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SEMIDIRECT PRODUCT DECOMPOSITION

OF COXETER GROUPS

CÉDRIC BONNAFÉ AND MATTHEW J. DYER

Abstract. Let (W, S) be a Coxeter system, let S = I ∪̇ J be a partition of S

such that no element of I is conjugate to an element of J , let J̃ be the set of

WI -conjugates of elements of J and let W̃ be the subgroup of W generated by J̃ .

We show that W = W̃ ⋊ WI and that (W̃ , J̃) is a Coxeter system.

Internal semidirect products. Let (W, S) be a Coxeter system and assume that

S is the union of two subsets I and J such that no element of I is conjugate to an

element of J . Let WI be the subgroup of W generated by I. Let J̃ be the set of

elements of the form wsw−1 where w is in WI and s is in J . Let W̃ be the subgroup

of W generated by J̃ . The main result of this paper is the following:

Theorem. With the above notation, we have:

(a) W = W̃ ⋊ WI (semidirect product with W̃ normal).

(b) (W̃ , J̃) is a Coxeter system and J̃ is the set of canonical Coxeter generators

of W̃ .

(c) Each element w of WI is the unique element of minimal length in its coset

W̃w = wW̃ .

Notation, remark, definition - Let T = ∪
w∈W

wSw−1 be the set of reflections

of W . If w ∈ W , we set N(w) = {t ∈ T | ℓ(wt) < ℓ(w)} where ℓ is the length

function of (W, S). If W ′ is a subgroup of W generated by reflections, we set

χ(W ′) = {t ∈ T | N(t) ∩ W ′ = {t}}.

Then [4, (3.3)] (W ′, χ(W ′)) is a Coxeter system: χ(W ′) is called the set of canonical

Coxeter generators of W ′.

Comment - This Theorem will be used by the first author [1] for studying the

Hecke algebra and the Kazhdan-Lusztig theory with unequal parameters whenever

the parameters are zero on the set I.
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We shall actually state and prove a more precise version (Theorem 2) of the

Theorem which explicitly describes the Coxeter matrix of (W̃ , J̃). This requires

some additional notation. If s and t are two elements of T , we denote by ms,t the

order of st. It is well known that two simple reflections are W -conjugate iff, regarded

as vertices of the Coxeter graph of (W, S), there is a path from one to the other

such that each edge of the path has either an odd label or no label (i.e. a label of

3, which is omitted by the standard convention). In particular:

(1) If s ∈ I and t ∈ J , then ms,t is even.

If s ∈ S, we set s⊥ = {t ∈ S | st = ts}. If A, B and C are three subsets of S such

that B ⊆ A and C ⊆ A, we denote by XA
BC the set of x ∈ WA which have minimal

length in WBxWC . For simplicity, we set XA
∅C = XA

C . Deodhar’s Lemma [5, Lemma

2.1.2] amounts to the statement that if w ∈ XA
C and s ∈ A with sw 6∈ W A

C then

ℓ(sw) > ℓ(w) and sw = wr for some r ∈ C.

If t̃ ∈ J̃ and if t, t′ ∈ J and x, x′ ∈ WI are such that t̃ = xtx−1 = x′t′x′−1, then

(2) t = t′.

Indeed, in this case, then t′ ∈ WI∪{t} ∩ WJ =< t >. Therefore, if t̃ ∈ J̃ , we can

define ν(t̃) as the unique element of J which is conjugate to t̃ under WI .

Now, in order to parametrize J̃ , we must determine the centralizer of t ∈ J in

WI .

Lemma 1. Let t ∈ J . Then CWI
(t) = WI∩t⊥.

Proof. First it is clear that WI∩t⊥ ⊆ CWI
(t). Conversely, let w ∈ WI be such that

wt = tw. Let w = s1 · · · sr be a reduced expression of w (so that si ∈ I). Then,

s1 · · · srt and ts1 · · · sr are reduced expression of the same element wt = tw of W . By

Matsumoto’s lemma, this means that one can obtain one of these reduced expression

by applying only braid relations. But t occurs only once in both reduced expressions:

this means that, in order to make t pass from the first position to the last position,

t must commute with all the si. So w ∈ WI∩t⊥ . �

Now, let s̃, t̃ ∈ J̃ and let s = ν(s̃) and t = ν(t̃). Then there exists x and y ∈ WI

such that s̃ = xsx−1 and t̃ = yty−1. We denote by f(s̃, t̃) the unique element

of XI
I∩s⊥,I∩t⊥

such that x−1y ∈ WI∩s⊥f(s̃, t̃)WI∩t⊥ . It is readily seen that f(s̃, t̃)

depends only on s̃ and t̃ and not on the choice of x and y. Note that s̃ = t̃ if and
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only if s = t and f(s̃, t̃) = 1. We then set:

m̃s̃,t̃ =





1 if s̃ = t̃,

ms,u/2 if s = t and f(s̃, t̃) = u ∈ I,

∞ if s = t and ℓ(f(s̃, t̃)) > 2,

ms,t if s 6= t and f(s̃, t̃) = 1,

∞ if s 6= t and f(s̃, t̃) 6= 1.

We denote by M̃ the matrix (m̃s̃,t̃)s̃,t̃∈J̃ .

Since f(s̃, t̃) = f(t̃, s̃)−1 and since msu is even if s ∈ J and u ∈ I by (1), we have,

for all s̃, t̃ ∈ J̃ and x ∈ WI ,

(3) m̃s̃,t̃ ∈ Z>1, m̃s̃,t̃ = m̃t̃,s̃, m̃xs̃x−1,xt̃x−1 = m̃s̃,t̃, m̃s̃,s̃ = 1 and m̃s̃,t̃ > 2 (if s̃ 6= t̃).

The last inequality follows from the fact that, if f(s̃, t̃) = u ∈ I, then us 6= su. Here

is a more precise version of the main theorem of this paper:

Theorem 2. With the above notation, we have:

(a) W = W̃ ⋊ WI (semidirect product with W̃ normal).

(b) (W̃ , J̃) is a Coxeter system with Coxeter matrix M̃ and J̃ is the set of canon-

ical Coxeter generators of W̃ .

(c) Each element w of WI is the unique element of minimal length in its coset

W̃w = wW̃ .

Proof. We first prove (a). Let

ϕ : S −→ WI

s 7−→
{

s if s ∈ I,

1 otherwise.

It follows easily from (1) that (ϕ(s)ϕ(t))mst = 1 for all s, t ∈ S. Therefore, there

exists a unique morphism of groups W → WI extending ϕ: we still denote it by ϕ.

Since ϕ(w) = w for all w ∈ WI , it is sufficient to prove that

(4) Ker ϕ = W̃ .

Let us prove (4). First of all, note that W̃ ⊆ Ker ϕ. So it is sufficient to show that

W = W̃WI . For this, it is sufficient to show that if w ∈ W \ WI , there is some

t ∈ J̃ with ℓ(tw) < ℓ(w). Write w = s1 · · · sn (reduced) with all si ∈ S. Since

w 6∈ WI , there is some j with sj ∈ J . Without loss of generality, assume that j is

minimal with this property. Then t := s1 · · · sj−1sjsj−1 · · · s1 ∈ J̃ and ℓ(tw) < ℓ(w)

as required. This completes the proof of (a).

Let us now prove (b). For this, we use the standard geometric realization of (W, S)

as a reflection group associated to a based root system. For use later, we introduce
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a slightly more general class of geometric realizations with better “functoriality”

properties.

Let E be a R-vector space equipped with a symmetric R-bilinear form 〈, 〉. We

say a subset Π of E is positively independent if
∑

α∈Π cαα = 0 with all cα ≥ 0

implies that all cα = 0. For example, any R-linearly independent set is positively

independent. If α ∈ E is such that 〈α, α 〉 = 1, we set α∨ = 2α and we define

sα : E −→ E
v 7−→ v − 〈v, α∨〉α.

Then sα is an orthogonal reflection (with respect to 〈, 〉). Let

(5) COS = {cos(π/m) | m ∈ N>2} ∪ R>1.

Assume that Π is a subset of E with the following properties (i)–(iii):

(i) Π is positively independent.

(ii) For all α ∈ Π, 〈α, α 〉 = 1.

(iii) For all α, β ∈ Π with α 6= β, one has 〈α, β 〉 ∈ −COS.

Let S := { sα | α ∈ Π }, let W be the subgroup of on O(E , 〈, 〉) generated by S,

Φ := {w(α) | w ∈ W and α ∈ Π}, Φ+ = Φ ∩
(∑

α∈Π

R>0 α
)
.

Then (W, S) is a Coxeter system, in which the order msα,sβ
of the product sαsβ for

α, β ∈ Π is given by

(6) msα,sβ
=

{
m, if 〈α, β 〉 = − cos

π

m
, m ∈ N>1

∞, if 〈α, β 〉 6 −1.

One has

(7) Φ = Φ+ ∪̇ − Φ+

(we use ∪̇ to denote disjoint union throughout this paper).

When the above conditions hold, we say that (Φ, Π) is a based root system in

(E , 〈, 〉) with associated Coxeter system (W, S). Every Coxeter system is isomorphic

to the Coxeter system of some based root system (and even to one with 〈α, β 〉 =

− cos π
msα,sβ

for all α, β ∈ Π, and with Π a basis of E ; a based root system of this

type is called a standard based root system). All the usual results for standard

based root systems which we use in this paper, and their proofs, extend mutatis

mutandis to the based root systems as defined above, unless additional hypotheses

are indicated in our statements here (as in Lemma 6 below, for example).

Let us recall some additional facts needed for the proof of Theorem 2:
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Lemma 3. For w ∈ W and α ∈ Φ+, one has w(α) ∈ Φ+ iff ℓ(wsα) > ℓ(w).

Lemma 4. Let ∆ ⊆ Φ+, let T ′ = {sα | α ∈ ∆} and let W ′ denote the

subgroup of W generated by T ′. Then T ′ is the set of canonical Coxeter

generators of W ′ if and only if −〈α, β〉 ∈ COS for all α, β ∈ ∆ such that

α 6= β.

Proof. See [4, (4.4)] �

Lemma 5. Let W ′ be a subgroup of W generated by reflections, let T ′ =
χ(W ′) and let X ′ be the set of elements x ∈ W such that x has minimal

length in xW ′. Then:

(a) Every coset in W/W ′ contains a unique element of X ′.

(b) An element x ∈ W belongs to X ′ if and only if ℓ(xt) > ℓ(x) for all

t ∈ T ′.

(c) If x ∈ X ′, w ∈ W ′ and t ∈ W ′ ∩ T , then ℓ(xwt) > ℓ(xw) iff ℓ(wt) >
ℓ(w) iff ℓ′(wt) > ℓ′(wt) where ℓ′ is the length function of (W ′, T ′).

Proof. See [4, (3.4)]. �

Lemma 6 (Brink). Let γ ∈ Φ+. Then one may write γ =
∑

α∈Π cαα with

cα/2 ∈ COS for all α ∈ Π. In particular, if cα 6∈ {0, 1}, then cα >
√

2. If

Π is linearly independent, the cα are uniquely determined by the conditions

γ =
∑

α∈Π cαα and cα ∈ R.

Proof. For the standard reflection representation, for which Π is linearly
independent, see [3, Proposition 2.1]. A quick sketch in general is as follows.
One checks the statement for dihedral Coxeter systems (for which Π is
automatically linearly independent) by direct calculations (see [4, (4.1)]).
Then in general, a standard proof (loc cit) of Lemma 3 by reduction to rank
two shows that there is some choice of root coefficients cα such that all cα

are expressible as polynomials with non-negative integer coefficients in the
(positive) root coefficients for rank two standard parabolic subgroups, and
the result follows. �

Lemma 7. Let β ∈ Π and α ∈ Φ+ \ {β}. Then

(1) sβ(α) ∈ Φ+ and ssβ(α) = sβsαsβ.

(2) ℓ(sβsαsβ) is equal to ℓ(sα)+2, ℓ(sα) or ℓ(sα)−2 according as whether

〈α, β 〉 < 0, 〈α, β 〉 = 0 or 〈α, β 〉 > 0. If 〈α, β 〉 = 0, then sβsαsβ =
sα.

Proof. Part (a) is well-known. Part (b) may be verified by direct calcula-
tion for dihedral Coxeter systems, and in general, may be reduced to the
dihedral case as follows. Let W ′ := 〈 sα, sβ 〉, T ′ = χ(W ′) and l′ be the
length function of (W ′, T ′). In case 〈α, β 〉 = 0, then by the dihedral case,
sβsα = sαsβ and so ℓ(sβsαsβ) = ℓ(sα). In case 〈α, β 〉 < 0, then by the
dihedral case, one has ℓ′(sβ) < ℓ′(sβsα) < ℓ′(sβsαsβ). Hence by Lemma 5
(c), one has ℓ(sβ) < ℓ(sβsα) < ℓ(sβsαsβ) and thus ℓ(sβsαsβ) = ℓ(sα)+2 as
required. The remaining case 〈α, β 〉 > 0 follows from (a) and the second
case applied to α′ := sβ(α) in place of α, since 〈α′, β 〉 < 0. �
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Now we begin the proof of Theorem 2 (b). We assume without loss of generality

that (W, S) is the Coxeter system associated to a based root system (Φ, Π) such

that Π is linearly independent. We keep other notation as above.

Let ΠI := {α ∈ Π | sα ∈ I } and ΠJ := {α ∈ Π | sα ∈ J }. By (6), the assumption

that no element of I is conjugate to any element of J is therefore equivalent to the

assertion that if γ ∈ ΠI and δ ∈ ΠJ , then 〈 γ, δ 〉 is either of the form 〈 γ, δ 〉 =

− cos π
2m

for some m ∈ N≥1 or satisfies 〈 γ, δ 〉 6 −1. In particular,

(8) If γ ∈ ΠI and δ ∈ ΠJ , then 〈 γ, δ 〉 6 −
√

2

2
.

Now, let

Π̃ = {w(α) | w ∈ WI and α ∈ ΠJ}.
Then Π̃ ⊆ Φ+ by Lemma 3, and J̃ = {sα | α ∈ Π̃}.

By Lemma 4 and (6), it is sufficient to show that, if α̃, β̃ ∈ Π̃ are such that α̃ 6= β̃

and if s̃ = sα̃ and t̃ = sβ̃, then

(∗)




〈 α̃, β̃ 〉 = − cos

( π

m̃s̃,t̃

)
if m̃s̃,t̃ < ∞,

〈 α̃, β̃ 〉 6 −1 if m̃s̃,t̃ = ∞,

For this, let s = ν(s̃), t = ν(t̃) and let x, y ∈ WI be such that s̃ = xsx−1 and

t̃ = yty−1. Let α = x−1(α̃), β = y−1(β̃) and w = f(s̃, t̃). Then α, β ∈ ΠJ , s = sα,

t = sβ and

〈 α̃, β̃ 〉 = 〈α, w(β) 〉.
Indeed, if we write x−1y = awb with a ∈ WI∩s⊥ and b ∈ WI∩t⊥ , then

〈 α̃, β̃ 〉 = 〈 x(α), y(β) 〉 = 〈α, awb(β) 〉 = 〈 a−1(α), wb(β) 〉 = 〈α, w(β) 〉.
We shall now need the notion of the support of a positive root. If δ ∈ Φ+, write

δ =
∑

γ∈Π cγγ with cγ > 0: the support supp(δ) of δ is the subset of Π defined by

supp(δ) := { γ ∈ Π | cγ 6= 0 }. This is well-defined since we have assumed Π is

linearly independent. We recall the following facts:

Lemma 8. Let δ ∈ Φ+ and A := { sγ | γ ∈ supp(δ) }. Then

sδ ∈ WA.

(1)(2) The full subgraph of the Coxeter graph of (W,S) with vertex set A is

connected.

Proof. We prove (a)–(b) by induction on l(sδ). If l(sδ) = 1, then δ ∈ Π
and (a)–(b) are clear. Otherwise, write δ =

∑
α∈Π cαα with all cα ≥ 0.

Since 0 < 1 = 〈α, δ 〉 =
∑

α cα〈α, δ 〉 there is some α ∈ supp(δ) with
〈α, δ 〉 > 0. Note α 6= δ since δ 6∈ Π, so γ := sα(δ) ∈ Φ+. By Lemma 7,
l(sγ) = l(sδ) − 2. Let B := { sβ | β ∈ supp(δ) }. By induction, sγ ∈ WB

and the full subgraph of the Coxeter graph of (W,S) on vertex set B is
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connected. Since δ = sα(γ) = γ + 〈 δ, α 〉α, we have supp(δ) = sup(γ)∪{α}
and A = B ∪ {sα}. Since 0 > −〈α, δ 〉 = 〈α, γ 〉, an argument like that
above shows that there is some β ∈ supp(γ) with 〈α, β 〉 < 0. Therefore sα

is joined by an edge in the Coxeter graph of (W,S) to sβ ∈ B, completing
the inductive proof of (b). Since sδ = sαsγsα ∈ WA, the inductive proof of
(a) is also finished �

Now, let Γ be the unique subset of ΠI such that supp(w(β)) = Γ ∪ {β} and set

IΓ = {sγ | γ ∈ Γ}. We write

w(β) = β +
∑

γ∈Γ

cγγ,

with cγ > 0. In order to prove (∗), we shall need the following lemmas:

Lemma 9. Let γ ∈ ΠI . Then:

If γ ∈ Γ, then cγ ≥
√

2.
(a)(b) If sγ appears in a reduced expression for w and 〈β, γ∨ 〉 6= 0, then

γ ∈ Γ and either cγ = −〈β, γ∨ 〉 or cγ ≥ 2
√

2.

Proof. We shall argue by induction on ℓ(w). If ℓ(w) = 0, this is vacuously
true. Otherwise, write w = xsδ where δ ∈ ΠI and ℓ(x) < ℓ(w). We have
sδ(β) = β + cδ where c := −〈β, δ∨ 〉. If c = 0, then w(β) = x(β) and

the desired result follows by induction. Otherwise, c ≥
√

2 and w(β) =
x(β) + cx(δ). Note x(δ) ∈ Φ+ by Lemma 3 since ℓ(xsδ) > ℓ(x). Using the
inductive hypothesis (a)–(b) for x(β) and Lemma 6 for x(δ), one gets (a)–
(b) for w(β) (for (b), one has to consider the cases γ = δ, γ 6= δ separately,
and note that if sδ does not appear in a reduced expression for x, then the
coefficient of δ in x(δ) is 1). �

Lemma 10. If IΓ ⊆ s⊥, then w = 1.

Proof. Indeed, if IΓ ⊆ s⊥, then Lemma 8(a) implies that we have wtw−1 ∈
W{t}∪(I∩s⊥). In other words, wt ∈ W{t}∪(I∩s⊥)w. But w has minimal length
in W{t}∪(I∩s⊥)w by construction, so wt does not have minimal length in

W{t}∪(I∩s⊥)wt. By Deodhar’s Lemma, there exists u ∈ {t} ∪ (I ∩ s⊥), such

that wt = uw. In other words, u = wtw−1 and, since no element of I is
conjugate to t, we have u = t and wt = tw. So w ∈ WI∩t⊥ (see Lemma 1),
and thus w = 1 because w has minimal length in wWI∩t⊥ . �

We shall now prove (∗) by a case-by-case analysis:

• If s = t and w ∈ I, let us write w = sγ with γ ∈ ΠI . Then α = β, m̃s̃,t̃ = ms,w/2

and w(β) = α − 〈α, γ∨ 〉γ, so

〈α, w(β) 〉 = 〈α, α 〉 − 2〈α, γ 〉2 = 1 − 2 cos2
( π

ms,w

)
= − cos

( 2π

ms,w

)
,

as required.
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• If s = t and ℓ(w) > 2, then m̃s̃,t̃ = ∞. First, note that

IΓ * s⊥

(see Lemma 10). Moreover,

〈α, w(β) 〉 = 〈α, β 〉 +
∑

γ∈Γ

cγ〈α, γ 〉 = 1 +
∑

γ∈Γ
sγ 6∈s⊥

cγ〈α, γ 〉

But, if γ ∈ Γ is such that sγ 6∈ s⊥, then cγ >
√

2 by Lemma 9 (a) and 〈α, γ 〉 =

− cos(π/ms,sγ
) 6 −

√
2/2 by (8) (since α ∈ ΠJ and γ ∈ ΠI). Therefore,

〈α, w(β) 〉 6 1 − |IΓ \ s⊥|.
So, if |IΓ \ s⊥| > 2, then 〈α, w(β) 〉 6 −1, as required.

So we may assume that IΓ \ s⊥ = {sγ} with γ ∈ Γ. Note that 〈α, w(β) 〉 =

1 − cγ〈α, γ 〉 and that sγ appears in a reduced expression of w. By Lemma 9 (b),

two cases may occur:

- If cγ > 2
√

2 then, since 〈α, γ 〉 6 −
√

2/2 (again by the inequality (8)), we

get that 〈α, w(β) 〉 6 −1, as required.

- If cγ = −〈 β, γ∨ 〉 then

supp(sγwβ) = supp(wβ) \ {γ} = (Γ \ {γ}) ∪ {β}.
But no element of { sδ | δ ∈ Γ\{γ} } is connected to sβ in the Coxeter graph

of (W, S), so by Lemma 8 (b) we get that Γ = {γ}, supp(sγwβ) = {β} and

so sγwβ = β. Hence sγw ∈ WI∩t⊥ . By Deodhar’s Lemma, this can only

happen if w = sγ , which contradicts the fact that ℓ(w) > 2.

• If s 6= t and w = 1, then m̃s̃,t̃ = ms,t and

〈 α̃, β̃ 〉 = 〈α, β 〉 = − cos
( π

ms,t

)
,

as required.

• If s 6= t and w 6= 1, then m̃s̃,t̃ = ∞. First, note that

IΓ * s⊥

(see Lemma 10). So let γ ∈ Γ be such that 〈α, γ 〉 6= 0. Then cγ >
√

2 by Lemma 9

and, by (8), we have 〈α, γ 〉 6 −
√

2/2 (since α ∈ ΠJ and γ ∈ ΠI). So

〈α, w(β) 〉 6〈α, β 〉 − 1 +
∑

γ′ 6=γ

cγ′〈α, γ′ 〉 6 −1

because 〈α, β 〉 6 0 and 〈α, γ′ 〉 6 0 for all γ′ ∈ ΠI .

The proof of (b) is now complete.

Finally, let us prove (c). If t ∈ J̃ and w ∈ WI , then l(tw) > l(w) since t 6∈ WI .

Since J̃ is the set of canonical generators of W̃ , this implies that w ∈ WI is the
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(unique) element of minimal length in its coset W̃w by Lemma 5. The conclusion

now follows from Lemma 5 and the fact that W = W̃WI . �

Corollary 11. Let ℓ̃ : W̃ → N denote the length function of (W̃ , J̃). Let w ∈ W̃

and t ∈ J . Then ℓ̃(tw) = 1 + ℓ̃(w) if and only if ℓ(tw) = 1 + ℓ(w).

Proof. Let w ∈ W̃ and t ∈ W̃ ∩ T . Then ℓ̃(tw) < ℓ̃(w) iff ℓ(tw) < ℓ(w), by Lemma

5 (c). Note that J ⊆ J̃ ∩ S ⊆ W̃ ∩ T . Assume that t ∈ J . Then ℓ̃(tw) = ℓ̃(w) ± 1,

since t ∈ J̃ . Also, ℓ(tw) = ℓ(w)± 1, since t ∈ S. The desired conclusion follows. �

Corollary 12. If t̃, t̃′ ∈ J̃ are W̃ -conjugate, then ν(t̃) and ν(t̃′) are W -conjugate.

We conclude this section with a result about the elements of J̃ . We set

J = {(x, t) | t ∈ J and x ∈ XI
I∩t⊥}.

Then it follows from (2) and Lemma 1 that the map

(9) j :
J −→ J̃

(x, t) 7−→ xtx−1

is bijective.

Proposition 13. Let (x, t) ∈ J . Then:

(a) For w ∈ WI , one has wj(x, t)w−1 = j(x′, t) where x′ is the unique element

of XI
I∩t⊥

with x′WI∩t⊥ = wxWI∩t⊥ .

(b) The palindromic reduced expressions of xtx−1 in (W, S) are precisely the

expressions tn · · · t1t0t1 · · · tn such that tn · · · t1 is a reduced expression for x

in (WI , I) and t0 = t.

Proof. Part (a) is immediate from the definitions. For (b), we first recall the follow-

ing result:

Lemma 14. If r1 · · · r2m+1 is a reduced expression for a reflection t ∈ T ,

then r1 · · · rmrm+1rm · · · r1 is a palindromic reduced expression of t.

Proof. See [4, (2.7)]. �

Write l(xtx−1) = 2m + 1. We have xtx−1 ∈ WI∪{t}, so any reduced expression

xtx−1 = s1 · · · s2m+1 for xtx−1 has all si ∈ I ∪{t}. Note s1 · · · smsm+1sm · · · s1 is also

a reduced expression for xtx−1 by Lemma 14. Thus, t ∈ J is W -conjugate to sm+1 ∈
I ∪{t} and so sm+1 = t. Let tn · · · t1 be a reduced expression for x, and t0 = t. Then

xtx−1 = tn · · · t1t0t1 · · · tn and the right hand side contains some reduced expression
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s1 · · · s2m+1 for xtx−1 as a subexpression. By the above, we have sm+1 = t = t0,

which is the only occurrence of t in tn · · · t0 · · · tn. Hence s1 · · · smsm+1sm · · · s1 is

also a reduced expression for xtx−1 contained as a subexpression of tn · · · t0 · · · t1.
Let y = s1 · · · sm ∈ WI . Then xtx−1 = yty−1 so z := y−1x ∈ CWI

(t) = WI∩t⊥ . We

have y = xz−1 with ℓ(y) = m = ℓ(xz−1) = ℓ(x) + ℓ(z−1) = n + ℓ(z−1) and m 6 n,

so m = n. This shows tn · · · t0 · · · tn is a reduced expression for xtx−1.

Since every reduced expression for xtx−1 has t as its middle element, it follows

that this central t can never be involved in a braid move between reduced expressions

for xtx−1, and the conclusion of (b) is clear. �

Remark - Recall that an isomorphism of Coxeter systems (W1, S1) → (W2, S2) is

a group isomorphism W1 → W2 inducing a bijection S1 → S2. In the semidirect

product decomposition W = W̃ ⋊ WI of Theorem 1, it is clear that the induced

action by conjugation of WI on W̃ is by automorphisms of the Coxeter system

(W̃ , J̃). Moreover, the set of Coxeter generators S of W is the disjoint union of the

set I of Coxeter generators of WI and the set J of WI-orbit representatives on J̃ .

External semidirect products. We now discuss the converse of Theorem 2, giving

conditions which imply that an external semidirect product of Coxeter groups is a

Coxeter group.

Let (W ′, I) and (W̃ , J̃) be Coxeter systems and θ : W ′ → Aut(W̃ , J̃) be a group

homomorphism, where the right hand side is the group of automorphisms of (W̃ , J̃).

One may regard θ as a homomorphism from W ′ to the automorphism group of W̃ ,

and form the semidirect product of groups W := W̃ ⋊ W ′, with W̃ normal. We

regard W ′ and W̃ as subgroups of W in the usual way. Thus, every element w of

W has a unique expression w = w̃w′ with w′ ∈ W ′ and w̃ ∈ W̃ . The product in W

is determined by the equation w′w̃w′−1 = θ(w′)(w̃) for w′ ∈ W ′, w̃ ∈ W̃ .

Theorem 15. Fix a set J of WI-orbit representatives on J̃ , and set S := I∪̇J . For

any s ∈ S, let s⊥ := { r ∈ S | rs = sr }. Then (W, S) is a Coxeter system iff the

conditions (1) and (2) below hold:

(1) for all r, s ∈ J and u ∈ W ′ with r = usu−1, one has r = s and u ∈ W ′
I∩r⊥

.

(2) for all r ∈ J and s ∈ J̃ with r 6= s and rs of finite order, either (i) or (ii)

below holds:

(i) s = utu−1 for some u ∈ W ′
I∩r⊥

and t ∈ J with t 6= r and rt of finite

order

(ii) s = uvrvu−1 for some u ∈ W ′
I∩r⊥

and v ∈ I with rv of finite order

greater than 2.



Semidirect product of Coxeter groups 11

Proof. It is easy to see that S is a set of involutions generating W . No element of I

is W -conjugate to an element of J (since any W -conjugate of an element of J is in

W̃ ). Moreover, a simple computation shows that for s ∈ I and r ∈ J , the order of

sr in W is even, equal to twice the order of r′r in W̃ where r′ = θ(s)(r) = srs.

For r, s ∈ S, let mr,s denote the order of rs. We have mr,r = 1 and mr,s = ms,r ∈
N≥2 ∪ {∞} for all r 6= s. Let (U, S) be a Coxeter system with Coxeter matrix mr,s

i.e. U is a Coxeter group with S as its set of Coxeter generators, and the order of

rs in U is mr,s for all r, s ∈ S.

For any K ⊆ S, let UK denote the standard parabolic subgroup of U generated

by K. Let J̃ ′ denote the subset of U consisting of all products usu−1 in U with

s ∈ J and u ∈ UI , and let Ũ denote the subgroup of U generated by J̃ ′. No element

of I is conjugate in U to an element of J , since mr,s is even for all r ∈ I and s ∈ J .

Hence, by Theorem 2, there is a semidirect product decomposition U = UI ⋉ Ũ with

Ũ normal in U .

Since rs has the same order mr,s in both U and W , for any r, s ∈ S, there is a group

epimorphism π : U → W which is the identity on S. The homomorphism π restricts

to an isomorphism of Coxeter systems (UI , I) → (W ′, I) (which we henceforward

regard as an identification) and π also restricts to an isomorphism of Coxeter systems

(UJ , J) → (W̃J , J). Further, π restricts to a surjective, W ′-equivariant (for the

conjugation actions by W ′) group homomorphism π̃ : Ũ → W̃ and π̃ restricts further

to a surjective map of W ′-sets π′ : J̃ ′ → J̃ .

Now if (W, S) is a Coxeter system, the validity of the conditions (1) and (2) follows

from Theorem 2 (b). (In this case, the map π̃ is of course an isomorphism of Coxeter

systems).

Conversely, suppose that (1) and (2) hold. It will suffice to show that π̃ is an

isomorphism of Coxeter systems. First, we show that π′ is injective. Consider two

arbitrary elements uru−1 and vsv−1 of J̃ ′, with u, v ∈ W ′ and r, s ∈ J . Assume

π(uru−1) = π(vsv−1) i.e. uπ(r)u−1 = vπ(s)v−1. Then π(r) = xπ(s)x−1 where

x = u−1v ∈ W ′. By (1), r = s and x ∈ W ′
I∩r⊥

. By the defining relations for (U, S),

it follows that r = xsx−1 in U , so uru−1 = vsv−1 in U . Hence π′ is injective, and in

fact bijective since we noted above that π′ is a surjection.

Now it will suffice to show that for all distinct r′, s′ ∈ J̃ ′, r′s′ has the same order

in U as π(r′)π(s′) has in W . Using the W ′-equivariance of π̃, we may assume that

r′ = r ∈ J and s′ = s ∈ J̃ ′. Also, we may assume that π(r)π(s) has finite order

n > 1 in W , without loss of generality. We have by (2) that either π(s) = uπ(t)u−1

for u ∈ W ′
I∩r⊥

, t ∈ J with t 6= r and π(t)π(r) of finite order, or π(s) = uvπ(r)vu−1

for some u ∈ W ′
I∩r⊥

and v ∈ I with vπ(r) of finite order greater than 2. In the first
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(resp., second) case, π(r)π(s) = uπ(r)π(t)u−1 (resp., π(r)π(s) = uπ(r)vπ(r)vu−1)

and n is the order of π(r)π(t) (resp., half the order of π(r)v) in W . In the first

case, s = utu−1. The relations of (U, S) imply that rs = urtu−1, which has the

same order as rt in U . In the second case, s = uvrvu−1 and the relations of (U, S)

imply that rs = urvrvu−1, which has order equal to half the order of rv in U . The

definition of U implies that the order of rt (resp., rv) in U is the same as that of

π(r)π(t) (resp., π(r)v) in W and so the order of rs in U is equal to the order n of

π(r)π(s) in W in either case, completing the proof. �

Remark - We leave open the question of whether different choices of the set J of

WI -orbit representatives satisfying the conditions in Theorem 15 would give rise to

isomorphic Coxeter systems (W, I ∪ J).

Theorem 18 below is a variant of Theorem 15, providing geometric conditions for

the external direct product of two Coxeter systems to be a Coxeter system, when

each is attached to a root system in the same ambient real vector space and the

Coxeter group attached to the first root system acts as a group of automorphisms

of the second based root system. To formulate it naturally (so that it applies in

the context of the proof of Theorem 2, for instance), we require the general notion

of a based root system as defined in the proof of Theorem 2. The chief technical

advantage of this class of root systems is explained by Lemma 16 below, which

follows from the definition and previously given facts about this class (especially

Lemma 3 and (6)).

Lemma 16. Let (Φ, Π) be a based root system in (E , 〈, 〉), with associated Coxeter

system (W, S). Let W ′ be a reflection subgroup of (W, S) and set S ′ := χ(W ′). Let

Ψ := {α ∈ Φ | sα ∈ W ′ } and ∆ := {α ∈ Φ+ | sα ∈ S ′ }. Then (Ψ, ∆) is a based

root system in (E , 〈, 〉) with associated Coxeter system (W ′, S ′).

Remark - Note that even if (Φ, Π) is a standard based root system and S ′ is finite,

the elements of ∆ need not be linearly independent, and for elements α, β of ∆ such

that sαsβ has infinite order, one may have 〈α, β 〉 < −1. Thus, the lemma fails for

the class of standard based root systems in two important respects.

To formulate Theorem 18, we need also the notions of automorphisms, fundamen-

tal chamber and Tits cone of a based root system. The latter two are principally

of interest when the form 〈, 〉 on E is non-degenerate, but our application won’t

require this (and non-degeneracy can always be achieved by enlarging the space E

and extending the form 〈, 〉, anyway).

Let (Φ, Π) be a based root system in (E , 〈, 〉), with associated Coxeter system

(W, S). By an automorphism of (Φ, Π), we mean an element θ of O(E , 〈, 〉) which
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restricts to permutations of both Π and Φ. For example, in the setting of the proof

of Theorem 2, WI acts naturally as a group of based root system automorphisms of

the based root system attached by Lemma 16 to W̃ .

In general, we define the fundamental chamber of (W, S) on E to be the subset

C = C(W,S) := { ρ ∈ E | 〈α, ρ 〉 ≥ 0 for all α ∈ Π } of E , and we call X = X(W,S) =

WC := ∪w∈W w(C ) the Tits cone. The most basic properties of C and X (see [2])

are recalled in the following Lemma.

Lemma 17. (a) X = { ρ ∈ E | |{α ∈ Φ+ | 〈α, ρ 〉 < 0 }| < ∞}. In particular,

X is a convex cone in E .

(b) Any W -orbit on X contains a unique element of C .

(c) For α ∈ C , the stabilizer Wα := {w ∈ W | w(α) = α } of α is the standard

parabolic subgroup of W generated by { s ∈ S | s(α) = α }.

Now we may state:

Theorem 18. Let (Ψ, ∆) and (Φ̃, Π̃) be two based root systems in (E , 〈, 〉) with

associated Coxeter systems (W ′, I) and (W̃ , J̃) respectively. Let C := C(W ′,I) and

X := X(W ′,I). Assume that W ′(Π̃) ⊆ Π̃. Then W ′ acts as a group of based

root system automorphisms of (Φ̃, Π̃) and also as a group of automorphisms of the

Coxeter system (W̃ , J̃). Let W be the subgroup of O(E , 〈, 〉) generated by W ′ and

W̃ . Then W = W̃ ⋊ W ′. Under these assumptions, the following conditions are

equivalent:

(i) There is a based root system (Φ, Π) with ∆ ⊆ Π ⊆ ∆∪Π̃ and Π̃ = W ′(Π\∆).

(ii) ∆ ∪ Π̃ is positively independent and Π̃ ⊆ −X .

Assume these conditions hold. Then Π = ∆ ∪̇ (Π̃ ∩ −C ) (so (Φ, Π) is uniquely

determined in (i)), Ψ ∪ Φ̃ ⊆ Φ, and Φ̃+ ⊆ −X . Set S := { sα | α ∈ Π } and

J = S \ I. Then (W, S) is the Coxeter system associated to the based root system

(Φ, Π), J̃ = {wsw−1 | w ∈ W ′, s ∈ J }, and no element of I is conjugate to any

element of J . The semidirect product decomposition W = W̃ ⋊ W ′ is that attached

by Theorem 2 to the subsets I and J of S.

Proof. For any θ ∈ O(E , 〈, 〉) and α ∈ E with 〈α, α 〉 = 1, one has 〈 θ(α), θ(α) 〉 = 1

and sθ(α) = θsαθ−1. Assume further that θ(Π′) ⊆ Π′. Then this implies that J̃ , and

hence W̃ , is stable under conjugation by θ, and so θ acts as an automorphism of

(W̃ , J̃). If α ∈ Φ̃, we can write α = x(β) for some β ∈ Π̃ and x ∈ W̃ . Then θ(α) =

θx(β) = (θxθ−1)(θ(β)) ∈ Φ̃ since θxθ−1 ∈ W̃ and θ(β) ∈ Π̃. Hence θ(Φ̃) ⊆ Φ̃. For

γ ∈ Φ̃+, we may write γ =
∑

α∈Π̃ cαα with all cα ≥ 0. Then θ(γ) =
∑

α∈Π̃ cαθ(α) ∈
Φ̃+ since all θ(α) ∈ Π̃, showing that θ(Φ̃+) ⊆ Φ̃+.
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The above all applies with θ ∈ W ′, proving that W ′ acts as automorphisms of

(W̃ , J̃) and (Φ̃, Π̃). In particular, W ′ normalizes W̃ . If w ∈ W ′, then w permutes

Φ̃+. If w ∈ W ′ ∩ W̃ , this implies that ℓ̃(w) = 0 (since w makes no element of Φ̃+

negative) so w = 1W ′. From the above, we see that W = W ′W̃ = W̃ ⋊ W ′ as

claimed. We also see that Ψ ∩ Φ̃ = ∅, for if α ∈ Ψ ∩ Φ̃, then sα ∈ W ′ ∩ W̃ = {1W ′}
which is a contradiction. From this, one sees further that Φ̃ is stable under the

W -action on E and hence that no element of Ψ is W -conjugate to any element of

Φ̃.

Now suppose that the assumptions of (i) hold. Since Π+ is positively independent,

it follows that Φ+ is positively independent, and hence so also is the subset ∆ ∪ Π̃

of Φ+. Let α ∈ Π \∆ ⊆ Π̃. Since α 6∈ ∆, we have 〈α, β 〉 ∈ −COS for all β ∈ ∆. In

particular, 〈α, β 〉 6 0 so α ∈ −C . Thus, Π \ ∆ ⊆ −C . Thus,

Π̃ = W ′(Π \ ∆) ⊆ W ′(−C ) = −X .

Therefore Φ̃+ ⊆ −X also since X is a convex cone. Since every W ′-orbit on −X

contains a unique point of −C , Π̃ is W ′-stable and Π̃ ⊆ W ′(Π \∆), it follows using

Lemma 17 (b) that Π \∆ = Π̃ ∩−C . Observe also that we have Ψ∪ Φ̃ ⊆ Φ and so

W = 〈 sα | α ∈ Ψ ∪ Φ̃ 〉 ⊆ 〈 sα | α ∈ Φ 〉 = 〈 sα | α ∈ Π 〉 ⊆ 〈 sα | α ∈ ∆ ∪ Π̃ 〉 = W

which implies that if (i) holds, then the Coxeter system associated to (Φ, Π) is (W, S)

where S := { sα | α ∈ Π }.

Now suppose that the assumptions of (ii) hold. Set Π = ∆ ∪̇ (Π̃ ∩−C ). Clearly,

∆ ⊆ Π ⊆ ∆ ∪ Π̃. We also have Π̃ = W ′(Π \ ∆) since Π̃ ⊆ −X and Π̃ is W ′-stable.

Let S := { sα | α ∈ Π } and W ′′ be the subgroup generated by S. It is clear W ′′

contains W ′ and sα for α ∈ Π \ ∆, so it also contains wsαw−1 for such α and all

w ∈ W ′. That is, W ′′ contains the group generated by sβ for all β ∈ W ′(Π\∆) = Π̃.

So W ′′ ⊇ W ′W̃ = W . But clearly, S ⊆ W , so W ′′ = W . Let Φ = WΠ.

Since ∆∪ Π̃ is positively independent, to show that (Φ, Π) is a based root system,

it will suffice to show that if α, β ∈ Π with α 6= β, then c := −〈α, β 〉 ∈ COS. If

both α, β are in ∆, or both are in Π̃, this follows since (Ψ, ∆) and (Φ̃, Π̃) are based

root systems. The remaining case is that, say, α ∈ ∆ and β ∈ Π̃. We show that

in this case, c ∈ COS′ := {− cos π/2m | m ∈ N≥1} ∪ R≥1. We have c ≥ 0 since

β ∈ −C . Also, sα(β) = β + 2cα ∈ Π̃. If sα(β) = β, then c = 0 ∈ COS′. Otherwise,

sα(β) 6= β are both in Π̃, so d := −〈 sα(β), β 〉 ∈ COS because (Φ̃, Π̃) is a based

root system. But d = −〈 β + 2cα, β 〉 = −1 + 2c2. So c =
√

d+1
2

with d ∈ COS. If

d ≥ 1, say d = cosh λ where λ ∈ R, then c = cosh λ
2
≥ 1 so c ∈ COS′. Otherwise,

d = cos π
m

for some m ∈ N≥2, so c = cos π
2m

∈ COS′. This shows that (ii) implies
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(i). Note that J = S \ I = { sα | α ∈ Π \ ∆ }. The argument above also shows that

no element of I is W -conjugate to any element of J .

Assuming that (i) and (ii) both hold, the remaining assertions of the Theorem

follow directly from the consequences of (i)–(ii) proved above. �

Examples. We shall describe in detail some examples of (internal) semidirect

product decompositions of Coxeter systems (W, S). If ∆ is a Coxeter graph, we

shall denote by W (∆) the associated Coxeter group. In the following table, we have

drawn the diagram of (W, S, I) by marking with black nodes the elements of I. The

elements of J̃ and their reduced expressions have been obtained using the bijection

(9) and Proposition 13 (b). The Coxeter graph of (W̃ , J̃) is obtained from Theorem

2 (b), and the action of the Coxeter generators I of WI by diagram automorphisms

of the Coxeter graph of (W̃ , J̃) may be determined using Proposition 13 (a).

The table contains all possible triples (W, S, I) where W is a finite Coxeter group

or an affine Weyl group and is irreducible and I is a proper non-empty subset of

S. (For compactness, we include Ã1 as I2(∞)). In degenerate cases, that is, for

small values of |S|, the diagram for (W̃ , J̃) given in the table is not correct, but the

semi-direct product decomposition is still correct (see the marks (1), (2) and (3) in

the table). Here are some detailed explanations:

(1) If W is of type B̃3, then, since D3 = A3, we have D̃3 = Ã3. So the correct

Coxeter graph of (W̃ , J̃) is a square of this form

i

i

i

i

s3

ts1t

s1

s2

(2) If W is of type C̃2, then, since B2 = C2, we have B̃2 = C̃2. So the correct

Coxeter graph of (W̃ , J̃) is of the following form

i i i
s1 t′ ts1t

(3) For the diagram marked (3) in the table, there are two values of n for which

the graph degenerates: if n = 2, then D2 = A1 × A1 (this is a standard

convention) and so D̃2 = Ã1 × Ã1 and, if n = 3, then D3 = A3 so again

D̃3 = Ã3 is a square. We obtain the following diagrams:

D̃2

i

i

i

i

∞

∞

ts1t

s1

t′s1t
′

tt′s1t
′t

D̃3

i

i

i

i

s2

ts1t

s1

t′s2t
′
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We next explain the notation ti and t′i in the Coxeter graphs marked (a), (b), (c)

and (d) in the table.

(a) Here, t1 = t and ti+1 = sitisi (1 6 i 6 n − 1).

(b) Here, t1 = t and ti+1 = sitisi (1 6 i 6 n− 1), t′n = sntn−1sn and t′i = sit
′
i+1si

(1 6 i 6 n − 1).

(c) Here, t1 = t and ti+1 = sitisi (1 6 i 6 n − 1), t′n = t′ and t′i = sit
′
i+1si

(1 6 i 6 n − 1).

(d) Here, t1 = t and ti+1 = sitisi (1 6 i 6 n − 1), t′n = t′tnt
′ and t′i = sit

′
i+1si

(1 6 i 6 n − 1).

Finally, it remains to describe the WI-action by automorphisms of (W̃ , J̃). This

may be done by describing the automorphism of the Coxeter graph given by the

simple reflections I of WI . Each s ∈ I acts by conjugation on the vertex set J̃ of

the Coxeter graph, and in most cases the action is clear by inspection of the graph.

It may be specified by giving the induced permutation of the vertex set J̃ of the

Coxeter graph. For example, in type G̃2 with I = {s1, s2}, the action is given by

s1 7→ (t, s1ts1) and s2 7→ (s1ts1, s2s1ts1s2) where the image permutations are written

in disjoint cycle notation. We will not explicitly list the action in the cases in which

it is obvious by inspection.

The four graphs in the table (or amongst the degenerate graphs discussed above)

for which the action is not obvious by inspection are again those designated (a), (b),

(c) and (d). For these, the actions are as follows:

(a) Here, si 7→ (ti, ti+1) for 1 6 i ≤ n − 1.

(b) Here, si 7→ (ti, ti+1)(t
′
i, t

′
i+1) for 1 6 i 6 n − 1, and sn 7→ (tn−1, t

′
n)(t′n−1, tn).

(c) Here, si 7→ (ti, ti+1)(t
′
i, t

′
i+1) for 1 6 i 6 n − 1.

(d) Here, si 7→ (ti, ti+1)(t
′
i, t

′
i+1) for 1 6 i 6 n − 1 and sn 7→ (tn, t

′
n).

The resulting permutation representation of WI is in each case (a)–(d) isomorphic

in an obvious way to a standard permutation representation of the classical Weyl

group WI as a group of permutations or signed permutations.
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Type Graph of (W, S, I) Decomposition Graph of (W̃ , J̃)

I2(2m) us 2m et (Z/2Z) ⋉ W (I2(m)) ests m et

F4 u
s2

u
s1

e
t1

e
t2

S3 ⋉ W (D4) e
t2

e
t1

es1t1s1

es2s1t1s1s2

HH
��

Bn
u

t
e

s1

e
s2

e
sn−1· · · (Z/2Z) ⋉ W (Dn) e

s2

e
s3

ets1t

es1

HH
��

e
sn−1· · ·

(n > 2)

e
t

u
s1

u
s2

u
sn−1· · · Sn ⋉ (Z/2Z)n e

t1
e

t2
e

tn· · · (a)

G̃2 u
t

e
s1

e
s2

(Z/2Z) ⋉ W (Ã2) es1 es2

ets1t

�� @@

e
t

u
s1

u
s2

S3 ⋉ W (Ã2) et es1ts1

es2s1ts1s2

�� @@

F̃4 u
s2

u
s1

e
t1

e
t2

e
t3

S3 ⋉ W (D̃4) e
t2

es1t1s1

es2s1t1s1s2
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��

��
HH

e
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e
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u
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u
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��

��
HH
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��
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· · · (Z/2Z) ⋉ W (D̃n) e
s2
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��

e
sn−2

esn−1
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��
HH

· · ·
(1)

(n > 3)

e
t

u
s1

u
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usn−1
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��
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· · · W (Dn) ⋉
(
W (Ã1)

)n
e
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∞

e
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∞

e
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1
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2
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t′n

(b)
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ets1t

es1
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��

e
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· · ·
(2)

(n > 2)

e
t
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(
W (Ã1)

)n
e

t1

∞

e
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∞

e
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e

t′
1

e
t′
2

e
t′n

(c)

e
t
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u
sn−1

u
t′

· · · W (Bn) ⋉
(
W (Ã1)

)n
e

t1

∞

e
t2

∞

e
tn
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e

t′
1

e
t′
2

e
t′n

(d)

u
t

e
s1

e
sn−1

u
t′

· · · (S2 × S2) ⋉ W (D̃n) e
s2

ets1t

es1

HH
��

e
sn−2

esn−1

et′sn−1t′
��
HH

· · ·
(3)
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