
HAL Id: hal-00282224
https://hal.science/hal-00282224v1

Submitted on 26 May 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Networked, Lightweight and Partially Reconfigurable
Platform

Pierre Bomel, Guy Gogniat, Jean-Philippe Diguet

To cite this version:
Pierre Bomel, Guy Gogniat, Jean-Philippe Diguet. A Networked, Lightweight and Partially Reconfig-
urable Platform. 4th International Workshop, ARC 2008, London, UK, LNCS 4943, 2008, LNCS 4943
(ISSN 0302-9743, ISBN-10 3-540-78609-0, ISBN-13 978-3-540-78609-2), pp.318-323. �hal-00282224�

https://hal.science/hal-00282224v1
https://hal.archives-ouvertes.fr


A Networked, Lightweight and Partially

Reconfigurable Platform

Pierre Bomel, Guy Gogniat, Jean-Philippe Diguet

LESTER, Université de Bretagne Sud, CNRS FRE 2734, Lorient, France
{pierre.bomel, guy.gogniat, jean-philippe.diguet}@univ-ubs.fr

Abstract. In this paper we present a networked lightweight and par-
tially reconfigurable platform assisted by a remote bitstreams server. We
propose a software and hardware architecture as well as a new data-link
level network protocol implementation dedicated to dynamic and par-
tial reconfiguration of FPGAs. It requires a network controller and much
less external memories to store reconfiguration software, bitstreams and
buffer pools used by standard communication protocols. Our measures,
based on a real implementation, show that our system can download re-
mote bistreams with a reconfiguration speed ten times faster than known
solutions.

Keywords: partial reconfiguration, FPGA, link layer, bitstream server.

1 Introduction

FPGAs provide reconfigurable SoCs with a way to build systems on demand. In
particular, Xilinx’s Virtex FPGA reconfiguration can be exploited in different
ways, partially or globally, externally (exo-reconfiguration) or internally (endo-
reconfiguration). Virtex’s dynamic and partial reconfiguration (DPR) requires
additional resources to store the numerous partial configurations bitstreams.
Today, researchers exploit in vast majority local FLASH and RAM memories as
repositories. In the best case Huebner et al. [1] reduce up to 50% of the bitstream
memory footprint with the help of a small hardware decompressor. Then, we face
the migration of silicon square millimeters from FPGAs to memories. Although
their low cost, when compared to FPGAs, is in favor of this migration, there
are some drawbacks: 1) low reuse rate, 2) increase of number of components and
PCB size, 3) reduction of MTBF and 4) impossibility to store all the possible
bistreams (FPGA models, bistream locations, areas shapes) for a single IP.

In the following we review in Sect. 2 the previous DPR related works via
a standard LAN. In Sect. 3 we present our contribution in terms of embed-
ded hardware and software and propose a LAN-level protocol adapted to DPR
constraints and objectives. In Sect. 4 we describe our experiments and measures
about the partial reconfiguration speeds and memory footprints. Finally, in Sect.
5, we conclude.



2 Related works

Partial reconfiguration of Xilinx’s FPGAs goes through the control of a configu-
ration port called ICAP [2] (Internal Configuration Access Port). Virtex2 PRO,
Virtex4 VFX and now Virtex5 contain this port. The reconfiguration peak rate
announced is exactly of one byte per clock cycle: be 100 MB/s (100 MegaBytes)
for 100 MHz systems. Because systems work at different frequencies, we’ll ex-
press measures in bits transmitted per seconds and per MHz. The reference
ICAP bandwidth of 100 MB/s becomes 8 Mb/s.MHz (8 Megabits).

Claus et al. [3] consider that, for automotive real-time video applications,
the average bitstreams size is about 300 KB. Claus accepts to loose one eighth
of the processing time to reconfigure. For 25 images/s, the processing time is
40 ms, and a maximum of 5 ms is devoted to endo-reconfiguration. The speed
constraint is 60 MB/s. The experimental platform is a Virtex2 inside which a
PPC405 executes the software managing the DPR. Claus’s paper lets us think
that no functional system was ready at publication time.

The XAPP433 [4] application note, describes a system built around a 100
MHz Virtex4 FX12. It contains a synthesized Microblaze processor executing
the code of an HTTP server. The HTTP server downloads files via a 100 Mb/s
Ethernet LAN. The protocol stack is Dunkel’s lwIP [5] and the operating system
is Xilinx’ XMK. A 64 MB external memory is necessary to store lwIP buffers.
The announced downloading rate is 500 KB/s, be 40 Kb/s.MHz. This rate is
200 times lesser than ICAP’s one.

Lagger et al. [6] propose the ROPES system, dedicated to the acceleration of
cryptographic functions. It is build with a 27 MHz Virtex2 1000. The processor
is a Microblaze executing νClinux’s code. It downloads bitstreams via Ethernet
with HTTP and FTP protocols on top of a TCP/IP/Ethernet stack. For 70 KB
bitstreams, DPR latencies are about 2380 ms with HTTP, and about 1200 ms
with FTP. The max reconfiguration speed is about 60 KB/s, be 17 Kb/s.MHz.

Finally, Williams and Bergmann [7] propose νClinux as a RDP platform.
They have developed a device driver on top of the ICAP. Junction between a
remote file system and the ICAP is done at the user level by a shell command or a
user program. When a remote file system is mounted via NFS/UDP/IP/Ethernet
the bitstreams located there can be downloaded into the ICAP. The system is
built with a Virtex2 and the processor executing νClinux is a Microblaze. No
measures are provided. To have an estimation of such performances we made
some measures in a similar context and got transfer speeds ranging from 200
KB/s to 400 KB/s, representing a maximum of about 32 Kb/s.MHz.

3 Contribution

In this section we present our contribution in terms of hardware architecture,
software architecture and data-link level protocol for DPR. We present in details
the essential points improving the speed and reducing the memory footprint.

The hardware architecture we propose (Fig. 1) relies on a 100 MHz Vir-
tex2 PRO 30. A PPC405 core executes the DPR software. We consider that IPs



PLB bus

PPC405IOCM DOCM

Ethernet

ctrl

ICAP

PLB/OPB

bridge

RS232

OPB bus

Reconfigurable area

PLB bus

PPC405IOCM DOCM

Ethernet

ctrl

ICAP

PLB/OPB

bridge

RS232

OPB bus

Reconfigurable area

bistream

Fig. 1. Bistreams path from Ethernet to ICAP through PLB and OPB buses

communicate with the FPGA environment directly via some pads. Communi-
cation with the PPC405 and inter-IPs communication are out of the scope of
this article but can be implemented with Xilinx’s and Huebner’s bus macros [8]
and OPB/PLB wrappers as well as with an external crossbar like in the Erlan-
gen Slot Machine of Bobda et al. [9]. We have specified with EDK, XPS and
Planahead tools a system which contains a PPC405 surrounded by its minimal
devices set for DPR. We have added two memories. These are respectively the
IOCM (Instruction On Chip Memory) and the DOCM (Data On Chip mem-
ory). The PPC405 communicates with its devices through two buses connected
through a bridge. These are the PLB bus for the faster devices and the OPB bus
for the slower devices. The Ethernet PHY controller is connected to the PLB.
The UART serial line, for instrumentation and trace purpose, is connected to
the OPB. Finally the ICAP, connected to the OPB, manages the access and the
downloading of bitstreams into the reconfigurable areas. The exo-reconfiguration
is done through the JTAG port while the endo-reconfiguration is done through
the ICAP.

The software architecture is a two layers one. Bottom (level 1) layer is based
on the ICAP and Ethernet drivers. Top (level 2) layer handles the DPR protocol
processing. They establishe a data pipeline between the remote bitstreams server
and the reconfigurable areas in the FPGA. To uncouple ICAP and Ethernet
we have designed a producer-consumer paradigm. The producer is the Ethernet
controller and the consumer is the ICAP port. A circular buffer is asynchronously
fed with packets by interrupt handlers. Packet reception occurs by bursts and the
burst length is less than or equal to the half capacity of a reception packets buffer.



Each packet has a maximum size of 1518 bytes and has a maximum payload of
1500 bytes of bitstream data. The DPR protocol is executed concurrently with
the interrupt handlers. It analyzes the packet content and transfers the bitstream
data to the ICAP port. The bigger the burst is, the faster the protocol is.

N

P

wait

N

send

P

wait

packet

error

?

YES

NO

send

NACK

Pth

packet?

send

ACK

Nth

packet

?

YES

NO

NO

YES

ith packet

start

wait

P

send

packet

YES

Pth

packet?

wait

ACK

NO

ACK

?

NO

Nth

packet

?

YES NO

YES

ACK/NACK

Bistream

name

Bistream

name

Fig. 2. RDP Protocol state machines for server (left) and target (right)

Our protocol (Fig. 2) implements a data link with error detection and flow
control. It is qualified as ”adaptive” because it is able to adapt itself to the
memory resources available in the lightweight system at endo-reconfiguration
time. Would an error be detected, the DPR is instantaneously stopped after sig-
nalization of the error to the remote bitstreams server and the reconfiguration



restarted from the beginning. The Virtex tendancy (Virtex4 and Virtex5) being
to systematically reduce bitstreams sizes for partial reconfiguration, we think a
bitstream level restart strategy is better than a packet level restart one. This
choice is, of course, only valid for small amount of data transmitted over a very
low error rate LAN, which is our context. So the Ethernet controller detects all
transmission errors and the sequential numbering of packets allows detection of
missing, duplicated and moved packets in the packets flow. To implement the
necessary data flow regulation, we have chosen a positive acknowledge scheme
every P packets. P is determined by the DPR module from the available memory
space at the reconfiguration time. The DPR protocol can be used in two different
modes. In ”optional master” mode (top of Fig. 2) the lightweight system speci-
fies the identity (a file name relative to the bitstream directory managed by the
server) of the bitstream to send. In ”slave” mode it receives the bitstream with-
out knowledge of its function and location in the FPGA. When a transmission
starts, the server sends the total number of packets, N, that will be transmitted
for the full bitstream. The target answers with the number P which specifies the
burst size. Immediately after this parameters negotiation, and after every pos-
itive acknowledge, the server sends a burst of P packets and waits for the next
acknowledge. The finite state machine on the left describes the server’s behavior
and the one on the right the target’s behavior. The downloading is constituted
by ⌈N/P ⌉ bursts of maximum P packets, until the Nth packet ends the session.
In case of hardware reset, both state machines come back to their waiting state.
Timers on both sides help in the detection of unexpected death of an extremity
of the pipeline and restart state machines if necessary.

4 Results

Our measures are based on the repetitive endo-reconfiguration of cryptography
IPs like DES and triple DES producing bitstreams file sizes about 60 KB and
200 KB. Results obtained depend, as we could expect, on the producer-consumer

Lagger [6] Williams [7] Xilinx [4] RDP [authors]

Speed (Mb/s@MHz) 17 32 40 375-400

Memory (bytes) > 1M > 1M > 1M < 100K

Table 1. Comparative endo-reconfiguration speeds and memory footprints

packets buffer size allocated to the DPR protocol. So the speed depends on P.
Measures establish that in both cases (60 KB and 200 KB bistreams), when the
packets burst has a size greater or equal to three packets (P = 3), a maximum
speed ranging from 375 to 400 Mb/s.MHz is reached and is stabilized. The size
of the circular buffer being 2P + 1, it needs room for exactely seven packets,



be 10.5 KB (7 ∗ 1.5KB) only. Compared to usual buffer pools of hundredths
of KB for standard protocol stacks, this is a very small amount of memory to
provide a continuous DPR service. In this context our DPR protocol exhibits a
sustained reconfiguration speed about 40 Mb/s. Finally, our DPR software fits
into 32 KB of data memory and 40 KB of executable code memory. This memory
footprint and the reconfiguration speed enable us to qualify this system as being
a ”lightweight DPR system”. Table 1 sums up the respective speeds expressed
in Mb/s.MHz and memory footprints in bytes.

5 Conclusion and future extensions

Our DPR platform shows there is still opportunities to improve LAN-level, and
probably IP-level, protocols in order to provide an efficient and remote reconfig-
uration service (or communication service as well) over a standard network. Our
implementation exhibits an order of magnitude gain in speed when compared to
related works.

References

1. ’Real-time Configuration Code Decompression for Dynamic FPGA Self-
Reconfiguration’, Michael Hubner, Michael Ullmann, Florian Weissel, Jurgen
Becker, Proceedings of the 18th International Parallel and Distributed Processing
Symposium (IPDPS04), 2004.

2. ’A lightweight approach for embedded reconfiguration of fpgas’. B. Blodget, S.
McMillan, P. Lysaght, Proceedings of Design, Automation and Test in Europe
(DATE’03), 2003.

3. ’Using Partial-Run-Time Reconfigurable Hardware to accelerate Video Processing in
Driver Assistance System’, Christopher Claus, Johannes Zeppenfeld, Florian Muller,
Walter Stechele, DATE 2007.

4. ’Web Server design using MicroBlaze Soft Processor’, Xilinx, XAPP433, October
2006.

5. ’lwIP’, Adam Dunkels, Computer and Networks Architectures (CNA), Swedish In-
stitute of Computer Science, http://www.sics.se/ adam/lwip/.

6. ’Self-Reconfigurable Pervasive Platform For Cryptographic Application’, Arnaud
Lagger, Andres Upegui, Eduardo Sanchez, Proceedings of International Conference
on Field Programmable Logic and Applications (FPL’06), 2006.

7. ’Embedded Linux as a platform for dynamically self-reconfiguring systems-on-chip’,
John Williams, Neil Bergmann, Proceedings of the 2004 International Conference on
Engineering of Reconfigurable Systems and Algorithms (ERSA’04), ISBN 1-932415-
42-4, 2004.

8. ’Real-Time LUT-based Network Topologies for Dynamic and Partial FPGA Self-
Reconfiguration’, M. Huebner, T. Becker, J. Becker, 17th Symposium on Integrated
Circuits and Systems Design (SBCCI’04), September 2004.

9. ’The Erlangen Slot Machine: Increasing Flexibility in FPGA-Based Reconfigurable
Platforms’, C. Bobda, M. Majer, A. Ahmadinia, T. Haller, A. Linarth, J. Teich,
Journal of VLSI Signal Processing Systems, Volume 47, Issue 1 (April 2007), Pages:
15-31, ISSN:0922-5773.


