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Asymptotic Approximation of Eigenelements of the Dirichlet Problem for the Laplacian in a Junction with Highly Oscillating Boundary *

We study the asymptotic behavior of the eigenelements of the Dirichlet problem for the Laplacian in a bounded domain, a part of whose boundary, depending on a small parameter ε, is highly oscillating; the frequency of oscillations of the boundary is of order ε and the amplitude is fixed. We construct and analyze second-order asymptotic approximations, as ε → 0, of the eigenelements in the case of simple eigenvalues of the limit problem.

Introduction

Boundary-value problems involving rapidly oscillating boundaries or interfaces frequently arise when modeling problems of physics and engineering sciences, such as the scattering of acoustic and electromagnetic waves on small periodic obstacles, the free vibrations of strongly nonhomogeneous elastic bodies, electric current through rough interfaces, fluids over rough walls, and coupled fluid-solid periodic structures. Recent years many mathematical works were devoted to asymptotic analysis of these problems, see for instance [START_REF] Achdou | Effective Boundary Conditions for Laminar Flows over Rough Boundaries[END_REF]- [START_REF] Chechkin | The Boundary-value Problem in Domains with Very Rapidly Oscillating Boundary[END_REF], [START_REF] Gaudiello | Asymptotic Behavior of Nonhomogeneous Neumann Problems in Domains with Oscillating Boundary[END_REF], [START_REF] Jäger | On the Roughness-Induced Effective Boundary Conditions for an Incompressible Viscous Flow[END_REF], [START_REF] Kohler | Boundary and Interface Problems in Regions with Very Rough Boundaries[END_REF], [START_REF] Lobo-Hidalgo | Sur certaines propriétés spectrales des perturbations du domaine dans les problèmes aux limites[END_REF]- [START_REF] Sánchez-Palencia | Homogenization Techniques for Composite Media[END_REF]. The mathematical analysis of these problems consists in studying the large scale behavior of the solution. The goal is to construct accurate asymptotic approximations or to determine effective boundary conditions. The main difficulty comes from the presence of boundary layers near the rough region, which effects on correctors or error estimates have to be taken into account.

In this paper we continue to study the asymptotic behavior of eigenvalues and eigenfunctions to boundary-value problems in domains with oscillating boundaries, with the homogeneous Dirichlet condition on the rough part of the boundary. In [START_REF] Babuška | Continuous Dependence of Eigenvalues on the Domains[END_REF] the authors considered problems with Dirichlet boundary conditions on the oscillating part of the boundary; they proved a convergence theorem for the eigenelements of a general 2m-order elliptic operator for a special type of domains. In [START_REF] Amirat | Asymptotics of Simple Eigenvalues and Eigenfunctions for the Laplace operator in a Domain with Oscillating Boundary[END_REF] and [START_REF] Amirat | Asymptotics for Eigenelements of Laplacian in Domain with Oscillating Boundary: Multiple Eigenvalues[END_REF] we considered a spectral problem for the Laplace operator in a bounded domain, a part of whose boundary, depending on a small parameter ε, is rapidly oscillating; the frequency and the amplitude of oscillations of the boundary are of the same order ε. We constructed the leading terms of the asymptotic expansions for the eigenelements and verified the asymptotics in the cases of simple eigenvalues and multiple eigenvalues of the limit problem, respectively. The case of totally oscillating boundary was considered in [START_REF] Nazarov | Binomial Asymptotic Behavior of Solutions of Spectral Problems with Singular Perturbations[END_REF].

In this paper we deal with the case where a part of the boundary is highly oscillating; the frequency of oscillations of the boundary is of order ε and the amplitude is fixed. Our aim is to construct accurate asymptotic approximations, as ε → 0, of the eigenvalues and corresponding eigenfunctions.

The outline of the paper is as follows. In Section 1 we introduce notations, formulate the problem and present our main results. In Section 2 we prove some uniform estimates and results of convergence. In Section 3 we construct formal asymptotics for the eigenvalues, while in Section 4 we prove the main theorem. In Section 5 we construct and justify the asymptotics for the corresponding eigenfunctions.

Setting of the problem and main results

Let Ω + be a bounded domain in R 2 , located in the upper half space. We assume the boundary ∂Ω + to be piecewise smooth, consisting of the parts: ∂Ω + = Γ 0 ∪ Γ 1 , where Γ 0 is the segment -1 2 , 1 2 on the abscissa axis, Γ 1 coincides with the straight lines x 1 = -1 2 and x 1 = 1 2 at neighborhood of the abscissa axis. Let ε = 1 2N +1 be a small parameter, where N is a large positive number. Assume that 0 < a < 1 2 , h > 0 and define (see Figure 1)

Ω - j,ε = {x ∈ R 2 : -εa < x 1 -εj < εa, -h < x 2 ≤ 0}, Ω - ε = N j=-N Ω - j,ε
, We consider the spectral problem

Ω ε = Ω + ∪ Ω - ε , Γ ε = ∂Ω ε \Γ 1 .
-∆u ε = λ ε u ε in Ω ε , u ε = 0 on ∂Ω ε , (1) 
and study the asymptotic behavior, as ε → 0, of the eigenvalue λ ε and the corresponding eigenfunction u ε . We first state some results of uniform es-timates, convergence of solutions to nonhomogeneous boundary-value problems associated with (1), and convergence of eigenelements. The following statements will be proven in the next section.

Theorem 1.1. Let F ε ∈ L 2 (Ω ε ), let Q be an arbitrary compact in the complex plane which does not contain eigenvalues of the boundary-value problem

-∆u + 0 = λ 0 u + 0 in Ω + , u + 0 = 0 on ∂Ω + , (2) 
and let λ ∈ Q. Then:

(i) The boundary-value problem

-∆U ε = λU ε + F ε in Ω ε , U ε = 0 on ∂Ω ε (3) 
has, for ε small enough, a unique solution satisfying the estimate

U ε H 1 (Ω ε ) ≤ C F ε L 2 (Ω ε ) , (4) 
uniformly with respect to ε and λ.

(ii) Assume that there is

F 0 ∈ L 2 (Ω) such that, as ε → 0, F ε -F 0 L 2 (Ω + ) + F ε L 2 (Ω ε \Ω + ) → 0, (5) 
and let U 0 be the solution of the boundary-value problem

-∆U 0 = λU 0 + F 0 in Ω + , U 0 = 0 on ∂Ω + . ( 6 
)
Then U ε -U 0 H 1 (Ω + ) + U ε H 1 (Ω ε \Ω + ) → 0,
uniformly with respect to λ.

Theorem 1.2. Assume that the multiplicity of the eigenvalue λ 0 of problem (2) is equal to p. Then:

(i) there are p eigenvalues of problem (1) (with multiplicities taken into account) converging to λ 0 , as ε → 0;

(ii) if λ 1 ε , . . . , λ p ε are the eigenvalues of problem [START_REF] Achdou | Effective Boundary Conditions for Laminar Flows over Rough Boundaries[END_REF], which converge to λ 0 and u 1 ε , . . . , u p ε are the corresponding eigenfunctions, orthonormal in the space L 2 (Ω ε ), then for any sequence ε k → k→∞ 0 there exists a sub-

sequence ε k ′ → 0 such that u j ε -u +,j 0 H 1 (Ω + ) + u j ε H 1 (Ω ε \Ω + ) → 0, as ε = ε k ′ → 0.
Here, u +,1 0 , . . . , u +,p 0 denote the eigenfunctions of problem (2), corresponding to λ 0 and orthonormal in L 2 (Ω ε ).

Theorem 1.2 implies:

Corollary 1. If the eigenvalue λ 0 of problem (2) is simple, then there is unique sequence of simple eigenvalues λ ε of problem (1) converging to λ 0 , as ε → 0, and the sign of the corresponding eigenfunctions u ε , normalized in L 2 (Ω ε ), can be chosen so that

u ε -u + 0 H 1 (Ω + ) + u ε H 1 (Ω ε \Ω + ) → 0.
Here u + 0 is the eigenfunction of problem (2), corresponding to λ 0 and normalized in L 2 (Ω ε ).

For later reference we state the following result.

Lemma 1.1. Assume that the multiplicity of the eigenvalue λ 0 of problem (2) is equal to p and λ 1 ε , . . . , λ p ε are the eigenvalues of problem [START_REF] Achdou | Effective Boundary Conditions for Laminar Flows over Rough Boundaries[END_REF], which converge to λ 0 , as ε → 0. Then: (i) for any λ close to λ 0 , the solution U ε to problem (3) satisfies the estimate

U ε H 1 (Ω ε ) ≤ C F ε L 2 (Ω ε )   1 + p j=1 1 |λ j ε -λ|   ; ( 7 
) (ii) if a solution U ε to problem (3) is orthogonal in L 2 (Ω ε ) to the eigen- function u i ε of problem (1) corresponding to λ i ε , then it satisfies the estimate U ε H 1 (Ω ε ) ≤ C F ε L 2 (Ω ε )   1 + p j=1;j =i 1 |λ j ε -λ|   . (8) 
Our main aim is to construct accurate asymptotic approximations, as ε → 0, of the eigenvalues of problem [START_REF] Achdou | Effective Boundary Conditions for Laminar Flows over Rough Boundaries[END_REF], which converges to the simple eigenvalue of problem [START_REF] Amirat | Asymptotic approximation of the solution of the Laplace equation in a domain with highly oscillating boundary[END_REF]. The following statement will be proven by using the method of matching asymptotic expansions [START_REF] Il'in | Matching of Asymptotic Expansions of Solutions of Boundary-value Problems[END_REF].

Theorem 1.3. Let λ 0 be a simple eigenvalue of problem (2) and u ε be the corresponding eigenfunction, normalized in L 2 (Ω ε ). Then,

λ ε = λ 0 + ελ 1 + O(ε 2 ) ( 9 
)
where

λ 1 = -q(a) Γ 0 ∂u + 0 ∂ν 2 ds, (10) 
q(a) = a π 4 ln 2 -(1 -2a) ln(1 -2a) + (1 + 2a) ln(1 + 2a) , ( 11 
)
and ν is the outward unit normal to Ω + .

Note that it is easy to deduce from (11) that q(a) > 0 as 0 < a < 1 2 . In the paper we also construct and analyze an asymptotic approximation of the corresponding eigenfunction u ε at order O(ε 2 ) in the norms of L 2 (Ω ε ) and H 1 (Ω ε ) (see Theorem 5.1).

Uniform bounds and convergence results: proofs

In this section we prove Theorem 1.1, Theorem 1.2 and Lemma 1.1. We introduce the notations  



Ω -= -1 2 , 1 2 × (-h, 0) , Ω = Ω + ∪ Ω -∪ Γ 0 .
Observe that the Hausdorff limit of the sequence (Ω ε ) ε>0 is the closed set Ω.

We define weak solutions of problem (3) in a classical way (see, for instance, [START_REF] Sobolev | Some Applications of Functional Analysis in Mathematical Physics[END_REF]). A function

U ε ∈ H 1 0 (Ω ε ) is a solution of problem (3) if it satisfies the integral identity (∇U ε , ∇V ) L 2 (Ω ε ) = λ(U ε , V ) L 2 (Ω ε ) + (F ε , V ) L 2 (Ω ε ) (12) 
for any V ∈ H 1 0 (Ω ε ). In analogues way we define weak solutions to the boundary-value problems (1), ( 2) and ( 6), respectively. Note that, from [START_REF] Chechkin | Homogenization Theorem for Problems in Domains of the "Infusorian" Type with Uncoordinated Structure[END_REF] follows directly the estimate

U ε H 1 (Ω ε ) ≤ C 1 U ε L 2 (Ω ε ) + F ε L 2 (Ω ε ) , (13) 
uniformly with respect to ε small enough and λ ∈ Q.

Proof of Theorem 1.1

To prove the item (i) it suffices to prove estimate [START_REF] Amirat | Asymptotics of Simple Eigenvalues and Eigenfunctions for the Laplace operator in a Domain with Oscillating Boundary[END_REF]. Assume that this estimate is false. Then there exist sequences

ε k → 0, λ = λ k ∈ Q and F ε = F ε k ∈ L 2 (Ω ε k ) such that, for the corresponding weak solution U ε k , the inequality U ε k H 1 (Ω ε k ) ≥ k F ε k L 2 (Ω ε k ) (14) 
holds true. Without loss of generality, let us assume that the functions

U ε satisfies U ε L 2 (Ω ε ) = 1. ( 15 
)
Substituting ( 15) and ( 14) in ( 13), we obtain

U ε k H 1 (Ω ε k ) ≤ C 2 , (16) 
uniformly with respect to ε and λ. On the other hand, it follows from ( 14) and ( 16) that

F ε k L 2 (Ω ε k ) → k→∞ 0. ( 17 
)
It is clear that the functions of H 1 0 (Ω + ) and of H 1 0 (Ω ε ), extended by zero in Ω -and in Ω\Ω ε , respectively, belong to H 1 (Ω). In the sequel, we keep the same notation for the extended functions. Under this notation, U ε ∈ H 1 0 (Ω) and ( 16) takes the form

U ε k H 1 (Ω) ≤ C 3 . (18) 
Hence, using the compactness of Q and the compact embedding of H 1 (Ω) in L 2 (Ω), we conclude that there exists a subsequence ε k ′ such that

U ε k ′ -→ k ′ →∞ U * ∈ H 1 0 (Ω) weakly in H 1 (Ω) and strongly in L 2 (Ω), (19) 
lim k ′ →∞ λ k ′ = λ * ∈ Q. ( 20 
)
Clearly, it follows from ( 15) and ( 19) that

U * = 0. ( 21 
)
Let us show that

U * = 0 in Ω -. (22) 
Denote Ω -

j,ε = Ω - j,ε \Γ 0 , Ω - ε = Ω - ε \Γ 0 , γ j,ε = ∂Ω - j,ε \ Γ - 0 ∪ Γ 0 , where Γ - 0 = x : x 1 ∈ -1 2 , 1 2 , x 2 = -h . Since U ε = 0 on γ j,ε , the Poincaré-Friedrichs inequality (see for instance [30, Ch XVII, Lemma 1.1]) reads Ω - j,ε U 2 ε dx ≤ Cε 2 Ω - j,ε |∇U ε | 2 dx. ( 23 
)
By summation on j from -N to N , we deduce the inequality

Ω - U 2 ε dx ≤ Cε 2 Ω - |∇U ε | 2 dx
which together with [START_REF] Jäger | On the Roughness-Induced Effective Boundary Conditions for an Incompressible Viscous Flow[END_REF] gives

Ω - U 2 ε k dx → k→∞ 0,
and [START_REF] Lobo-Hidalgo | Sur certaines propriétés spectrales des perturbations du domaine dans les problèmes aux limites[END_REF] follows from this convergence. Consider now the restriction of U * to Ω + which we still denote U * . Let V be an arbitrary function in H 1 0 (Ω + ) which we extend by zero outside Ω + .

Obviously, this function belongs to H 1 0 (Ω ε ). Passing to the limit in ( 12) as ε = ε k ′ → 0 and λ ε k ′ , keeping in mind ( 17), ( 19) and ( 20), we obtain

(∇U * , ∇V ) L 2 (Ω + ) = λ * (U * , V ) L 2 (Ω + ) .
Then, according to ( 21), [START_REF] Lobo-Hidalgo | Sur certaines propriétés spectrales des perturbations du domaine dans les problèmes aux limites[END_REF] and the integral identity associated with problem [START_REF] Babuška | Continuous Dependence of Eigenvalues on the Domains[END_REF] we conclude that U * is an eigenfunction and λ * is a corresponding eigenvalue of the limit problem, but this contradicts [START_REF] Kohler | Boundary and Interface Problems in Regions with Very Rough Boundaries[END_REF], then estimate (4) is proved.

We prove the item (ii) by means of the same scheme. Let ε k → 0 be an arbitrary sequence and λ be fixed in Q. Using inequality (4), the compact embedding of H 1 (Ω) in L 2 (Ω) and inequality [START_REF] Marchenko | Boundary-value Problems in Domains with Fine-grained Boundaries[END_REF], we deduce that there exists a subsequence ε k ′ such that ( 19) and ( 22) hold. Let us remind that, due to [START_REF] Lobo-Hidalgo | Sur certaines propriétés spectrales des perturbations du domaine dans les problèmes aux limites[END_REF], the restriction U * to Ω + is an element of H 1 0 (Ω + ). Passing to the limit in [START_REF] Chechkin | Homogenization Theorem for Problems in Domains of the "Infusorian" Type with Uncoordinated Structure[END_REF], for V ∈ H 1 0 (Ω), as ε k ′ → 0, by means of ( 19) and ( 5), we get that U * = U 0 is a solution of problem [START_REF] Babuška | Continuous Dependence of Eigenvalues on the Domains[END_REF]. Since this problem has a unique solution and the sequence ε k → 0 is arbitrary, we deduce that

U ε -→ ε→0 U 0 weakly in H 1 (Ω) and strongly in L 2 (Ω). ( 24 
)
Rewriting [START_REF] Chechkin | Homogenization Theorem for Problems in Domains of the "Infusorian" Type with Uncoordinated Structure[END_REF] in the form

(∇U ε , ∇V ) L 2 (Ω) = λ(U ε , V ) L 2 (Ω) + (F ε , V ) L 2 (Ω ε ) , (25) 
taking V = U ε then passing to the limit in [START_REF] Mel | Asymptotic Behavior of the Solution of the Neumann Spectral Problem in a Domain of "Tooth Comb" Type (Russian). Trudy Seminara Imeni[END_REF], as ε → 0, and keeping in mind ( 5) and ( 24), we conclude that

∇U ε 2 L 2 (Ω) -→ ε→0 ∇U 0 2 L 2 (Ω) . ( 26 
)
It follows from ( 24) and ( 26) that

U ε -U 0 2 H 1 (Ω) -→ ε→0 0
so we proved the item (ii) of the theorem, for any fixed λ ∈ Q. Since, for any fixed ε, the solution U ε is holomorphic with respect to λ ∈ Q, the convergence ( 5) is uniform with respect to λ ∈ Q. Theorem 1.1 is proved.

Proof of Theorem 1.2

Denote by Σ ε and Σ + 0 the set of eigenvalues of problems ( 1) and ( 2), respectively, and by S(z, t) an open disk in the complex plane, centered in z and with radius t. Let λ 0 be an arbitrary eigenvalue of the limit problem [START_REF] Amirat | Asymptotic approximation of the solution of the Laplace equation in a domain with highly oscillating boundary[END_REF]. Since the set of eigenvalues of problem (2) does not have any accumulation point, there exists t > 0 such that S(λ 0 , t) can contain no eigenvalue of the limit problem other than λ 0 . Hence, due to the statement (i) of Theorem 1.1, for ε small enough, we have ∂S(λ 0 , t) ∩ Σ ε = ∅, and due to the statement (ii) of the same theorem we have

∂S(λ 0 ,t) U ε (x, λ) dλ → ε→0 ∂S(λ 0 ,t) U 0 (x, λ) dλ (27) 
in H 1 (Ω). It is well-known (see, for instance [START_REF] Kato | Perturbation theory for linear operators[END_REF]) that the resolvents of problems (3) and ( 6) have only simple poles which are the eigenvalues of these problems, respectively, and the residues at these poles are the projection operators from L 2 (Ω ε ) and L 2 (Ω + ), respectively, onto the corresponding eigenspaces. Conversely, any eigenvalue is a simple pole of the resolvent. Let F 0 be a function such that problem ( 6) is insoluble as λ = λ 0 . Then the right-hand side of ( 27) is not equal to zero and hence, for ε small enough, the left-hand side of [START_REF] Nazarov | Binomial Asymptotic Behavior of Solutions of Spectral Problems with Singular Perturbations[END_REF] does not equal to zero. Consequently, S(λ 0 , t) ∩ Σ ε = ∅ and since t is arbitrary, there exists an eigenvalue of problem (1) converging to λ 0 , as ε → 0. Suppose that ε k → k→∞ 0 is an arbitrary sequence, λ j ε k are the eigenvalues of problem (1) converging to λ 0 , and u j ε k are the corresponding eigenfunctions, orthonormalized. Obviously, we have

u j ε k H 1 (Ω) ≤ C.
Using this estimate and following the proof of statement (ii) of Theorem 1.1, it is easy to show that there exists a subsequence ε k ′ → 0 such that

u j ε k ′ -u +,j 0 H 1 (Ω) → 0 ( 28 
)
where u +,j 0 are the orthonormalized eigenfunctions of problem (2) corresponding to the eigenvalue λ 0 . Hence the total multiplicity of the eigenvalues of problem (1) converging to λ 0 is less then or equal to p. Now, assume that there exists a subsequence of the sequence ε k ′ → 0 (not relabeled for convenience) such that the total multiplicity of the eigenvalues λ j ε k ′ of problem (1), converging to λ 0 , equals P and P < p. Then, first, for λ close to λ 0 , for the solutions U ε k ′ and U 0 of problems (3) and ( 6), respectively, we have the representations

U ε k ′ = P j=1 u j ε k ′ λ j ε k ′ -λ Ω ε k ′ u j ε k ′ F ε k ′ dx + U ε k ′ , (29) 
U 0 = p j=1 u +,j 0 λ 0 -λ Ω + u +,j 0 F 0 dx + U 0 , (30) 
where U ε k ′ and U 0 are holomorphic functions with respect to λ in the neighborhood of λ 0 . Second, there exists an eigenfunction u +,P +1 0 of problem (2), orthogonal to u +,j 0 , as j ≤ P . Suppose that

F ε k ′ = F 0 = u +,P +1 0 in Ω + , F ε k ′ = 0 in Ω -.
Then, on one hand

Ω ε k ′ u j ε k ′ F ε k ′ dx → k ′ →∞ 0, j ≤ P,
and hence, due to [START_REF] Nevard | Homogenization of Rough Boundaries and Interfaces[END_REF], the left-hand side of ( 27) converges to zero. On the other hand

Ω + u +,P +1 0 F 0 dx = 1
and consequently, due to [START_REF] Sánchez-Palencia | Homogenization Techniques for Composite Media[END_REF], the right-hand side of [START_REF] Nazarov | Binomial Asymptotic Behavior of Solutions of Spectral Problems with Singular Perturbations[END_REF] does not converge to zero. From this contradiction it follows that P = p and the statement (i) of the theorem follows.

The statement (ii) follows from the convergence [START_REF] Nazarov | The Neumann problem in angular domains with periodic boundaries and parabolic perturbations of the boundaries Tr[END_REF]. This completes the proof of Theorem 1.2.

Proof of Lemma 1.1

It follows from Theorem 1.2 (i) that, for λ close to λ 0 , the solution U ε of problem (3) admits the representation

U ε = p j=1 u j ε λ j ε -λ Ω ε u j ε F ε dx + U ε ( 31 
)
where the eigenfunctions u 1 ε , . . . , u p ε are chosen normalized in L 2 (Ω ε ) and U ε is a holomorphic function of λ ∈ S(λ 0 , t), for sufficiently small t. It is easy to see that U ε is a solution of the boundary-value problem

-∆ U ε = λ U ε + F ε in Ω ε , U ε = 0 on ∂Ω ε , with F ε = F ε - j=p j=1 u j ε Ω ε u j ε F ε dx.
Then, employing Theorem 1.1 (i) we have

U ε H 1 (Ω ε ) ≤ C 1 F ε L 2 (Ω ε ) ≤ C 2 F ε L 2 (Ω ε ) , (32) 
uniformly with respect to ε and λ ∈ ∂S(λ 0 , t); actually we show by analytic continuation that (32) holds for λ ∈ S(λ 0 , t).

Moreover, multiplying equation ( 1) by u j ε , integrating over Ω ε and integrating by parts yields

Ω ε |∇u j ε | 2 dx = λ j ε (1 ≤ j ≤ p).
Then, using the Poincaré-Friedrichs inequality, we obtain

p j=1 u j ε λ j ε -λ Ω ε u j ε F ε dx H 1 (Ω ε ) ≤ C 3 p j=1 λ j ε |λ j ε -λ| F ε L 2 (Ω ε ) ≤ C 4 F ε L 2 (Ω ε ) p j=1 1 |λ j ε -λ|
, and ( 7) follows from this estimate, ( 31) and (32). If U ε is orthogonal in L 2 (Ω ε ) to u i ε , then multiplying equations ( 1) and ( 3) by U ε and u i ε , respectively, integrating over Ω ε and integrating by parts, we find

Ω ε ∇U ε ∇u i ε dx = 0, Ω ε ∇U ε ∇u i ε dx = Ω ε u i ε F ε dx, hence Ω ε u i ε F ε dx = 0
and repeating the arguments used for [START_REF] Belyaev | Average of the Third Boundary-value Problem for the Poisson Equation in a Domain with Rapidly Oscillating Boundary[END_REF] we obtain (8). Lemma 1.1 is proved.

Formal asymptotic construction

Let us define a real number λ 1 and a function u + 1 in Ω + satisfying the boundary-value problem

       -∆u + 1 = λ 0 u + 1 + λ 1 u + 0 in Ω + , u + 1 = 0 on Γ 1 , u + 1 = q(a) ∂u + 0 ∂x 2 on Γ 0 , (33) 
where q(a) is now an arbitrary constant. The constant λ 1 can be defined from the solvability condition of problem (33). Multiplying the equation in (33) by u + 0 and keeping in mind its normalization in L 2 (Ω + ) yields

- Ω + ∆u + 1 u + 0 dx = λ 0 Ω + u + 1 u + 0 dx + λ 1 . (34) 
Applying two times the Green's formula to the left-hand side of this equation, we obtain

- Ω + ∆u + 1 u + 0 dx = Ω + ∇u + 1 • ∇u + 0 dx - ∂Ω + ∂u + 1 ∂ν u + 0 ds = = - Ω + u + 1 ∆u + 0 dx - ∂Ω + ∂u + 1 ∂ν u + 0 ds + ∂Ω + ∂u + 0 ∂ν u + 1 ds = = λ 0 Ω + u + 1 u + 0 dx -q(a) 1 2 -1 2 ∂u + 0 ∂x 2 2 (x 1 ) dx 1 . (35) 
It follows from ( 34) and ( 35) that

λ 1 = -q(a) 1 2 -1 2 ∂u + 0 ∂x 2 2 (x 1 ) dx 1 = -q(a) Γ 0 ∂u + 0 ∂ν 2 ds.
To determine uniquely the solution of problem (33), we assume in addition that

Ω u + 1 (x) u + 0 (x) dx = 0.
Remark 3.1. Due to the geometry of Ω + and the boundary-value problem (2), the function u + 0 belongs to C ∞ (Ω + ) and we have

u + 0 (x) = α 0 (x 1 )x 2 + 1 6 α 2 (x 1 )x 3 2 + O(x 5 
2 ), as x 2 → 0, (36)

α 0 (x 1 ) = ∂u + 0 ∂x 2 (x 1 , 0), α 2 (x 1 ) = -α ′′ 0 (x 1 ) + λ 0 α 0 (x 1 ) , (37) α 
(2n) j ± 1 2 = 0 for any n ≥ 0. ( 38 
)
It follows from (33) that u + 1 ∈ C ∞ (Ω + ) and we have

u + 1 (x) = q(a)α 0 (x 1 ) + α 1 (x 1 )x 2 + 1 2 q(a)α 2 (x 1 )x 2 2 + O(x 4 
2 ), as x 2 → 0, (39)

α 1 (x 1 ) = ∂u + 1 ∂x 2 (x 1 , 0),
and the formula (38) holds for j = 1.

Denote

u + ε (x) =u + 0 (x) + εu + 1 (x), (40) 
λ ε =λ 0 + ελ 1 . (41) 
It follows from ( 2) and (33) that u + ε belongs to C ∞ (Ω + ) and satisfies the boundary-value problem

-∆ u + ε = λ ε u + ε + f + ε in Ω + , u + ε = 0 on Γ 1 , (42) 
where

f + ε = -ε 2 λ 1 u + 1 . Obviously, f + ε L 2 (Ω + ) = O(ε 2 ), (43) 
u + ε L 2 (Ω + ) = 1 + o(1). ( 44 
)
Remark 3.2. In accordance with (42) and ( 43), the pair ( u + ε , λ ε ) given by (40) and ( 41) is defined to be an asymptotic approximation of the solution of problem (1) in Ω + .

Let us now consider the domain Ω - ε . Introduce the notations (see Figure 2):

Π + = - 1 2 , 1 2 × (0, +∞) , Π - a = (-a, a) × (-∞, 0) , γ(a) = (-a, a) × {0}, Π a = Π + ∪ Π - a ∪ γ(a), Γ + = - 1 2 × (0, +∞) ∪ 1 2 × (0, +∞) , Γ - a = ∂Π a \Γ + , Π a = Π a \ ({(-a, 0)} ∪ {(a, 0)}) , Π a (R) = {ξ ∈ Π a : ξ 2 < R} , Π a (R) = ξ ∈ Π a : ξ 2 < R .

Consider the boundary-value problem

       ∆ ξ X = 0 in Π a , X = 0 on Γ - a , ∂X ∂ξ 1 = 0 on Γ + . ( 45 
)
Figure 2: Cell of periodicity.

Let us show problem (45) has a solution X belonging to C ∞ ( Π a (R)) ∩ H 1 (Π a (R)) for any R > 0, even with respect to ξ 1 and which has the differentiable asymptotics

∂ β ξ (X(ξ) -ξ 2 -q(a)) =O e -2πξ 2 , ξ 2 → ∞, ∂ β ξ X(ξ) =O e π a ξ 2 , ξ 2 → -∞, (46) 
where the constant q(a) is defined by formula [START_REF] Chechkin | On Homogenization Problems in Domains of the "Infusorium" Type. Trudy Seminara Imeni[END_REF]. For this purpose we introduce the function

F(z) = ln 8a 2 z -1 + (8a 2 z -1) 2 -1 = ln 8a 2 z -1 + 4a z (4a 2 z -1) , (47) 
where z = η 1 + iη 2 is a complex variable. It follows from (47) that the function

Y (η) = a π Re F(z) (48) 
satisfies the boundary-value problem (see, for instance, [START_REF] Gadyl'shin | Splitting a Multiple Eigenvalue in the Boundary-value Problem for a Membrane Clamped on a Small Part of the Boundary[END_REF])

           ∆ η Y = 0, η 2 > 0, Y (η 1 , 0) = 0, 0 < η 1 < 1 2a 2 , ∂Y ∂η 2 (η 1 , 0) = 0, η 1 ∈ (-∞, 0) ∪ ( 1 2a 2 , ∞). ( 49 
)
Let w = ξ 1 + iξ 2 and

W(z) = ia π z 1 s -1 4a 2 s -1 ds s + a. ( 50 
)
It is known (see, for instance, [21, Ch. II, Section 3]) that w = W(z) is a conformal mapping of the half-plane η 2 > 0 to the right half of the domain Π a (see Figure 3). In addition, the point B j on the plane z goes to the points b i on the plane w, respectively. Then, according to (48) and (49), the is a solution of problem (45). We denote this function by X(ξ), and it follows from ( 49) and (50

) that X ∈ C ∞ ( Π a (R)) ∩ H 1 (Π a (R))
for any R > 0 and X(ξ) has differentiable asymptotics at infinity. Due to well-known results for harmonic functions defined in a semiinfinite strip, to prove (46) it suffices to show that

X(ξ) =ξ 2 + q(a) + o(1), as ξ 2 → ∞, (51) 
X(ξ) =o(1), as ξ 2 → -∞. ( 52 
)
Since, according to the mapping under consideration, the passage w → ∞ in the lower semi-infinite strip Π - a corresponds to the convergence z → 0, then (52) follows from ( 47) and ( 48). Further, it follows from (47) and ( 50) that in the half-plane η 2 > 0, the expansions

F(z) = ln z + 2(2 ln 2 + ln a) + O(z -1 )s as z → ∞, - iπ a W(z) = ln z + C(a) -iπ + O(z -1 ) as z → ∞, (53) 
hold, where

C(a) = ∞ 1 s -1 4a 2 s -1 -1 ds s .
We infer from (53) that

F(W -1 (w)) = - iπ a w + 2(2 ln 2 + ln a) -C(a) + iπ + o(1), as w → ∞, ξ 2 > 0. ( 54 
)
Taking the imaginary part of (54), we obtain (51) with

q(a) = a π 2(2 ln 2 + ln a) -c(a) (55) 
and

c(a) = ∞ 1 4a 2 s -1 4a 2 s -1 -1 ds s .
Calculating the integral, we get

c(a) = 2 ln a + [(1 -2a) ln(1 -2a) + (1 + 2a) ln(1 + 2a)] (56) 
and formula [START_REF] Chechkin | On Homogenization Problems in Domains of the "Infusorium" Type. Trudy Seminara Imeni[END_REF] follows from (55) and (56). Hereinafter we assume that q(a) is defined by formula [START_REF] Chechkin | On Homogenization Problems in Domains of the "Infusorium" Type. Trudy Seminara Imeni[END_REF]. Note that the solution X is even in ξ 1 and can be extended to a 1-periodic function in ξ 1 . Later on we use the same notation X for the extension. Then, let us consider the boundary-value problems:

∆ ξ X = ∂X ∂ξ 1 in Π a , X = 0 on ∂Π a , (57) 
       ∆ ξ X 1 = ∂ X ∂ξ 1 in Π a , X 1 = 0 on Γ - a , ∂X 1 ∂ξ 1 = 0 on Γ + , (58) 
       ∆ ξ X 2 = X in Π a , X 2 = 0 on Γ - a , ∂X 2 ∂ξ 1 = 0 on Γ + . (59) 
Arguing as in [START_REF] Amirat | Asymptotics of Simple Eigenvalues and Eigenfunctions for the Laplace operator in a Domain with Oscillating Boundary[END_REF] and [START_REF] Gadyl'shin | Concordance Method of Asymptotic Expansions in a Singularly-Perturbed Boundary-value Problem for the Laplace Operator[END_REF], we can prove that there exists a constant 0 < c < π a such that problems (57)-( 59) have solutions in C ∞ ( Π a (R)) ∩ H 1 (Π a (R)) for any R > 0, with the differentiable asymptotics

∂ β ξ X(ξ) = O e ∓cξ 2 as ξ 2 → ±∞, ∂ β ξ (X 1 (ξ) -q 1 (a)) = O e -cξ 2 , ξ 2 → ∞, ∂ β ξ X 2 (ξ) - 1 6 ξ 3 2 - 1 2 q(a)ξ 2 -q 2 (a) = O e -cξ 2 , as ξ 2 → ∞, ∂ β ξ X j (ξ) = O e cξ 2 , as ξ 2 → -∞, (60) 
where q j (a) denote some constants. Due to the evenness of the function X, X is odd in ξ 1 , X j is even in ξ 1 and thus X and X j have 1-periodic extensions in ξ 1 for which we keep the same notations X, X j . Consider now the functions defined by

v 1 (ξ; x 1 ) =α 0 (x 1 )X(ξ), v 2 (ξ; x 1 ) =α 1 (x 1 )X(ξ) -2α ′ 0 (x 1 ) X(ξ), v 3 (ξ; x 1 ) =α 2 (x 1 )X 2 (ξ) + 4α ′′ 0 (x 1 )X 1 (ξ) -2α ′ 1 (x 1 ) X(ξ), v ε (ξ; x 1 ) =εv 1 (ξ; x 1 ) + ε 2 v 2 (ξ; x 1 ) + ε 3 v 3 (ξ; x 1 ). (61) 
In view of (38) and the boundary conditions in (57) we have

v ε x ε ; x 1 = 0, as x 1 = ± 1 2 .
Denote

Ω ε = Ω ε \   N j=-N -εa + ε j 2 × {0} N j=-N εa + ε j 2 × {0}   .
We easily verify that the function v ε

x ε ; x 1 belongs to C ∞ ( Ω ε ) ∩ H 1 (Ω ε ). Moreover, since in (ξ, x 1 ) variables the Laplacian has the form ∆ = ε -2 ∆ ξ + 2ε -1 ∂ 2 ∂x 1 ∂ξ 1 + ∂ 2 ∂x 2 1 , (62) 
using ( 45), ( 57)-( 59), ( 61) and (62), we easily verify that, for fixed r > 0 and sufficiently small such that Γ 1 coincides with the straight lines

x 1 = ± 1 2 as 0 < x 2 < r, the function v ε x ε ; x 1 satisfies the boundary-value-problem -∆ v ε = λ ε v ε + f - ε in Ω ε , v ε = 0 on ∂Ω ε ∩ ((-∞, ∞) × (-h, r)) , (63) 
where

f - ε (x) = -ε 2 ∂ 2 ∂x 2 1 + λ ε (v 2 (ξ; x 1 ) + εv 3 (ξ; x 1 )) + 2 ∂ 2 ∂x 1 ∂ξ 1 v 3 (ξ; x 1 ) ξ= x ε . (64) 
Moreover, it follows from (60) and (61) that

f - ε L 2 (Ω - ε ) =O ε 5 2 . ( 65 
)
Remark 3.3. According to (63) and ( 65), the pair ( v ε x ε ; x 1 , λ ε ) given by ( 61) and ( 41) is defined to be an asymptotic approximation of the solution of problem (1) in Ω - ε .

4 Proof of Theorem 1.3 

u + ε (x) = V + ε (x) + O(εx 3 2 + x 5 2 ), as x 2 → 0, (66) 
where

V + ε (x) =α 0 (x 1 )x 2 + 1 6 α 2 (x 1 )x 3 2 + ε q(a)α 0 (x 1 ) + α 1 (x 1 )x 2 + 1 2 α 2 (x 1 )x 2 2 .
(67)

Note that, due to (38),

V + ε ± 1 2 , x 2 = 0. (68) 
Then, denote

u ε (x) = u + ε (x) -V + ε (x) in Ω + , 0 in Ω - ε . (69) 
Due to (66), the function u ε belongs to H 2 (Ω ε ) and then the function defined in Ω ε by

U ε (x) = u ε (x) + v ε x ε ; x 1 (70) 
belongs to H 1 (Ω ε ) and H 2 (Q) for any subdomain Q of Ω ε , separated from the angels equal to 3 2 π in Ω ε . According to (42), the function u ε satisfies the boundary-value problem

   -∆ u ε = λ ε u ε + f ε in Ω ε , u ε = -V + ε on Γ 1 , u ε = 0 on Γ ε , where f ε (x) = f + ε (x) + ∆ + λ ε V + ε (x) in Ω + , 0 in Ω - ε . (71) 
Let us now formulate a boundary-value problem in Ω ε satisfied by U ε . For this we introduce, for ξ 2 > 0, the functions

X + (ξ) = X(ξ) -ξ 2 -q(a), X + 1 (ξ) = X 1 (ξ) -q 1 (a), X + 2 = X 2 (ξ) - 1 6 ξ 3 2 - 1 2 q(a)ξ 2 -q 2 (a), (72) 
and

v + 1 (ξ; x 1 ) =α 0 (x 1 )X + (ξ), v + 2 (ξ; x 1 ) =α 1 (x 1 )X + (ξ) -2α ′ 0 (x 1 ) X(ξ), v + 3 (ξ; x 1 ) =α 2 (x 1 )X + 2 (ξ) + 4α ′′ 0 (x 1 )X + 1 (ξ) -2α ′ 1 (x 1 ) X(ξ), v + ε (ξ; x 1 ) =εv + 1 (ξ; x 1 ) + ε 2 v + 2 (ξ; x 1 ) + ε 3 v + 3 (ξ; x 1 ). ( 73 
)
Due to (46), ( 60), ( 72) and ( 73), the function v + ε (ξ; x 1 ) has the differentiable asymptotics

∂ β ξx 1 v + ε (ξ; x 1 ) = O e -cξ 2 , as ξ 2 → ∞, (74) 
and due to (67), we have in Ω

+ v ε x ε ; x 1 = v + ε x ε ; x 1 + V + ε (x) + V + ε (x), (75) 
where V + ε is defined by (67) and

V + ε (x) = ε 2 q(a)α 1 (x 1 ) + ε 3 α 2 (x 1 )q 2 (a) + 4α ′′ 0 (x 1 )q 1 (a) . ( 76 
) Denote f + ε,1 = -(∆ + λ ε ) v + ε , f + ε,2 = -ε 2 d 2 dx 2 1 + λ ε V + ε (x). ( 77 
)
By means of the equation in (63) and formulae (64) and (74), we have

f + ε,1 (x) = -ε 2 ∂ 2 ∂x 2 1 + λ ε v + 2 (ξ; x 1 ) + εv + 3 (ξ; x 1 ) + 2 ∂ 2 ∂x 1 ∂ξ 1 v + 3 (ξ; x 1 ) ξ= x ε . ( 78 
)
Due to (75)-(78), the formula (64) in Ω + could be rewritten in the form

f - ε (x) = -(∆ + λ ε )V ε (x) + f + ε ( 79 
)
where

f + ε = f + ε,1 + f + ε,2 . (80) 
Now, we conclude with (63), ( 68), ( 70), ( 71) and (79) that the function U ε satisfies the boundary-value problem

             -∆ U ε = λ ε U ε + F ε in Ω ε , U ε = 0 on Γ ε \ ((-∞, ∞) × {-h}) , U ε = v ε on Γ ε ∩ ((-∞, ∞) × {-h}) , U ε = V + ε + v + ε on Γ 1 \ ((-∞, ∞) × (0, r)) , U ε = 0 on Γ 1 ∩ ((-∞, ∞) × (0, r)) , (81) 
where

F ε = f + ε + f + ε in Ω + , f - ε in Ω - ε , (82) 
and r > 0 is an arbitrary number, small enough so that Γ 1 coincides with the straight lines x 1 = ± 1 2 , as 0 < x 2 < r. It follows from ( 76) and (77) that

f + ε,2 L 2 (Ω + ) = O ε 2 ,
and from ( 74) and (78) that

f + ε,1 L 2 (Ω + ) = O ε 5 2 
.

Then we infer from (80), (82), ( 43) and (65) that

F ε L 2 (Ω ε ) =O ε 2 .
Note that, according to (69), ( 70) and (75), we have

U ε = u + ε + v + ε + V + ε in Ω + , v ε in Ω - ε . (83) 
We deduce from the definition (76) that

V + ε L 2 (Ω + ) = O ε 2 , (84) 
and ( 74) and (75) imply that

v + ε L 2 (Ω + ) =O ε 3 2 
.

Then we derive from (83) and (44) that

U ε L 2 (Ω + ) = 1 + o(1). (85) 
Now, let χ(s) be a smooth cut-off function, equals to zero as s < 1 and equals to one as s > 2. Denote

U ε (x) = U ε (x) -U ε,1 (x) -U ε,2 (x) (86) 
where

U ε,1 (x) = v + ε x ε ; x 1 + V + ε (x) χ 2x 2 r , U ε,2 (x) = v ε x ε ; x 1 1 -χ 4(x 2 + h) h . (87) 
Hence, due to (81) the function U ε is a solution of the boundary-value problem

-∆ U ε = λ ε U ε + F ε in Ω ε , U ε = 0 on ∂Ω ε , (88) 
where

F ε = F ε + F ε,1 + F ε,2 , (89) 
F ε,j (x) = ∆ + λ ε U ε,j . (90) 
Using ( 46), ( 60), ( 61), ( 74), ( 76), ( 87) and (90), we deduce that

U ε,1 = F ε,1 ≡ 0 in Ω - ε , U ε,2 = F ε,2 ≡ 0 in Ω + , U ε,1 H 1 (Ω ε ) + F ε,1 L 2 (Ω ε ) =O(ε 2 ), U ε,2 H 1 (Ω ε ) + F ε,2 L 2 (Ω ε ) =O(ε N ), ∀ N.
Finally, we deduce from (85)-( 87) and (89) that

F ε L 2 (Ω ε ) =O ε 2 , (91) 
and

U ε -U ε H 1 (Ω ε ) = O ε 2 , (92) 
U ε L 2 (Ω + ) = 1 + o(1). (93) Applying Lemma 1.1 (i) with p = 1, λ = λ ε , F ε = F ε and U ε = U ε , we obtain |λ ε -λ ε | ≤ C F ε L 2 (Ω ε ) U ε L 2 (Ω ε ) .
From this inequality, (91) and (93) it then follows that

λ ε = λ ε + O ε 2
which with (41) gives the estimate (9). Theorem 1.3 is completely proved.

Asymptotic approximation of the eigenfunction

Denote u ε,0 (x) =    u + 0 (x) + εu + 1 + εv + 1 x ε ; x 1 in Ω + , εv 1 x ε ; x 1 in Ω - ε , (94) 
and

u ε,1 (x) =    u + 0 (x) + εu + 1 + εv + 1 x ε ; x 1 + ε 2 v + 2 x ε ; x 1 in Ω + , εv 1 x ε ; x 1 + ε 2 v 2 x ε ; x 1 in Ω - ε . (95) 
We observe that u ε,0 ∈ H 1 (Ω ε ) and u ε,1 / ∈ H 1 (Ω ε ) since it has a jump as x 2 = 0. We also verify that

u ε,j L 2 (Ω ε ) → 1, as ε → 1. Set u ε,j = u ε,j u ε,j L 2 (Ω ε ) , j = 0, 1. (96) 
We have the following result.

Theorem 5.1. Let u ε be an eigenfunction, normalized in L 2 (Ω ε ) and corresponding to the eigenvalue λ ε and let u ε,j (j = 0, 1) normalized functions defined by ( 94)-(96). We have

u ε -u ε,0 L 2 (Ω ε ) = O(ε 2 ), u ε -u ε,1 H 1 (Ω + ) + u ε -u ε,1 H 1 (Ω - ε ) = O(ε 2
). Proof. It consists in two steps.

(i) For given g ε ∈ L 2 (Ω ε ), let us denote

g ⊥ ε = g ε -(g ε , u ε )u ε
where (•, •) is the inner product in L 2 (Ω ε ). Clearly, (g ⊥ ε , u ε ) = 0. Then, consider the functions U ε and F ε defined by (86), (87) and (89), (90), respectively. It follows from Corollary 1 and (93) that

( U ε , u ε ) → ε→0 1 ( 97 
)
and due to (88) the function

U ⊥ ε = U ε -( U ε , u ε )u ε
satisfies problem (3) with λ = λ ε and

F ε = F ε + ( U ε , u ε )(λ ε -λ ε )u ε .
It follows from ( 4), ( 91) and (97) that

F ε L 2 (Ω ε ) = O ε 2 ,
hence, using estimate (8) we have

U ⊥ ε H 1 (Ω ε ) = O ε 2 . ( 98 
)
Due to (83), ( 84) and (92) we have

u + ε + v + ε -U ε H 1 (Ω + ) = O(ε 2 ), v ε -U ε H 1 (Ω - ε ) = O(ε 2 ). ( 99 
)
From the definitions (61), ( 72) and (73) of v j and v + j and also from formula (60), we deduce that

ε 3 v + 3 H 1 (Ω + ) + ε 3 v 3 H 1 (Ω - ε ) = O ε 5 2 , ε 2 v + 2 L 2 (Ω + ) + ε 2 v 2 L 2 (Ω - ε ) = O ε 5 2 . ( 100 
)
Using again the definitions (61) and (73) of v ε and v + ε and using formulae (99) and (100), we deduce that

u + ε + εv + 1 -U ε L 2 (Ω + ) = O(ε 2 ), εv 1 -U ε L 2 (Ω - ε ) = O(ε 2 ), u + ε + εv + 1 + ε 2 v + 2 -U ε H 1 (Ω + ) = O(ε 2 ), εv 1 + ε 2 v 2 -U ε H 1 (Ω - ε ) = O(ε 2 ), (101) 
and finally, we deduce from (98) and (101) that

u ⊥ ε,0 L 2 (Ω ε ) = O(ε 2 ), u ⊥ ε,1 H 1 (Ω + ) + u ⊥ ε,1 H 1 (Ω - ε ) = O(ε 2 ). (102) 
(ii) It is clear, since u ε and u ε,j (j = 0, 1) are normalized in L 2 (Ω ε ), that

|(u ε,j , u ε )| ≤ 1. ( 103 
)
Multiplying both sides of the equality u ⊥ ε,j = u ε,j -(u ε,j , u ε )u ε by u ε,j and integrating over Ω ε , we find that u ⊥ ε,j , u ε,j = 1 -(u ε,j , u ε ) 2 (104) then we deduce from (103) and (104) that

0 ≤ 1 -(u ε,j , u ε ) ≤ u ⊥ ε,j L 2 (Ω ε ) u ε,j L 2 (Ω ε ) = u ⊥ ε,j L 2 (Ω ε ) , hence, with (102), 0 ≤ 1 -(u ε,j , u ε ) = O(ε 2 ). ( 105 
)
Then writing

u ε -u ε,0 L 2 (Ω ε ) ≤ u ε -u ε,0 + u ⊥ ε,0 L 2 (Ω ε ) + u ⊥ ε,0 L 2 (Ω ε ) ,
we obtain, according to (102) and ( 105),

u ε -u ε,0 L 2 (Ω ε ) ≤ 1 -(u ε,0 , u ε ) + O(ε 2 ) = O(ε 2 ).
As for the estimate of (u εu ε,1 ) in the H 1 -norm, we write

u ε -u ε,1 H 1 (Ω + ) + u ε -u ε,1 H 1 (Ω - ε ) ≤ u ε -u ε,1 + u ⊥ ε,1 H 1 (Ω + ) + u ⊥ ε,1 H 1 (Ω + ) + u ε -u ε,1 + u ⊥ ε,1 H 1 (Ω - ε ) + u ⊥ ε,1 H 1 (Ω - ε ) ≤ 2 u ε H 1 (Ω ε ) (1 -(u ε,1 , u ε )) + u ⊥ ε,1 H 1 (Ω + ) + u ⊥ ε,1 H 1 (Ω - ε ) ,
then, since u ε H 1 (Ω ε ) is uniformly bounded, using (102) and ( 105) we obtain

u ε -u ε,1 H 1 (Ω + ) + u ε -u ε,1 H 1 (Ω - ε ) = O(ε 2
). Theorem 5.1 is proved.
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 1 Figure 1: Membrane with oscillating boundary.

Figure 3 :

 3 Figure 3: Conformal mapping. even extension in ξ 1 < 0 of the function a π Re F W -1 (w)
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