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Abstract— We present and discuss a mixed conjunctive and
disjunctive rule, a generalization of conflict repartition rules, and
a combination of these two rules. In the belief functions theory
one of the major problem is the conflict repartition enlightened
by the famous Zadeh’s example. To date, many combination rules
have been proposed in order to solve a solution to this problem.
Moreover, it can be important to consider the specificity of the
responses of the experts. Since few year some unification rules are
proposed. We have shown in our previous works the interest of
the proportional conflict redistribution rule. We propose here
a mixed combination rule following the proportional conflict
redistribution rule modified by a discounting procedure. This
rule generalizes many combination rules.
Keywords: belief functions theory, conflict repartition,
combination rules, proportional conflict redistribution
rules.

I. I NTRODUCTION

Many fusion theories have been studied for the combination
of the experts opinions such as voting rules [1], [2], pos-
sibility theory [3], [4], and belief functions theory [5], [6].
We can divide all these fusion approaches into four steps:
modelization, parameters estimationdepending on the model
(not always necessary),combination, anddecision. The most
difficult step is presumably the first one. However, it is only
at the combination step that we can add information such as
the conflict between expert or the specificity of the expert’s
response.

The voting rules are not adapted to the modelization of
conflict between experts. If both possibility and probability-
based theories can model imprecise and uncertain data at
the same time, in a lot of applications experts can express
their certainty on their perception of the reality. As a result,
probabilities-based theory such as the belief functions theory
is more adapted.

The belief functions theory, also called evidence theory
or Dempster-Shafer theory [5], [6] is based on the use of
functions defined on the power set2Θ (the set of all the subsets
of Θ), whereΘ is the set of elements. Thesesbelief functions
or basic belief assignments, m are defined by the mapping of
the power set2Θ onto [0, 1] with:

m(∅) = 0, (1)

and
∑

X∈2Θ

m(X) = 1. (2)

The equation (1) is the hypothesis of a closed world [6].
We can define the belief function only with:

m(∅) ≥ 0, (3)

and the world is open [7]. In order to change an open world
to a closed world, we can add one element in the discriminant
space.

These simple conditions in equation (1) and (2), give a
large panel of definitions of the belief functions, which is
one the difficulties of the theory. From these basic belief
assignments, other belief functions can be defined such as
the credibility and the plausibility. To keep a maximum of
information, it is preferable to combine information givenby
the basic belief assignments into a new basic belief assignment
and take the decision on the obtained belief functions. If
the credibility function provides a pessimistic decision,the
plausibility function is often too optimistic. The pignistic
probability [7] is generally considered as a compromise. It
is given for allX ∈ 2Θ, with X 6= ∅ by:

betP(X) =
∑

Y ∈2Θ,Y 6=∅

|X ∩ Y |

|Y |

m(Y )

1−m(∅)
. (4)

The normalized conjunctive combination rule is the first rule
proposed in the belief theory by [5]. In the belief functions
theory one of the major problem is the conflict repartition
enlightened by the famous Zadeh’s example. To date, many
combination rules have been proposed, building a solution to
this problem [8]–[17]. Last years some unification rules have
been proposed [18]–[20].

The remainder of the paper is organized as follows. Section
II highlights the importance of the conflict in the classical
combination rules. An historical point of view of the combi-
nation rules and the proportional conflict redistribution rules
are recalled. A general formulation for combination rules is
presented in Section III. First we propose a mixed rule between
the conjunctive and disjunctive rules in subsection III-A,and
a proportional conflict repartition rules with a discounting



procedure in subsection III-B. From these two new rules we
propose a more general rule in subsection III-C. Section IV
presents a discussion for a more general rule, and finally the
section V outlines the conclusions of the paper. An algorithm
implementation is proposed in section VI.

II. T HE CLASSICAL COMBINATION RULES AND THE

CONFLICT REPARTITION

A. An historical point of view

The first combination rule proposed by Dempster and Shafer
is the normalized conjunctive combination rule given for two
basic belief assignmentsm1 and m2 and for all X ∈ 2Θ,
X 6= ∅ by:

mDS(X) =
1

1− k

∑

A∩B=X

m1(A)m2(B), (5)

where k =
∑

A∩B=∅

m1(A)m2(B) is the global conflict of

the combination. The problem enlightened by the famous
Zadeh’s example is the repartition of the global conflict.
Indeed, considerΘ = {A, B, C} and two experts opinions
given by m1(A) = 0.9, m1(C) = 0.1, and m2(B) = 0.9,
m1(C) = 0.1, the mass given by the combination ism(C) =
1.

So as to resolve this problem Smets [10] proposes to
consider an open world, therefore the conjunctive rule is non-
normalized and we have for two basic belief assignmentsm1

andm2 and for allX ∈ 2Θ by:

mConj(X) =
∑

A∩B=X

m1(A)m2(B). (6)

mConj(∅) can be interpreted as a non-expected solution. In
the Transferable Belief Model of Smets, the repartition of the
global conflict is done in the decision step by the pignisitic
probability (4).

Yager [8] proposes to transfer the global conflict on the
ignoranceΘ:

mY(X) = mConj(X), ∀X ∈ 2Θ
r {∅, Θ}

mY(Θ) = mConj(Θ) + mConj(∅)
mY(∅) = 0.

(7)

These three based-conjunctive rules reduce the imprecision
and uncertainty but can be used only if all the experts are
reliable. In the other case a disjunctive combination rule can
be used [12] given for two basic belief assignmentsm1 and
m2 and for allX ∈ 2Θ by:

mDis(X) =
∑

A∪B=X

m1(A)m2(B). (8)

Of course with this rule we have a loss of specificity.
When we can quantify the reliability of each expert, we can

weaken the basic belief assignment before the combination by
the discounting procedure:

{

m′
j(X) = αjmj(X), ∀X ∈ 2Θ

r {Θ}
m′

j(Θ) = 1− αj(1−mj(Θ)).
(9)

αj ∈ [0, 1] is the discounting factor of the expertj that is in
this case the reliability of the expertj, eventually as a function
of X ∈ 2Θ.

Dubois and Prade [9] propose a mixed rule with a repartition
of the partial conflict on the partial ignorance. Consequently,
the conflict is considered more precisely than previously. This
rule is given for two basic belief assignmentsm1 andm2 and
for all X ∈ 2Θ, X 6= ∅ by:

mDP(X) =
∑

A∩B=X

m1(A)m2(B)

+
∑

A∪B=X

A∩B=∅

m1(A)m2(B). (10)

The repartition of the conflict is important because of the
non-idempotency of the rules (except the rule of [17] that can
be applied when the dependency between experts is high) and
due to the responses of the experts that can be conflicting.
Hence, we have define the auto-conflict [21] in order to
quantify the intrinsic conflict of a mass and the distribution
of the conflict according to the number of experts.

B. The proportional conflict redistribution rules

Dezert and Smarandache proposed a list of proportional
conflict redistribution (PCR) methods [14], [22] to redistribute
the partial conflict on the elements implied in the partial
conflict.

The most efficient is thePCR rule given for two basic belief
assignmentsm1 andm2 and for allX ∈ 2Θ, X 6= ∅ by:

mPCR(X) = mConj(X) +
∑

Y ∈2Θ,

X∩Y =∅

(

m1(X)2m2(Y )

m1(X)+m2(Y )
+

m2(X)2m1(Y )

m2(X)+m1(Y )

)

, (11)

wheremConj(.) is the conjunctive rule given by the equation
(6). We have studied and formulated this rule for more than
two experts in [16], [21]X ∈ 2Θ, X 6= ∅:

mPCR6(X) = mConj(X) +

M
∑

i=1

mi(X)2

∑

M−1
∩

k=1
Yσi(k)∩X=∅

(Yσi(1)
,...,Yσi(M−1)

)∈(2Θ)M−1















M−1
∏

j=1

mσi(j)(Yσi(j))

mi(X)+

M−1
∑

j=1

mσi(j)(Yσi(j))















,
(12)

whereYj ∈ 2Θ is the response of the expertj, mj(Yj) the
associated belief function andσi counts from 1 toM avoiding
i:

{

σi(j) = j if j < i,
σi(j) = j + 1 if j ≥ i,

(13)



The idea is here to redistribute the masses of the focal
elements giving a partial conflict proportionally to the initial
masses on these elements.

III. A GENERAL FORMULATION FOR COMBINATION RULES

In [18], [20] we can find two propositions of a general
formulation of the combination rules. In the first one, Smets
considers the combination rules from a matrix notation and
find the shape of this matrix according to some assumptions
on the rule, such as linearity, commutativity, associativity, etc.
In the second one, a generic operator is defined from the
plausibility functions.

A general formulation of the global conflict repartition have
been proposed in [11], [19] for allX ∈ 2Θ by:

mc(X) = mConj(X) + w(X)mConj(∅), (14)

where
∑

X∈2Θ

w(X) = 1. The problem is the choice of the

weightsw(X).
We have proposed also a parametrizedPCR to decrease or

increase the influence of many small values toward one large
one. The first way is given byPCR6f, applying a function
on each belief value implied in the partial conflict. Any non-
decreasing positive functionf defined on]0, 1] can be used.

mPCR6f(X) = mConj(X) +

M
∑

i=1

mi(X)f(mi(X))

∑

M−1
∩

k=1
Yσi(k)∩X=∅

(Yσi(1)
,...,Yσi(M−1)

)∈(2Θ)M−1















M−1
∏

j=1

mσi(j)(Yσi(j))

f(mi(X))+

M−1
∑

j=1

mσi(j)f(Yσi(j))















The second way, given byPCR6g is to apply a similar
function g on the sum of belief functions given to a focal
element.

mPCR6g(X)=mConj(X)+

M
∑

i=1

mi(X)
∑

M−1

∩
k=1

Yσi(k)∩X=∅

(Yσi(1)
,...,Yσi(M−1)

)∈(2Θ)M−1

(

M−1
∏

j=1

mσi(j)(Yσi(j))

)(

∏

Yσi(j)
=X

1lj>i

)

g

(

mi(X)+
∑

Yσi(j)
=X

mσi(j)(Yσi(j))

)

∑

Z∈{X,Yσi(1)
,...,Yσi(M−1)

}

g





∑

Yσi(j)
=Z

mσi(j)(Yσi(j)) + mi(X)1lX=Z





where 1l is the characteristic function (1lX=Z is 1 if X = Z
and 0 elsewhere). Nevertheless, here also the problem is the
choice of the functionsf andg.

A. How to choose conjunctive and disjunctive rules?

We have seen that conjunctive rule reduces the imprecision
and uncertainty but can be used only if one of the experts is
reliable, whereas the disjunctive rule can be used when the
experts are not reliable, but allows a loss of specificity.

Hence, Florea [15] proposes a weighted sum of these two
rules according to the global conflictk = mConj(∅) given for
X ∈ 2Θ, X 6= ∅ by:

mFlo(X) = β1(k)mDis(X) + β2(k)mConj(X), (15)

whereβ1 andβ2 can admitk =
1

2
as symmetric weight:

β1(k) =
k

1− k + k2
,

β2(k) =
1− k

1− k + k2
.

(16)

Consequently, if the global conflict is high (k near 1) the be-
havior of this rule will give more importance to the disjunctive
rule. Thus, this rule considers the global conflict coming from
the non-reliability of the experts.

In order to take into account the weights more precisely
in each partial combination, we propose the following new
rule. For two basic belief assignmentsm1 andm2 and for all
X ∈ 2Θ we have:

mMix(X) =
∑

A∪B=X

δ1m1(A)m2(B)

+
∑

A∩B=X

δ2m1(A)m2(B).
(17)

Of course, if δ1 = β1(k) and δ2 = β2(k) we obtain the
Florea’s rule. In the same manner, ifδ1 = 1−δ2 = 0 we obtain
the conjunctive rule and ifδ1 = 1−δ2 = 1 the disjunctive rule.
If δ1(A, B) = 1−δ2(A, B) = 1lA∩B=∅ we retrieve the Dubois
and Prade’s rule and the partial conflict can be considered,
whereas the rule (15).

The choice ofδ1 = 1 − δ2 can be done by a dissimilarity
such as:

δ(A, B) = 1−
|A ∩B|

min(|A|, |B|)
, (18)

where|A| is the cardinality ofA. Note that is not a distance
nor a proper dissimilarity (e.g. δ(A, B) = 0 does not imply
A = B). We can also take forδ2, the Jaccard distance given
by:

d(A, B) =
|A ∩B|

|A ∪B|
, (19)

used by [23] on the belief functions. Thus, if we have a partial
conflict betweenA andB, |A∩B| = 0 and the rule transfers
the mass onA ∪ B. In the caseA ⊂ B (or the contrary),
A ∩ B = A and A ∪ B = B, so with δ the rule transfers
the mass onA and withd on A andB according to the rate
|A|/|B| of the cardinalities. In the caseA∩B 6= A, B and∅,
the rule transfers the mass onA ∩B andA∪B according to
δ andd.



Consider the following example for two experts on
Θ = {A, B, C}:

∅ A B A ∪B A ∪ C Θ
Expert 1 0 0.3 0 0.4 0 0.3
Expert 2 0 0 0.2 0 0.5 0.3
mConj 0.06 0.44 0.14 0.12 0.15 0.09

Accordingly, we obtain forδ1 = δ:

δ A A ∪B Θ
B 1 0 0

A ∪ C 0 1/2 0
Θ 0 0 0

where the columns are the focal elements of the basic belief
assignment given by the expert 1 and the lines are the focal
elements of the basic belief assignment given by expert 2. The
mass 0.06 on∅ is transfered onA ∪ B and the mass 0.2 on
A given by the responsesA ∪ B andA ∪ C is transfered on
A with a value of 0.1 and onΘ with the same value. For
δ1 = 1− d we have:

1− d A A ∪B Θ
B 1 1/2 2/3

A ∪C 1/2 2/3 1/3
Θ 2/3 1/3 0

Note thatδ can be used when the experts are considered reli-
able. In this case we consider the more precise response. With
d, we have the conjunctive rule only when the experts give the
same response, else we consider the doubtful responses and
we transfer the masses in proportion of the imprecision of the
responses (given by the cardinality of the responses) on the
part in agreement and on the partial ignorance.

For more than two experts, if the intersection of the re-
sponses of the experts is not empty, we can still transfer on
the intersection and the union, and the equation (18) becomes:

δ(Y1, ..., YM ) = 1−
|Y1 ∩ ... ∩ YM |

min
1≤i≤M

|Yi|
. (20)

From the equation (19), we can defineδ by:

δ(Y1, ..., YM ) = 1−
|Y1 ∩ ... ∩ YM |

|Y1 ∪ ... ∪ YM |
. (21)

Finally, the rule is given by:

mMix(X) =
∑

Y1∪...∪YM=X

δ(Y1, ..., YM )
M
∏

j=1

mj(Yj)

+
∑

Y1∩...∩YM=X

(1 − δ(Y1, ..., YM ))

M
∏

j=1

mj(Yj).

(22)

This formulation can be interesting according to the coher-
ence of the responses of the experts. However, this formulation
does not allow the repartition of the partial conflict in an other
way than the Dubois and Prade’s rule. In the later (31) and (32)
equations, we will simply writeδ instead ofδ(Y1, ..., YM ).

B. A discounting proportional conflict repartition rule

The PCR6 redistributes the masses of the conflicting focal
elements proportionally to the initial masses on these elements.
For instance, consider three experts expressing their opinion
on Θ = {A, B, C, D}:

A B A ∪ C Θ
Expert 1 0.7 0 0 0.3
Expert 2 0 0.5 0 0.5
Expert 3 0 0 0.6 0.4

The global conflict is given here by 0.21+0.14+0.09=0.44,
coming fromA, B andA∪C for 0.21,A, B andΘ for 0.14
and Θ, B and A ∪ C for 0.09. With the generalizedPCR6
rule (12) we obtain:

mPCR6(A) = 0.14 + 0.21 + 0.21
7

18
+ 0.14

7

16
≃ 0.493,

mPCR6(B) = 0.06 + 0.21
5

18
+ 0.14

5

16
+ 0.09

5

14
≃ 0.194,

mPCR6(A ∪C) = 0.09 + 0.21
6

18
+ 0.09

6

14
≃ 0.199,

mPCR6(Θ) = 0.06 + 0.14
4

16
+ 0.09

3

14
≃ 0.114.

First of all, the repartition is only on the elements given
the partial conflict. We can apply a discounting procedure
in the combination rule in order to transfer a part of the
partial conflict on the partial ignorance. This new discounting
PCR (noted DPCR) can be expressed for two basic belief
assignmentsm1 andm2 and for allX ∈ 2Θ, X 6= ∅ by:

mDPCR(X) = mConj(X)

+
∑

Y ∈2Θ,

X∩Y =∅

α

(

m1(X)2m2(Y )

m1(X)+m2(Y )
+

m2(X)2m1(Y )

m2(X)+m1(Y )

)

+
∑

Y1∪Y2=X

Y1∩Y2=∅

(1− α)m1(Y1)m2(Y2),

(23)

with α ∈ [0, 1], the discounting factor.
In a general case forM experts, we could write this rule

as:

mDPCR(X) = mConj(X) +

M
∑

i=1

mi(X)2

∑

M−1
∩

k=1
Yσi(k)∩X=∅

(Yσi(1)
,...,Yσi(M−1)

)∈(2Θ)M−1

α















M−1
∏

j=1

mσi(j)(Yσi(j))

mi(X)+

M−1
∑

j=1

mσi(j)(Yσi(j))















+
∑

Y1∪...∪YM=X

Y1∩...∩YM=∅

(1− α)

M
∏

j=1

mj(Yj),

(24)



where Yj ∈ 2Θ is a response of the expertj, mj(Yj) its
assigned mass andσi is given by (13).

Hence, if we chooseα = 0.9 in the previous example, we
obtain:

mDPCR(A) = 0.14 + 0.21 + 0.21
7

18
0.9 + 0.14

7

16
0.9

≃ 0.479,

mDPCR(B) = 0.06 + 0.21
5

18
0.9 + 0.14

5

16
0.9

+0.09
5

14
0.9 ≃ 0.181,

mDPCR(A ∪ C) = 0.09 + 0.21
6

18
0.9 + 0.09

6

14
0.9 ≃ 0.187,

mDPCR(A ∪B ∪C) = 0.21× 0.1 = 0.021,

mDPCR(Θ) = 0.06 + 0.14
4

16
0.9 + 0.09

3

14
0.9 + 0.14× 0.1

+0.09× 0.1 ≃ 0.132.

However, in this example, the partial conflict due to the
experts 1, 2 and 3 saying respectivelyA, B, andA ∪ C, the
conflict is 0.21; nonetheless only the experts 1 and 2 and the
expert 2 and 3 are in conflict. The experts 1 and 3 are not
in conflict. Now, consider another case where the experts 1,
2 and 3 say respectivelyA, B, andC with the same conflict
0.21. In these both cases, theDPCR rule transfers the masses
with the same weightα. Although, we could prefer transfer
more mass onΘ in the second than in the first case.

Consequently, the transfer of mass can depend on the
existence of conflict between each pair of experts. We define
the conflict function giving the number of experts in conflict
two by two for each responseYi ∈ 2Θ of the experti as the
number of responses of the other experts in conflict withi. A

functionfi is defined by the mapping of(2Θ)M onto

[

0,
1

M

]

with:

fi(Y1, ..., YM ) =

M
∑

j=1

1l{Yj∩Yi=∅}

M(M − 1)
. (25)

Hence, we can chooseα depending on the response of the
experts such as:

α(Y1, ..., YM ) = 1−
M
∑

i=1

fi(Y1, ..., YM ). (26)

In this caseα ∈ [0, 1], likewise we do not transfer the mass
on elements that can be written as the union of the responses
of the experts.

Therefore, if we take again our previous example we obtain:

α(A, B, A ∪ C) = 1−
2

3
=

1

3
, α(A, B, Θ) = 1−

1

3
=

2

3
,

α(Θ, B, A ∪ C) = 1−
1

3
=

2

3
.

Thus the provided mass by theDPCR is:

mDPCR(A) = 0.14 + 0.21 + 0.21
7

18

1

3
+ 0.14

7

16

2

3
≃ 0.418,

mDPCR(B) = 0.06 + 0.21
5

18

1

3
+ 0.14

5

16

2

3
+ 0.09

5

14

2

3

≃ 0.130,

mDPCR(A ∪ C) = 0.09 + 0.21
6

18

1

3
+ 0.09

6

14

2

3
≃ 0.139,

mDPCR(A ∪B ∪ C) = 0.21
2

3
= 0.140,

mDPCR(Θ) = 0.06 + 0.14
4

16

2

3
+ 0.09

3

14

2

3
+ 0.14

1

3

+0.09
1

3
≃ 0.173.

We want to take account of the degree of conflict (or
non-conflict) within each pair of expert differently for each
element. We can consider the non-conflict function given for
each experti by the number of experts not in conflict withi.
Hence, we can chooseαi(Y1, ..., YM ) defined by the mapping

of (2Θ)M onto

[

0,
1

M

]

with:

αi(Y1, ..., YM ) =
1

M
− fi(Y1, ..., YM )

=

M
∑

j=1,j 6=i

1l{Yj∩Yi 6=∅}

M(M − 1)
.

(27)

The discounting PCR rule (equation (24)) can be written
for M experts as:

mDPCR(X) = mConj(X) +
M
∑

i=1

mi(X)2

∑

M−1
∩

k=1
Yσi(k)∩X=∅

(Yσi(1)
,...,Yσi(M−1)

)∈(2Θ)M−1

αiλ















M−1
∏

j=1

mσi(j)(Yσi(j))

mi(X)+

M−1
∑

j=1

mσi(j)(Yσi(j))















+
∑

Y1∪...∪YM=X

Y1∩...∩YM=∅

(1−
M
∑

i=1

αi)

M
∏

j=1

mj(Yj),

(28)

where αi(X, Yσi(1), ..., Yσi(M−1)) is noted αi for
notations and λ depending on (X, Yσi(1), ..., Yσi(M−1)),
is chosen to obtain the normalization given by
the equation (2). λ is given when αi 6= 0,
∀i ∈ {1, ..., M} by:

λ =

M
∑

i=1

αi

< α, γ >
, (29)



where< α, γ > is the scalar product ofα = (αi)i∈{1,...,M}

andγ = (γi)i∈{1,...,M} with:

γi =
mi(X)

mi(X)+

M−1
∑

j=1

mσi(j)(Yσi(j))

, (30)

whereγi(X, Yσi(1), ..., Yσi(M−1)) is notedγi for notations.
With this last version of the rule, forαi given by the

equation (27), we obtain on our illustrative exampleλ = 36
13

when the experts 1, 2 and 3 say respectivelyA, B, andA∪C
(the conflict is 0.21),λ = 16

5 when the conflict is 0.14 and
λ = 56

17 when the conflict is 0.09. Thus, the masses are given
by:

mDPCR(A) = 0.14 + 0.21 + 0.21
7

18

1

6

36

13
+ 0.14

7

16

1

6

16

5

≃ 0.420,

mDPCR(B) = 0.06 + 0.14
5

16

1

6

16

5
+ 0.09

5

14

1

6

56

17
≃ 0.101,

mDPCR(A ∪ C) = 0.09 + 0.21
6

18

1

6

36

13
+ 0.09

6

14

1

6

56

17

≃ 0.143,

mDPCR(A ∪B ∪ C) = 0.21
2

3
= 0.14

mDPCR(Θ) = 0.06 + 0.14
4

16

1

3

16

5
+ 0.09

3

14

1

3

56

17

+0.14
1

3
+ 0.09

1

3
≃ 0.196.

This last version allows to consider a kind of degree of conflict
(a degree of pair of non-conflict), but this degree is not so easy
to introduce in the combination rule.

C. A mixed discounting conflict repartition rule

From both new rules, the mixed rule (22) and the dis-
countingPCR (24), we propose a combination of these rules,
given for two basic belief assignmentsm1 andm2 and for all
X ∈ 2Θ, X 6= ∅ by:

mMDPCR(X) =
∑

Y1∪Y2=X,

Y1∩Y2 6=∅

δm1(Y1)m2(Y2)

+
∑

Y1∩Y2=X,

Y1∩Y2 6=∅

(1− δ)m1(Y1)m2(Y2)

+
∑

Y ∈2Θ,

X∩Y =∅

α

(

m1(X)2m2(Y )

m1(X)+m2(Y )
+

m2(X)2m1(Y )

m2(X)+m1(Y )

)

,

+
∑

Y1∪Y2=X

Y1∩Y2=∅

(1 − α)m1(Y1)m2(Y2).

(31)

α can be given by the equation (26) andδ by the equation
(20) or (21). The weights are taken to get a kind of continuity
between the mixed and DPCR rules. Actually, when the
intersection of the responses is almost empty but not empty
we use the mixed rule and when this intersection is empty
we chose theDPCR rule. In the first case all the mass is
transfered on the union and in the second one it will be the
same according to the partial conflict. Indeed,α = 0 if the
intersection is not empty andδ = 1 if the intersection is empty.
We can also introduceαi given by the equation (27), and this
continuity is conserved.

This rule is given in a general case forM experts, for all
X ∈ 2Θ, X 6= ∅ by:

mMDPCR(X) =
∑

Y1∪...∪YM=X,

Y1∩...∩YM 6=∅

δ
M
∏

j=1

mj(Yj)

+
∑

Y1∩...∩YM=X,

Y1∩...∩YM 6=∅

(1− δ)

M
∏

j=1

mj(Yj)

+

M
∑

i=1

mi(X)2

∑

M−1
∩

k=1
Yσi(k)∩X=∅

(Yσi(1)
,...,Yσi(M−1)

)∈(2Θ)M−1

α















M−1
∏

j=1

mσi(j)(Yσi(j))

mi(X)+

M−1
∑

j=1

mσi(j)(Yσi(j))















+
∑

Y1∪...∪YM=X

Y1∩...∩YM=∅

(1− α)
M
∏

j=1

mj(Yj),

(32)

whereYj ∈ 2Θ is the response of the expertj, mj(Yj) the
associated belief function andσi is given by (13). This formula
could seem difficult to understand, but we can implement it
easily as shown in appendix VI.

If we take again the previous example withδ given by the
equation (20), there is no difference with theDPCR. If δ is
calculated by the equation (21), the only difference pertains to
the mass 0.09 coming from the responses of the three experts:
Θ, Θ andA∪C. This mass is transfered onA∪C (0.06) and
on Θ (0.03).

IV. D ISCUSSION: TOWARD A MORE GENERAL RULE

The rules presented in the previous section, propose a
repartition of the masses giving a partial conflict only (when
at most two experts are in discord) and do not take heed
of the level of imprecision of the responses of the experts
(the nonspecificity of the responses). The imprecision of the
responses of each expert is only considered by the mixed and
MDPCR rules when there is no conflict between the experts.

In the mixed rule, if the intersection of the responses of the
experts is empty, the best way is not necessarily to transferthe



mass on the union. For example, if three experts sayA ∪ B,
A ∪ C, D, two experts agree onA. So, it could be better to
transfer the mass onA andA ∪B ∪C ∪D.

ConsiderM experts, we define the set of subsets of the
responses of the experts that are not in conflict:

εk(Y1, ..., YM ) = {{Yi1 , ..., Yik
}, ij ∈ I :

I ⊂ {1, ..., M}, |I| = k,∩k
j=1Yij

6= ∅},
(33)

where Yi is the response of the experti. Additionally, we
definek = argmaxk{εk 6= ∅}. In the previous example,εk =
ε3 = {{A ∪B, A ∪ C, A ∪D}}.

In the M case experts, we defineδ(Z) for all Z ∈ εk with
Z = {Yi1 , ..., Yik

} as:

δ(Z) = 1−
| ∩k

j=1 Yij
|

min
j∈{1,...,k}

|Yij
|
. (34)

An extended mixed rule forM experts can be written:

mEMix(X) =
∑

Y1∪...∪YM=X

∑

Z∈ε
k
(Y1,...,YM)

δ(Z)

M
∏

j=1

mj(Yj)

+
∑

{Yi1 ,...,Yi
k
}=Z∈ǫ

k
(Y1,...,YM)

Yi1∩...∩Yi
k
=X,

(1− δ(Z))

|εk(Y1, ..., YM )|

M
∏

j=1

mj(Yj).
(35)

This rule keep the spirit of the mixed rule. Nevertheless,
imagine a very high mass onD compared to the masses on
A∪B andA∪C in the previous example. Therefore, we would
prefer transfer the mass proportionally onD and on the other
connected elementsA∪B andA∪C in the spirit ofDPCR.
For the mass allocated on these connected elements, we can
apply the extended mixed ruleEMix. Consequently, in the
case of conflict between all the experts, we must find which
experts are in conflict together,e.g. the connected responses
of the experts. This partial conflict is more precise than the
partial conflict provided considering all the responses of the
experts. Thus, we obtain an extendedMDPCR.

To computeεk taking into accountM focal classes having at
most a size|Θ| = n, we have to read all the focal classes, and
count how often each singleton appears in the focal classes:
O(nM) operations. For each of these singletons, we might
have to distribute a part of the local conflict overk focal
classes. EachM -uple of focal elements can request a treatment
of O(n2M2) operations, ask 6 M and |εk| 6 n. If each
belief function hasp focal elements, global complexity is
bounded byO(n2M2pM ).

Figure 1 shows two sets of four focal elements with an
empty intersection. In the left situation, each singleton is an
intersection of two focal elements, and every intersectionof
three focal elements is∅. So k is 2, andε2 is {{A ∪B, B ∪
C}, {B ∪ C, C ∪D}, {C ∪D, A ∪D}, {A ∪B, A ∪D}}.

In the right situation,A appears in three focal elements,B in
two, and the other singletons appear only in one focal element.
So k is 3, andε3 is {{A ∪B, A ∪C A ∪D}}. The singleton
E does not receive any part of the conflict due to its presence

A B

CD

A BC

D E

Fig. 1. Two conflicting focal elements sets

in the focal elementB ∪ E, but only through its presence in
the disjunction of all the focal elements:A∪B ∪C ∪D ∪E.

V. CONCLUSIONS

In this paper, we propose some solutions to deal with the
conflict and to weigh the imprecision of the responses of
the experts, from the classical combination rules. Thus, we
first consider a mixed rule provided by a weighted sum of
the conjunctive and disjunctive rules. The weights are defined
from a measure of nonspecifity calculated by the cardinality
of the responses of the experts. This rule transfers the partial
conflict on partial ignorance. Again, the proportional conflict
distribution rule redistributes the partial conflict on theelement
implied in this conflict. We propose an extension of this ruleby
a discounting procedure, thereby, a part of the partial conflict
is also redistributed on the partial ignorance. So as to quantify
this part, we introduce a measure of conflict between pair
of experts and another measure of non-conflict between pair
of experts. In order to take heed of the nonspecifity and to
redistributed the partial conflict, we propose a fused rule of
these two new rules. This new rule is made in such way that we
retain a kind of continuity of the mass on the partial ignorance,
between both cases with and without partial conflict. Finally,
we propose to discuss a more general rule that can deal with
the nonspecifity of each response of the expert also in the case
with partial conflict between some partition of the experts.

The comments of these new rules show that the classical
combination rules in the belief functions theory cannot take
precisely into account the nonspecifity of the experts and the
partial conflict of the experts. We can introduce more and
more artificial -or not- measures of imperfections (conflict,
nonspecificity, and so on) in the conjunctive and disjunctive
combination rules. Another point to treat in a futur work is
how these rules perform in pratical applications.

VI. A PPENDIX – MDPCR ALGORITHM

Formula (32), like most of the formula of this article, seems
simpler when expressed through an algorithm instead of a
direct expression ofm(X). We list all theM -uples of focal
elements of theM belief functions.

An input belief functione is an association of a list of
focal elements and their masses. We writesize(e) the number
of its focal elements. The focal classes aree[1], e[2], . . . ,
e[size(e)]. The mass associated to a classc is e(c), written
with parenthesis. The cardinality of a focal elemente[i] is
also writtensize(e[i]).



The principle of the algorithm 1 is to use the variableind
to build all the n-uples of focal elements of then input
belief functions. Then, if the intersection of these is not∅
or equivalent to∅, the corresponding conjunctive mass (the
product of all the masses of the focal elements in then-uple)
is put on the intersection; otherwise, it is distributed over the
input focal elements and their disjunction.

Algorithm 1: Fusion by the MDPCR combination rule

Data: M expertsex: ex[1] . . . ex[M ]

Result: Fusion ofex by MDPCR rule :ep
for i = 1 to M do

foreach c in ex[i] do
Appendc to cl[i];

foreach ind in [1, size(cl[1])] × [1, size(cl[2])] × . . .×
[1, size(cl[M ])] do

δ = 1 - size(s) / min16i6M (size(cl[i][ind[i]]));
s ← Θ; lprod ← 1; lsum ← 0; lu ← ∅;
for i = 1 to M do

s ← s ∩ cl[i][ind[i]];
lprod ← lprod× ex[i](cl[i][ind[i]]);
lsum ← lsum + ex[i](cl[i][ind[i]]);
lu ← lu ∪ cl[i];

if s = ∅ then
nc ← 0;
for i = 1 to M do

for j = 1 to M , j 6= i do
if cl[i] ∩ cl[j] = ∅ then nc← nc + 1;

α ← 1 - nc/(M(M − 1));
for i = 1 to M do

ep(ex[i][ind[i]]) ← α.ep(ex[i][ind[i]]) +
ex[i](cl[i][ind[i]]) ∗ lprod/lsum;

ep(lu)← ep(lu) + (1− α) ∗ lprod;

else
ep(s)← ep(s) + (1− δ) ∗ lprod;
ep(lu)← ep(lu) + δ ∗ lprod;
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two bodies of evidence,”Information Fusion, vol. 2, pp. 91-101, 2001.


