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Abstract

We calculate the AC conductance and the finite-frequency non-symmetrized noise in
interacting quantum wires and single-wall carbon nanotubes in the presence of an impu-
rity. We observe a strong asymmetry in the frequency spectrum of the non-symmetrized
excess noise, even in the presence of the metallic leads. We find that this asymmetry
is proportional to the differential AC conductance of the system. The asymmetry dis-
appears for a linear system (in the absence of interactions). In the quantum regime,
for temperatures much smaller than the frequency and the applied voltage, we find that
the emission noise is exactly equal to the impurity partition noise. Moreover the noise
exhibits oscillations with respect to frequency, whose period is inversely proportional to
the value of the interaction parameter g, and whose envelope is given by the noise in an
infinite Luttinger liquid with the same value of g.

1 Introduction

Electronic transport is an important tool for accessing the physical properties of mesoscopic
systems. Besides the average current flowing through a system, information can also be
extracted from the fluctuations (noise) in the current. For example, the zero-frequency noise
has been used to prove the fractionalized nature of the quasiparticles in fractional quantum
Hall liquids [1]. Moreover, the finite-frequency noise contains important information about the
typical energy scales, the dynamics, as well as the statistics of the excitations of a mesoscopic
system [2]. The symmetrized finite-frequency noise corresponds to the Fourier transform of the
symmetrized correlator of two non-commuting current operators at two different time points.
This noise is even with respect to frequency. Nevertheless, experiments give access rather
to the non-symmetrized noise [3, 4], and thus to the emission and absorption components of
the noise spectrum [5, 6, 7, 8]. What is usually measured in these experiments is the excess
non-symmetrized noise, defined as the difference between the non-symmetrized noise at finite
voltage and at zero voltage. In the absence of interactions, the total non-symmetrized noise
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is not even with respect to frequency, but the excess non-symmetrized noise is, hence the
emission excess noise and the absorption excess noise are identical.

Very few theoretical papers have addressed the effect of interactions for the finite-frequency
symmetrized noise, and even fewer for the case of the non-symmetrized noise. The finite-
frequency noise has been studied for mesoscopic capacitors [9], and in the Coulomb blockade
regime [10]. The effect of interactions on the finite-frequency symmetrized noise has also been
considered in the case of Luttinger liquids (LL), where the interactions are very strong and
can give rise to exotic phenomena such as charge fractionalization, spin-charge separation,
and fractional statistics. The symmetrized high-frequency noise in chiral LL’s (such as frac-
tional quantum Hall effect (FQHE) edge states) has been studied in Ref. [11]; for non-chiral
LL’s (such as quantum wires and carbon nanotubes connected to metallic leads) it has also
been studied in Refs. [12, 13, 14, 15]. In these works it was shown that, while the charge
fractionalization is still present [16, 17], the presence of the metallic leads obscures it in the
zero-frequency noise; nevertheless at high frequencies one can still extract the value of the
fractional charge. It was also found that the interactions play an important role for the entire
range of frequencies, even in the zero-frequency limit when the noise decays as a power-law of
the applied voltage [18, 19].

On the other hand, the non-symmetrized noise in the presence of interactions has only
been studied theoretically for chaotic cavities [20], and for FQHE edge states [21]. It is crucial
to understand the effect of interactions on the non-symmetrized noise. As found in Ref. [21]
for the case of FQHE, the non-symmetrized excess noise becomes asymmetric in the presence
of interactions. As we will show here, the excess non-symmetrized noise is asymmetric also
for a non-chiral LL connected to metallic leads.

Another important quantity for the physics of the interacting one-dimensional systems is
the differential AC conductance. This has the advantage that, while containing significant
information about the system, it is easier to measure than the high-frequency noise. The AC
conductance is also important because, as we will show in this paper, it enters in the relation
between the emission and absorption components of the noise. However, this conductance
has also its drawbacks compared to the finite frequency noise: it conductance can only be
defined in a the quasi-equilibrium regime when the frequency is smaller then the inverse of
the inelastic scattering times τin. This ensures that the time scales one can explore using
it are longer than the time τin required for the system to relax into its quasi-equilibrium
state. In quantum wires fabricated using two-dimensional electron gases the transport is
coherent if L ≪ vF τin, and the AC conductance gives information on a regime of relatively
small frequencies: ω ≪ 1/τin ≪ ωL ≈ vF/L. This limitation of the AC conductance can
be relaxed if the reservoir has a sufficiently short τin and is of a different material than the
one-dimensional wire (for carbon nanotubes).

The AC conductance of a clean LL connected to metallic leads has been studied theo-
retically in Ref. [16]. Also, the current in a chiral infinite LL in the presence of a finite AC
voltage and a single impurity has been studied in Refs. [22, 23]. Experimentally the AC con-
ductance of chiral edges in the integer quantum Hall regime has been studied in Ref. [24]. In
this paper, we focus on the dependence of the AC conductance on the applied DC voltage in
the limit of a vanishing AC voltage. We analyze a single-channel interacting wire of length L
connected to metallic leads using the inhomogeneous LL model (see Fig. 1). A weak impurity
situated in the center of the wire is responsible for the appearance of a backscattering current
when a voltage difference is applied between the leads. We analyze the effect of the impurity
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using the out-of-equilibrium Keldysh formalism [25]. While in general nanotubes are clean,
and most of the backscattering comes from the imperfect contacts, the situation of a single
central impurity can be achieved experimentally using for example an unbiased STM tip. In
this case the effect of the bulk impurity will dominate over the effect of the impurities at the
contacts [16, 26, 27]. The advantage of a single impurity is that we can disentangle much
easier the effects of interactions. Indeed, in systems with two impurities, other effects such
as Fabry-Perot interferences come into play and make the analysis much harder [14, 28]. The
formalism used here to describe the AC conductance is derived in Ref. [29]. We find that
the excess AC conductance, defined as the difference between the AC conductance at finite
and zero DC voltage, is zero for a linear system (in the absence of interactions) but becomes
non-zero for a non-linear system in the presence of interactions.

Besides the AC conductance, we focus also on an analysis of the noise. We start by
analyzing the zero-frequency noise, and we note that if the applied voltage is much smaller
than the characteristic energy associated with the length of the tube ωL = vF /gL (short-
wire limit), both the noise and the current are linear with voltage. Moreover, if the voltage
increases above ωL, the noise displays finite-size features (oscillations with respect to voltage),
as well as infinite interacting-wire features (a power-law decay similar to the one mentioned
in Refs. [18, 19]).

Subsequently we analyze the dependence of the non-symmetrized noise on frequency. The
first observation we make is that the emission noise vanishes at zero temperature for energies
larger than the applied voltage, while the absorption excess noise does not. This proves that
Pauli’s exclusion principle is applicable for interacting wires with metallic leads: for energies
larger that the applied voltage, an electron from the source does not have the corresponding
empty states in the drain to emit a photon.

As mentioned before, the non-symmetrized excess noise was shown to be asymmetric for
FQHE edge states [21]. The main purpose of this paper is to investigate whether the non-
symmetrized excess noise is also asymmetric for quantum wires and carbon nanotubes in the
presence of the metallic leads, and to identify the origin of this asymmetry. We find that the
excess noise is indeed asymmetric, and we show that this asymmetry between the emission
and absorption spectra is given by the real part of the differential AC conductance of the
wire, which is non-zero in the presence of an impurity and of electronic interactions. This is
consistent with a generalized Kubo formula [29, 30]. Thus, we can trace the asymmetry in
the spectrum of the noise to the non-linearity of the system in the presence of interactions.

Moreover, the noise exhibits oscillations whose periodicity is inversely proportional to the
value of the fractional charge. The presence of oscillations is the consequence of the quasi-
Andreev reflection of an electron at the interface between the interacting quantum wire and
the metallic leads [16, 31]. The multiple quasi-Andreev reflections give rise to Fabry-Perot
type of processes, and to an oscillating behavior of the AC conductance, even in the absence
of impurity scattering [16, 32]. The existence of the oscillations is a crucial difference between
the LL model and an alternative model, the dynamical Coulomb blockade (DCB) [33], which
was shown to give rise to the same type of power-law I-V decay as the LL theory [34]. The
presence of the oscillations in the dependence of the noise and AC conductance on frequency,
as well as in the dependence of the backscattering current on voltage [35], will be a clear
signature of LL physics and will allow one to distinguish between the LL model and the DCB
model.

While for a short wire the noise deviates only slightly from the non-interacting limit, when
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the length of the tube is much larger than the inverse of the applied voltage the signature
of the interactions is much more pronounced. In this case the envelope of the oscillations in
the noise is given by the form of the non-symmetrized noise for an infinite LL with the same
interaction parameter. Also, like for symmetrized noise [13], the average of the emission noise
over the first half-oscillation allows one to extract the value of the fractional charge in the
system, in a broader range of experimental conditions than the average of the symmetrized
noise.

This paper is organized as follows: in section 2 we present the model we use to describe
the quantum wire connected to metallic leads. In section 3 we present the differential AC
conductance of the wire. In section 4, we present the excess non-symmetrized noise, and
relate the asymmetry in the noise to the AC conductance. In section 5 we particularize the
results obtained in sections 3 and 4 to the limit of a small impurity, when the AC conductance
and the noise can be analyzed perturbatively. In section 6 we discuss our results; in section
6.1 we show that the average of the emission spectrum allows one to obtain the value of the
fractional charge, in section 6.2 we present the AC conductance and the non-symmetrized
noise on a gate, in section 6.3 we generalize our results for a nanotube that has four channels
of conduction, and in section 6.4 we discuss the relevant experimental regimes. We conclude
in section 7. The details of the calculation are presented in the Appendices.

2 Model

A quantum wire connected to metallic leads is described by the Hamiltonian

H = H0 + HB + HV , (1)

where H0 describes the interacting wire and the leads in the framework of the inhomogeneous
LL model, HB describes the effects of the impurity, and HV describes the chemical potential
applied to the wire. Explicitly,

H0 =
~vF

2

∫ ∞

−∞

dx

[

Π2 +
1

g2(x)
(∂xΦ)2

]

, (2)

HB = λ cos [
√

4πΦ(xi, t) + 2kF xi] , (3)

HV = −
∫ ∞

−∞

dx√
π

µ(x) ∂xΦ(x, t) . (4)

The interaction parameter g(x) is space-dependent and its value is g in the bulk of the wire,
and 1 in the leads [16, 36]. For convenience, the end-points of the wire are denoted by
x1 = −L/2 and x2 = L/2, while the impurity position is chosen to be xi. The backscattering
amplitude is denoted by λ. A schematic view of the system is shown in Fig. 1.

The function µ(x) = eV (x) in Eq. (4) describes the external chemical potential, and is
taken to be piecewise constant [13, 16]:

µ(x) =























µ1 for x < x1

µ3 for x1 < x < x2

µ2 for x > x2

(5)
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Figure 1: A quantum wire with an impurity, adiabatically coupled to metallic leads and to a metallic
gate. The leads are held at different chemical potentials µ1 = eV1 and µ2 = eV2.

where µ3 = eV3 is controlled by the gate potential, and we will denote V = V2 − V1. The
specific profile of the DC electric field can be inferred using E(x) = −∂xV (x). In bosonization,
the current operator is related to the bosonic field Φ through

j(x, t) =
e√
π

∂tΦ(x, t) . (6)

In our analysis we will focus mainly on the currents evaluated at the contacts x1, x2, while
adopting the convention that outgoing currents are positive. Thus we denote

jn(t) = (−1)nj(xn, t),

for n = 1, 2, and In(t) = 〈jn(t)〉.
The differential AC conductance of the wire is defined as the response of the system to

an infinitesimal AC modulation in the bias of the reservoirs: Vm → Vm(t) = Vm + Vm(t),
with Vm(t) = vm cos ωt, while all the DC voltages Vm are finite. Thus the AC conductance
Gnm(ω) =

∫

dteiωtGnm(t) is defined as the Fourier transform of the functional derivative
Gnm(t), where:

Gnm(t − t′) =
δIn(t)

δVm(t′)

∣

∣

∣

∣

Vm=0

. (7)

As we show here, at low temperatures the AC conductance Gnm of a LL has a non-linear
dependence on the applied DC chemical potentials.

The AC conductance of the wire can indeed be related to the non-local AC conductivity
[16]. To show this, one notes that the external time-dependent electric field profile corre-
sponding to the piecewise potential landscape in Eq. (5) is given by:

E(x, t) =
∑

m=1,2

(−1)m[Vm(t) − V3(t)]δ(x − xm). (8)

The non-local differential AC conductivity is defined as the linear response of the current to
an infinitesimal AC modulation, E(x) → E(x)+E(x, t), where E(x, t) = ǫ(x) cos ωt, at a finite
value of E:

σ(x, y, t − t′) =
δ〈j(x, t)〉
δE(y, t′)

∣

∣

∣

∣

E=0

. (9)

Correspondingly we have σ(x, y, ω) =
∫

dteiωtσ(x, y, t). We can thus see that one can express
the AC conductance in Eq. (7) as:

Gnm(ω) = (−1)n+mσ(xn, xm, ω). (10)
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We should note that in the case of a time dependent current flowing trough the system,
the conservation of current does not hold, i.e. I1(t) + I2(t) 6= 0, and a time-dependent charge
accumulates on the wire. This can be observed by capacitatively coupling a gate to the system,
such that the fluctuations of the charge on the gate reflect the fluctuations of the charge in
the wire, and the current in the gate is the sum of the time-dependent currents at the two
leads. This ensures a formal current conservation. However, besides ensuring the screening
of the Coulomb interactions in the wire, the presence of the gate has no direct effect on the
values of the various currents flowing through the wire. The gate will be discussed in more
detail in section 6.2.

The other quantity of interest of this analysis is the finite frequency non-symmetrized
noise. This is defined as

Snm(ω) =

∫ ∞

−∞

dteiωt 〈δjm(0)δjn(t)〉 , (11)

where n and m refer to the reservoirs where the current is measured and δjn(t) = jn(t)−〈jn〉.
The finite frequency symmetrized noise on the other hand is defined as

S+
nm(ω) =

1

2

∫ ∞

−∞

dteiωt[〈δjm(0)δjn(t)〉 + 〈δjn(t)δjm(0)〉]. (12)

3 The differential AC conductance

We will first focus on the AC conductance of the wire. As shown above we can relate the
AC conductance of the wire with the non-local AC conductivity σ(x, y, ω) evaluated between
specific values of x and y. In turn, the AC non-local conductivity σ(x, y, ω), defined in Eq. (9)
needs to be expressed in terms of microscopic correlators. For this purpose, in the equilibrium
case, when eV ≪ kBT , one can use simply the Kubo formula, and σ(x, y, ω) coincides with
the non-local conductivity discussed already in Refs. [13, 16, 21]. In this regime a Dyson-type
equation was derived:

σ(x, y, ω) = σ0(x, y, ω) − h2

e4
σ0(x, xi, ω)GB(ω)σ0(xi, y, ω). (13)

We should note that σ0, the non-local conductivity without impurity, describes the propaga-
tion from the measuring point to the impurity point, while GB describes the pure backscat-
tering conductivity at the impurity position. Notice that σ0(x, y, ω) does not depend on the
voltage V as the system is purely linear in the absence of an impurity [16], but depends only
on the frequency ω, on ωL = vF/gL associated with the finite size of the wire. The precise
form of σ0 for x and y in the wire or at the contacts (i.e., |x|, |y| ≤ L/2) has been calculated
previously [16]:

σ0(x, y, ω) = g
e2

h

[

e
i ω

ωL
|x−y

L | +
γ

e−2iω/ωL − γ2

∑

r=±

(

γe
ir ω

ωL
|x−y

L | + e
i ω

ωL
(r x+y

L
−1)

)

]

, (14)

where γ = (1 − g)/(1 + g) is the reflection coefficient for the quasi-Andreev reflection at the
contacts, and L is the length of the wire. We should note that at zero frequency σ0(x, y, ω) =
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e2/h, independent of position, and equal to the conductance of non-interacting single-channel
one-dimensional system.

On the other hand, GB, besides the impurity position xi and temperature T , depends also
on the backscattering amplitude λ. Also, while it does not depend on voltage in the linear
regime eV ≪ max(kBT, ~ω), it will depend on it in the non-linear regime, eV > max(kBT, ~ω).
It is given by:

GB(ω) =
1

~ω

∫ ∞

0

dt
(

eiωt − 1
)

〈[jB(t), jB(0)]〉 . (15)

Here, the backscattering current operator is defined as

jB(t) = − e

~
√

4π

δHB(Φ, t)

δΦ(xi, t)
= λ

e

~
sin[

√
4πΦ(xi, t) + 2kFxi + eV t/~]. (16)

This form for the backscattered current operator was obtained using a time-dependent trans-
lation of Φ in HB incorporating the effect of the applied voltage V [13]. Its average value is
denoted by IB(t) = 〈jB(t)〉. We should stress that it is important to distinguish between the
total current operator defined in Eq. (6), and the backscattered current defined above. The re-
lation between the average values of these currents becomes simple in the DC regime, when the
two currents are time-independent: I2 = −I1 = V e2/h − IB, as sketched in the linear regime
in Refs. [16, 26], and in the nonlinear regime in Refs. [13, 35]. However, the time-dependent
properties associated with these two current operators, such as the AC conductivities and
noise spectra are different.

On the other hand, for the non-equilibrium case eV ≫ kBT , it turns out that a general out-
of-equilibrium Kubo formula allows one to relate the AC conductivity to the retarded current-
current correlation function, even in the presence of a finite DC bias. This was proved for the
case of homogeneous conductivity [30] with the requirement of a stationary density matrix.
This misses however the effects of the non-locality, which are important in a mesoscopic
context. A simpler demonstration, not constrained by the stationarity requirement, and valid
more generally for any finite mesoscopic non-linear system, is presented in Ref. [29]. Thus the
AC conductivity is shown to verify the Dyson equation presented in Eq. (13), with the sole
difference that in this case GB has an implicit dependence on the voltage V . This implies
that the AC conductance Gmn defined in Eq. (7), for a quantum wire in the presence of an
impurity can be obtained directly using Eq. (13). While an analytic calculation of GB cannot
be done for all impurity strengths, the conductance can be calculated perturbatively for the
case of a small impurity. The perturbative analysis of the AC conductance is presented in
section 5.

4 Non-symmetrized noise

We will now present our results for the noise in a quantum wire in the presence of an impurity,
and connect it to the AC conductance presented in the previous section. In this section we
will discuss some general considerations for the noise, which are independent of the strength
of the impurity potential. While it is important to understand these general aspects, same as
for the AC conductance, the detailed form of the noise dependence on frequency cannot be
obtained exactly, but only by using a perturbative expansion in the limits when the impurity
is very small or very large respectively. The perturbative analysis of the very small impurity
situation will be presented in detail in the next section.
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Notice first that for an applied voltage V much smaller than temperature (in equilibrium)
the noise is given by:

S0
nm(ω) = 2~ωN(ω)Re[Gnm(ω)]V =0,

S0+
nm(ω) = ~ω[1 + 2N(ω)]Re[Gnm(ω)]V =0, (17)

where N(ω) = [coth (~ω/2kBT ) − 1] /2. This is in agreement with the fluctuation-dissipation
theorem (FDT).

For arbitrary voltages, temperatures and frequencies, as well as for any impurity strength,
we find the total noise to be:

Snm(ω) = 2~ωN(ω)Re[G0
nm(ω)] +

h2

e4
G0

ni(ω)SB(ω)G0
im(−ω)

−2
h2

e4
~ωN(ω)

{

Re[G0
ni(ω)]GB(−ω)G0

im(−ω) + G0
ni(ω)GB(ω)Re[G0

im(−ω)]
}

,

(18)

where GB was defined in the previous section and SB is the non-symmetrized backscattering
noise

SB(ω) =

∫ ∞

−∞

〈δjB(0)δjB(t)〉 eiωtdt, (19)

where δjB(t) = jB(t) − 〈jB〉.
We should mention a non-trivial check satisfied by Eq. (18), which has more general and

important consequences: the noise verifies a generalized out-of-equilibrium Kubo-type relation
[29],

S−
nm(ω) ≡ Snm(ω) − Snm(−ω) = −2~ωRe[Gnm(ω)]. (20)

The first consequence of this relation is that if one has access to the emission noise, one can
deduce the absorption noise by using the AC conductance discussed in the previous section.
Reversely, if one measures the emission and the absorption noises, one can extract the AC
conductance at an arbitrary frequency, not necessarily smaller than the inverse of the inelastic
scattering time. This provides an advantage over the case of a direct AC measurement [16].

The second consequence is that we can write the noise as a combination of a symmetric
S+

nm(ω) and anti-symmetric part S−
nm(ω), where the symmetric component was defined in

Eq. (12), and can be related to the total noise by S+
nm(ω) = [Snm(ω)+ Snm(−ω)]/2. Thus the

difference between the symmetrized noise (computed in Ref. [13]), and the non-symmetrized
noise comes from the real part of the AC conductance which is explored here for the first time
for the case of an inhomogeneous LL:

Snm(ω) = S+
nm(ω) − ~ωRe[Gnm(ω)] . (21)

The third consequence of this out-of equilibrium FDT relation is that the excess noise,
defined as the difference between the noise at finite bias and the noise at V = 0, while
symmetric for a linear system, becomes asymmetric for a non-linear interacting system [29].
We find the excess noise to be given by:

∆Snm(ω) = ∆S+
nm(ω) − ~ωRe[∆Gnm(ω)] , (22)
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where ∆Gnm(ω) = Gnm(ω)− Gnm(ω)|V =0 is the excess AC conductance, and ∆S+
nm(ω) is the

symmetrized excess noise. For a linear system, the AC conductance is independent of voltage,
thus ∆Gnm(ω) = 0, and the non-symmetrized excess noise is equal to the symmetrized excess
noise and is therefore even in frequency. However, if the AC conductance is voltage dependent,
which is the case if the system is non-linear, ∆Gnm is non-zero and the non-symmetrized excess
noise is non-symmetric.

It is important to note two other properties of our results that hold exactly in the quantum
regime ~ω ≫ kBT , for any impurity strength. For positive frequencies the factor N(ω) vanishes
on the right-hand side of Eq. (18). Thus the emission noise (i.e. the positive frequency
component of the noise) is equal in this regime to the emission excess noise (no equilibrium
component for the emission noise). Second, Eq. (18) can be simplified in this frequency range
to the effect that the emission noise coincides with the backscattering noise SB, up to factors
of the non-local pure conductivity:

Snm(ω > 0) =

(

h

e2

)2

G0
ni(ω)SB(ω)G0

im(−ω) . (23)

Thus the emission noise has access directly to the impurity backscattering noise. This is a
great advantage with respect to the symmetrized noise, in particular for the case a non-chiral
system for which the backscattering noise cannot be simply inferred from the chiral current
correlations, as it is the case for a chiral system (e.g the edges of a fractional quantum Hall
liquid) presented in Ref. [21].

5 Perturbative results

5.1 AC conductance

We now evaluate the differential AC conductance and the non-symmetrized noise perturba-
tively in the case of small impurity backscattering λ, up to order λ2. The real part of the
excess AC conductance, ∆G11(ω) = G11(ω)− G11(ω)|V =0 is plotted in Fig. 2. The advantage
of analyzing the excess conductance is that we have access directly at the impurity-generated
terms proportional to λ2. We do not give here the equilibrium conductance G11(ω)|V =0. The
incovenience of analyzing it is that it contains both impurity-induced terms of order λ2, and
terms that are independent of the impurity (of order λ0), that have been already studied in
Refs. [16, 32], and that will dominate over the impurity-induced terms.

The excess AC conductance vanishes for g = 1, consistent with the linearity of a non-
interacting system. However, the excess AC conductance is non-zero in the presence of inter-
actions, consistent with the strong non-linearity of an interacting system in the presence of
an impurity.

While not depicted here, we also find that the real part of the total diagonal conductance
Gnn is a positive quantity at all frequencies. Consequently, from Eq. (21) we expect that the
non-symmetrized noise Snn will be reduced with respect to the symmetrized noise S+

nn for
positive frequencies (emission part), whereas at negative frequencies (absorption part) it is
increased.
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Figure 2: Real parts of the excess AC conductance ∆G11(ω) in units of ∆G11(ω = 0) for g = 0.25
(full line), g = 0.5 (dashed line) and g = 0.75 (dash-dotted line). The other parameters are xi = 0,
T = 0, λ/eV = 0.01 and g~ωL/eV = 0.5. The excess AC conductance for g = 1 is zero (not shown),
consistent with the fact that the excess noise is symmetric in this case.

5.2 Zero-frequency noise

Measurements of the zero-frequency noise have been available for quite some time in FQHE
edge states [1]. Moreover, they have recently been performed also for nanotubes [19, 37]. We
calculate the zero-frequency noise perturbatively, up to order λ2, and we find:

Snm(ω = 0) = eIB coth

(

eV

2kBT

)

+ 2kBT

[

e2

h
− 2

∂IB

∂V

]

. (24)

in agreement with [12, 19]. This formula resembles the zero-frequency noise in a non-interacting
wire [38], but interactions effects are present in a non-linear dependence of IB with the applied
voltage [18]. In the limit of kBT ≪ eV , the zero-frequency excess noise is simply given by the
electron charge multiplied by the backscattering current: eIB [39].

The evaluation of the backscattered current is presented in Appendix C, and discussed in
detail in Refs. [13, 35]. In Fig. 3, we plot the zero-frequency noise ∆Snm(ω = 0) = Snm(ω =
0) − Snm(ω = 0)|V =0 as a function of voltage. At zero temperature, we observe periodic
modulations of the noise which are attenuated when the temperature increases. Also, at zero
temperature and for voltages smaller than ωL (in the short-wire limit), both the noise and
the backscattered current increase linearly with voltage, in agreement with the experimental
measurements [37]. This regime is denoted in Fig. 3 by A. We expect that in this regime the
frequency dependence of the noise to be also similar to that of a non-interacting system. The
linear dependence of the current in this regime can be argued using Eq. (41) in Appendix C.
The integral in Eq. (41) is dominated by times smaller, and of the order of a few 1/ωL. If
eV ≪ ~ωL, eV t/~ ≪ 1 and sin(eV t/~) can be expanded linearly in V , thus justifying the
linear dependence.

For voltages larger than ~ωL we see that the system approaches the infinite-wire limit, while
exhibiting finite-size oscillations whose envelope follows the infinite-wire characteristic power-
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law dependence [18]. In Fig. 3, we denote this regime by B. We expect that in this limit the
finite-frequency noise exhibits finite-size features overlapped with infinite wire characteristics.

For temperatures larger than ~ωL, the finite-size features disappear, and we see that the
behavior of the noise resembles the noise of an infinite interacting wire: for voltages larger than
the temperature the noise decreases as a power-law with respect to the applied voltage (regime
C). A similar power-law decay of the zero-frequency noise at large voltages was predicted and
observed experimentally in Ref. [18].
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Figure 3: The zero-frequency excess noise ∆S11 as a function of applied voltage for g = 0.25
at kBT/~ωL = 0 (main plot), and kBT/~ωL = 5 (inset). The other parameters are xi = 0 and
λ/~ωL = 0.01. The A, B, and C denote three regimes of interest. The noise is renormalized by
λ2/(ωL/ωC)2g, where ωC is a high-energy cutoff.

5.3 Finite-frequency non-symmetrized noise

In the following we analyze the non-symmetrized excess noise at finite frequency. As dis-
cussed in the previous section, we focus mainly on the excess noise, as being both the quan-
tity most relevant in an experiment, and the one that incorporates most of the information
about the electronic interactions in a system. Our most important observation is that the
non-symmetrized excess noise, while being symmetric in a non-interacting system, becomes
asymmetric in the presence of interactions, the amount of asymmetry providing an insight
into the strength of the electron-electron interactions. A similar behavior was obtained in a
two-dimensional electron gas in the fractional quantum Hall regime [21].

We study two relevant limits corresponding to the A and B regimes described in the
previous section: a very short tube, when we expect the physics to be dominated by the
non-interacting metallic leads, and a very long tube, when we should be able to retrieve some
of the infinite Luttinger liquid features. We restrict ourselves to the quantum regime, when
the temperature is much smaller than all the other energy scales in the problem.

A. Short-wire limit

In the first (A) case, when ~ωL = ~vF /gL ≫ eV , the non-symmetrized excess noise devi-
ates from the non-interacting limit, as can be seen from Fig. 4, but the deviations, especially
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for the case of the emission noise, are small. A similar behavior was obtained for a short
carbon nanotube connected to a STM tip [23].
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Figure 4: Non-symmetrized excess noise ∆S11 divided by eIB for different values of the interactions
parameter g and for xi = 0, T = 0, λ/eV = 0.01 and g~ωL/eV = 1.

We also see that, at zero temperature, the non-symmetrized excess noise cancels at positive
frequencies for ~ω > eV , for all values of g. However, the non-symmetrized excess noise cancels
for negative frequencies ~ω < −eV only when g = 1, i.e. in the non-interacting limit. This is
because the detection of the current fluctuations at positive frequencies requires the emission of
photons, while at negative frequencies it requires the absorption of photons. Pauli’s exclusion
principle does not operate only at zero frequency, but also at finite frequency. Thus for energies
larger than eV , the emission noise for a non-interacting system vanishes as an electron coming
from the source does not dispose of the corresponding empty states in the drain to emit a
photon [30, 40]. In the presence of interactions, the problem is more complicated, and the
symmetrized noise analyzed in Refs. [11, 13], does not allow to draw any conclusion on the
issue. For the non-symmetrized noise, the emission noise does vanish at frequencies higher
than the voltage, thus the exclusion principle directly affects this component of the noise. On
the other hand the absorption noise does not vanishes for frequencies smaller than −eV/~

since at these frequencies the absorption noise is given by the real part of the AC conductance
(see Eq. (20)).

The deviation from the non-interacting limit decreases with decreasing the length of the
tube, or with increasing g. This is due to finite size effects which dominate in the case of
a short wire, and in the extreme limit we expect the system to behave like an infinite non-
interacting wire. While for the values presented in Fig. 4, the difference is not substantial for
the emission component, it signals already that even in the presence of the metallic leads, the
non-symmetrized excess noise becomes asymmetric due to the effect of the interactions in the
wire.

One should note the emergence of the regions where the non-symmetrized excess noise
becomes negative. This is contrary to the original intuition that the noise increases when a
DC voltage is applied. However, a negative symmetrized excess noise has already been noted
for the case of LL’s [13], or for semi-classical systems [41, 42]. Here we see that the emission
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noise S11 remains positive, in agreement with the intuitive understanding. This result is
obtained perturbatively, but we believe that it will remain valid at all orders in perturbation
theory[43]. On the other hand, we see that the absorption noise can become negative, and we
can understand this as stemming from the generalized Kubo formula [29, 30], which relates
the difference between the emission noise and the absorption noise to the AC conductance.
The negativity of the absorption noise will yield regions where the symmetrized excess noise
can also become negative.

B. Long-wire limit

The effects become much more pronounced in the opposite (B) limit, ~ωL = ~vF /gL ≪ eV ,
(the long-tube limit). In this case a large number of oscillations can be observed (see Fig. 5)
for frequencies inferior to the Josephson frequency eV/~. The period of these oscillations is
given by 2πωL, and they arise from the quasi-Andreev processes discussed in the Introduction.
It is clear from Fig. 5 that the amount of asymmetry between the excess emission noise and
the excess absorption in this situation is very large. While the excess emission noise goes to
zero at frequencies larger than the Josephson frequency, the excess absorption noise displays
sharp oscillations for frequencies smaller than −eV/~. Also, the magnitude of the oscillations,
even at frequencies larger than −eV/~ is much larger for the absorption component.
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Figure 5: (Upper graph) Absorption part and, (lower graph) emission part of the non-symmetrized
excess noise ∆S11 divided by eIB for g = 0.25, xi = 0, T = 0, λ/eV = 0.01 and g~ωL/eV = 0.01.
The dotted line describes the emission noise of an infinite system with g = 0.25.

Other signatures can be extracted from the oscillations of the noise with respect to fre-
quency. For example if the impurity is in the center of the wire, the period of the oscillations
2πvF/gL is inversely proportional to the value of the fractional charge g. Also, in the long-
tube limit, as depicted in Fig. 5, the envelope of the oscillations coincides exactly with the
noise of an infinite LL with the same interaction parameter g (the dotted line). We should
note that these results are strongly affected by the position of the impurity, such that, if
the impurity is not exactly in the middle, the dependence of the noise on frequency is more
complicated, and the shape of the envelope changes. We have checked that for example, if the
impurity is at one of the contacts the periodicity of the oscillations double, and the envelope
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of the oscillations corresponds to an infinite Luttinger liquid with an effective g∗ = 2g/(g+1).
However, as discussed in the introduction, the position of the impurity should be controllable
using an STM tip, and the bulk impurity should dominate over the contact ones [16, 26].

We should note that, in agreement with previous studies [13], the position of the Josephson
singularity is at eV/~, same as for a non-interacting wire. Also, at zero temperature, the form
itself of the singularity is cusp-like, same as for the non-interacting system. This can be seen
analytically by taking the limit |eV/~ − ω| ≪ ωL. The integrals responsible for the noise in
this limit are dominated by times smaller or of the order of a few 1/ωL. If |eV/~ − ω| ≪ ωL

the oscillatory terms of the form sin(ωt− eV t/~) become linear in |ω − eV/~|, hence the cusp
singularity at ω = eV/~.

6 Discussion

6.1 Average non-symmetrized noise

Here we show that more information about the value of the charge fractionalization can be
obtained from the finite-frequency emission noise in the long-wire limit. Thus along the lines
of Refs. [13, 21], we can analyze the average of the non-symmetrized excess noise over the first
half period of oscillations when the impurity is in the middle of the wire:

〈∆Snm〉∆ω =
1

∆ω

∫ ∆ω

0

dω∆Snm(ω) , (25)

where ∆ω = πωL = πvF/gL. The period of oscillations depends on the interaction parameter g
as depicted in Fig. 6. While the zero frequency noise is given by eIB, we find that the average
of the emission noise over the first half period of oscillations is geIB in the regime eV ≫
{kBT, ~ωL} (see inset of Fig. 6). This is less restrictive than the average of the symmetrized
noise presented in Ref. [13]. A measurement of the noise over one half period of oscillations
should thus make one able to extract the value of the fractional charge in the interacting wire.
This should be easier to achieve experimentally than the measurement of the envelope of the
oscillations, as the noise frequencies required are much smaller.

As can be seen from Fig. 6 the average of the emission noise is more accurate than the
average of the symmetrized excess noise, thus allowing the identification of the value of the
fractional charge for a larger region in parameter space.

We should also note that, if the impurity is not exactly in the middle of the wire, the
frequency average is not strictly equal to the value of the fractional charge, but depends
on the impurity position. A similar dependence was observed also for the average of the
symmetrized noise calculated in Ref. [13]. To overcome this, an STM tip for example could
be used to create an impurity in the center of the wire, whose effects would dominate the
backscattering at the two metallic leads.

6.2 Non-symmetrized noise on a gate

As mentioned in section 2, in the case of an AC current flowing trough the system, the
conservation of current does not simply hold in the usual form for DC transport I1+I2 = 0. For
time-dependent transport, the continuity equation ∂xI = 0 must be replaced by ∂tρ+∂xI = 0,
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Figure 6: Emission excess noise ∆S11(ω) divided by eIB plotted over the first half period (see
arrows) of oscillations (except for g5 = 1) for different values of the interaction parameters g and for
xi = 0, T = 0, λ/eV = 0.01 and g~ωL/eV = 0.001. The inset shows the average of the emission
noise over one period (∗ points) and of the symmetrized excess noise (⋄ points).

and we have [16]:

I1(t) + I2(t) = −
∫ L/2

−L/2

dx 〈∂tρ(x, t)〉 = −Q̇(t), (26)

such that the difference between the currents at the two contacts is related to Q, the charge
accumulated inside the wire. This charge can be measured using a nearby gate capacitatively
coupled to the wire, such that the charge on the gate is equal and opposite to Q. The current
flowing trough the gate is thus I3(t) = −Q̇(t) = −I1(t) − I2(t), ensuring formally current
conservation. We can define a gate AC conductance G3m(ω) as G3m(ω) =

∫

dteiωtG3m(t)
where

G3m(t − t′) =
δI3(t)

δVm(t′)

∣

∣

∣

∣

vm=0

, (27)

for m = 1, 2. Thus G3m(ω) = −G1m(ω)−G2m(ω), while the total gate conductance is defined
as

G33(ω) ≡ −G31(ω) − G32(ω).

For a clean wire we can see easily that G0
11(ω) = G0

22(ω) and G0
12(ω) = G0

21(ω), thus the
two conductivities G0

31 and G0
32 are equal, and by measuring the gate conductance one can

extract the ideal conductance of the wire [16, 32].
Moreover, if the impurity is in the middle (xi = 0), such that one does not break the initial

mirror symmetry of the problem with respect to the origin, we find that the gate conductance
is unchanged by the presence of the impurity G0

3m(ω) = G3m(ω), for m = 1, 2, 3. This should
be true also for any impurity distribution conserving this mirror symmetry. Thus the gate
offers the advantage that for a symmetric impurity distribution, one can extract directly
the ideal conductance of a one-dimensional system. In a realistic experiment however, the
contacts are often not perfect and moreover asymmetric. In the case of asymmetric contacts
the conductance of the gate is no longer dominated by the bulk impurity, but it is proportional
to the asymmetry between the two contacts. This situation will be examined elsewhere.
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Similarly, the non-symmetrized noise on the gate is given by:

S3(ω) =

∫ ∞

−∞

dteiωt 〈δj3(0)δj3(t)〉 =

∫ ∞

−∞

dteiωt 〈[δj2(0) + δj1(0)][δj2(t) + δj1(t)]〉 . (28)

It leads to:

S3(ω) = S11(ω) + S22(ω) + S12(ω) + S21(ω) . (29)

We can also define a non-symmetrized excess gate noise as:

∆S3(ω) = S3(ω) − S3(ω)|V =0 . (30)

We find also that, when the impurity lies exactly at the center of the wire, ∆S11(ω) =
∆S22(ω) = −∆S12(ω) = −∆S21(ω), and the excess gate noise cancels. The total noise in
this situation is thus given by the FDT: S33(ω) = −2~ωN(ω)Re[G0

33(ω)].

6.3 Non-symmetrized noise in a nanotube

The analysis in the previous section was appropriate for a quantum wire with a single channel
of conduction. However, realistic one-dimensional conductors such as carbon nanotubes, for
which measurements of the zero frequency current-current fluctuations are now available [19,
37] have more channels of conduction. For example, a carbon nanotube has four channels of
conduction, out of which one with fractional charge ge ≈ 0.25e [44]. If the impurity is in the
middle of the wire, i.e. xi = 0, we can see that the period of the noise oscillations depends
only on the fractional charge g of the charge sector, and is given by 2πvF /gL. In the limit
where the tube is not too long, a slight asymmetry between the excess emission noise and
excess absorption noise will start developing, but this asymmetry will not be as pronounced
as in the case of a single-channel quantum wire, due to the existence of the four channels
of conduction. In the long-tube limit the effect of the extra channels of conduction will be
visible in the form of the envelope of the oscillations, where the value of g which determines
the exponent of the power-law dependence will be renormalized to g∗ = (g +3)/4 ≈ 0.8. This
limit is presented in Fig. 7. On the other hand, the averaging over the first half period of the
oscillations will retrieve solely the value of the fractional charge of the charge mode g = 0.25.

6.4 Experimental relevance

We should now make some comments on the accessibility of the two regimes discussed above
in an experiment. For a nanotube of a micron length for example, πωL = vF /gL ≈ 10THz.
This corresponds to ~ωL/kB ≈ 20K. Thus, regime A, as specified in Fig.3, is achieved for
T ≪ 20K, and V ≪ 2meV , with kBT ≪ eV , thus temperatures of order of 0.1K, and voltages
of order of 0.1mV would be appropriate. The temperature and voltage can be higher if the
tube is shorter, as it is the case for example in Ref. [37], where ωL ≈ 15meV , and the linear
regime occurs for V of order of mV . In the frequency dependence of the noise the Josephson
frequency would appear at frequencies of the order of THz.

On the other hand, the regime B described in Fig. 5, occurs for the same range of temper-
atures, but for larger voltages, for example for the case discussed above V ≈ 10 − 100meV ,
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Figure 7: Non-symmetrized excess noise ∆S11 for a nanotube divided by eIB for the interactions
parameter g = 0.25 and for xi = 0, T = 0, λ/eV = 0.01 and g~ωL/eV = 0.01. The dotted line is the
emission noise of an infinite wire with g = g∗ ≈ 0.8.

depending on the length of the wire. In this regime the Josephson singularity occurs for fre-
quencies of ≈ 50THz. This range of frequencies is much harder to achieve experimentally, also
the high voltage required will contribute to the heating of the sample. While the Josephson
frequency is very high, the oscillations should be however visible for frequencies of the order
of 10THz. This is thus the necessary frequency to achieve experimentally in order to retrieve
the value of the fractional charge by performing an average of the finite-frequency noise.

7 Conclusions

In this paper we have analyzed the finite-frequency noise in a quantum wire connected to
metallic leads in the presence of a single impurity. While in general nanotubes are clean,
and most of the backscattering comes from the imperfect contacts, the situation of a single
central impurity can be achieved experimentally using for example an unbiased STM tip. In
this case the effect of the bulk impurity dominates over the effect of the impurities at the
contacts. Here we review some of the main results, which are also presented in more detail in
the introduction.

The first observation we have made is that the excess AC conductance, defined as the
difference between the AC conductance at finite and zero DC voltage is zero in the absence
of interactions and becomes non-linear in the presence of interactions.

We have also found that even in the presence of leads, many signatures of charge fraction-
alization are still present in the behavior of the noise, and could be observed experimentally.
The most important observation is the strong asymmetry in the finite-frequency excess noise:
the emission and the absorption components of the excess noise, while identical in the absence
of interactions, are different if interactions are present in the wire. The magnitude of the
asymmetry is related to the differential AC conductance of the wire.

Moreover, in the zero temperature limit, the noise exhibits oscillations whose periodicity is
inversely proportional to the value of the fractional charge. The existence of the oscillations is
a crucial difference between the LL model and an alternative model, the dynamical Coulomb
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blockade model. When the length of the tube is much larger than the inverse of the applied
voltage, the envelope of the oscillations is given by the form of the non-symmetrized noise for
an infinite LL with the same interaction parameter. We have found that an average over the
first half-period of oscillation in the long-tube limit gives directly access to the value of the
fractional charge g.

We have discussed also the presence of a gate, and we have analyzed how our results change
in the presence of multiple channels, such as it is the case for a carbon nanotube. Last but not
least we have discussed the experimentally relevant values of the parameters in our analysis.
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Appendix

A Functions GB and SB

The function GB is defined by

GB(ω) =
1

~ω

∫ ∞

0

dt
(

eiωt − 1
)

〈[jB(t), jB(0)]〉 . (31)
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while SB is defined as

SB(ω) ≡
∫ ∞

−∞

dt eiωt 〈δjB(0)δjB(t)〉 , (32)

where jB is the backscattering current operator at the backscattering site xi defined in Eq. (16).
The evaluation of GB and SB perturbatively up to second order in λ gives [21]:

GB(ω) = 2π
1

~ω

e2λ2

~2

∫ ∞

0

dt(eiωt − 1) cos

(

eV t

~

)

∑

s=±

se4πC(xi,st;xi,0) ,

(33)

where the two-point functions C is presented in Appendix B. The sum over s can be expressed
as:

∑

s=±

se4πC(xi,st;xi,0) = 2i sin{4πIm[C(xi, t; xi, 0)]}e4πRe[C(xi,t;xi,0)] . (34)

Similarly we can write SB(ω) = [fA(ω)/(4π)− ~ωGB(ω) − ~ωGB(−ω)]/2 where

fA(ω) = 2πi
e2λ2

~2

∑

m=±1

coth
[

~ω + meV

2kBT

]

×
∫ ∞

0

dt sin[(ω + meV/~)t]
∑

s=±

se4πC(xi,st;xi,0).

(35)

B Green’s function CR

The Green’s function CR is given by the Fourier transform:

C̃R(x, y, ω) ≡
∫ ∞

−∞

eiωt CR(x, t; y, 0) dt , (36)

where,

CR(x, t; y, 0) = 2iθ(t)Im[C(x, t; y, 0)] , (37)

and C = CGS + CTF. The ground state (GS) and thermal fluctuations (TF) contributions
are given by [13]:

CGS(x, t; y, 0) = (38)

− g

4π

{

∑

m∈Zeven

γ|m| ln

(

(a + iτ)2 + (ξr + m)2

a2 + m2

)

+
∑

m∈Zodd

γ|m|

{

ln

(

(a + iτ)2 + (m − ξR)2

a2 + (m − ξR)2

)

+
1

2
ln

(

[a2 + (ξR + m)2]2

[a2 + (2ξ + m)2] [a2 + (2η + m)2]

)}

}

,
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and,

CTF(x, t; y, 0) = (39)

− g

4π

[

∑

m∈Zeven

γ|m|
∑

r=±

ln

(

sinh [πΘ(τ + r(ξr + m))]

πΘ(τ + r(ξr + m))

πΘm

sinh [πΘm]

)

+
∑

m∈Zodd

γ|m|
∑

r=±

ln

(

sinh [πΘ(τ + r(m − ξR))]

πΘ(τ + r(m − ξR))

πΘ(m − ξR)

sinh [πΘ(m − ξR)]

)

+
∑

m∈Zodd

γ|m| ln

(

sinh2 [πΘ(ξR + m)]

[πΘ(ξR + m)]2
πΘ(2ξ + m)

sinh [πΘ(2ξ + m)]

πΘ(2η + m)

sinh [πΘ(2η + m)]

)

]

,

where γ = (1 − g)/(1 + g), ξ = x/L, η = y/L, ξr = (x − y)/L, ξR = (x + y)/L, τ = tωL,
Θ = kBT/~ωL, and a = ωL/ωc is the (dimensionless) inverse cut-off.

C Backscattering current

The averaged backscattering current is given by [13]:

IB =
eλ2

4~2

∫ ∞

−∞

dteieV/~t
∑

s=±

se4πC(xi,st;xi,0) . (40)

With the help of the parity properties of the Green’s function, it can been shown that the
imaginary part of the backscattering current cancels. As a consequence, IB is purely real and
is given by:

IB = −eλ2

2~2

∫ ∞

−∞

dt sin

(

eV t

~

)

sin{4πIm[C(xi, t; xi, 0)]}e4πRe[C(xi,t;xi,0)] . (41)

The behavior of the backscattered current was analyzed in detail is Refs. [13, 35].
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