s > 0. (2.19)

By the maximum principle u is dominated by the solution v with initial trace the indicatrix
function IBr . The function v is the limit, as k →∞, of the solutions vk with initial data kχBr

.
Since vk ≤ kH[χBr

], it follows Hence∫
RN

u(., s)dx ≤ CC
Br+ρ

2/q,q′(K) ∀T > s ≥ (r + ρ)2, (2.20)

by Lemma 2.3. Using the fact that

u(x, τ + s) ≤ H[u(., s)](x, τ) ≤
(

1
4πτ

)N/2 ∫
RN

u(., s)dx,

we obtain (2.18 ) with s = (r + ρ)2 and τ = (r + 2ρ)2 − (r + ρ)2 ≈ ρ(r + ρ). �

The above estimate does not take into account the fact that u(x, 0) = 0 if |x| ≥ r. It is
mainly interesting if |x| ≤ r. In order to derive a sharper estimate which uses the localization
of the singularity and not only its C2/q,q′-capacity, we need some lateral boundary estimates.

Lemma 2.6 Let γ ≥ r + 2ρ and c > 0 and either N = 1 or 2 and 0 ≤ t ≤ cγ2 for some c > 0,
or N ≥ 3 and t > 0. Then there holds∫ t

0

∫
∂`Bγ

udSdτ ≤ C5γC
Br+ρ

2/q,q′(K). (2.21)

where C > 0 depends on N , q and c if N = 1, 2 or depends only on N and q if N ≥ 3.

Proof. Let us assume that N = 1 or 2. Put Gγ := Bc
γ × (−∞, 0) and ∂`G

γ = ∂`B
c
γ × (−∞, 0).

Set
hγ(x) = 1− γ

|x|
,

and let ψγ be the solution of

∂τψγ + ∆ψγ = 0 in Gγ ,

ψγ = 0 on ∂`G
γ ,

ψγ(., 0) = hγ in Bc
γ .

(2.22)
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Thus the function
ψ̃(x, τ) = ψγ(γx, γ2τ)

satisfies
∂tψ̃ + ∆ψ̃ = 0 in G1

ψ̃ = 0 on ∂`G
1

ψ̃(., 0) = h̃ in Bc
1,

(2.23)

and h̃(x) = 1− |x|−1. By the maximum principle 0 ≤ ψ̃ ≤ 1, and by Hopf Lemma

−∂ψ̃
∂n ∂Bc

1×[−c,0] ≥ θ > 0, (2.24)

where θ = θ(N, c). Then 0 ≤ ψγ ≤ 1 and

−∂ψγ

∂n ∂Bc
γ×[−γ2,0] ≥ θ/γ. (2.25)

Multiplying (1.1 ) by ψγ(x, τ − t) = ψ∗γ(x, τ) and integrating on Bc
γ × (0, t) yields to∫ t

0

∫
Bc

γ

uqψ∗rdxdτ +
∫

Bc
γ

(uhγ)(x, t)dx−
∫ t

0

∫
∂Bγ

∂u

∂n
ψ∗γdSdτ = −

∫ t

0

∫
∂Bγ

∂ψ∗γ
∂n

udσdτ. (2.26)

Since ψ∗γ is bounded from above by 1, (2.21 ) follows from (2.25 ) and Proposition 2.4 (notice
that Bc

γ × (0, t) ⊂ Ec
γ), first by taking t = T = γ2 ≥ (r + 2ρ)2, and then for any t ≤ γ2.

If N ≥ 3, we proceed as above except that we take

hγ(x) = 1−
(
γ

|x|

)N−2

Then ψγ(x, t) = hγ(x) and θ = N − 2 is independent of the length of the time interval. This
leads to the conclusion. �

Lemma 2.7 I- Let M, a > 0 and η ∈ L∞(RN ) such that

0 ≤ η(x) ≤Me−a|x|2 , a.e. in RN . (2.27)

Then, for any t > 0,

0 ≤ H[η](x, t) ≤ M

(4at+ 1)N/2
e−a|x|2/(4at+1), ∀x ∈ RN . (2.28)

II- Let M, a, b > 0 and η ∈ L∞(RN ) such that

0 ≤ η(x) ≤Me
−a(|x|−b)2

+ , a.e. in RN . (2.29)

Then, for any t > 0,

0 ≤ H[η](x, t) ≤ Me
−a(|x|−b)2

+
/(4at+1)

(4at+ 1)N/2
,∀x ∈ RN , ∀t > 0. (2.30)
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Proof. For the first statement, put a = 1/4s. Then

0 ≤ η(x) ≤M(4πs)N/2 1
(4πs)N/2

e−|x|
2/4s = C(4πs)N/2H[δ0](x, s).

By the order property of the heat kernel,

0 ≤ H[η](x, t) ≤M(4πs)N/2H[δ0](x, t+ s) = M

(
s

t+ s

)N/2

e−|x|
2/(4(t+s)),

and (2.28 ) follows by replacing s by 1/4a.

For the second statement, let ã < a and R = max{e−a(r−b)2
+

+ãr2

: r ≥ 0}. A direct computation
gives R = eaãb2/(a−ã), and (2.30 ) implies

0 ≤ η(x) ≤Meaãb2/(a−ã)e−ã|x|2 .

Applying the statement I, we obtain

0 ≤ H[η](x, t) ≤ Ceaãb2/(a−ã)

(4ãt+ 1)N/2
e−ã|x|2/(4ãt+1), ∀x ∈ RN , ∀t > 0. (2.31)

Since for any x ∈ RN and t > 0,

(4ãt+ 1)−N/2e−ã|x|2/(4ãt+1) ≤ e−aãb2/(a−ã)(4at+ 1)−N/2e−a(|x|−b)2/(4at+1),

(2.30 ) follows from (2.31 ). �

Lemma 2.8 There exists a constant C = C(N, q) > 0 such that

u(x, (r + 2ρ)2) ≤ Cmax
{

r + ρ

(|x| − r − 2ρ)N+1
,
|x| − r − 2ρ
(r + ρ)N+1

}
e−(|x|−(r+2ρ))2/4(r+2ρ)2C

Br+ρ

2/q,q′(K),

(2.32)
for any x ∈ RN \Br+3ρ.

Proof. We recall that the Dirichlet heat kernel HBc
1 in the complement of B1 satisfies, for some

C = C(N) > 0,

HBc
1(x′, y′, t′, s′) ≤ C7(t′ − s′)−(N+2)/2(

∣∣x′∣∣− 1) exp(−
∣∣x′ − y′

∣∣2/4(t′ − s′)), (2.33)

for t′ > s′. By performing the change of variable x′ 7→ (r + 2ρ)x′, t′ 7→ (r + 2ρ)2t′, for any
x ∈ RN \Br+2ρ and 0 ≤ t ≤ T , one obtains

u(x, t) ≤ C(|x| − r − 2ρ)
∫ t

0

∫
∂Br+2ρ

e−|x−y|2/4(t−s)

(t− s)1+N/2
u(y, s)dσ(y)ds. (2.34)

The right-hand side term in (2.34 ) is smaller than

max
{
C(|x| − r − 2ρ)

(t− s)1+N/2
e−(|x|−r−2ρ))2/4(t−s) : s ∈ (0, t)

}∫ t

0

∫
∂Br+2ρ

u(y, s)dσ(y)ds.
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We fix t = (r + 2ρ)2 and |x| ≥ r + 3ρ. Since

max

{
e−(|x|−r−2ρ)2/4s

s1+N/2
: s ∈

(
0, (r + 2ρ)2

)}

= (|x| − r − 2ρ)−2−N max

{
e−1/4σ

σ1+N/2
: 0 < σ <

(
r + 2ρ

|x| − r − 2ρ

)2
}
,

a direct computation gives

max

{
e−1/4σ

σ1+N/2
: 0 < σ <

(
r + 2ρ

|x| − r − 2ρ

)2
}

=


(2N + 4)1+N/2e−(N+2)/2 if r + 3ρ ≤ |x| ≤ (r + 2ρ)(1 +

√
4 + 2N),(

|x| − r − 2ρ
r + 2ρ

)2+N

e−((|x|−r−2ρ)/(2r+4ρ))2 if |x| ≥ (r + 2ρ)(1 +
√

4 + 2N).

Thus there exists a constant C(N) > 0 such that

max

{
e−(|x|−r−2ρ)2/4s

s1+N/2
: s ∈

(
0, (r + 2ρ)2

)}
≤ C(N)ρ−2−Ne−(|x|−(r+2ρ))2/4(r+2ρ)2 . (2.35)

Combining this estimate with (2.21 ) with γ = r + 2ρ and (2.34 ), one derives (2.32 ). �

Lemma 2.9 There exists a constant C = C(N, q) > 0 such that

0 ≤ u(x, (r+2ρ)2) ≤ Cmax
{

(r + ρ)3

ρ(|x| − r − 2ρ)N+1
,

1
(r + ρ)N−1ρ

}
e−(|x|−r−3ρ)2/4(r+2ρ)2C

Br+ρ

2/q,q′(K),

(2.36)
for every x ∈ RN \Br+3ρ.

Proof. This is a direct consequence of the inequality

(|x| − r − 2ρ)e−(|x|−(r+2ρ))2/4(r+2ρ)2 ≤ C(r + ρ)2

ρ
e−(|x|−(r+3ρ))2/4(r+2ρ)2 , ∀x ∈ Bc

r+2ρ, (2.37)

and Lemma 2.8. �

Lemma 2.10 There exists a constant C = C(N, q) > 0 such that the following estimate holds

u(x, t) ≤ CM̃e
−(|x|−r−3ρ)2

+
/4t

tN/2
C

Br+ρ

2/q,q′(K), ∀x ∈ RN , ∀t ≥ (r + 2ρ)2, (2.38)

where

M̃ = M̃(x, r, ρ) =


(1 + r/ρ)N/2 if |x| < r + 3ρ

(r + ρ)N+3/ρ(|x| − r − 2ρ)N+2 if r + 3ρ ≤ |x| ≤ CN (r + 2ρ)

1 + r/ρ if |x| ≥ CN (r + 2ρ)

(2.39)

with CN = 1 +
√

4 + 2N .
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Proof. It follows by the maximum principle

u(x, t) ≤ H[u(., (r + 2ρ)2)](x, t− (r + 2ρ)2).

for t ≥ (r + 2ρ)2 and x ∈ RN . By Lemma 2.5 and Lemma 2.9

u(x, (r + 2ρ)2) ≤ C10M̃e−(|x|−r−3ρ)2/4(r+2ρ)2C
Br+2ρ

2/q,q′ (K),

where

M̃ =


((r + ρ)ρ)−N/2 if |x| < r + 3ρ

(r + ρ)3/ρ (|x| − r − 2ρ))N+2 if r + 3ρ ≤ |x| ≤ CN (r + 2ρ)

1/(r + ρ)N−1ρ if |x| ≥ CN (r + 2ρ)

Applying Lemma 2.7 with a = (2r + 4ρ)−2, b = r + 3ρ and t replaced by t− (r + 2ρ)2 implies

u(x, t) ≤ C
(r + 2ρ)NM̃

tN/2
e−(|x|−r−3ρ)2/4tC

Br+ρ

2/q,q′(K), (2.40)

for all x ∈ Bc
r+3ρ and t ≥ (r + 2ρ)2, which is (2.38 ). �

The next estimate gives a precise upper bound for u when t is not bounded from below.

Lemma 2.11 Assume that 0 < t ≤ (r + 2ρ)2 for some c > 0, then there exists a constant
C = C(N, q) > 0 such that the following estimate holds

u(x, t) ≤ C(r + ρ) max
{

1
(|x| − r − 2ρ)N+1

,
1

ρtN/2

}
e−(|x|−r−3ρ)2/4tC

Br+ρ

2/q,q′(K), (2.41)

for any (x, t) ∈ RN \Br+3ρ × (0, (r + 2ρ)2].

Proof. By using (2.21 ) the following estimate is a straightforward variant of (2.32 ) for any
γ ≥ r + 2ρ,

u(x, t) ≤ C8(|x| − r − 2ρ)(r + 2ρ) max

{
e−(|x|−r−2ρ)2/4s

s1+N/2
: 0 < s ≤ t

}
C

Br+2ρ

2/q,q′ (K). (2.42)

Clearly

max

{
e−(|x|−r−2ρ)2/4s

s1+N/2
: 0 < s ≤ t

}

=


(2N + 4)1+N/2(|x| − r − 2ρ)−N−2e−(N+2)/2 if 0 < |x| ≤ r + 2ρ+

√
2t(N + 2)

e−(|x|−r−2ρ)2/4t

t1+N/2
if |x| > r + 2ρ+

√
2t(N + 2).

12



By elementary analysis, if x ∈ Bc
r+3ρ,

(|x| − r − 2ρ)e−(|x|−r−2ρ)2/4t ≤ e−(|x|−r−3ρ)2/4t


ρe−ρ2/4t if 2t < ρ2

2t
ρ
e−1+ρ2/4t if ρ2 ≤ 2t ≤ 2(r + 2ρ)2.

However, since
ρ

t
e−ρ2/4t ≤ 4

ρ
,

we derive
(|x| − r − 2ρ)e−(|x|−r−2ρ)2/4t ≤ Ct

ρ
e−(|x|−r−3ρ)2/4t,

from which inequality (2.41 ) follows. �

Lemma 2.12 Assume q ≥ qc. Then there exists a constant C depending on N and q such that
for any r > 0 and ρ > 0, and any Borel set E ⊂ Br, there holds

C
Br+ρ

2/q,q′(E) ≤ CrN−2/(q−1)

(
1 +

r

ρ

)2/(q−1)

C2/q,q′(E/r), (2.43)

where C2/q,q′(E) := CRN

2/q,q′(E).

Proof. By the scaling property of Bessel capacities (see [1]), since q ≥ qc,

C
Br+ρ

2/q,q′(E) = rN−2/(q−1)C
B1+ρ/r

2/q,q′ (E/r),

for any Borel set E ⊂ Br. It is sufficient to prove (2.43 ) when E′ = E/r ⊂ B1 is a compact set,
thus

C
B1+r/ρ

2/q,q′ (E′) = inf
{
‖ζ‖q′

W 2/q,q′ : ζ ∈ C2
0 (B1+r/ρ), 0 ≤ ζ ≤ 1, ζ ≡ 1 on E′

}
.

Let φ ∈ C2(RN ) be a radial cut-off function such that 0 ≤ ρ ≤ 1, ρ = 1 on B1, ρ = 0 on
RN \ B1+ρ/r, |∇φ| ≤ Crρ−1χ

B1+ρ/r\B1
and

∣∣D2φ
∣∣ ≤ Cr2ρ−2χ

B1+ρ/r\B1
, where C is independent

of r and ρ. Let ζ ∈ C2
0 (RN ). Then

∇(ζφ) = ζ∇φ+ φ∇ζ , D2(ζφ) = ζD2φ+ φD2ζ + 2∇φ ◦×∇ζ.

Thus ‖ζφ‖Lq′ (B1+ρ/r) ≤ ‖ζ‖Lq′ (RN ),∫
B1+ρ/r

|∇(ζφ)|q
′
dx ≤ C

(
1 +

r

ρ

)q′

‖ζ‖q′

W 1,q′

and ∫
Br+ρ

∣∣D2(ζφ)
∣∣q′ dx ≤ C

(
1 +

r2

ρ2

)q′

‖ζ‖q′

W 2,q′ .
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Finally

‖ζφ‖W 2/q,q′ ≤ C

(
1 +

r2

ρ2

)
‖ζ‖W 2/q,q′ .

Denote by T the linear mapping ζ 7→ ζφ. Because

W 2/q,q′ =
[
W 2,q′ , Lq′

]
1/q,q′

,

(here we use the Lions-Petree real interpolation notations and results from [17]), it follows

‖T ‖
L(W

2/q,q′
0 (RN ),W

2/q,q′
0 (B1+ρ/r))

≤ C(q)
(

1 +
r2

ρ2

)1/q

Therefore

C
B1+ρ/r

2/q,q′ (E′) ≤ C

(
1 +

r2

ρ2

)1/(q−1)

C2/q,q′(E
′).

Thus we get (2.43 ). �

Remark. In the subcritical case 1 < q < qc, estimate (2.43 ) becomes

C
Br+ρ

2/q,q′(E) ≤ Cmax
{
rN , ρN

}(
1 + ρ−2/(q−1)

)
. (2.44)

By using Lemma 2.11, it is easy to derive from this estimate that for any positive solution u of
(2.1 ), the initial trace of which vanishes outside 0, there holds

u(x, t) ≤ Ct−1/(q−1) min

{
1,
(
|x|√
t

)2/(q−1)−N

e−|x|
2/4t

}
∀(x, t) ∈ Q∞. (2.45)

This upper estimate corresponds to the one obtained in [5]. If F = Br, the upper we estimate
is less esthetic. However, it is proved in [20] by a barrier method that, if the initial trace of
positive solution u of (2.1 ), vanishes outside F, and if 1 < q < 3, there holds

u(x, t) ≤ t−1/(q−1)f1((|x| − r)/
√
t) ∀(x, t) ∈ Q∞, |x| ≥ r, (2.46)

where = f1 is the positive solution belonging to C2([0,∞)) of f ′′ +
y

2
f ′ +

1
q − 1

f − f q = 0 in (0,∞)

f ′(0) = 0 , limy→∞ |y|2/(q−1) f(y) = 0.
(2.47)

Notice that the existence of f1 follows from [5] since q is the critical exponent in 1 dim. Fur-
thermore f1 has the following asymptotic expansion

f1(y) = Cy(3−q)/(q−1)e−y2/4t(1 + ◦(1))) as y →∞.
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2.3 The upper Wiener test

Definition 2.13 We define on RN × R the two parabolic distances δ2 and δ∞ by

δ2[(x, t), (y, s)] :=
√
|x− y|2 + |t− s|, (2.48)

and
δ∞[(x, t), (y, s)] := max{|x− y|,

√
|t− s|}. (2.49)

If K ⊂ RN and i = 2,∞,

δi[(x, t),K] = inf{δi[(x, t), (y, 0)] : y ∈ K} =

 max
{

dist (x,K),
√
|t|
}

if i = ∞,√
dist 2(x,K) + |t| if i = 2.

For β > 0 and i = 2,∞, we denote by Bi
β(m) the parabolic ball of center m = (x, t) and radius

β in the parabolic distance δi.

Let K be any compact subset of RN and uK the maximal solution of (1.1 ) which blows up
on K. The function uK is obtained as the decreasing limit of the uKε (ε > 0) when ε→ 0, where

Kε = {x ∈ RN : dist (x,K) ≤ ε}

and uKε = limk→∞ uk,Kε = uK , where uk is the solution of the classical problem,
∂tuk −∆uk + uq

k = 0 in QT ,

uk = 0 on ∂`QT ,

uk(., 0) = kχKε
in RN .

(2.50)

If (x, t) = m ∈ RN × (0, T ], we set dK = dist (x,K), DK = max{|x− y| : y ∈ K} and

λ =
√
d2

K + t = δ2[m,K]. We define a slicing of K, by setting dn = dn(K, t) :=
√
nt (n ∈ N),

Tn = Bdn+1(x) \Bdn(x), ∀n ∈ N,

thus T0 = B√t(x), and

Kn(x) = K ∩ Tn(x) for n ∈ N and Qn(x) = K ∩Bdn+1(x).

When there is no ambiguity, we shall skip the x variable in the above sets. The main result of
this section is the following discrete upper Wiener-type estimate.

Theorem 2.14 Assume q ≥ qc. Then there exists C = C(N, q, T ) > 0 such that

uK(x, t) ≤ C

tN/2

at∑
n=0

d
N−2/(q−1)
n+1 e−n/4C2/q,q′

(
Kn

dn+1

)
∀(x, t) ∈ QT , (2.51)

where at is the largest integer j such that Kj 6= ∅.
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With no loss of generality, we can first assume that x = 0. Furthermore, in considering the
scaling transfoprmation u`(y, t) = `1/(q−1)u(

√
`y, `t), with ` > 0, we can assume t = 1. Thus the

new compact singular set of the initial trace becomes K/
√
`, that we shall still denote K. We

shall also set aK = aK ,1 Since for each n ∈ N,

1
2
√
n+ 1

≤ dn+1 − dn ≤
1√
n+ 1

,

it is possible to exhibit a collection Θn of points an,j with center on the sphere Σn = {y ∈ RN :
|y| = (dn+1 + dn)/2}, such that

Tn ⊂
⋃

an,j∈Θn

B1/
√

n+1(an,j), |an,j − an,k| ≥ 1/2
√
n+ 1 and #Θn ≤ CnN−1,

for some constant C = C(N). If Kn,j = Kn ∩B1/
√

n+1(an,j), there holds

K =
⋃

0≤n≤a
K

⋃
an,j∈Θn

Kn,j .

The first intermediate step is related to the quasi-additivity property of capacities.

Lemma 2.15 Let q ≥ qc. There exists a constant C = C(N, q) such that∑
an,j∈Θn

C
Bn,j

2/q,q′(Kn,j) ≤ Cn1/(q−1)−N/2C2/q,q′
(√
nKn

)
∀n ∈ N∗, (2.52)

where Bn,j = B2/
√

n+1(an,j) and C2/q,q′ stands for the capacity taken with respect to RN .

Proof. The following result is proved in [2, Th 3]: if the spheres Bρθ
j
(bj) are disjoint in RN and

G is an analytic subset of
⋃
Bρj (bj) where the ρj are positive and smaller than some ρ∗ > 0,

there holds

C2/q,q′(G) ≤
∑

j

C2/q,q′(G ∩Bρj (bj)) ≤ AC2/q,q′(G), (2.53)

where θ = 1 − 2/N(q − 1), for some A depending on N , q and ρ∗. This property is called
quasi-additivity. We define for n ∈ N∗,

T̃n =
√
nTn, K̃n =

√
nKn and Q̃n =

√
nQn.

SinceKn,j ⊂ B1/
√

n+1(an,j), the C2/q,q′ capacities are taken with respect to the ballsB2/
√

n+1(an,j) =
Bn,j . By Lemma 2.12 with r = ρ =

√
n+ 1

C
Bn,j

2/q,q′(Kn,j) ≤ Cn1/(q−1)−N/2C2/q,q′(K̃n,j), (2.54)

where K̃n,j =
√
nKn,j and B̃n,j =

√
nBn,j . For a fixed n > 0 and each repartition Λ of points

ãn,j =
√
nan,j such that the balls B2θ(ãn,j) are disjoint, the quasi-additivity property holds in

the following sense: if we set

Kn,Λ =
⋃

an,j∈Λ

Kn,j , K̃n,Λ =
√
nKn,Λ =

⋃
an,j∈Λ

K̃n,j and K̃n =
√
nKn,
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then ∑
an,j∈Λ

C2/q,q′(K̃n,j) ≤ AC2/q,q′(K̃n,Λ). (2.55)

The maximal cardinal of any such repartition Λ is of the order of CnN−1 for some positive
constant C = C(N), therefore, the number of repartitions needed for a full covering of the set
T̃n is of finite order depending upon the dimension. Because K̃n is the union of the K̃n,Λ,∑

Λ

∑
an,j∈Λ

C2/q,q′(K̃n,j) ≤ C C2/q,q′(K̃n) (2.56)

Combining (2.54 ) and (2.56 ), we obtain (2.52 ). �

Proof of Theorem 2.14. Step 1. We first notice that

uK ≤
∑

0≤n≤a
K

∑
an,j∈Θn

uKn,j . (2.57)

Actually, since K =
⋃

n

⋃
an,j

Kn,j , for any 0 < ε′ < ε, there holds Kε′ ⊂
⋃

n

⋃
an,j

Kn,j ε. Because
a finite sum of positive solutions of (1.1 ) is a super solution,

uKε′ ≤
∑

0≤n≤a
K

∑
an,j∈Θn

uKn,j ε . (2.58)

Letting successively ε′ and ε go to 0 implies (2.57 ).

Step 2. Let n ∈ N. Since Kn,j ⊂ B1/
√

n+1(an,j) and |x− an,j | = (dn + dn+1)/2 = (
√
n+ 1 +

√
n)/2, we can apply the previous lemmas with r = 1/

√
n+ 1 and ρ = r. For n ≥ nN there

holds t = 1 ≥ (r + 2ρ)2 = 9/(n + 1) and |x− an,j | = (
√
n+ 1 −

√
n)/2 ≥ (2 + CN )(3/

√
n+ 1)

(notice that nN ≥ 8). Thus

uKn,j (0, 1) ≤ Ce(
√

n−3/
√

n+1)2/4C
Bn,j

2/q,q′(Kn,j)

≤ Ce3/2e−n/4C
Bn,j

2/q,q′(Kn,j)

≤ Cn1/(q−1)−N/2e−n/4C2/q,q′(K̃n,j),

(2.59)

which implies ∑
an,j∈Θn

uKn,j (0, 1) ≤ CnN/2−1/(q−1)e−n/4C2/q,q′(K̃n)

Using the fact that

C2/q,q′

(
K̃n

)
≈
(
dn+1

√
n
)N−2/(q−1)

C2/q,q′

(
Kn

dn+1

)
,

for any n ∈ N∗, we derive
a

K∑
n=n

N

∑
an,j∈Θn

uKn,j (0, 1) ≤ C

a
K∑

n=n
N

d
N/2−1/(q−1)
n+1 e−n/4C2/q,q′

(
Kn

dn+1

)
. (2.60)
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Finally, we apply Lemma 2.5 if 1 ≤ n < nN and get

n
N
−1∑

1

∑
an,j∈Θn

uKn,j (0, 1) ≤ C

n
N
−1∑

1

C2/q,q′

(
Kn

dn+1

)

≤ C ′
n

N
−1∑

1

d
N/2−1/(q−1)
n+1 e−n/4C2/q,q′

(
Kn

dn+1

)
.

(2.61)

For n = 0, we proceed similarly, in splitting K1 in a finite number of K1,i, depending only on
the dimension, such that diamK1,i < 1/3. Combining (2.60 ) and (2.61 ), we derive

uK(0, 1) ≤ C

a
K∑

n=0

d
N/2−1/(q−1)
n+1 e−n/4C2/q,q′

(
Kn

dn+1

)
. (2.62)

In order to derive the same result for any t > 0, we notice that

uK(y, t) = t−1/(q−1)uK
√

t(y
√
t, 1).

Going back to the definition of dn = dn(K, t) =
√
nt = dn(K

√
t, 1), we derive from (2.62 ) and

the fact that aK,t = a
K
√

t,1

uK(0, t) ≤ Ct−1/(q−1)
aK∑
n=0

(n+ 1)N/2−1/(q−1)e−n/4C2/q,q′

(
Kn

dn+1

)
, (2.63)

which can also read as (2.51 ) with x = 0, and a space translation leads to the final result.
�

Proof of Theorem 2.1. Let m > 0 and Fm = F ∩Bm. We denote by UBc
m

the maximal solution
of (1.1 ) in Q∞ the initial trace of which vanishes on Bm. Such a solution is actually the unique
solution of (2.1 ) which satisfies

lim
t→0

u(x, t) = ∞

uniformly on Bc
m′ , for any m′ > m: this can be checked by noticing that

UBc
m `(y, t) = `1/(q−1)UBc

m
(
√
`y, `t) = UBc

m/
√

`
(y, t).

Furthermore
lim

m→∞
UBc

m
(y, t) = lim

m→∞
m−2/(q−1)UBc

1
(y/m, t/m2) = 0

uniformly on any compact subset of Q∞. Since uFm + UBc
m

is a super-solution, it is larger that
uF and therefore uFm ↑ uF . Because WFm(x, t) ≤ WF (x, t) and uFm ≤ C1WFm(x, t), the result
follows. �

Theorem 2.1 admits the following integral expression.
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Theorem 2.16 Assume q ≥ qc. Then there exists a positive constant C∗1 = C∗(N, q, T ) such
that, for any closed subset F of RN , there holds

uF (x, t) ≤ C∗1
t1+N/2

∫ √t(at+2)

√
t

e−s2/4tsN−2/(q−1)C2/q,q′

(
1
s
F ∩B1(x)

)
s ds, (2.64)

where at = min{n : F ⊂ B√
n+1)t

(x)}.

Proof. We first use

C2/q,q′

(
Fn

dn+1

)
≤ C2/q,q′

(
F

dn+1
∩B1

)
,

and we denote

Φ(s) = C2/q,q′

(
F

s
∩B1

)
∀s > 0. (2.65)

Step 1. The following inequality holds (see [1] and [23])

c1Φ(αs) ≤ Φ(s) ≤ c2Φ(βs) ∀s > 0, ∀1/2 ≤ α ≤ 1 ≤ β ≤ 2, (2.66)

for some positive constants c1, c2 depending on N and q. If β ∈ [1, 2],

Φ(βs) = C2/q,q′

(
1
β

(
F

s
∩Bβ

))
≈ C2/q,q′

(
F

s
∩Bβ

)
≥ c1Φ(s).

If α ∈ [1/2, 1],

Φ(αs) = C2/q,q′

(
1
α

(
F

s
∩Bα

))
≈ C2/q,q′

(
F

s
∩Bα

)
≤ c2Φ(s).

Step 2. By (2.66 )

C2/q,q′

(
F

dn+1
∩B1

)
≤ c2C2/q,q′

(
F

s
∩B1

)
∀ s ∈ [dn+1, dn+2],

and n ≤ at . Then

c2

∫ dn+2

dn+1

sN−2/(q−1)e−s2/4tC2/q,q′

(
F

s
∩B1

)
s ds

≥ C2/q,q′

(
F

dn+1
∩B1

)∫ dn+2

dn+1

sN−2/(q−1)e−s2/4ts ds.

Using the fact that N − 2/(q − 1) ≥ 0, we get,∫ dn+2

dn+1

sN−2/(q−1)e−s2/4ts ds ≥ e−(n+2)/4d
N−2/(q−1)+1
n+1 (dn+2 − dn+1) (2.67)

≥ t

4e2
d

N−2/(q−1)
n+1 e−n/4. (2.68)

Thus

uF (x, t) ≤ C

t1+N/2

∫ √t(at+2)

√
t

sN−2/(q−1)e−s2/4tC2/q,q′

(
1
s
F ∩B1

)
s ds, (2.69)

which ends the proof. �
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3 Estimate from below

If µ ∈ Mq
+
(RN ) ∩Mb(RN ), we denote uµ = uµ,0, that is the solution of{

∂tuµ −∆uµ + uq
µ = 0 in QT ,

uµ(., 0) = µ in RN .
(3.1)

The maximal σ-moderate solution of (1.1 ) which has an initial trace vanishing outside a closed
set F is defined by

uF = sup
{
uµ : µ ∈ Mq

+
(RN ) ∩Mb(RN ) , µ(F c) = 0

}
. (3.2)

The main result of this section is the next one

Theorem 3.1 Assume q ≥ qc. There exists a constant C2 = C2(N, q, T ) > 0 such that, for any
closed subset F ⊂ RN , there holds

uF (x, t) ≥ C2WF (x, t) ∀(x, t) ∈ QT . (3.3)

We first assume that F is compact, and we shall denote it by K. The first observation is
that if µ ∈ M

q
+(RN ), uµ ∈ Lq(QT ) (see lemma below) and 0 ≤ uµ ≤ H[µ] := Hµ. Therefore

uµ ≥ Hµ −G
[
Hq

µ

]
, (3.4)

where G is the Green heat potential in QT defined by

G[f ](t) =
∫ t

0
H[f(s)](t− s)ds =

∫ t

0

∫
RN

H(., y, t− s)f(y, s)dyds.

Since the details of the proof are very technical, we shall present its main line. The key idea
is to construct, for any (x, t) ∈ QT , a measure µ = µ(x, t) ∈ M

q
+(RN ) such that there holds

Hµ(x, t) ≥ CWK(x, t) ∀(x, t) ∈ QT , (3.5)

and
G (Hµ)q ≤ C Hµ in QT , (3.6)

with constants C depends only on N , q, and T , then to replace µ by µε = εµ with ε =
(2C)−1/(q−1) in order to derive

uµε ≥ 2−1Hµε ≥ 2−1CWK . (3.7)

From this follows
uK ≥ 2−1Hµε ≥ 2−1CWK . (3.8)

and the proof of Theorem 3.1 with C2 = 2−1C.

We recall the following regularity result which actually can be used for defining the norm in
negative Besov spaces [29]

Lemma 3.2 There exists a constant c > 0 such that

c−1‖µ‖W−2/q,q(RN ) ≤ ‖Hµ‖Lq(QT ) ≤ c‖µ‖W−2/q,q(RN ) (3.9)

for any µ ∈W−2/q,q(RN ).
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3.1 Estimate from below for the heat equation

3.1.1 The extended slicing

If K is a compact subset of RN , m = (x, t), we define dK , λ, dn and at as in Section 2.3. Let
α ∈ (0, 1) to be fixed later on, we define Tn for n ∈ Z by

Tn =


B2√

t(n+1)
(m) \ B2√

tn
(m) if n ≥ 1,

B2
α−n

√
t
(m) \ B2

α1−n
√

t
(m) if n ≤ 0,

and put
T ∗n = Tn ∩ {s : 0 ≤ s ≤ t}, for n ∈ Z.

We recall that for n ∈ N∗,

Qn = K ∩ B2√
t(n+1)

(m) = K ∩Bdn(x)

and
Kn = K ∩ Tn+1 = K ∩

(
Bdn+1(x) \Bdn(x)

)
.

Let νn ∈ M+(RN ) ∩W−2/q,q(RN ) be the q-capacitary measure of the set Kn/dn+1 (see [1, Sec.
2.2]). Such a measure has support in Kn/dn+1 and

νn(Kn/dn+1) = C2/q,q′(Kn/dn+1) and ‖νn‖W−2/q,q′ (RN ) =
(
C2/q,q′(Kn/dn+1)

)1/q
. (3.10)

We define µn as follows

µn(A) = d
N−2/(q−1)
n+1 νn(A/dn+1) ∀A ⊂ Kn, A Borel , (3.11)

and set

µt,K =
at∑

n=0

µn,

and

Hµt,K =
at∑

n=0

Hµn (3.12)

Proposition 3.3 Let q ≥ qc, then there holds

Hµt,K (x, t) ≥ 1
(4πt)N/2

at∑
n=0

e−(n+1)/4d
N−2/(q−1)
n+1 C2/q,q′

(
Kn

dn+1

)
, (3.13)

in RN × (0, T ).

Proof. Since

Hµn(x, t) =
1

(4πt)N/2

∫
Kn

e−|x−y|2/4tdµn, (3.14)

and
y ∈ Kn =⇒ |x− y| ≤ dn+1,

(3.13 ) follows because of (3.11 ) and (3.12 ). �
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3.2 Estimate from above for the nonlinear term

We write (3.4 ) under the form

uµ(x, t) ≥
∑
n∈Z

Hµn(x, t)−
∫ t

0

∫
RN

H(x, y, t− s)

 ∑
n∈AK

Hµn(y, s)

q

dyds

= I1 − I2.

(3.15)

since µn = 0 if n /∈ AK = N ∩ [1, at], and

I2 ≤
1

(4π)N/2

∫ t

0

∫
RN

(t− s)−N/2e−|x−y|2/4(t−s)

 ∑
n∈AK

Hµn(y, s)

q

dyds

≤ 1
(4π)N/2

(J` + J ′`),

(3.16)

for some ` ∈ N∗ to be fixed later on, where

J` =
∑
p∈Z

∫ ∫
T ∗p

(t− s)−N/2e−|x−y|2/4(t−s)

 ∑
n<p+`

Hµn(y, s)

q

dyds,

and

J ′` =
∑
p∈Z

∫ ∫
T ∗p

(t− s)−N/2e−|x−y|2/4(t−s)

 ∑
n≥p+`

Hµn(y, s)

q

dyds.

The next estimate will be used several times in the sequel.

Lemma 3.4 Let 0 < a < b and t > 0, then,

max
{
σ−N/2e−ρ2/4σ : 0 ≤ σ ≤ t, at ≤ ρ2 + σ ≤ bt

}
= e1/4


t−N/2e−a/4 if

a

2N
> 1,(

2N
at

)N/2

e−N/2 if
a

2N
≤ 1.

Proof. Set
J (ρ, σ) = σ−N/2e−ρ2/4σ

and
Ka,b,t =

{
(ρ, σ) ∈ [0,∞)× (0, t] : at ≤ ρ2 + σ ≤ bt

}
.

We first notice that, for fixed σ, the maximum of J (., σ) is achieved for ρ minimal. If σ ∈ [at, bt]
the minimal value of ρ is 0, while if σ ∈ (0, at), the minimum of ρ is

√
at− s.

- Assume first a ≥ 1, then J (
√
at− σ, σ) = e1/4σ−N/4e−at/4σ, thus, if 1 ≤ a/2N the mini-

mal value of J (
√
at− σ, σ) is e(1−2N)/4(2N/at)N/2, while, if a/2N < 1 ≤ a, the minimum is

e1/4t−N/2e−a/4.
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- Assume now a ≤ 1. Then

max{J (ρ, σ) : (ρ, σ) ∈ Ka,b,t} = max
{

max
σ∈(at,t]

J (0, σ), max
σ∈(0,at]

J (
√
at− σ, σ)

}
= max

{
(at)−N/2, e(1−2N)/4(2N/at)N/2

}
= e(1−2N)/4(2N/at)N/2.

Combining these two estimates, we derive the result. �

Remark. The following variant of Lemma 3.4 will be useful in the sequel: For any θ ≥ 1/2N
there holds

max{J (ρ, σ) : (ρ, σ) ∈ K(a, b, t)} ≤ e1/4

(
2Nθ
t

)N/2

e−a/4 if θa ≥ 1. (3.17)

Lemma 3.5 There exists a positive constant C = C(N, `, q) such that

J` ≤ Ct−N/2
at∑

n=1

d
N−2/(q−1)
n+1 e−(1+(n−`)+ )/4 C2/q,q′

(
Kn

dn+1

)
. (3.18)

Proof. The set of p for the summation in J` is reduced to Z ∩ [−`+ 2,∞) and we write

J` = J1,` + J2,`

where

J1,` =
0∑

p=2−`

∫ ∫
T ∗p

(t− s)−N/2e−|x−y|2/4(t−s)

 ∑
n<p+`

Hµn(y, s)

q

and

J2,` =
∞∑

p=1

∫ ∫
T ∗p

(t− s)−N/2e−|x−y|2/4(t−s)

 ∑
n<p+`

Hµn(y, s)

q

.

If p = 2− `, . . . , 0,
(y, s) ∈ T ∗p =⇒ tα2−2p ≤ |x− y|2 + t− s ≤ tα−2p,

and, if p ≥ 1
(y, s) ∈ T ∗p =⇒ pt ≤ |x− y|2 + t− s ≤ (p+ 1)t.

By Lemma 3.4 and (3.17 ), there exists C = C(N, `, α) > 0 such that

max
{

(t− s)−N/2e−|x−y|2/4(t−s) : (y, s) ∈ T ∗p
}
≤ Ct−N/2e−α2−2p/4, (3.19)

if p = 2− `, . . . , 0, and

max
{

(t− s)−N/2e−|x−y|2/4(t−s) : (y, s) ∈ T ∗p
}
≤ Ct−N/2e−p/4, (3.20)
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if p ≥ 1. When p = 2− `, . . . , 0[
p+`−1∑

1

Hµn(y, s)

]q

≤ C

p+`−1∑
1

Hq
µn

(y, s). (3.21)

for some C = C(`, q) > 0, thus

J1,` ≤ Ct−N/2
0∑

p=2−`

e−α2−2p/4
p+`−1∑
n=1

‖Hµn‖
q
Lq(Qt)

≤ Ct−N/2
`−1∑
n=1

‖Hµn‖
q
Lq(Qt)

0∑
p=n−`+1

e−α2−2p/4 (3.22)

≤ Ct−N/2e−α2`−2/4
`−1∑
n=1

‖Hµn‖
q
Lq(Qt)

.

If the set of p’s is not upper bounded, we introduce δ > 0 to be made precise later on. Then[
p+`−1∑

1

Hµn(y, s)

]q

≤

[
p+`−1∑

1

eδq′n/4

]q/q′ p+`−1∑
1

e−δqn/4Hq
µn

(y, s), (3.23)

with q′ = q/(q−1). If, by convention µn = 0 whenever n > at, we obtain, for some C > 0 which
depends also on δ,

J2,` ≤ Ct−N/2
∞∑

p=1

e(δ(p+`−1)q−p)/4
p+`−1∑
n=1

e−δqn/4 ‖Hµn‖
q
Lq(Qt)

≤ Ct−N/2
∞∑

n=1

‖Hµn‖
q
Lq(Qt)

e−δqn/4
∞∑

p=(n−`+1)∨1

e(δ(p+`−1)q−p)/4 (3.24)

≤ Ct−N/2
∞∑

n=1

e−(1+(n−`)+)/4 ‖Hµn‖
q
Lq(Qt)

.

Notice that we choose δ such that δ`q < 1. Combining (3.22 ) and (3.24 ), we derive (3.18 )
from Lemma 3.2, (3.10 ) and (3.11 ). �

The set of indices p for which the µn terms are not zero in J ′` is Z ∩ (−∞, at − `]. We write

J ′` = J ′1,` + J ′2,`,

where

J ′1,` =
0∑

p=−∞

∫ ∫
T ∗p

(t− s)−N/2e−|x−y|2/4(t−s)

 ∞∑
n=1∨p+`

Hµn(y, s)

q

dyds,
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and

J ′2,` =
at−∑̀
p=1

∫ ∫
T ∗p

(t− s)−N/2e−|x−y|2/4(t−s)

 ∞∑
n=p+`

Hµn(y, s)

q

dyds.

Lemma 3.6 There exists a constant C = C(N, q, `) > 0 such that

J ′1,` ≤ Ct1−Nq/2
at∑

n=0

e−(1+β0)(n−h)+/4dNq−2q′

n+1 Cq
2/q,q′

(
Kn

dn+1

)
, (3.25)

where β0 = (q − 1)/4 and h = 2q(q + 1)/(q − 1)2.

Proof. Since

(y, s) ∈ T ∗p , and (z, 0) ∈ Kn =⇒ |y − z| ≥ (
√
n− α−p)

√
t, (3.26)

there holds

Hµn(y, s) ≤ (4πs)−N/2e−(
√

n−α−p)2t/4sµn(Kn) ≤ Ct−N/2e−(
√

n−α−p)2/4µn(Kn),

by Lemma 3.4. Let εn > 0 such that

Aε =
∞∑

n=1

εq
′

n <∞,

then

J ′1,` ≤ CA
q/q′
ε t−Nq/2

0∑
p=−∞

∫ ∫
T ∗p

(t− s)−N/2e−|x−y|2/4(t−s)
∞∑

n=1∨(p+`)

ε−q
n e−q(

√
n−α−p)2/4µq

n(Kn)ds dy

≤ CA
q/q′
ε t−Nq/2

∞∑
n=1

ε−q
n µq

n(Kn)
p=0∧(n−`)∑

−∞
e−q(

√
n−α−p)2/4

∫ ∫
T ∗p

(t− s)−N/2e−|x−y|2/4(t−s)ds dy

≤ CA
q/q′
ε t−Nq/2

∞∑
n=1

ε−q
n µq

n(Kn)e−q(
√

n−1)2/4

∫ ∫
∪p≤0T ∗p

(t− s)−N/2e−|x−y|2/4(t−s)ds dy

≤ CA
q/q′
ε t1−Nq/2

∞∑
n=1

ε−q
n µq

n(Kn)e−q(
√

n−1)2/4.

(3.27)
Set h = 2q(q + 1)/(q − 1)2 and Q = (1 + q)/2, then q(

√
n− 1)2 ≥ Q(n− h)+ for any n ≥ 1. If

we choose εn = e−(q−1)(n−h)+/16q, there holds ε−q
n e−q(

√
n−1)2/4 ≤ e(q+3)(n−h)+/16. Finally

J ′1,` ≤ Ct1−Nq/2
∞∑

n=1

e(1+ε0)(n−h)+/4µq
n(Kn),

with β0 = (q − 1)/4, which yields to (3.25 ) by the choice of the µn. �

In order to make easier the obtention of the estimate of the term J ′2,`, we first give the proof
in dimension 1.
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Lemma 3.7 Assume N = 1 and ` is an integer larger than 1. There exists a positive constant
C = C(q, `) > 0 such that

J ′2,` ≤ Ct−1/2
at∑

n=`

e−n/4d
(q−3)/(q−1)
n+1 C2/q,q′

(
Kn

dn+1

)
. (3.28)

Proof. If (y, s) ∈ T ∗p and z ∈ Kn (p ≥ 1, n ≥ p = `) , there holds |x− y| ≥
√
t
√
p and

|y − z| ≥
√
t(
√
n−

√
p+ 1). Therefore

J ′2,` ≤ C
√
t

at−∑̀
p=1

1
√
p

∫ t

0
e−pt/4(t−s)

 at∑
n=p+`

s−1/2e−(
√

n−
√

p+1)2t/4sµn(Kn)

q

.

If ε ∈ (0, q) is some positive parameter which will be made more precise later on, there holds at∑
n=p+`

s−1/2e−(
√

n−
√

p+1)2t/4sµn(Kn)

q

≤

 at∑
n=p+`

e−εq′(
√

n−
√

p+1)2t/4s

q/q′
at∑

n=p+`

s−q/2e−(q−ε)(
√

n−
√

p+1 )2)t/4sµq
n(Kn),

by Hölder’s inequality. By comparison between series and integrals and using Gauss’ integral
at∑

n=p+`

e−εq′(
√

n−
√

p+1)2t/4s ≤
∫ ∞

p+`
e−εq′(

√
x−

√
p+1)2t/4sdx

= 2
∫ ∞

√
p+`−

√
p+1

e−εq′x2t/4s(x+
√
p+ 1)dx

≤ 4s
εq′t

e−εq′(
√

p+`−
√

p+1)2t/4s + 2
√
p+ 1

∫ ∞

√
p+`−

√
p+1

e−εq′x2t/4sdx

≤ C

√
(p+ 1)s

t
e−εq′(

√
p+`−

√
p+1)2t/2s

≤ C

√
(p+ 1)s

t
.

If we set qε = q − ε, then

J ′2,` ≤ Cε−q′/qt1−q/2
∞∑

n=`+1

µq
n(Kn)

n−∑̀
p=1

p(q−2)/2

∫ t

0
(t− s)−1/2s−1/2e−pt/4(t−s)e−qε(

√
n−

√
p+1)2)t/4sds.

where C = C(ε, q) > 0. Since∫ t

0
(t− s)−1/2s−1/2e−pt/4(t−s)e−qε(

√
n−

√
p+1)2)t/4sds

=
∫ 1

0
(1− s)−1/2s−1/2e−p/4(1−s)e−qε(

√
n−

√
p+1)2/4sds,
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we can apply Lemma A.1 with a = 1/2, b = 1/2, A =
√
p and B =

√
qε(
√
n−

√
p+ 1). In this

range of indices B ≥ √
qε(
√
p+ `−

√
p+ 1) ≥ √

qε(`− 1)
√
p, thus κ =

√
qε(`− 1) and√

A

A+B

√
B

A+B
≤ p1/4n−1/2(

√
n−√p)1/2.

Therefore∫ t

0
(t− s)−1/2s−q/2e−pt/4(t−s)e−q(

√
n−

√
p+1)2t/4sds ≤

Cp1/4(
√
n−√p)1/2

√
n

e−(
√

p+
√

qε(
√

n−
√

p+1))2/4,

(3.29)
which implies

J ′2,` ≤ Ct1−q/2
at∑

n=`+1

µq
n(Kn)√
n

n−∑̀
p=1

p(2q−3)/4(
√
n−√p)1/2e−(

√
p+
√

qε(
√

n−
√

p+1))2/4, (3.30)

where C depends of ε, q and `. By Lemma A.2

J ′2,` ≤ Ct1−q/2
at∑

n=`+1

n(q−3)/2e−n/4µq
n(Kn) (3.31)

Because µn(Kn) = d
(q−3)/(q−1)
n+1 C2/q,q′(Kn/dn+1) (remember N = 1) and diamKn/dn+1 ≤ 1/n,

there holds

µq
n(Kn) ≤ C(

√
t/
√
n)q−3µn(Kn) = C(

√
t/
√
n)q−3d

(q−3)/(q−1)
n+1 C2/q,q′(Kn/dn+1) (3.32)

and inequality (3.28 ) follows. �

Next we give the general proof. For this task we shall use again the quasi-additivity with
separated partitions.

Lemma 3.8 Assume N ≥ 2 and ` is an integer larger than 1. There exist a positive constant
C1 = C1(q,N, `) > 0 such that f

J ′2,` ≤ C1t
−N/2

at∑
n=`

e−n/4d
N−2/(q−1)
n+1 C2/q,q′

(
Kn

dn+1

)
. (3.33)

Proof. As in the proof of Theorem 2.14, we know that there exists a finite number J , depending
only on the dimension N , of separated sub-partitions {#Θh

t,n}J
h=1 of the sets Tn by the N -dim

balls B√t/
√

n+1(an,j) where |an,j | = (dn+1 +dn)/2 and |an,j − an,k| ≥
√
t/2
√
n+ 1. Furthermore

#Θh
t,n ≤ CnN−1. We denote Kn,j = Kn∩B√t/

√
n+1(an,j). We write µn =

J∑
h=1

µh
n, and accordingly

J ′2,` =
J∑

h=1

J ′2,`
h , where µh

n =
∑

j∈Θh
t,n

µn,j , and µn,j are the capacitary measures of Kn,j relative to

Bn,j = B6t/5
√

n(an, j), which means

νn,j(Kn,j) = C
Bn,j

2/q,q′(Kn,j) and ‖νn,j‖W−2/q,q′ (Bn,j)
=
(
C

Bn,j

2/q,q′(Kn,j)
)1/q

. (3.34)
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Thus

J ′2,` =
at−∑̀
p=1

∫ ∫
T ∗p

(t− s)−N/2e−|x−y|2/4(t−s)

 ∞∑
n=p+`

J∑
h=1

∑
j∈Θh

t,n

Hµn,j (y, s)


q

dyds.

We denote

J ′2,`
h =

at−∑̀
p=1

∫ ∫
T ∗p

(t− s)−N/2e−|x−y|2/4(t−s)

 ∞∑
n=p+`

∑
j∈Θh

t,n

Hµn,j (y, s)


q

dyds,

and clearly

J ′2,` ≤ C
J∑

h=1

J ′2,`
h, (3.35)

where C depends only on N and q. For integers n and p such that n ≥ `+ 1, we set

λn,j,y = inf{|y − z| : z ∈ B√t/
√

n+1(an,j)} = |y − an,j | −
√
t/
√
n+ 1.

Therefore
at∑

n=p+`

∫
Kn

e−|y−z|2/4sdµh
n(z) =

at∑
n=p+`

∑
j∈Θh

t,n

∫
Kn,j

e−|y−z|2/4sdµn,j(z)

≤

 at∑
n=p+`

∑
j∈Θh

t,n

e−εq′λ2
n,j,y/4s


1/q′ at∑

n=p+`

∑
j∈Θh

t,n

e−qλ2
n,j,y(1−ε)/4sµq

n,j(Kn,j)


1/q

where ε > 0 will be made precise later on.

Step 1 We claim that

at∑
n=p+`

∑
j∈Θt,n

e−εq′λ2
n,j,y/4s ≤ C

√
ps

t
(3.36)

where C depends on ε, q and N . If y is fixed in Tp, we denote by zy the point of Tn which solves
|y − zy| = dist (y, Tn). Thus

√
t(
√
n−

√
p+ 1) ≤ |y − zy| ≤ t(

√
n−√p).

Let Y = y
√
t(p+ 1)/ |y|. On the axis

−→
0Y we set e = Y/ |Y |, consider the points bk = (k

√
t/
√
n)e

where −n ≤ k ≤ n and denote by Gn,k the spherical shell obtain by intersecting the spherical
shell Tn with the domain Hn,k which is the set of points in RN limited by the hyperplanes
orthogonal to

−→
0Y going through ((k+ 1)

√
t/
√
n)e and ((k− 1)

√
t/
√
n)e. The number of points

an,j ∈ Gn,k is smaller than C(n + 1 − |k|)N−2, where C depends only on N , and we denote by
Λn,k the set of j ∈ Θt,n such that an,j ∈ Gn,k. Furthermore, if an,j ∈ Gn,k elementary geometric

28



considerations (Pythagore’s theorem) imply that λ2
n,j,y is greater than t(n+p+1−2k

√
p+ 1/

√
n).

Therefore
at∑

n=p+`

∑
j∈Θt,n

e−εq′λ2
n,j,y/4s ≤ C

at∑
n=p+`

n∑
k=−n

(n+ 1− |k|)N−2e−εq′(n+p+1−2k
√

p+1/)t/4s
√

n (3.37)

Case N = 2. By summing a geometric series and using the inequality eu/(eu − 1) ≤ 1 + 1/u for
u > 0, we obtain

n∑
k=−n

eεq
′(k

√
p+1/)t/2s

√
n ≤ eεq

′t
√

n(p+1)/2s eεq
′t
√

p+1/2s
√

n

eεq′t
√

p+1/2s
√

n − 1

≤ eεq
′t
√

n(p+1)/2s

(
1 +

2s
√
n

εq′t
√
p+ 1

)
.

(3.38)

Thus, by comparison between series and integrals,

at∑
n=p+`

∑
j∈Θt,n

e−εq′λ2
n,j,y/4s ≤ C

at∑
n=p+`

(
1 +

s
√
n

t
√
p

)
e−εq′(

√
n−

√
p+1 )2t/4s

≤ C

∫ ∞

p+1
e−εq′(

√
x−

√
p+1 )2t/4sdx

+
Cs

t
√
p

∫ ∞

p+1

√
xe−εq′(

√
x−

√
p+1 )2t/4sdx.

(3.39)

Next ∫ ∞

p+1
e−εq′(

√
x−

√
p+1 )2t/4sdx = 2

∫ ∞

√
p+1

e−εq′(y−
√

p+1 )2t/4sydy

= 2
∫ ∞

0
e−εq′y2t/4sydy + 2

√
p+ 1

∫ ∞

0
e−εq′y2t/4sdy

=
2s
t

∫ ∞

0
e−εq′z2/4zdz + 2

√
(p+ 1)s

t

∫ ∞

0
e−εq′z2/4dz,

(3.40)

and∫ ∞

p+1

√
xe−εq′(

√
x−

√
p+1 )2t/4sdx = 2

∫ ∞

√
p+1

e−εq′(y−
√

p+1 )2t/4sy2dy

= 2
∫ ∞

0
e−εq′y2t/4s(y +

√
p+ 1)2dy

≤ 4
∫ ∞

0
e−εq′y2t/4sy2dy + 4(p+ 1)

∫ ∞

0
e−εq′y2t/4sdy

≤ 4
(s
t

)3/2
∫ ∞

0
e−εq′z2/4z2dz + 4(p+ 1)

√
s

t

∫ ∞

0
e−εq′z2/4dz

(3.41)
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Jointly with (3.39 ), these inequalities imply
at∑

n=p+`

∑
j∈Θt,n

e−εq′λ2
n,j,y/4s ≤ C

√
ps

t
(3.42)

Case N > 2 Because the value of the right-hand side of (3.37 ) is an increasing value of N , it is
sufficient to prove (3.36 ) when N is even, say (N − 2)/2 = d ∈ N∗. There holds

n∑
k=−n

(n+ 1− |k|)deεq
′(k

√
p+1/)t/2s

√
n ≤ 2

n∑
k=0

(n+ 1− k)deεq
′(k

√
p+1/)t/2s

√
n (3.43)

We set

α = εq′
(√

p+ 1/
)
t/2s

√
n and Id =

n∑
k=0

(n+ 1− k)dekα.

Since

ekα =
e(k+1)α − ekα

eα − 1
we use Abel’s transform to obtain

Id =
1

eα − 1

(
e(n+1)α − (n+ 1)d +

n∑
k=1

(
(n+ 2− k)d − (n+ 1− k)d

)
ekα

)

≤ 1
eα − 1

(
(1− d)e(n+1)α − (n+ 1)d + deα

n∑
k=1

(
(n+ 1− k)d−1

)
ekα

)
.

Therefore the following induction holds

Id ≤
deα

eα − 1
Id−1. (3.44)

In (3.38 ), we have already used the fact that

deα

eα − 1
≤ C

(
1 +

s
√
n

t
√
p

)
,

and

Id ≤ C

(
1 +

(
s
√
n

t
√
p

)d+1
)
I0.

Thus (3.39 ) is replaced by
at∑

n=p+`

∑
j∈Θt,n

e−εq′λ2
n,j,y/4s ≤ C

at∑
n=p+`

(
1 +

(
s
√
n

t
√
p

)d+1
)
e−εq′(

√
n−

√
p+1 )2t/4s

≤ C

∫ ∞

p+1
e−εq′(

√
x−

√
p+1 )2t/4sdx

+
(
Cs

t
√
p

)d+1 ∫ ∞

p+1
x(d+1)/2e−εq′(

√
x−

√
p+1 )2t/4sdx.

(3.45)
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The first integral on the right-hand side has already been estimated in (3.40 ), for the second
integral, there holds∫ ∞

p+1
x(d+1)/2e−εq′(

√
x−

√
p+1 )2t/4sdx =

∫ ∞

0
(y +

√
p+ 1 )d+2e−εq′y2t/4sdx

≤ C

∫ ∞

0
yd+2e−εq′y2t/4sdy + Cp(d+2)/2

∫ ∞

0
e−εq′y2t/4sdy

≤ C
(s
t

)2+d/2
∫ ∞

0
z(d+1)/2e−εq′z2/4dz

+ C
(s
t

)3/2
p(d+2)/2

∫ ∞

0
e−εq′z2/4dz.

(3.46)
Combining (3.40 ), (3.45 )) and (3.46 ), we derive (3.36 ).

Step 2 Since T ∗p ⊂ Γp× [0, t] where Γp = Bdp+1(x)\Bdp−1(x), (y, s) ∈ T ∗p implies that |x− y|2 ≥
(p− 1)t, thus J ′2,`

h satisfies

J ′2,`
h ≤ Ct(1−q)/2

∞∑
p=1

p(q−1)/2

∫ t

0

∫
Γp

(t− s)−N/2s−(q(N−1)+1)/2e−|x−y|2/4(t−s)

×
at∑

n=p+`

∑
j∈Θh

t,n

e−qλ2
n,j,y(1−ε)/4sµq

n,j(Kn,j)dsdy

≤ Ct(1−q)/2
at∑

n=`+1

∑
j∈Θh

t,n

µq
n,j(Kn,j)

×
n−∑̀
p=1

p(q−1)/2

∫ t

0

∫
Γp

(t− s)−N/2s−(q(N−1)+1)/2e−|x−y|2/4(t−s)e−qλ2
n,j,y(1−ε)/4sdsdy

(3.47)

and the constant C depends on N, q and ε. Next we set qε = (1− ε)q. Writting

|y − an,j |2 = |x− y|2 + |x− an,j |2 − 2〈y − x, an,j − x〉 ≥ pt+ |x− an,j |2 − 2〈y − x, an,j − x〉,

we get∫
Γp

e−qε|y−an,j |2/4sdy = e−qε|x−an,j |2/4s

∫ √t(p+1)

√
tp

e−qεr2/4s

∫
|x−y|=r

e2qε〈y−x,an,j−x〉/4sdSr(y)dr.

For estimating the value of the spherical integral, we can assume that an,j−x = (0, . . . , 0, |an,j − x|),
y = (y1, . . . , yN ) and, using spherical coordinates with center at x, that the unit sphere has the
representation SN−1 = {(sinφ.σ, cosφ) ∈ RN−1 × R : σ ∈ SN−2, φ ∈ [0, π]}. With this repre-
sentation, dSr = rN−1 sinN−2 φdφ dσ and 〈y − x, an,j − x〉 = |an,j − x| |y − x| cosφ. Therefore∫

|x−y|=r
e2qε〈y−x,an,j−x〉/4sdSr(y) = rN−1

∣∣SN−2
∣∣ ∫ π

0
e2qε|an,j−x|r cos φ/4s sinN−2 φdφ.
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By Lemma A.3∫
|x−y|=r

e2qε〈y−x,an,j−x〉/4sdSr(y) ≤ C
rN−1e2qεr|an,j−x|/4s

(1 + r |an,j − x| /s)(N−1)/2

≤ Cs(N−1)/2

(
r

|an,j − x|

)(N−1)/2

e2qεr|an,j−x|/4s.

(3.48)

Therefore∫
Γp

e−qε|y−an,j |2/4sdy ≤ Ct(N+1)/4p(N−3)/4 s
(N−1)/2e−qε(|an,j−x|−

√
t(p+1) )2/4s

|an,j − x|(N−1)/2
, (3.49)

and, since |an,j − x| ≥
√
tn,∫ t

0

∫
Γp

(t− s)−N/2s−(q(N−1)+1)/2e−|x−y|2/4(t−s)e−qελ2
n,j,y/4sdy ds

≤ C

√
tp(N−3)/4

n(N−1)/4

∫ t

0
(t− s)−N/2s−((q−1)(N−1)+1)/2e−pt/4(t−s)e−qε(

√
tn−
√

t(p+1) )2/4sds

≤ C
t(1−q(N−1))/2p(N−3)/4

n(N−1)/4

∫ 1

0
(1− s)−N/2s−((q−1)(N−1)+1)/2e−p/4(1−s)e−qε(

√
n−

√
p+1 )2/4s.

(3.50)
We apply Lemma A.1, with A =

√
p, B =

√
qε(
√
n −

√
p+ 1), b = ((q − 1)(N − 1) + 1)/2,

a = N/2 and κ =
√
qε(`− 1)/8 as in the case N = 1, and noticing that, for these specific values,

A1−aB1−b(A+B)a+b−2 = p(2−N)/4(
√
qε(
√
n−

√
p+ 1))(1−(q−1)(N−1)/2

× (
√
p+

√
qε(
√
n−

√
p+ 1))((q−1)(N−1)+N−3)/2

≤ C

(
n

p

)N/4−1/2(√n−√p
√
n

)(1−(q−1)(N−1)/2

,

where C depends on N , q and κ. Therefore∫ t

0

∫
Γp

(t− s)−N/2s−N/2e−|x−y|2/4(t−s)e−qε|y−z|2/4sdy ds

≤ C
t(1−q(N−1))/2p(N−3)/4

n(N−1)/4

(
n

p

)N/4−1/2(√n−√p
√
n

)(1−(q−1)(N−1)/2

e−(
√

p+
√

qε(
√

n−
√

p+1))2/4

≤ Ct(1−q(N−1))/2p−1/4n((q−1)(N−1)−2)/4(
√
n−√p)(1−(q−1)(N−1)/2e−(

√
p+
√

qε(
√

n−
√

p+1))2/4.
(3.51)

We derive from (3.47 ), (3.51 ),

J ′2,`
h ≤ Ct1−Nq/2

×
at∑

n=`+1

∑
j∈Θh

t,n

n((q−1)(N−1)−2)/4µq
n,j(Kn,j)

n−∑̀
p=1

p(2q−3)/4(
√
n−√p)(1−(q−1)(N−1)/2e−(

√
p+
√

qε(
√

n−
√

p+1 ))2/4.

(3.52)
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By Lemma A.2 with α = (2q − 3)/4, β = (1− (q − 1)(N − 1)/2, δ = 1/4 and γ = qε, we obtain

n−∑̀
p=1

p(2q−3)/4(
√
n−√p)(1−(q−1)(N−1)/2e−(

√
p+
√

qε(
√

n−
√

p+1 ))2/4 ≤ Cn(N(q−1)+q−3)/4e−n/4,

(3.53)
thus

J ′2,`
h ≤ Ct1−Nq/2

at∑
n=`+1

nN(q−1)/2−1e−n/4
∑

j∈Θh
t,n

µq
n,j(Kn,j). (3.54)

Because

µn,j(Kn,j) = C
Bn,j

2/q,q′(Kn,j) ≈
(

t

n+ 1

)N/2−1/(q−1)

C2/q,q′(
√
n+ 1Kn,j/

√
t)

and diam (
√
n+ 1Kn,j/

√
t) ≤ 2, there holds

µq
n,j(Kn,j) ≤

(
t

n

)N(q−1)/2−1

C
Bn,j

2/q,q′(Kn,j), (3.55)

we obtain

J ′2,`
h ≤ Ct−N/2

at∑
n=`+1

e−n/4
∑

j∈Θh
t,n

C
Bn,j

2/q,q′(Kn,j)

≤ Ct−N/2
at∑

n=`+1

e−n/4

(
t

n

)N/2−1/(q−1)

C2/q,q′(
√
nKn/

√
t).

(3.56)

by using (2.52 ) in Lemma 2.15. Since C2/q,q′(
√
nKn/

√
t) ≤ (dn+1

√
n/
√
t)N−2/(q−1)C2/q,q′(Kn/dn+1),

we finally derive

J ′2,`
h ≤ Ct−N/2

at∑
n=`+1

d
N−2/(q−1)
n+1 e−n/4

∑
j∈Θh

t,n

µq
n,j(Kn,j). (3.57)

Using again the quasi-additivity and the fact that J ′2,` =
J∑

h=1

J ′2,`
h , we deduce

J2,` ≤ C ′t−N/2
at∑

n=`+1

d
N−2/(q−1)
n+1 e−n/4C2/q,q′(Kn/dn+1), (3.58)

which implies (3.33 ). �

The proof of Theorem 3.1 follows from the previous estimates on J1 and J2. Furthermore
the following integral expression holds
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Theorem 3.9 Assume q ≥ qc. Then there exists a positive constants C∗2 , depending on N ,q
and T , such that for any closed set F , there holds

uF (x, t) ≥ C∗2
t1+N/2

∫ √
tat

0
e−s2/4tsN−2/(q−1)C2/q,q′

(
F

s
∩B1(x)

)
s ds, (3.59)

where at is the smallest integer j such that F ⊂ B√jt(x).

Proof. We shall distinguish according q = qc, or q > qc, and for simplicity we shall denote
Br = Br(x) for the various values of r.
Case 1: q = qc ⇐⇒ N − 2/(q − 1) = 0. Because Fn = F ∩ (Bdn+1 \Bdn) there holds

C2/q,q′

(
Fn

dn+1

)
≥ C2/q,q′

(
F

dn+1
∩B1

)
− C2/q,q′

(
F ∩Bdn

dn+1

)
,

Furthermore, since dn+1 ≥ dn,

C2/q,q′

(
F ∩Bdn

dn+1

)
= C2/q,q′

(
dn

dn+1

F ∩Bdn

dn

)
≤ C2/q,q′

(
F

dn
∩B1

)
,

thus

C2/q,q′

(
Fn

dn+1

)
≥ C2/q,q′

(
F

dn+1
∩B1

)
− C2/q,q′

(
F

dn
∩B1

)
,

it follows
at∑

n=1

e−n/4C2/q,q′

(
Fn

dn+1

)
≥

at∑
n=1

e−n/4C2/q,q′

(
F

dn+1
∩B1

)
−

at∑
n=1

e−n/4C2/q,q′

(
F

dn
∩B1

)

≥
at∑

n=1

e−n/4C2/q,q′

(
F

dn+1
∩B1

)
− e−1/4

at−1∑
n=0

e−n/4C2/q,q′

(
F

dn+1
∩B1

)

≥ (1− e−1/4)
at−1∑
n=1

e−n/4C2/q,q′

(
F

dn+1
∩B1

)
− e−1/4C2/q,q′

(
F√
t
∩B1

)
.

Since, by (2.66 ),

C2/q,q′

(
F

s′
∩B1

)
≥ C2/q,q′

(
F

dn+1
∩B1

)
≥ C2/q,q′

(
F

s
∩B1

)
,

for any s′ ∈ [dn+1, dn+2] and s ∈ [dn, dn+1], there holds

te−n/4C2/q,q′

(
F

dn+1
∩B1

)
≥ C2/q,q′

(
F

dn+1
∩B1

)∫ dn+1

dn

e−s2/4ts ds

≥
∫ dn+1

dn

e−s2/4tC2/q,q′

(
F

s
∩B1

)
s ds.

This implies

WF (x, t) ≥ (1− e−1/4)t−(1+N/2)

∫ √
tat

0
e−s2/4tC2/q,q′

(
F

s
∩B1

)
s ds.
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Case 2: q > qc ⇐⇒ N − 2/(q − 1) > 0. In that case it is known [1] that

C2/q,q′

(
Fn

dn+1

)
≈ d

2/(q−1)−N
n+1 C2/q,q′ (Fn)

thus

WF (x, t) ≈ t−1−N/2
at∑

n=0

e−n/4C2/q,q′ (Fn) .

Since
C2/q,q′ (Fn) ≥ C2/q,q′

(
F ∩Bdn+1

)
− C2/q,q′ (F ∩Bdn) ,

and again

t−N/2
at∑

n=0

e−n/4C2/q,q′ (Fn) ≥ (1− e−1/4)t−N/2

at−1∑
n=0

e−n/4C2/q,q′
(
F ∩Bdn+1

)
≥ (1− e−1/4)t−(1+N/2)

∫ √
tat

0
e−s2/4tC2/q,q′ (F ∩Bs) s ds.

Because C2/q,q′ (F ∩Bs) ≈ sN−2/(q−1)C2/q,q′
(
s−1F ∩B1

)
, (3.59 ) follows. �

4 Applications

The first result of this section is the following

Theorem 4.1 Assume N ≥ 1 and q > 1. Then uK = uK .

Proof. If 1 < q < qc, the result is already proved in [20]. The proof in the super-critical case is an
adaptation that we shall recall, for the sake of completeness. By Theorem 2.16 and Theorem 3.9
there exists a positive constant C, depending on N , q and T such that

uF (x, t) ≤ uF (x, t) ∀(x, t) ∈ QT .

By convexity ũ = uF −
1

2C
(uF − uF ) is a super-solution, which is smaller than uF if we assume

that uF 6= uF . If we set θ := 1/2 + 1/(2C), then uθ = θuF is a subsolution. Therefore there
exists a solution u1 of (1.1 ) in Q∞ such that uθ ≤ u1 ≤ ũ < uF . If µ ∈ M

q
+(RN ) satisfies

µ(F c) = 0, then uθµ is the smallest solution of (1.1 ) which is above the subsolution θuµ. Thus
uθµ ≤ u1 < uF and finally uF ≤ u1 < uF , a contradiction. �

If we combine Theorem 2.16 and Theorem 3.9 we derive the following integral approximation
of the capacitary potential
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Proposition 4.2 Assume q ≥ qc. Then there exist two positive constants C†1, C
†
2, depending

only on N , q and T such that

C†2t
−(1+N/2)

∫ √
tat

0
sN−2/(q−1)e−s2/4tC2/q,q′

(
F

s
∩B1(x)

)
s ds ≤WF (x, t)

≤ C†1t
−(1+N/2)

∫ √t(at+2)

√
t

sN−2/(q−1)e−s2/4tC2/q,q′

(
F

s
∩B1(x)

)
s ds

(4.60)

for any (x, t) ∈ QT .

Definition 4.3 If F is a closed subset of RN , we define the (2/q, q′) integral capacitary potential
WF by

WF (x, t) = t−1−N/2

∫ DF (x)

0
sN−2/(q−1)e−s2/4tC2/q,q′

(
F

s
∩B1(x)

)
s ds ∀(x, t) ∈ Q∞, (4.61)

where DF (x) = max{|x− y| : y ∈ F}.

An easy computation shows that

0 ≤ WF (x, t)− t−(1+N/2)

∫ √
tat

0
sN−2/(q−1)e−s2/4tC2/q,q′

(
F

s
∩B1(x)

)
s ds

≤ C
t(q−3)/2(q−1)

DF (x)
e−D2

F (x)/4t,

(4.62)

and

0 ≤ t−(1+N/2)

∫ √t(at+2)

0
sN−2/(q−1)e−s2/4tC2/q,q′

(
F

s
∩B1(x)

)
s ds−WF (x, t)

≤ C
t(q−3)/2(q−1)

DF (x)
e−D2

F (x)/4t,

(4.63)

for some C = C(N, q) > 0. Furthermore

WF (x, t) = t−1/(q−1)

∫ DF (x)/
√

t

0
sN−2/(q−1)e−s2/4C2/q,q′

(
F

s
√
t
∩B1(x)

)
s ds. (4.64)

The following result gives a sufficient condition in order uF has not a strong blow-up at some
point x.

Proposition 4.4 Assume q ≥ qc and F is a closed subset of RN . If there exists γ ∈ [0,∞) such
that

lim
τ→0

C2/q,q′

(
F

τ
∩B1(x)

)
= γ, (4.65)

then
lim
t→0

t1/(q−1)uF (x, t) = Cγ, (4.66)

for some C = C(N, q) > 0.
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Proof. Clearly, condition (4.65 ) implies

lim
t→0

C2/q,q′

(
F√
ts
∩B1(x)

)
= γ

for any s > 0. Then (4.66 ) follows by Lebesgue’s theorem. Notice also that the set of γ is
bounded from above by a constant depending on N and q. �

In the next result we give a condition in order the solution remains bounded at some point
x. The proof is similar to the previous one.

Proposition 4.5 Assume q ≥ qc and F is a closed subset of RN . If

lim sup
τ→0

τ−2/(q−1)C2/q,q′

(
F

τ
∩B1(x)

)
<∞, (4.67)

then uF (x, t) remains bounded when t→ 0.

A Appendix

The next estimate is crucial in the study of semilinear parabolic equations.

Lemma A.1 Let a and b be two real numbers, a > 0 and κ > 0. Then there exists a constant
C = C(a, b, κ) > 0 such that for any A > 0, B > κ/A there holds∫ 1

0
(1− x)−ax−be−A2/4(1−x)e−B2/4xdx ≤ Ce−(A+B)2/4A1−aB1−b(A+B)a+b−2. (A.1)

Proof. We first notice that

max{e−A2/4(1−x)e−B2/4x : 0 ≤ x ≤ 1} = e−(A+B)2/4, (A.2)

and it is achieved for x0 = B/(A+B). Set Φ(x) = (1− x)−ax−be−A2/4(1−x)e−B2/4x, thus∫ 1

0
Φ(x)dx =

∫ x0

0
Φ(x)dx+

∫ 1

x0

Φ(x)dx = Ia,b + Ja,b.

Put

u =
A2

4(1− x)
+
B2

4x
, (A.3)

then
4ux2 − (4u+B2 −A2)x+B2 = 0. (A.4)

If 0 < x < x0 this equation admits the solution

x = x(u) =
1
8u

(
4u+B2 −A2 −

√
16u2 − 8u(A2 +B2) + (A2 −B2)2

)
∫ x0

0
(1− x)−ax−be−A2/4(1−x)−B2/4xdx = −

∫ ∞

(A+B)2/4
(1− x(u))−ax(u)−be−ux′(u)du
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Putting x′ = x′(u) and differentiating (A.4 ),

4x2 + 8uxx′ − (4u+B2 −A2)x′ − 4x = 0 =⇒ −x′ = 4x(1− x)
4u+B2 −A2 − 8ux

.

Thus ∫ x0

0
Φ(x)dx = 4

∫ ∞

(A+B)2/4

(1− x(u))−a+1x(u)−b+1e−udu

4u+B2 −A2 − 8ux(u)
. (A.5)

Using the explicit value of the root x(u), we finally get∫ x0

0
Φ(x)dx = 4

∫ ∞

(A+B)2/4

(1− x(u))−a+1x(u)−b+1e−udu√
16u2 − 8u(A2 +B2) + (A2 −B2)2

, (A.6)

and the factorization below holds

16u2 − 8u(A2 +B2) + (A2 −B2)2 = 16(u− (A+B)2/4)(u− (A−B)2/4).

We set u = υ + (A+B)2/4 and obtain

x(u) =
v + (AB +B2)/2−

√
v(v +AB)

2 (v + (A+B)2/4)
,

and

1− x(u) =
v + (A2 +AB)/2 +

√
v(v +AB)

2 (v + (A+B)2/4)
.

We introduce the relation ≈ linking two positive quantities depending on A and B. It means
that the two sided-inequalities up to multiplicative constants independent of A and B. Therefore∫ x0

0
Φ(x)dx = 2a−b−4e−(A+B)2/4

∫ ∞

0
Φ̃(v)dv where

Φ̃(v) =

(
v + (AB +B2)/2−

√
v(v +AB)

)1−b (
v + (A2 +AB)/2 +

√
v(v +AB)

)1−a

(v + (A+B)2/4)2−a−b
√
v(v +AB)

e−vdv.

(A.7)
Case 1: a ≥ 1, b ≥ 1. First(

v + (A+B)2/4
)a+b−2√

v(v +AB)
≤
(
v + (A+B)2/4

)a+b−2√
v(v + κ)

≈
(
v + (A+B)2

)a+b−2√
v(v + κ)

(A.8)

since a+ b− 2 ≥ 0 and AB ≥ κ. Next(
v + (A2 +AB)/2 +

√
v(v +AB)

)1−a
≈ (v +A(A+B))1−a . (A.9)

Furthermore

v + (AB +B2)/2−
√
v(v +AB) = B2 v + (A+B)2/4

v +B(A+B)/2 +
√
v(v +AB)

≈ B2 v + (A+B)2

v +B(A+B)
.

(A.10)
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Then (
v + (AB +B2)/2−

√
v(v +AB)

)1−b
≈ B2−2b

(
v +B(A+B)
v + (A+B)2

)b−1

(A.11)

It follows

Φ̃(v) ≤ CB2−2b

(
v + (A+B)2

v +A(A+B)

)a−1 (v +B(A+B))b−1√
v(v + κ)

≤ CB2−2b

(
v + (A+B)2

v +A(A+B)

)a−1
vb−1 + (B2 +AB)b−1√

v(v + κ)

(A.12)

where C depends on a, b and κ. The function v 7→ (v+ (A+B)2)/(v+A(A+B)) is decreasing
on (0,∞). If we set

C1 =
∫ ∞

0

vb−1e−vdv√
v(v + κ)

and C2 =
∫ ∞

0

e−vdv√
v(v + κ)

then
C1 ≤ K(B2 +AB)b−1C2

with K = C1κ
1−b/C2. Therefore∫ x0

0
Φ(x)dx ≤ Ce−(A+B)2/4B1−bA1−a(A+B)a+b−2. (A.13)

The estimate of Ja,b is obtained by exchanging (A, a) with (B, b) and replacing x by 1 − x.
Mutadis mutandis, this yields directely to the same expression as in A.13 and finally∫ 1

0
Φ(x)dx ≤ Ce−(A+B)2/4A1−aB1−b(A+B)a+b−2. (A.14)

Case 2: a ≥ 1, b < 1. Estimates (A.7 ), (A.8 ), (A.9 ), (A.10 ) and (A.11 ) are valid. Because
v 7→ (v +B(A+B))b−1 is decreasing, (A.12 ) has to be replaced by

Φ̃(v) ≤ CB2−2b

(
v + (A+B)2

v +A(A+B)

)a−1 (AB +B2
)b−1√

v(v + κ)
. (A.15)

This implies (A.13 ) directly. The estimate of Ja,b is performed by the change of variable
x 7→ 1− x. If x1 = 1− x0 , there holds

Ja,b =
∫ x1

0
x−a(1− x)−be−A2/4xe−B2/4(1−x)dx =

∫ x1

0
Ψ(x)dx.

Then ∫ x1

0
Ψ(x)dx = 2b−a−4e−(A+B)2/4

∫ x1

0
Ψ̃(v)dv where

Ψ̃(v) =

(
v + (AB +A2)/2−

√
v(v +AB)

)1−a (
v + (B2 +AB)/2 +

√
v(v +AB)

)1−b

(v + (A+B)2/4)2−a−b
√
v(v +AB)

e−vdv.

(A.16)
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Equivalence (A.8 ) is unchanged; (A.9 ) is replaced by(
v + (B2 +AB)/2 +

√
v(v +AB)

)1−b
≈ (v +B(A+B))1−b , (A.17)

(A.10 ) by

v + (AB +A2)/2−
√
v(v +AB) ≈ A2 v + (A+B)2

v +A(A+B)
, (A.18)

and (A.11 ) by(
v + (AB +A2)/2−

√
v(v +AB)

)1−a
≈ A2−2a

(
v +A(A+B)
v + (A+B)2

)a−1

. (A.19)

Because a > 1, (A.12 ) turns into

Ψ̃(v) ≤ CA2−2b(v + (A+B)2)b−1 (v +A2 +AB)a−1(v +B2 +AB)1−b√
v(v + κ)

≤ Ce−(A+B)2/4A2−2b(A+B)2b−2

× va−b + (A2 +AB)a−1v1−b + (B2 +AB)1−bva−1 +Aa−1B1−b(A+B)a−b√
v(v + κ)

.

(A.20)
Because AB ≥ κ, there exists a positive constant C, depending on κ, such that∫ ∞

0

va−b + (A2 +AB)a−1v1−b + (B2 +AB)1−bva−1√
v(v + κ)

e−vdv

≤ CAa−1B1−b(A+B)a−b

∫ ∞

0

e−vdv√
v(v + κ)

.

(A.21)

Combining (A.20 ) and (A.21 ) yields to∫ x1

0
Ψ(x)dx ≤ Ce−(A+B)2/4A1−aB1−b(A+B)a+b−2. (A.22)

This, again, implies that (A.1 ) holds.

Case 3: max{a, b} < 1. Inequalities (A.7 )-(A.11 ) hold, but (A.12 ) has to be replaced by

Φ̃(v) ≤ CB2−2b

(
v + (A+B)2

v +A(A+B)

)a−1 (v +B2 +AB
)b−1√

v(v + κ)

≤ CB1−b(A+B)2a+b−3
v1−a +

(
A2 +AB

)1−a√
v(v + κ)

(A.23)

Noticing that ∫ ∞

0

v1−ae−vdv√
v(v + κ)

≤ C
(
A2 +AB

)1−a
∫ ∞

0

e−vdv√
v(v + κ)

,

it follows that (A.13 ) holds. Finally (A.14 ) holds by exchanging (A, a) and (B, b). �
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Lemma A.2 . Let α, β, γ, δ be real numbers and ` an integer. We assume γ > 1, δ > 0 and
` ≥ 2. Then there exists a positive constant C such that, for any integer n > `

n−∑̀
p=1

pα(
√
n−√p )βe−δ(

√
p+
√

γ(
√

n−
√

p+1))2 ≤ Cnα−β/2e−δn. (A.24)

Proof. The function x 7→ (
√
x+

√
γ(
√
n−

√
x+ 1))2 is decreasing on [(γ−1)−1,∞). Furthermore

there exists C > 0 depending on `, α and β such that pα(
√
n − √

p )β ≤ Cxα(
√
n −

√
x+ 1 )β

for x ∈ [p, p+ 1] If we denote by p0 the smallest integer larger than (γ − 1)−1, we derive

S =
n−∑̀
p=1

pα(
√
n−√p )βe−(

√
p+
√

γ(
√

n−
√

p+1))2/4 =
p0−1∑
p=1

+
n−∑̀
p0

pα(
√
n−√p )βe−δ(

√
p+
√

γ(
√

n−
√

p+1))2

≤
p0−1∑
p=1

pα(
√
n−√p )βe−δ(

√
p+
√

γ(
√

n−
√

p+1))2

+ C

∫ n+1−`

p0

xα(
√
n−

√
x )βe−δ(

√
x+

√
γ(
√

n−
√

x+1))2dx,

(notice that
√
n−

√
x ≈

√
n−

√
x+ 1 for x ≤ n− `). Clearly

p0−1∑
p=1

pα(
√
n−√p )βe−δ(

√
p+
√

γ(
√

n−
√

p+1))2 ≤ C0n
α(
√
n−

√
n− ` )βe−δn (A.25)

for some C0 independent of n. We set y = y(x) =
√
x+ 1−

√
x/
√
γ. Obviously

y′(x) =
1
2

(
1√
x+ 1

− 1
√
γ
√
x

)
∀x ≥ p0,

and their exists ε = ε(δ, γ) > 0 such that
√

2
√
x ≥ y(x) ≥ ε

√
x and y′(x) ≥ ε/

√
x. Furthermore

√
x =

√
γ
(
y +

√
γy2 + 1− γ

)
γ − 1

,

√
n−

√
x =

√
n(γ − 1)−√γy −√γ

√
γy2 + 1− γ

γ − 1

=
n(γ − 1) + γ − 2y

√
γn− γy2

√
n(γ − 1)−√γy +

√
γ
√
γy2 + 1− γ

≈
n(γ − 1) + γ − 2y

√
γn− γy2

√
n

since y(x) ≤
√
n. Furthermore

n(γ − 1) + γ − 2y
√
γn− γy2 = γ(

√
n+ 1 +

√
n/
√
γ + y)(

√
n+ 1−

√
n/
√
γ − y)

≈
√
n(
√
n+ 1−

√
n/
√
γ − y),
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because y ranges between
√
n+ 2− `−

√
n+ 1− `

√
γ ≈

√
n and

√
p0 + 1−√p0

√
γ. Thus

(
√
n−

√
x )β ≈

(√
n+ 1−

√
n/
√
γ − y

)β
.

This implies∫ n+1−`

p0

xα(
√
n−

√
x )βe−δ(

√
x+γ(

√
n−

√
x+1))2dx

≤ C

∫ y(n+1−`)

y(p0)
y2α+1

(√
n+ 1−

√
n/
√
γ − y

)β
e−γδ(

√
n−y)2dy

≤ Cnα+β/2+1

∫ 1−y(p0)/
√

n

1−y(n+1−`)/
√

n
(1− z)2α+1(z +

√
1 + 1/n− 1− 1/

√
γ)βe−γδnz2

dz.

(A.26)
Moreover

1− y(p0)√
n

= 1− 1√
n

(√
p0 + 1−

√
p0√
γ

)
,

1− y(n− `+ 1)√
n

= 1−
√
n− `+ 2√

n
+
√
n− `+ 1
√
nγ

=
1
√
γ

(
1 +

√
γ (`− 2)− `+ 1

2n
+
√
γ (`− 2)2 − (`− 1)2

8n2

)
+O(n−3).

(A.27)

Let θ fixed such that 1− y(n− `+ 1)√
n

< θ < 1− y(p0)√
n

for any n > p0. Then

∫ 1−y(p0)/
√

n

θ
(1− z)2α+1(z +

√
1 + 1/n− 1− 1/

√
γ)βe−γδnz2

dz ≤ Cθ

∫ 1−y(p0)/
√

n

θ
(1− z)2α+1e−γδnz2

dz

≤ Cθ e
−γδnθ2

∫ 1−y(p0)/
√

n

θ
(1− z)2α+1dz

≤ C e−γδnθ2
max{1, n−α−1/2}.

Because γθ2 > 1 we derive∫ 1−y(p0)/
√

n

θ
(1− z)2α+1(z +

√
1 + 1/n− 1− 1/

√
γ)βe−γδnz2

dz ≤ Cn−βe−δn, (A.28)

for some constant C > 0. On the other hand∫ θ

1−y(n+1−`)/
√

n
(1− z)2α+1(z +

√
1 + 1/n− 1− 1/

√
γ)βe−γδnz2

dz

≤ C ′θ

∫ θ

1−y(n+1−`)/
√

n
(z +

√
1 + 1/n− 1− 1/

√
γ)βe−γδnz2

dz.

The minimum of z 7→ (z +
√

1 + 1/n− 1− 1/
√
γ)β is achieved at 1− y(n+ 1− `) with value

√
γ(`+ 1) + 1− `

2n
√
γ

+O(n−2),
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and the maximum of the exponential term is achieved at the same point with value

e−nδ+((`−2)
√

γ+1−`)/2(1 + ◦(1)) = Cγe
−nδ(1 + ◦(1)).

We denote

zγ,n = 1 + 1/
√
γ −

√
1 + 1/n and Iβ =

∫ θ

1−y(n+1−`)/
√

n
(z − zγ,n)βe−γδnz2

dz.

Since 1− y(n+ 1− `) ≥ 1/
√

2γ for n large enough,

Iβ ≤
√

2γ
∫ θ

1−y(n+1−`)/
√

n
(z − zγ,n)βze−γδnz2

dz

≤ −
√

2γ
2nγδ

[
(z − zγ,n)βe−γδnz2

]θ
1−y(n+1−`)/

√
n

+
β
√

2γ
2nγδ

∫ θ

1−y(n+1−`)/
√

n
(z − zγ,n)β−1ze−γδnz2

dz

But 1− y(n+ 1− `)/
√
n− zγ,n = (`− 1)(1− 1/

√
γ)/2n, therefore

Iβ ≤ C1n
−β−1e−δn + βC ′1n

−1Iβ−1. (A.29)

If β ≤ 0 , we derive
Iβ ≤ C1n

−β−1e−δn,

which inequality, combined with (A.26 )and (A.28 ), yields to(A.24 ). If β > 0, we iterate and
get

Iβ ≤ C1n
−β−1e−δn + C ′1n

−1(C1n
−βe−δn + (β − 1)C ′1n

−1Iβ−2)

If β − 1 ≤ 0 we derive

Iβ ≤ C1n
−β−1e−δn + C1C

′
1n

−1−βe−δn = C2n
−β−1e−δn,

which again yields to (A.24 ). If β−1 > 0, we continue up we find a positive integer k such that
β − k ≤ 0, which again yields to

Iβ ≤ Ckn
−β−1e−δn

and to (A.24 ). �

The next estimate is fundamental in deriving the N -dimensional estimate.

Lemma A.3 For any integer N ≥ 2 there exists a constant cN > 0 such that∫ π

0
em cos θ sinN−2 θ dθ ≤ cN

em

(1 +m)(N−1)/2
∀m > 0. (A.30)
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Proof. Put IN (m) =
∫ π

0
em cos θ sinN−2 θ dθ. Then I ′2(m) =

∫ π

0
em cos θ cos θ dθ and

I ′′2 (m) =
∫ π

0
em cos θ cos2 θ dθ = I2(m)−

∫ π

0
em cos θ sin2 θ dθ

= I2(m)− 1
m

∫ π

0
em cos θ cos θ dθ

= I2(m)− 1
m
I ′2(m).

Thus I2 satisfies a Bessel equation of order 0. Since I2(0) = π and I ′2(0) = 0, π−1I2 is the
modified Bessel function of index 0 (usually denoted by I0) the asymptotic behaviour of which
is well known, thus (A.30 ) holds. If N = 3

I3(m) =
∫ π

0
em cos θ sin θ dθ =

[
−em cos θ

m

]π

0

=
2 sinhm

m
.

For N > 3 arbitrary

IN (m) =
∫ π

0

−1
m

d

dθ
(em cos θ) sinN−3 θ dθ =

N − 3
m

∫ π

0
em cos θ cos θ sinN−4 θ dθ. (A.31)

Therefore,

I4(m) =
1
m

∫ π

0
em cos θ cos θ dθ = I ′2(m),

and, again (A.30 ) holds since I ′0(m) has the same behaviour as I0(m) at infinity. For N ≥ 5

IN (m) =
3−N

m2

[
em cos θ cos θ sinN−5 θ

]π
0

+
N − 3
m2

∫ π

0
em cos θ d

dθ

(
cos θ sinN−5 θ

)
dθ.

Differentiating cos θ sinN−5 θ and using (A.31 ), we obtain

I5(m) =
4 sinhm
m2

− 4 sinhm
m3

,

while
IN (m) =

(N − 3)(N − 5)
m2

(IN−4(m)− IN−2(m)) , (A.32)

for N ≥ 6. Since the estimate (A.30 ) for I2, I3, I4 and I5 has already been obtained, a
straigthforward induction yields to the general result. �

Remark. Although it does not has any importance for our use, it must be noticed that IN can
be expressed either with hyperbolic functions if N is odd, or with Bessel functions if N is even.

References

[1] Adams D. R. and Hedberg L. I., Function spaces and potential theory, Grundlehren Math.
Wissen. 314, Springer (1996).

44



[2] Aikawa H. and Borichev A.A., Quasiadditivity and measure property of capacity and the
tangential boundary behavior of harmonic functions, Trans. Amer. Math. Soc. 348, 1013-
1030 (1996).
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