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1 Introduction

In this talk we shall review some recent results about qualitative beahavior of
smooth solutions to the Cauchy problem for general hyperbolic symmetrizable
m-dimensional systems of balance laws of the form

ut +
m∑

α=1

(fα(u))xα
= g(u), (1)

with the initial condition
u(x, 0) = u0(x), (2)

where u = (u1, u2) ∈ Ω ⊆ R
n1 ×R

n2 , with n1 +n2 = n. We assume that there
are n1 conservation laws in the system, namely that we can take

g(u) =

(
0

q(u)

)
, with q(u) ∈ R

n2 . (3)

As well known, even for nice initial data, smooth solutions may break down
in finite time, due to the appearance of singularities. On the other hand,
sometimes dissipative mechanisms induced by the source term can prevent
the formation of singularities, at least for small initial data, as for instance
for the compressible Euler equations with damping [Ni78, STW03].

Recently, it was proposed in [HN03] a quite general framework of suf-
ficient conditions to have the global existence in time of smooth solutions.
Actually, for systems which are endowed with a strictly convex entropy func-
tion E = E(u), a first natural assumption is the entropy dissipation condition,
see [CLL94]. Unfortunately, it is easy to see that this condition is too weak
to prevent the formation of singularities. A quite natural supplementary con-
dition can be imposed to entropy dissipative systems, following the classical
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approach by Shizuta and Kawashima [Kw87, SK85]. It is possible to prove
that this condition, which is satisfied in many interesting examples, is also
sufficient to establish a general result of global existence for small perturba-
tions of equilibrium constant states, see [HN03, Yo04]. These results will be
shortly reviewed in Section 2.

Here, we intend to present a short survey of the new results of [BRS06],
about the asymptotic behavior in time of the global solutions, then always
assuming the existence of a strictly convex entropy and the Shizuta and
Kawashima condition. However, let us recall that, starting from the seminal
paper by T.P. Liu [Li87], there were some previous studies on 2 × 2 systems,
see [Na99] for some references. For more general models, we recall [Ze99], for
a model of gas dynamics in thermal nonequilibrium, and [RS02], about stabil-
ity of constant equilibrium states for general hyperbolic systems in one space
dimension, under zero-mass perturbations.

The paper is organized as follows: Section 2 is devoted to recall some basic
results about hyperbolic systems with entropy dissipation and the Shizuta-
Kawashima condition. In this section we also introduce the decomposition of
the linearized system, which will be called the Conservative-Dissipative form,
which will be necessary to cast the decay results in the optimal way. Section
3 contains some precise results about the asymptotic behavior of the Green
kernel for the linearized problem. Finally, Section 4 is devoted to the study
of the decay properties of the nonlinear system. Not only we shall present
the decay results for both the conservative and the dissipative part of the
solution, but we shall show also that the conservative variable approaches
the conservative part of the solution of the corresponding linearized problem,
faster that the decay of the heat kernel for m ≥ 2. Also, it is possible to
see that the solution of the parabolic problem given by the Chapman-Enskog
expansion, is a good approximation of the conservative part of the solution of
the nonlinear hyperbolic system. For m ≥ 2 the Chapman-Enskog operator
is linear, while, in one space dimension, the decay of the nonlinear part has
a stronger influence, and so we can only show the faster convergence towards
the solution of a parabolic equation with quadratic nonlinearity. Let us point
out that the present results can be useful to design more accurate numerical
approximations of these problems, which are increasingly accurate for large
times, see [ABN06] for some preliminary results in this direction.

Finally, we notice again that these results were obtained by assuming all
the time the condition (SK). Unfortunately, this condition is not satisfied by
many models, as for instance for the model studied in [Ze99], where however
global existence of solutions has been established. For the Kerr–Debye system,
studied in [HH00, CH106, CH206], condition (SK) is not always verified for
m = 1, see [HN03], and never verified for m ≥ 2.
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2 A short review of some basic structures for the

entropy dissipative hyperbolic systems

In the following we shall consider a general m-dimensional system of balance
laws given by equation (1), with the source term g = g(u) given by (3).
According to the general theory of hyperbolic systems of conservation laws
[Da00], we shall assume that the system satisfies an entropy principle: there
exists a strictly convex function E = E(u), the entropy density, and some re-
lated entropy-flux functions Fα = Fα(u), such that for every smooth solution
u ∈ Ω to system (1), there holds

E(u)t +

m∑

α=1

(Fα(u))xα
= G(u) , (4)

where Fα
′ = (f ′

α)T E ′ and G = E ′ · g. Let us introduce the set γ of the equilib-
rium points:

γ = {u ∈ Ω; g(u) = 0}.
We shall assume that system (1) is non-degenerate in the sense that around
a given ū ∈ γ, it holds

qu2
(ū) is non singular. (5)

We shall also assume that system (1) is entropy dissipative around the given
equilibrium point ū ∈ γ and u ∈ Ω, in the sense that we have

(E ′(u) − E ′(ū)) · g(u) ≤ 0. (6)

Following [Go61, LF71], it is now possible to symmetrize our system by intro-
ducing a new variable, the entropy variable, which is just given by W = E ′(u).
This change of variable is very useful in the statement of the global existence
results. Actually, since E is a strictly convex function, we can inverse E ′ to
recover the original variable u by the inverse map Φ

.
= (E ′)−1. Let us set now

A0(W )
.
= Φ′(W ), Cα(W )

.
= Dfα(Φ(W ))A0(W ), and G(W ) = g(Φ(W )) =(

0
Q(W )

)
. It is easy to see that the matrix A0(W ) is symmetric positive def-

inite and, for every α = 1. . . . , m, Cα(W ) is symmetric. Then, selecting W as
the new variable, our system reads

A0(W )Wt +

m∑

α=1

Cα(W )Wxα
= G(W ). (7)

In the following, without loss of generality, we can always suppose ū = 0 ∈ γ
and consider system (1) with g(0) = 0, fα(0) = 0, and endowed with a
quadratic entropy function E . Next, we focus our investigation on a slightly
restricted class of entropy dissipative non-degenerate systems, namely the
systems such that
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Q(W ) = D(W )W2, with D(0) negative definite. (8)

To continue our analysis of smooth solutions for dissipative hyperbolic sys-
tems, we need some supplementary coupling conditions to avoid shock forma-
tion. A very natural condition was first introduced by Shizuta and Kawashima
in [SK85], for hyperbolic–parabolic systems. Let us introduce this condition
for the original unknown, i.e. for system (1).

Definition 1. The system (1) verifies condition (SK), if every eigenvector
of

∑m
α=1 Dfα(0)ξα is not in the null space of Dg(0), for every ξ ∈ R

m \ {0}.

About the existence of a solution, we recall the following result [HN03, Yo04].

Theorem 1. Assume that system (1) is strictly entropy dissipative and con-
dition (SK) is satisfied. Then there exists δ > 0 such that, if ‖u0‖s ≤ δ, with
s ≥ [m/2] + 2, there is a unique global solution u of (1)–(2), which verifies

u ∈ C0([0,∞); Hs(Rm)) ∩ C1([0,∞); Hs−1(Rm)),

and such that, in terms of the entropy variable W = (W1, W2),

sup
0≤t<+∞

‖W (t)‖2
s +

∫ +∞

0

(
‖∇W1(τ)‖2

s−1 + ‖W2(τ)‖2
s

)
dτ ≤ C(δ)‖W0‖2

s, (9)

where C(δ) is a positive constant.

Let us consider now the linearized version of system (1), namely, setting
Aα = Dfα(0) and B = Dg(0),

ut +
m∑

α=1

Aαuxα
= Bu, u ∈ R

n, x ∈ R
m, t ∈ R

+, (10)

with B of the form

B =

[
0 0

D1 D2

]
, D1 ∈ R

n1×n2 , D2 ∈ R
n2×n2 , (11)

with n = n1 + n2. Set A(ξ) =
∑m

α=1 Aαξα. According to the previous discus-
sion, we can assume that

(H1) there is a symmetric positive definite matrix A0 such that AαA0 is sym-
metric, for every α = 1, . . . , m, and

BA0 =

[
0 0
0 D

]
,

where D ∈ R
n2×n2 is negative definite;

(H2) any eigenvector of A(ξ) is not in the null space of B, for every ξ ∈ R
m\{0}.
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To give a precise picture of the asymptotic behavior of the solutions for
large times, we have to transform the original system in a suitable form, using
a special projection of the original variables.

Definition 2. The partially dissipative system (10) is in Conservative-Dissipative
form (C-D form) if the matrices Aα are symmetric and there exists a negative
definite matrix D ∈ R

n2×n2 , such that

B =

(
0 0
0 D

)
. (12)

In the following w1
.
= wc is called the conservative variable, while w2

.
= wd is

the dissipative one.
We shall prove in the following that there exists a linear change of vari-

able such that (10) takes the C-D form under assumptions (H1). We shall
construct the C-D variables using the projection Q0 on the null space and the
complementing projection Q− = I − Q0. We can compute Q0 by using the
classical representation formula, which yields

Q0 = A
1/2
0

[
(A0,11)

−1 0
0 0

]
A

1/2
0 .

Note that, due to the assumptions on A0, this projector is symmetric. In
particular we can choose left and right projectors L0 ∈ R

n×n1 , R0 ∈ R
n1×n,

so that Q0 = R0L0, L0R0 = I ∈ R
n1×n1 , L0 = RT

0 , and they are uniquely
given by

R0 = A
1/2
0

[
(A0,11)

−1/2

0

]
, L0 =

[
(A0,11)

−1/2 0
]
A

1/2
0 . (13)

We define the complementary projection Q− such that Q−
.
= I−Q0 = R−L−,

L−R− = I ∈ R
n2×n2 , L− = RT

−. The matrices R−, L− are uniquely given by

R− = A
−1/2
0

[
0

((A−1
0 )22)

−1/2

]
, L− =

[
0 ((A−1

0 )22)
−1/2

]
A

−1/2
0 . (14)

If we set w1 = L0A
−1/2
0 u and w2 = L−A

−1/2
0 u, we obtain the following result.

Proposition 1. If u is a solution to system (10), then, under assumption
(H1),

w = Mu =




(A0,11)

−1/2 0

((A−1
0 )22)

−1/2(A−1
0 )21 ((A−1

0 )22)
1/2



 u (15)

is a solution of a system in C-D form.

In the following, we are always going to assume that the unknown u is chosen
in such a way that (10) is in conservative-dissipative form. In this case, we
say that also system (1) is in conservative-dissipative form and we shall set
u = (uc, ud) ∈ R

n1 × R
n2 .
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Example 1. The p-system with relaxation. Let us consider system






∂tu + ∂xv = 0 ,

∂tv + ∂xσ(u) = h(u) − v,
(16)

with σ′(u) > 0. One symmetrizer for the linearized version of (16) is given by

A0 =




1 a

a λ2



, with λ =
√

σ′(0) and a = h′(0). The matrix A0 is positive

definite if it holds the subcharacteristic condition λ > |a|. It is easy to verify
that assumption (H1) is verified and the proper C-D form of the system is
found for the new unknowns

(
uc

ud

)
= M

(
u
v

)
=




1 0

−a(λ2 − a2)−
1

2 (λ2 − a2)−
1

2




(

u
v

)
,

see formula (2.29) in [BRS06].

3 The Green kernel for linear dissipative systems

3.1 The one dimensional case

We want to characterize the Green kernel Γ (t) for a linear dissipative hyper-
bolic system. The fact that we are in dimension one will help us in inverting
the Fourier transforms, hence giving explicit form to the principal parts of
Γ (t). We can consider directly a system in C-D form, according to the results
of Section 2. So we write our system as

wt + Awx = Bw, (17)

where w = (wc, wd) ∈ R
n1 ×R

n2 . We assume that the matrix A is symmetric
and the matrix B verifies (12). We assume also that (17) verifies condition
(SK). We want to present a precise description of the Green kernel Γ (t, x) of
(17), which is the solution to problem






Γt + AΓx = BΓ

Γ (0, x) = δ(x)I,
. (18)

by extending the approach used in [Ze99].
Consider the entire function E(z) = B− zA. The Fourier transform of the

solution to (18) is given by Γ̂ (t, ξ) = eE(iξ)t. Notice that also Γ̂ (t, z) = eE(z)t

is an entire function of z. In general, if z is not an exceptional point, the
function E(z), is represented by
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E(z) =
∑

j

λj(z)Pj(z) +
∑

j

Dj(z), (19)

where λj are the eigenvalues of E(z), Pj(z) the corresponding eigenprojections
and Dj are the nilpotent matrices, due to the fact that in general E is not
diagonalizable, since we are not assuming that the matrix B is symmetric.
We now study which consequences have the assumptions (H1), (H2) on E(z)
and Γ̂ (t, z) near the point z = 0 and z = ∞. Both points are in general
exceptional. For z → 0, n1 eigenvalues different from 0 converges to 0. When
|z| → ∞, the matrix A is diagonalizable, but it can have common eigenvalues:
then the perturbation B/z will in general remove part of this degeneracy.

First we consider the case near z = 0. It has been shown in [BRS06],
by standard representation formula, that we can expand the projector in the
following way:

P (z) =

[
I + O(z2) zA12D

−1 + O(z2)
zD−1A21 + O(z2) z2D−1A21A12D

−1 + O(z3)

]
. (20)

We introduce the right and left eigenprojectors of P (z), R(z) ∈ R
n×n1 , L(z) ∈

R
n1×n, which verify P (z) = R(z)L(z), L(z)R(z) = I. We can find the power

series of L(z) and R(z): L(z) = L0 + zL1 + z2L1 + O(z3), and R(z) = L0 +
zR1 + z2R1 + O(z3). We compute L0 and R0 by

L0 = RT
0 =

[
In1

0
]
. (21)

The following terms can be also computed explicitely. So, we can decompose
E(z) according to the right and left operators:

E(z) = R(z)F (z)L(z) + E1(z), (22)

where F (z)
.
= L(z)E(z)R(z) ∈ R

n1×n1 and E1 is a rest with a faster decay.
We have

F (z) =
(
L0 + zL1 + O(z2)

)
(B − zA)

(
R0 + zR1 + O(z2)

)

= − zA11 − z2A12D
−1A21 + O(z3). (23)

The matrix A11 is symmetric, from assumption (H1), so that we can write for
some eigenvalues λ1

j , with multiplicity m′
j , and left and right eigenprojections

lj ∈ R
m′

j×n1 , rj ∈ R
n1×m′

j , with lj = rT
j ,

A11 =

m′∑

j=1

λ1
jrj lj . (24)

By a further decomposition, we obtain, for some projectors Pjk and Djk, the
projection of E(z) on the null eigenvalue as

R(z)F (z)L(z) =
∑

jk

(
−zλ1

jI − z2cjkI + O(z3)
)
Pjk(z) + Djk(z). (25)
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Proposition 2. We have the following decomposition near z = 0

E(z) =
∑

jk

(
Λjk(z)Pjk(z) + Djk(z)

)
+ E1(z), (26)

where the Λjk are diagonal n × n matrices composed by the n1 eigenvalues
λjk, the coefficients cjk having strictly negative real part, thanks to assumption
(H2).

We can perform a similar, but simpler, analysis for |z| → ∞, since we can
write

E(z) = B − zA = z

(
−A +

1

z
B

)
= zẼ(1/z),

where Ẽ(ζ) = −A + ζB.

Proposition 3. We have the following decomposition near z = ∞

E(z) =
∑

jk

(
Υjk(z)Pjk(z) + Djk(z)

)
, (27)

where Υjk is the diagonal matrix whose entries are the eigenvalues of the jk
family, the coefficients bjk having strictly negative real part, thanks to assump-
tion (H2).

Now, we are ready to estimate the global behavior for large t of the Green
kernel Γ (t, x) using the local expansions contained in Propositions 2 and 3.
We associate a diffusive operator with Green function K(t, x) to the expansion
(26), and a dissipative transport operator with Green function K(t, x) to (27),
and we estimate the remainder term R(t, x) = Γ (t, x) − K(t, x) − K(t, x). In
the following we shall consider the Green kernel as composed of 4 parts, acting
on wc, wd:

Γ (t, x) =

[
L0Γ (t, x)R0 L0Γ (t, x)R−

L−Γ (t, x)R0 L−Γ (t, x)R−

]
=

[
Γ00(t, x) Γ0−(t, x)
Γ−0(t, x) Γ−−(t, x)

]
. (28)

We can associate to each term of Pjk in (25), the solution gjk to the parabolic
equation

wt + λ1
jwx = −

(
cjkI + djk

)
wxx, w ∈ R

m′

j , (29)

where cjk = −µjk − iνjk, with µjk > 0. The solution gjk can be computed
explicitly, and we have in any case that for some c > 0

|gjk(t, x)| ≤ O(1)√
t

e−(x−λ1

j t)2/(ct) ∀k, (t, x) ∈ R
+ × R. (30)

The function

K(t, x)
.
=

X

jk

2

6

6

4

rj(gjk(t, x)pjk)rT
j −rj

„

dgjk

dx
pjk

«

rT
j A12D

−1

−D−1A21rj

„

dgjk

dx
pjk

«

pjkrT
j D−1A21rj

„

d2gjk

dx2
pjk

«

rT
j A12D

−1

3

7

7

5

(31)
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collects the principal parts of each component (28) of the Green kernel Γ (t, x).
Near z = ∞, we can associate to each projectors, the Fourier transform of the
Green kernel of the transport equation

wt + λjwx = (bjkI + d̃jk)w, w ∈ R
mjk . (32)

Since ℜ(bjk) ≤ −c < 0, we can estimate its solution g̃jk by

|g̃jk(t, x)| ≤ Cδ(x − λjt)e
−ct ∀k, (t, x) ∈ R

+ × R. (33)

We associate to the kernels g̃jk, the hyperbolic Green function

K(t, x) =
∑

jk

δ(x − λjt)e
bjktetDjk(∞)Pjk(∞). (34)

Theorem 2. Let Γ (t, x) be the Green function of system (17), under the as-
sumptions (H1) and (H2). Let K(t, x) be the Green function of the diffusive
operator given by (31) and K(t, x) the Green function of the dissipative trans-
port operator given by (34). Then, we have the decomposition

Γ (t, x) = K(t, x)χ
{
λt ≤ x ≤ λ̄t, t ≥ 1

}
+ K(t, x) + R(t, x)χ

{
λt ≤ x ≤ λ̄t

}
,

(35)
where χ is the characteristic function, and λ̄ := maxj λj , λ := minj λj . The
matrix R(t, x) can be written as

R(t, x) =
∑

j

e−(x−λ1

j t)2/Ct

1 + t

[
O(1) O(1)(1 + t)−1/2

O(1)(1 + t)−1/2 O(1)(1 + t)−1

]
. (36)

where R(t, x) can for some constant c. Here λ1
j are the eigenvalues of the

symmetric block A11 of the matrix A.

3.2 The multi dimensional Green function

We want to state an analogous result for multi dimensional systems. We con-
sider the Cauchy problem for the linear relaxation system in the Conservative-
Dissipative form

wt +

m∑

α=1

Aαwxα
= Bw, w ∈ R

n1+n2 , (37)

w(0, ·) = w0. (38)

We assume that Aα, α = 1, . . . , m, are symmetric matrices and we have
assumptions (H1) and (H2). Set, for ξ ∈ R

m,

A(ξ) :=

m∑

α=1

ξαAα, E(iξ) = B − iA(ξ). (39)
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Let us introduce the polar coordinates in R
m, to say ξ = ρζ, with ρ = |ξ|

and ζ ∈ Sm−1, and set E(iρ, ζ) = E(iρζ). As before, we want to study the
Green kernel Γ (t, x) of (37). The solution of the Cauchy problem (37)-(38)
is given by w(t, ·) = Γ (t, ·) ∗ w0. Let us study the expansion of E(z, ζ) =
B − zA(ζ) near z = 0. We can use the result of Section 3, noting that the
matrix A is simply replaced by A(ζ). We introduce the total projector P (z, ζ)
corresponding to all the eigenvalues near 0, and P−(z, ζ) = I − P (z, ζ) is the
projector corresponding to the whole family of the eigenvalues with strictly
negative real part. As in (23), we have

F (z, ζ)
.
= L(z, ζ)E(z, ζ)R(z, ζ) = −zA11(ζ) − z2A12(ζ)D−1A21(ζ) + O(z3)

(40)
F−(z)

.
= L−(z, ζ)E(z, ζ)R−(z, ζ) = D − zA22(ζ) + O(z2). (41)

So we make a decomposition of the Green operator:

Γ (t) = K(t) + K(t), (42)

where, for a given constant a small enough,

K̂(t)
.
= χ(|ξ| ≤ a)R(iξ)eF (iξ)tL(iξ),

K̂(t)
.
= χ(|ξ| ≤ a)R−(iξ)eF−(iξ)tL−(iξ) + χ(|ξ| > a) eE(iξ)t.

Theorem 3. Consider the linear PDE in the Conservative-Dissipative form

wt +

m∑

α=1

Aαwxα
= Bw, (43)

where Aα, B satisfy the assumption (SK) of Definition 1, and let Q0 = R0L0,
Q− = I−Q0 = R−L− be the eigenprojectors on the null space and the negative
definite part of B. Then, for any function w0 ∈ L1∩L2(Rm, Rn), the solution
w(t) = Γ (t)w0 of (37), (38) can be decomposed as

w(t) = Γ (t)w0 = K(t)w0 + K(t)w0, (44)

where the following estimates hold: for any multi index β and for every p ∈
[2, +∞],

‖L0D
βK(t)w0‖Lp ≤ C(|β|)min

{
1, t−

m
2

(1− 1

p
)−|β|/2

}
‖L0w

0‖L1

+ C(|β|)min
{
1, t−

m
2

(1− 1

p
)−1/2−|β|/2

}
‖L−w0‖L1 ,

(45)

‖L−DβK(t)w0‖Lp ≤ C(|β|)min
{
1, t−

m
2

(1− 1

p
)−1/2−|β|/2

}
‖L0w

0‖L1

+ C(|β|)min
{
1, t−

m
2

(1− 1

p
)−1−|β|/2

}
‖L−w0‖L1 ,

(46)

‖DβK(t)w0‖L2 ≤ Ce−ct‖Dβw0‖L2. (47)



Dissipative Hyperbolic Systems 11

Example 2. Consider for example the linearized isentropic Euler equations
with damping 





ρt + divv = 0

vt + ∇ρ = −v
(48)

To fix the ideas, take m = 3, n = 4 = n1 + n2 = 1 + 3. Clearly the system is
already in the Conservative-Dissipative form and condition (SK) is satisfied.
We decompose K(t, x) as

K(t, x) =

[
G(t, x) (∇G(t, x))T

∇G(t, x) ∇2G(t, x)

]
+ R1(t, x), (49)

where G(t, x) is the heat kernel for ut = ∆u, and R1(t, x) satisfies the bound

R1(t, x) =
e−c|x|2/t

(1 + t)2

[
O(1) O(1)(1 + t)−1/2

O(1)(1 + t)−1/2 O(1)(1 + t)−1

]
. (50)

4 Decay estimates in the nonlinear case and more

accurate asymptotic behavior

In this section we study the time decay properties of the global smooth
solutions to a nonlinear entropy strictly dissipative relaxation system in
conservative-dissipative form.

4.1 Nonlinear decay estimates

We now prove the decay estimates in Lp(Rm; Rn), p ∈ [2, +∞], for the solution
u with initial data in L1 ∩ Hs, with s sufficiently large, for the non linear
equation

ut +

m∑

α=1

(fα(u))xα
= g(u), (51)

with fα(0) = g(0) = 0 and initial condition

u(x, 0) = u0(x). (52)

We shall assume that the system (51) is strictly entropy dissipative and con-
dition (SK) is satisfied. Under the assumptions of Theorem 1, we consider
the global solution u of (51)-(52).

Theorem 4. Let u(t) be a smooth global solution to problem (51), (52). Let

Es = max
{
‖u(0)‖L1, ‖u(0)‖Hs

}
, and assume E[m/2]+2 small enough. Let p ∈

[2, +∞]. The following decay estimate holds
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‖Dβu(t)‖Lp ≤ C min
{
1, t−

m
2

(1− 1

p
)−|β|/2

}
E|β|+[m/2]+1, (53)

with C = C(E|β|+σ), for σ large enough. For m = 1, this estimate holds for
p ∈ [1, +∞].

We now study the faster decay of the dissipative variables ud(t).

Theorem 5. Under the assumptions of Theorem 4, we have the following
decay estimates for the dissipative part of u:

‖Dβud(t)‖Lp ≤ C min
{
1, t−

m
2

(1− 1

p
)−1/2−|β|/2

}
E|β|+[m/2]+1, (54)

with C = C(E|β|+σ), for σ large enough, and p ∈ [2, +∞]. For m = 1, this
estimate holds for p ∈ [1, +∞].

4.2 Decay to the linearized profile

We consider here the difference among the solution of the nonlinear equation
(51) and the linearized one

ut +
m∑

α=1

Dfα(0)uxα
=

(
0

Dud
q(0)ud

)
. (55)

We can show that, if the dimension m ≥ 2, then the solution to the nonlinear
equation converges to the linearized solution. Using the linear estimates, and
with a special argument for the case m = 2, we have the following result. The
following result does not hold for m = 1.

Theorem 6. Let ul be the solution of problem (55), (52), under the assump-
tions of Theorem 4, for m ≥ 2 and p ∈ [2,∞], we have the following decay
estimate

‖Dβ(u(t) − ul(t))‖Lp ≤ C min
{
1, t−

m
2

(1− 1

p
)−|β|/2−1/2

}
E|β|+[m/2]+1, (56)

with C = C(E|β|+σ), for σ large enough.

4.3 The Chapman-Enskog expansion

Next we show how the solutions to the parabolic Chapman-Enskog expansion
approximate the conservative part of the solutions to the nonlinear hyperbolic
problem (1). We use the conservative-dissipative decomposition of u to yields

uc,t +

m∑

α=1

Aα,11(0)uc,xα
+

m∑

α=1

Aα,12(0)ud,xα
= L0

m∑

α=1

(Aα(0)u − fα(u))xα
;

(57)
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ud,t +
m∑

α=1

Aα,21(0)uc,xα
+

∑m
α=1 Aα,22(0)ud,xα

= Dud
q(0)ud

+L−

m∑

α=1

(Aα(0)u − fα(u))xα
+ (q(u) − Dud

q(0)ud) .

(58)

Now, consider the linear parabolic equation

wt +

m∑

α=1

Aα,11(0)wxα
+

m∑

β=1

m∑

α=1

Aα,12(0)(Dud
q(0))−1Aβ,21(0)wxαxβ

= 0, (59)

and denote by up(t) the solution of the weakly parabolic equation (59) with

up(0) = L0u(0). (60)

Compute ud using (58) and decay estimates of Theorems 4 and 5. This yields
the following sharper decay result.

Theorem 7. Let up be the solution of problem (59), (60), under the assump-
tions of Theorem 4, for m ≥ 2 and p ∈ [2,∞], we have the following decay
estimate

‖Dβ(uc(t) − up(t))‖Lp ≤ C min
{
1, t−

m
2

(1− 1

p
)−|β|/2−1/2

}
E|β|+[m/2]+1, (61)

with C = C(E|β|+σ), for σ large enough.

Example 3. Consider the isentropic dissipative Euler equations






ρt + div(ρv) = 0,

(ρv)t + div(ρv ⊗ v) + 1
γ∇ργ = −v.

(62)

We can linearize the system around the constant state (ρ̄, v̄) = (1, 0), so
obtaining system (48) of Example 2. In that case we can immediately apply
Theorems 4, 5, 6, and 7. In particular, by eliminating v in (48), we obtain the
estimate

‖Dβ(ρ(t)−ρw(t))‖Lp +‖Dβ(ρ(t)−ρp(t))‖Lp ≤ C min
{
1, t−

m
2

(1− 1

p
)−|β|/2−1/2

}
,

where ρw and ρp are respectively the solutions of the m-dimensional dissipative
wave equation equation and the m-dimensional heat equation

ρw,t + ρw,tt − ∆ρw = 0, ρp,t − ∆ρp = 0.

These estimates improve on previous results in [STW03] and [CG04].
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The Chapman-Enskog expansion in the case m = 1. For m = 1, the
decay of u2 convoluted with the linear kernel and integrated in time gives
the same decay estimate of u, so we have to keep a nonlinear term in the
diffusive expansion. Set Ã = 1

2

(
L0D

2
uc

f(0) − A12(0)(Dud
q(0))−1D2

uc
q(0)

)
and

B̃ = A12(0)(Dud
q(0))−1A21(0). We rewrite (57) as

uc,t +
(
A11(0)uc + Ã(uc, uc)

)

x
+ B̃uc,xx = Sx, (63)

where S is some given faster decaying term. We replace (59) by the nonlinear
diffusive equation

wt +
(
A11(0)w + Ã(w, w)

)

x
+ B̃wxx = 0. (64)

Theorem 8. For m = 1, let up be the solution of problem (64), (60), under
the assumptions of Theorem 4. For p ∈ [1,∞], and a fixed µ ∈ [0, 1/2), if E1

sufficiently small with respect to (1/2 − µ), then we have

‖Dβ(uc(t) − up(t))‖Lp ≤ C min
{
1, t−

1

2
(1− 1

p
)−µ−β/2

}
Fβ+4, (65)

where C = C(µ, Fβ+σ), for σ large enough, where F1 = E1 and, if β ≥ 1,

Fβ+1 =






Eβ+1, if p ∈ [2,∞],

Eβ+1 + ‖Dβu(0)‖L1, otherwise.

Example 4. The p-system with relaxation. We can apply Theorem 8 to
the Example 1. In this case, as already shown in [Ch95], the Chapman-Enskog
expansion is given by the semilinear parabolic equation

up,t + h′(0)up,x +
1

2
h′′(0)(u2

p)x − (λ2 − a2)up,xx = 0. (66)
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