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Dynami
s of dislo
ation densitiesin a bounded 
hannel. Part II: existen
e of weaksolutions to a singular Hamilton-Ja
obi/paraboli
strongly 
oupled systemH. Ibrahim ∗, M. Jazar 1, R. Monneau ∗May 25, 2008Abstra
tWe study a strongly 
oupled system of a paraboli
 equation and a singular Hamilton-Ja
obiequation in one spa
e dimension. This system des
ribes the dynami
s of dislo
ation densities ina material submitted to an exterior applied stress. Our system is a natural extension of thatstudied in [15℄ where the applied stress was set to be zero. The equations are written on abounded interval and require spe
ial attention to the boundary layer. For this system, we provea result of existen
e of a solution. The method of the proof 
onsists in 
onsidering �rst a paraboli
regularization of the full system, and then passing to the limit. For this regularized system, aresult of global existen
e and uniqueness of a solution has been given in [16℄. We show someuniform bounds on this solution whi
h uses in parti
ular an entropy estimate for the densities.AMS Classi�
ation: 70H20, 49L25, 54C70, 46E30.Key words: Hamilton-Ja
obi equations, vis
osity solutions, entropy, Orli
z spa
es.1 Introdu
tion1.1 Physi
al motivation and setting of the problemIn [12℄, Groma, Czikor and Zaiser have proposed a model des
ribing the dynami
s ofdislo
ation densities. Dislo
ations are defe
ts in 
rystals that move when a stress �eld isapplied on the material. These defe
ts are one of the main explanations of the elastovis-
oplasti
ity behavior of metals (see [8℄ and [9℄ for various models relating dislo
ations andelastovis
oplasti
 preperties of metals). This model has been introdu
ed to des
ribe thepossible a

umulation of dislo
ations on the boundary layer of a bounded 
hannel. Morepre
isely, let us 
all θ+ and θ−, the densities of the positive and negative dislo
ationsrespe
tively. In fa
t, dislo
ations are distinguished by the sign of their Burgers ve
tor ~b
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(see [13℄ for a des
ription of the Burgers ve
tor). The non-negative densities θ+(x, t) and
θ−(x, t) are governed by the following system:







θ+
t =

[(
θ+
x − θ−x
θ+ + θ−

− τ

)

θ+

]

x

in I × (0, T ),

θ−t =

[

−
(
θ+
x − θ−x
θ+ + θ−

− τ

)

θ−
]

x

in I × (0, T ),

(1.1)where τ is the stress �eld, T > 0, and I := (0, 1) ⊂ R. The 
hannel is bounded by wallsthat are impenetrable by dislo
ations (i.e., the plasti
 deformation in the walls is zero).In this 
ase the boundary 
onditions are represented by the zero �ux 
ondition, i.e.
θ+
x − θ−x
θ+ + θ−

− τ = 0, at x = 0 and x = 1. (1.2)The original model in [12℄ is written in two spa
e dimensions (x, y). Here, system (1.1)
orresponds to a situation where the problem is assumed invariant by translation in the ydire
tion. In that 
ase τ appears to be the applied stress �eld and will be assumed to bea 
onstant. However, the term θ+x −θ−x
θ++θ−

is 
alled the ba
k stress and 
an be interpreted asthe 
ontribution to the stress of the short-range intera
tions between dislo
ations. Thisterm was, for instan
e, negle
ted in the Groma-Balogh model [11℄. Moreover, for themodel des
ribed in [11℄, we refer the reader to [5, 6℄ for a one-dimensional mathemati
aland numeri
al study, and to [4℄ for a two-dimensional existen
e result. The spe
ial 
ase
τ = 0 for system (1.1) has been studied in [15℄ where a result of existen
e and uniquenesshas been proved. In the present paper we study the 
ase where τ 6= 0.1.2 Setting of the problemWe 
onsider an integrated form of (1.1) and we let

ρ±x = θ±, ρ = ρ+ − ρ− and κ = ρ+ + ρ−,to obtain (at least formally), for spe
ial values of the 
onstants of integration, the followingsystem in terms of ρ and κ:
{

κtκx = ρtρx on I × (0, T )

ρt = ρxx − τκx on I × (0, T ),
(1.3)with the initial 
onditions:

κ(x, 0) = κ0(x) and ρ(x, 0) = ρ0(x). (1.4)To formulate heuristi
ally the boundary 
onditions at the walls lo
ated at x = 0 and
x = 1, we suppose that κx 6= 0 at x = 0 and x = 1. We note that the dislo
ation �uxesat the walls must be zero, whi
h require (see 1.2) that :

Φ
︷ ︸︸ ︷

(θ+
x − θ−x ) − τ(θ+ + θ−) = 0, at x = 0 and x = 1. (1.5)2



Rewriting system (1.3) in terms of ρ, κ and Φ, we get
{

κt = (ρx/κx)Φ,

ρt = Φ.
(1.6)From (1.5) and (1.6), we dedu
e that

ρt(0, .) = ρt(1, .) = 0. (1.7)Also, from (1.5) and (1.6), and if κx 6= 0 at x = 0 and x = 1, we dedu
e that
κt(0, .) = κt(1, .) = 0. (1.8)Using (1.7) and (1.8), we 
an formally reformulate the boundary 
onditions as follows:

{

κ(0, .) = κ0(0) and κ(1, .) = κ0(1),

ρ(0, .) = ρ(1, .) = 0,
(1.9)where we have taken the zero normalization for ρ on the boundary of the interval.The positivity of θ+ and θ− redu
es in terms of ρ and κ to the following 
ondition:

κx ≥ |ρx|, (1.10)and hen
e a natural assumption to be 
onsidered 
on
erning the initial 
onditions ρ0 and
κ0 is to satisfy

κ0
x ≥ |ρ0

x| on I. (1.11)Problem (1.3), (1.4) and (1.9), in the 
ase τ = 0, has been studied in [15℄ where a resultof existen
e and uniqueness is given using the vis
osity/entropy solution framework. Letus just mention that in this situation, system (1.3) be
omes de
oupled and easier to behandled.1.3 Statement of the main resultIn this paper, we assume that τ is a real 
onstant,
τ 6= 0and we examine the existen
e of solutions of (1.3), (1.4) and (1.9). To be more pre
ise,our main result is:Theorem 1.1 (Existen
e of a solution)Let ρ0, κ0 ∈ C∞(Ī) satisfying (1.11), (1.9) and the additional 
onditions:

Ds
xρ

0 = Ds
xκ

0 = 0, s = 1, 2, x = 0, 1. (1.12)Then for every T > 0, there exists
(ρ, κ) ∈ (C(Ī × [0, T ]))2 and ρ ∈ C1(I × (0, T )),3



solution of (1.3), (1.4) and (1.9). Moreover, this solution satis�es (1.10) in the distribu-tional sense, i.e.
κx ≥ |ρx| in D′(I × (0, T )). (1.13)However, the solution has to be interpreted in the following sense:1. κ is a vis
osity solution of κtκx = ρtρx in IT := I × (0, T ),2. ρ is a distributional solution of ρt = ρxx − τκx in IT ,3. the initial and boundary 
onditions are satis�ed pointwisely.Remark 1.2 (Compatibility of the regularized solution)The method of the proof of Theorem 1.1 
onsists in 
onsidering a paraboli
 regularizationof (1.3), and then passing to the limit. This method is 
alled the �vanishing vis
osity�method. We use a result of global existen
e and uniqueness of the regularized system from[16℄, whi
h requires some 
ompatibility 
onditions on the initial data of the problem. Theadditional boundary 
onditions (1.12) was taken for a
hieving the 
ompatibility at theregularized level.Remark 1.3 The C∞ regularity of ρ0 and κ0, together with (1.12) seems to be essentiallyte
hni
al.Vanishing vis
osity method is 
ommon in order to approa
h vis
osity solutions for aHamilton-Ja
obi equation. It 
onsists to add ε∆ to the Hamilton-Ja
obi equation

H(x, u,Du) = 0 and then obtain a more standard paraboli
 equation, after that weneed to pass to the limit ε→ 0. The literature is very ri
h and one 
an 
ite for instan
ethe Book of Barles [2℄ and the referen
es therein, see also [20, 14℄.In our 
ase, we are interested in a singular Hamilton-Ja
obi equation, strongly 
oupledwith a paraboli
 equation. The singularity 
omes from the following formal formulationof the �rst equation of (1.3):
κt =

ρtρx
κx

,that be
omes a singular paraboli
 equation after adding the ε∆ term:
κt =

ρtρx
κx

+ εκxx.For a mathemati
al treatement of the above equation and various singular paraboli
equations, see [16℄ and the referen
es therein.1.4 Organization of the paperThis paper is organized as follows: in se
tion 2, we present the strategey of the proof.In se
tion 3, we present the tools needed throughout this work. This in
ludes somemis
ellaneous results for paraboli
 equations; a brief re
all to the de�nition and thestability result of vis
osity solutions; and a brief re
all to Orli
z spa
es. In se
tion 4, weshow how to 
hoose the regularized solution. An entropy inequality used to determine4



some uniform bounds on the regularized solution is presented in se
tion 5. Furtheruniform bounds and 
onvergen
e arguments are done in se
tion 6. Se
tion 7 is devotedto the prove of our main result: Theorem 1.1. In se
tion 8, some mumeri
al simulationsrelated to our physi
al model are presented. Finally, se
tion 9 is an appendix where weshow the proofs of some standard results.2 Strategy of the proofThe main di�
ulty we have to fa
e is to work with the equation
κtκx = ρtρx. (2.1)Sin
e ρ solves itself a paraboli
 equation (see (1.3)), we expe
t enough regularity on

ρ (indeed ρ is C1), and then we need a framework where the equation on κ is stableunder approximation. This property is naturally satis�ed in the framework of vis
ositysolutions. Then, assuming κx ≥ 0, we interpret κ as the vis
osity solution of (2.1).Assuming (1.11), we will indeed show that
M := κx − |ρx| ≥ 0.This is formally true be
ause M formally satis�es:
Mt = bMx + cM,with

b = τ sgn(ρx) −
ρxρxx
κ2
x

, c =
ρ2
xx

κ2
x

− ρxxx sgn(ρx)
κx

,where for suitable boundary 
onditions, we 
an (again formally) see that
M ≥ 0.In order to justify the 
omputations on M , we modify the system and we 
onsider thefollowing paraboli
 regularization for ε > 0 small enough:







κεt = εκεxx +
ρεxρ

ε
xx

κεx
− τρεx in I × (0, T )

ρεt = (1 + ε)ρεxx − τκεx in I × (0, T ),

(2.2)whi
h formally redu
es to (1.3) for ε = 0, with initial 
onditions (1.4) and boundary
onditions (1.9). In fa
t, system (2.2), (1.4) , (1.9), and under some 
onditions on theinitial and boundary data, has a unique smooth global solution (see [16, Theorem ??℄)for α ∈ (0, 1):
(ρε, κε) ∈ C3+α, 3+α

2 (Ī × [0,∞)) ∩ C∞(I × (0,∞)).This result will be 
learly presented in the tools (see Theorem 3.1, Se
tion 3). The nextstep is to �nd some uniform bounds (independent of ε) on this solution; this is done via:5



(1) an entropy inequality shown to be valid for our spe
ial approximated model (2.2);
(2) a bound on κεt − εκεxx uniformly in ε.In fa
t, (1) guarantees the global uniform-in-time 
ontrol of the modulus of 
ontinuityin spa
e of our approximated solution, while (2) guarantees the lo
al uniform-in-spa
e
ontrol of the modulus of 
ontinuity in time. The entropy inequality 
an be easily under-stood. For instan
e, for ε = 0 and τ = 0, we 
an formally 
he
k that the entropy of thedislo
ation densities

θ± =
κx ± ρx

2
,de�ned by:

S(t) =

∫

I

∑

±

θ±(., t) log(θ±(., t)),satis�es:
dS(t)

dt
= −

∫

I

(θ+
x − θ−x )2

θ+ + θ−
≤ 0.Therefore we get S(t) ≤ S(0) whi
h 
ontrols the entropy uniformly in time. Finally, weneed to pass to the limit ε → 0 in the approximated solution after multiplying the �rstequation of (2.2) by κεx. Having enough 
ontrol on the approximared solutions, we 
an�nd a solution of the limit equation using in parti
ular the stability of vis
osity solutionsof Hamilton-Ja
obi equations. However, the passage to the limit in the se
ond equationof (2.2) is done in the distributional sense.3 Tools: mis
ellaneous paraboli
 results, vis
osity solution,and Orli
z spa
es3.1 Mis
ellaneous paraboli
 resultsWe �rst �x some notations. Denote

IT := I × (0, T ), IT := Ī × [0, T ] and ∂pIT := I ∪ (∂I × [0, T ]).De�ne the Sobolev spa
e W 2,1
p (IT ) , 1 < p <∞ by:

W 2,1
p (IT ) :=

{

u ∈ Lp(IT ); (ut, ux, uxx) ∈ (Lp(IT ))3
}

.We start with a result of global existen
e and uniqueness of smooth solutions of theregularised system (2.2), with the initial and boundary 
onditions (1.4) and (1.9).Theorem 3.1 (Global existen
e for the regularized system, [16, Theorem 1.1℄)Let 0 < α < 1 and 0 < ε < 1. Let ρ0,ε, κ0,ε satisfying:
ρ0,ε, κ0,ε ∈ C∞(Ī), ρ0,ε(0) = ρ0,ε(1) = κ0,ε(0) = 0, κ0,ε(1) = 1, (3.1)

{

(1 + ε)ρ0,ε
xx = τκ0,ε

x on ∂I

(1 + ε)κ0,ε
xx = τρ0,ε

x on ∂I,
(3.2)6



and
min
x∈I

(
κ0,ε
x (x) − |ρ0,ε

x (x)|
)
> 0. (3.3)Then there exists a unique global solution

(ρε, κε) ∈ C3+α, 3+α
2 (Ī × [0,∞)) ∩ C∞(I × (0,∞)), (3.4)of the system (2.2), (1.4) and (1.9). Moreover, this solution satis�es :

κεx > |ρεx| on Ī × [0,∞). (3.5)Remark 3.2 Conditions (3.2) are natural here. Indeed, the regularity (3.4) of the so-lution of equation (2.2) with boundary 
onditions (1.4) and (1.9) imply in parti
ular
ondition (3.2).Remark 3.3 (Uniform L∞ bound on ρε and κε)We remark, from the boundary 
onditions (1.9) and from the inequality (3.5), that:
‖ρε‖L∞(Ī×[0,∞)) ≤ 1 and ‖κε‖L∞(Ī×[0,∞)) ≤ 1. (3.6)We now present two te
hni
al lemmas that will be used in the proof of Theorem 1.1. Theproofs of these lemmas will be given in the Appendix.Lemma 3.4 (Control of the modulus of 
ontinuity in time uniformly in ε)Let p > 3, and

uε ∈W 2,1
p (IT ). (3.7)Suppose furthermore that the sequen
es

(uε)ε and (f ε)ε = (uεt − εuεxx)ε, (3.8)are lo
ally bounded in IT uniformly for ε ∈ (0, 1). Then for every V ⊂⊂ IT , there existtwo 
onstants c > 0, ε0 > 0 depending on V , and 0 < β < 1 su
h that for all 0 < ε < ε0:
|uε(x, t+ h) − uε(x, t)|

hβ
≤ c, ∀(x, t), (x, t+ h) ∈ V. (3.9)Lemma 3.5 (An interior estimate for the heat equation)let a ∈ C∞(IT ) ∩ L1(IT ) satisfying:

at = axx on IT , (3.10)then for any V ⊂⊂ IT , an open set, we have:
‖a‖p,V ≤ c‖a‖1,IT , ∀ 1 < p <∞, (3.11)with c = c(p, V ) > 0 is a positive 
onstant.
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3.2 Vis
osity solution: de�nition and stability resultLet Ω ⊂ R
n be an open domain, and 
onsider the following Hamilton-Ja
obi equation:

F (x, u(x),Du(x),D2u(x)) = 0, ∀x ∈ Ω, (3.12)where F : Ω × R × R
n ×Mn×n

sym 7→ R is a 
ontinuous mapping.De�nition 3.6 (Vis
osity solution of Hamilton-Ja
obi equations)A 
ontinuous fun
tion u : Ω 7→ R is a vis
osity sub-solution of (3.12) if for any φ ∈
C2(Ω; R) and any lo
al maximum x0 ∈ Ω of u− φ, one has

F (x0, u(x0),Dφ(x0),D
2φ(x0)) ≤ 0.Similarly, u is a vis
osity super-solution of (3.12), if at any lo
al minimum point x0 ∈ Ωof u− φ, one has

F (x0, u(x0),Dφ(x0),D
2φ(x0)) ≥ 0.Finally, if u is both a vis
osity sub-solution and a vis
osity super-solution, then u is 
alleda vis
osity solution.To get a "non-empty" and useful de�nition, it is usually assumed that F is ellipti
 (see[2℄). This notion of ellipti
ity will be indire
tly used in Se
tion 7. In fa
t, this de�nitionis used for interpreting solutions of the �rst equation of (1.3) in the vis
osity sense. Thiswill be shown in Se
tion 5. To be more pre
ise, in the 
ase where Ω = IT , we say that uis a vis
osity solution of the Diri
hlet problem (3.12) with u = ζ ∈ C(∂pIT ) if:(1) u ∈ C(IT ),(2) u is a vis
osity solution of (3.12) in IT ,(3) u = ζ on ∂pIT .For a better understanding of the vis
osity interpretation of boundary 
onditions ofHamilton-Ja
obi equations, we refer the reader to [2, Se
tion 4.2℄. We now state thestability result for vis
osity solutions of Hamilton-Ja
obi equations. An important result
on
erning vis
osity solutions is presented by the following theorem:Theorem 3.7 (Stability of vis
osity solutions, [2, Lemma 2.3℄)Suppose that, for ε > 0, uε ∈ C(Ω) is a vis
osity sub-solution (resp. super-solution) ofthe equation

Hε(x, uε,Duε,D2uε) = 0 in Ω, (3.13)where (Hε)ε is a sequen
e of 
ontinuous fun
tions. If uε → u lo
ally uniformly in Ω andif Hε → H lo
ally uniformly in Ω × R × R
n ×Mn×n

sym , then u is a vis
osity sub-solution(resp. super-solution) of the equation:
H(x, u,Du,D2u) = 0 in Ω. (3.14)
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3.3 Orli
z spa
es: de�nition and propertiesWe re
all the de�nition of an Orli
z spa
e and some of its properties (for details see [1℄).A real valued fun
tion Ψ : [0,∞) → R is 
alled a Young fun
tion if
Ψ(t) =

∫ t

0
ψ(s)ds,where ψ : [0,∞) → [0,∞) satisfying:

• ψ(0) = 0, ψ > 0 on (0,∞), ψ(t) → ∞ as t→ ∞;
• ψ is non-de
reasing and right 
ontinuous at any point s ≥ 0.Let Ψ be a Young fun
tion. The Orli
z 
lass KΨ(I) is the set of equivalen
e 
lasses ofreal-valued measurable fun
tions u on I satisfying

∫

I
Ψ(|u(x)|)dx < +∞.De�nition 3.8 (Orli
z spa
es)The Orli
z spa
e LΨ(I) is the linear span of KΨ(I) supplemented with the Luxemburgnorm

‖u‖LΨ(I) = inf

{

k > 0;

∫

I
Ψ

( |u(x)|
k

)

≤ 1

}

, (3.15)and with this norm, the Orli
z spa
e is a Bana
h spa
e.The fun
tion
Φ(t) =

∫ t

0
φ(s)ds, φ(s) = sup

ψ(t)≤s
t,is 
alled the 
omplementary Young fun
tion of Ψ. An example of su
h pair of 
omple-mentary Young fun
tions is the following:

Ψ(s) = (1 + s) log(1 + s) − s and Φ(s) = es − s− 1. (3.16)We now state a lemma giving two useful properties of Orli
z spa
es that will be used inthe proof of Lemma 5.4.Lemma 3.9 (Norm 
ontrol and Hölder inequality, [17℄)If u ∈ LΨ(I) for some Young fun
tion Ψ, then we have:
‖u‖LΨ(I) ≤ 1 +

∫

I
Ψ(|u(x)|)dx. (3.17)Moreover, if v ∈ LΦ(I), Φ being the 
omplementary Young fun
tion of Ψ, then we havethe following Hölder inequality:

∣
∣
∣
∣

∫

I
uvdx

∣
∣
∣
∣
≤ 2‖u‖LΨ(I)‖v‖LΦ(I). (3.18)9



4 The regularized problemAs we have already mentioned, we will use a paraboli
 regularization of (1.3), and a resultof global existen
e of this regularized system from [16℄ (see Theorem 3.1). In order to usethis result, we need to give a spe
ial attention to the 
onditions on the initial data of theapproximated system ρ0,ε and κ0,ε (see (3.1), (3.2) and (3.3)). This se
tion aims to showhow to 
hoose the suitable initial data ρ0,ε and κ0,ε in order to bene�t Theorem 3.1.Let ρ0 and κ0 be the fun
tions given in Theorem 1.1. Set
ρ0,ε =

ρ0 + ετφ

(1 + ε)2
, (4.1)and

κ0,ε =
κ0 + εx

1 + ε
, (4.2)with the fun
tion φ de�ned by:

φ(x) =
1

τ2
[1 − cos τ(x2 − x)]. (4.3)The fun
tion φ enjoys some properties that are shown in the following lemma.Lemma 4.1 (Properties of φ)The fun
tion φ given by (4.3) satis�es the following properties:(P1) φ, φ′ |∂I = 0;(P2) φ′′

∣
∣
∂I

= 1;(P3) |φ′

(x)| < 1/τ for x ∈ Ī.Proof. (P1) and (P2) dire
tly follows by simple 
omputations. For (P3), we 
al
ulateon Ī:
|φ′

(x)| = (1/τ)|2x − 1|| sin τ(x2 − x)|
≤ 1/τ.In order to obtain the stri
t inequality, we remark that

|2x− 1|| sin τ(x2 − x)| 6= 1 on Ī ,hen
e |φ′

(x)| < 1/τ. 2Form the above lemma, and from the 
onstru
tion of ρ0,ε and κ0,ε (see (4.1) and (4.2))together with the properties enjoyed by ρ0 and κ0 (see (1.9) and (1.12)), we write downsome properties of ρ0,ε and κ0,ε. 10



Lemma 4.2 (Properties of ρ0,ε and κ0,ε)The fun
tions ρ0,ε and κ0,ε given respe
tively by (4.1) and (4.2) , satisfy the followingproperties:(P4) ρ0,ε(0) = ρ0,ε(1) = κ0,ε(0) = 0 and κ0,ε(1) = 1;(P5) (1 + ε)κ0,ε
xx

∣
∣
∂I

= τρ0,ε
x

∣
∣
∂I

and (1 + ε)ρ0,ε
xx

∣
∣
∂I

= τκ0,ε
x

∣
∣
∂I
;(P6) κ0,ε

x ≥ |ρ0,ε
x | + ε(1 − τ |φ′ |)

1 + ε
> |ρ0,ε

x |.Proof. We only show (P5) and (P6). For (P5), we 
al
ulate:
ρ0,ε
x =

ρ0
x + ετφ

′

(1 + ε)2
, ρ0,ε

xx =
ρ0
xx + ετφ

′′

(1 + ε)2
, (4.4)and

κ0,ε
x =

κ0
x + ε

1 + ε
, κ0,ε

xx =
κ0
xx

1 + ε
.Therefore, on ∂I, we have:

(1 + ε)ρ0,ε
xx = τ

(
ε

1 + ε

)

= τκ0,ε
x ,and

(1 + ε)κ0,ε
xx = τρ0,ε

x = 0,where we have used (P1) and (P2) from Lemma 4.1, and the properties (1.9), (1.12) of ρ0and κ0 on ∂I. For (P6), we pro
eed as follows. We �rst use the inequality (1.11) between
ρ0
x and κ0

x, to dedu
e that:
κ0,ε
x =

κ0
x + ε

1 + ε
≥ |ρ0

x| + ε

1 + ε
,and then from the left identity of (4.4), we dedu
e that:

ρ0
x = (1 + ε)2ρ0,ε

x − ετφ
′

,therefore
κ0,ε
x ≥ (1 + ε)|ρ0,ε

x | + ε(1 − τ |φ′ |)
1 + ε

.The inequality (P6) then dire
tly follows. 2Remark 4.3 (The regularized solution (ρε, κε))Properties (P4)-(P5)-(P6) of Lemma 4.2 implies 
ondition (3.1)-(3.2)-(3.3) of Theorem3.1. In this 
ase, 
all
(ρε, κε), (4.5)the solution of (2.2), (1.4) and (1.9), given in Theorem 3.1, with the initial 
onditions

ρ(x, 0) = ρ0,ε and κ(x, 0) = κ0,ε,that are given by (4.1) and (4.2) respe
tively.11



5 Entropy inequalityProposition 5.1 (Entropy inequality)Let (ρε, κε) be the regular solution given by (4.5). De�ne θ±,ε by:
θ±,ε =

κεx ± ρεx
2

, (5.1)then the quantity S(t) given by:
S(t) =

∫

I

∑

±

θ±,ε(x, t) log θ±,ε(x, t)dx, (5.2)satis�es for every t ≥ 0:
S(t) ≤ S(0) +

τ2t

4
. (5.3)Proof. From (3.5), we know that

κεx > |ρεx|,hen
e
θ±,ε > 0,and the term log(θ±,ε) is well de�ned. Also from the regularity (3.4) of the solution

(ρε, κε), we know that
θ±,ε(., t) ∈ C(Ī), ∀t ≥ 0,hen
e the term S(t) is well de�ned. We derive system (2.2) with respe
t to x, and wewrite it in terms of θ±,ε, we get:







θ+,ε
t =

[(
(θ+,ε − θ−,ε)x
θ+,ε + θ−,ε

− τ

)

θ+,ε + εθ+,ε
x

]

x

θ−,εt =

[

−
(

(θ+,ε − θ−,ε)x
θ+,ε + θ−,ε

− τ

)

θ−,ε + εθ−,εx

]

x

.

(5.4)We �rst remark that:
(

(θ+,ε − θ−,ε)x
θ+,ε + θ−,ε

− τ

)

θ+,ε + εθ+,ε
x =

κt + ρt
2and

−
(

(θ+,ε − θ−,ε)x
θ+,ε + θ−,ε

− τ

)

θ−,ε + εθ−,εx =
κt − ρt

2
.Sin
e κεt and ρεt are zeros on ∂I × [0,∞), then

(
(θ+,ε − θ−,ε)x
θ+,ε + θ−,ε

− τ

)

θ+,ε+εθ+,ε
x = −

(
(θ+,ε − θ−,ε)x
θ+,ε + θ−,ε

− τ

)

θ−,ε+εθ−,εx = 0 on ∂I×[0,∞).(5.5)
12



Using (5.5), we 
ompute for t ≥ 0:
S

′

(t) =
∑

±

∫

I
θ±,εt log(θ±,ε) + θ±,εt ,

=
∑

±

∫

I
∓
(

(θ+,ε − θ−,ε)x
θ+,ε + θ−,ε

− τ

)

θ±,εx − ε

(
θ±,εx

)2

θ±,ε
,

=

∫

I
−
(
θ+,ε
x − θ−,εx

)2

θ+,ε + θ−,ε
+ τ(θ+,ε

x − θ−,εx ) − ε

((
θ+,ε
x

)2

θ+,ε
+

(
θ−,εx

)2

θ−,ε

)

.By Young's Inequality, we have:
∣
∣θ+,ε
x − θ−,εx

∣
∣ ≤ 1

τ

(
θ+,ε
x − θ−,εx

)2

θ+,ε + θ−,ε
+
τ

4
(θ+,ε + θ−,ε),and hen
e

S
′

(t) ≤
∫

I

τ2

4
(θ+,ε + θ−,ε) − ε

((
θ+,ε
x

)2

θ+,ε
+

(
θ−,εx

)2

θ−,ε

)

≤ τ2

4

∫

I
(θ+,ε + θ−,ε).Moreover, we have from (1.9), that

∫

I
(θ+,ε(., t) + θ−,ε(., t)) =

∫

I
κx(., t) = κ(1, t) − κ(0, t) = 1,and therefore

S
′

(t) ≤ τ2

4
.Integrating the previous inequality from 0 to t, we get (5.3). 2An immediate 
orollary of Proposition 5.1 is the following:Corollary 5.2 (Spe
ial 
ontrol of κεx)For all t ≥ 0, we have:

∫

I
κεx(x, t) log(κεx(x, t))dx ≤ S(0) +

τ2t

4
+ 1, (5.6)where S is given by (5.2).The proof of Corollary 5.2 depends on the inequality shown by the next lemma.Lemma 5.3 For every x, y > 0, we have:

(x+ y) log(x+ y) ≤ x log(x) + y log(y) + x log(2) + y. (5.7)13



Proof. Fix y > 0. 
onsider the fun
tion f de�ned by:
f(x) = (x+ y) log(x+ y) − x log(x) − y log(y) − x log(2) − y, x > 0. (5.8)We 
laim that f(x) ≤ 0 for every x > 0. Indeed, we have limx→0+ f(x) = −y < 0. We
ompute

f ′(x) = log(x+ y) − log(x) − log(2), (5.9)and we remark that this is always a de
reasing fun
tion with
lim
x→0+

f ′(x) = +∞ and lim
x→+∞

f ′(x) = − log(2),hen
e the fun
tion f(x) 
an only be positive if f(x0) > 0 where x0 satis�es
f ′(x0) = 0.A simple 
omputation shows that x0 = y, then

f(y) = 2y log(2y) − 2y log(y) − y log(2) − y

= 2y log(2) + 2y log(y) − 2y log(y) − y log(2) − y

= y log(2) − y < 0,and therefore f(x) ≤ 0, ∀x > 0, whi
h ends the proof. 2Proof of Corollary 5.2. From (5.1), it follows that
κεx = θ+,ε + θ−,ε > 0.Then we have for t ≥ 0:

∫

I
κεx log κεx =

∫

I
(θ+,ε + θ−,ε) log(θ+,ε + θ−,ε)

≤
∫

I
θ+,ε log(θ+,ε) + θ−,ε log(θ−,ε) + θ+,ε log 2 + θ−,ε

≤
∫

I
θ+,ε log(θ+,ε) + θ−,ε log(θ−,ε) +

1

2
(log 2 + 1)

≤ S(t) + 1.Here we have used Lemma 5.3 with x = θ+,ε and y = θ−,ε for the se
ond line, and wehave used for the third line, the fa
t that
∫

I
θ±,ε =

1

2

∫

I
κx ± ρx =

1

2
[κ(1, .) − κ(0, .)] = 1/2.Using (5.3), the result follows. 2Lemma 5.4 (Control of the modulus of 
ontinuity in spa
e)Let u ∈ C1(I), ux > 0, satisfying

∫

I
ux log(ux) ≤ c1, (5.10)14



then we have for any x, x+ h ∈ I:
|u(x+ h) − u(x)| ≤ c2(1 + c1)

| log h| , (5.11)where c2 > is a universal 
onstant.Proof. Let x, x+ h ∈ I.Step 1. (ux ∈ LΨ(x, x+ h) with Ψ given in (3.16))We 
ompute
∫ x+h

x
Ψ(ux) =

∫ x+h

x
(1 + ux) log(1 + ux) − ux

≤
∫

I
(1 + ux) log(1 + ux) − ux

≤
∫

I
ux log(ux) + log 2

≤ c1 + log 2,where we have used (5.7) in the third line, and (5.10) in the last line. Hen
e from (3.17),we get
‖ux‖LΨ(x,x+h) ≤ c1 + 1 + log 2,and hen
e ux ∈ LΨ(x, x+ h).Step 2. (Estimating the modulus of 
ontinuity)It is easy to 
he
k that the fun
tion 1 lies in LΦ(x, x + h), Φ is also given by (3.16).Therefore, by Hölder inequality (3.18), we obtain:

|u(x+ h) − u(x)| =

∣
∣
∣
∣

∫ x+h

x
ux · 1

∣
∣
∣
∣

≤ 2‖ux‖Lψ(x,x+h)‖1‖LΦ(x,x+h)

≤ 2(c1 + 1 + log 2)‖1‖LΦ(x,x+h). (5.12)We turn our attention now to the term ‖1‖LΦ(x,x+h). We have
‖1‖LΦ(x,x+h) = inf

{

k > 0;

∫ x+h

x
Φ

(
1

k

)

≤ 1

}

= inf

{

k > 0;

∫ x+h

x
(e1/k − 1/k − 1) ≤ 1

}

= inf
{

k > 0; h(e1/k − 1/k − 1) ≤ 1
}

≤ − 1

log(h)
, 15



where we have used in the last line the fa
t that for 0 < h < 1 and k = − 1
log(h) , thefollowing inequality holds:

h(e1/k − 1/k − 1) ≤ 1.Hen
e, (5.12) implies
|u(x+ h) − u(x)| ≤ 2(c1 + 1 + log 2)

1

| log h| ,and then (5.11) follows. 26 An interior estimateIn this se
tion, we give an interior estimate for the term
Aε = ρεx − τκε. (6.1)that will be used in the passage to the limit as ε goes to zero in the regularized system.We start by deriving an equation satis�ed by Aε.Lemma 6.1 The quantity Aε given by (6.1) satis�es for any T > 0:

Aεt = (1 + ε)Aεxx −
τρεx
κεx

Aεx. (6.2)Proof. From (2.2), we 
al
ulate:
Aεt = ρεtx − τκεt

= (1 + ε)ρεxxx − τκεxx − τ

(

εκεxx +
ρεxρ

ε
xx

κεx
− τρεx

)

= (1 + ε)(ρεxxx − τκεxx) −
τρεx
κεx

(ρεxx − τκεx)

= (1 + ε)Aεxx −
τρεx
κεx

Aεx,hen
e (6.2) is satis�ed. 2We now show an interior Lp estimate 
on
erning the term Aε. This estimate gives a
ontrol on the lo
al Lp norm of Aε by its global L1 norm over IT , and it will be used inthe following se
tion. More pre
isely, we have the following lemma.Lemma 6.2 (Interior Lp estimate)Let 0 < ε < 1 and 1 < p <∞. Then the quantity Aε given by (6.1) satis�es:
‖Aε‖p,V ≤ c (‖Aε‖1,IT + 1) , (6.3)where V is an open subset of IT su
h that V ⊂⊂ IT , and c = c(p, V ) > 0 is a 
onstantindependent of ε. 16



Proof. Throughout the proof, the term c = c(p, V ) > 0 is a positive 
onstant independentof ε, and it may vary from line to line. A simple 
omputation gives:
−τ ρ

ε
x

κεx
Aεx = −τ ρ

ε
x

κεx
(ρεxx − τκεx)

= −τ ρ
ε
xρ
ε
xx

κεx
+ τ2ρεx

= −τ(κεt − εκεxx). (6.4)De�ne κ̄ε as the unique solution of
{

κ̄εt = (1 + ε)κ̄εxx + κε on IT ,

κ̄ε = 0 on ∂pIT ,
(6.5)where the existen
e and uniqueness of this equation is a dire
t 
onsequen
e of the Lptheory for paraboli
 equations (see for instan
e [18, Theorem 9.1℄) using in parti
ular thefa
t that κε ∈ C1(IT ). Moreover, from the regularity (3.4) of κε, we 
an dedu
e that

κ̄ε ∈ C∞(IT ). Let Āε be given by:
Āε = −τ(κ̄εt − εκ̄εxx), (6.6)and

aε = Aε − Āε. (6.7)We 
al
ulate:
Āεt = −τ [κ̄εtt − εκ̄εxxt]

= −τ [(1 + ε)κ̄εxxt + κεt − ε((1 + ε)κ̄εxxxx + κεxx)]

= −τ(1 + ε)(κ̄εxxt − εκ̄εxxxx) − τ(κεt − εκεxx)

= (1 + ε)Āxx −
τρεx
κεx

Aεx,where for the �rst two line, we have used (6.5), and for the last line, we have used (6.4).In this 
ase, we obtain:
aεt = Aεt − Āεt

= (1 + ε)Aεxx −
τρεx
κεx

Aεx − (1 + ε)Āxx +
τρεx
κεx

Aεx

= (1 + ε)(Aεxx − Āεxx)

= (1 + ε)aεxx,where for the �rst line, we have used the equation (6.2). We apply Lemma 3.5 to thefun
tion aε, after doing paraboli
 res
aling of the form ãε(x, t) = aε
(

x, t
1+ε

), we get:
‖aε‖p,V ≤ c(1 + ε)

1− 1

p ‖aε‖1,IT ,and sin
e 0 < ε < 1, we �nally obtain
‖aε‖p,V ≤ c‖aε‖1,IT . (6.8)17



From the de�nition of aε (see (6.7) above), and the above inequality (6.8), we �nallydedu
e that:
‖Aε‖p,V ≤ c(‖Aε‖1,IT + ‖Āε‖p,IT ). (6.9)In order to 
omplet the proof, we need to 
ontrol the term ‖Āε‖p,IT in (6.9). We use theequation (6.5) satis�ed by κ̄ε to obtain:

‖Āε‖p,IT = τ‖κ̄εt − εκ̄εxx‖p,IT
= τ‖κ̄εxx + κε‖p,IT
≤ c(‖κ̄εxx‖p,IT + ‖κε‖p,IT ). (6.10)The Lp estimates for paraboli
 equations (see [16, Lemma ??℄) applied to (6.5) gives:

‖κ̄εxx‖p,IT ≤ c

1 + ε
‖κε‖p,IT ,then (6.10), together with the fa
t that 0 ≤ κε ≤ 1 (see (1.9)), implies that:

‖Āε‖p,IT ≤ c‖κε‖p,IT ≤ cT 1/p,hen
e the result follows. 27 Proof of the main theoremAt this stage, we are ready to present the proof of our main result (Theorem 1.1). Thisdepends essentially on the passage to the limit in the family of solutions (ρε, κε) of system(2.2). Sin
e κεx 6= 0, we multiply the �rst equation of (2.2) by κεx and we rewrite system(2.2) in terms of Aε, we obtain:
{

κεtκ
ε
x = εκεxκ

ε
xx + ρεxA

ε
x on IT

ρεt = ερεxx +Aεx on IT .
(7.1)We will pass to the limit in the framework of vis
osity solutions for the �rst equation of(7.1), and in the distributional sense for the se
ond equation. We start with the followingproposition.Proposition 7.1 (Lo
al uniform 
onvergen
e)The sequen
es (ρε)ε, (ρεx)ε, (κε)ε, (Aε)ε and (Aεx)ε 
onverge (up to extra
tion of a subse-quen
e) lo
ally uniformly in IT as ε goes to zero.Proof. Let V be an open 
ompa
tly 
ontained subset of IT . The 
onstants that willappear in the proof are all independent of ε. However, they may depend on other �xedparameters in
luding V . The idea is to give an ε-uniform 
ontrol of the modulus of 
on-tinuity in spa
e and in time of the quantities mentioned in Proposition (7.1), whi
h givesthe lo
al uniform 
onvergen
e. The ε-uniform 
ontrol on the spa
e modulus of 
ontinuitywill be derived from the Corollary 5.2 and Lemma 5.4, while the ε-uniform 
ontrol on thetime modulus of 
ontinuity will be derived from Lemma 3.4. The proof is divided into18



�ve steps.Step 1. (Convergen
e of Aε and Aεx)From (3.5), we know that ∥∥∥ ρεxκεx∥∥∥∞ ≤ 1. We apply the interior Lp, p > 1, estimatesfor paraboli
 equations (see for instan
e [19, Theorem 7.13, page 172℄) to the term Aεsatisfying (6.2), we obtain:
‖Aε‖W 2,1

p (V ) ≤ c3‖Aε‖p,V ′ , (7.2)where V ′ is any open subset of IT satisfying V ⊂⊂ V ′ ⊂⊂ IT . The 
onstant
c3 = c3(p, τ, V, V

′) 
an be 
hosen independent of ε �rst by applying a paraboli
 res
al-ing of (6.2), and then using the fa
t that the fa
tor multiplied by Aεxx in (6.2) satisfying
1 ≤ 1 + ε ≤ 2. At this point, we apply Lemma 6.2 for Aε on V ′, we get:

‖Aε‖p,V ′ ≤ c4(‖Aε‖1,IT + 1), (7.3)and hen
e the above two equations (7.2) and (7.3) give:
‖Aε‖

W 2,1
p (V )

≤ c5(‖Aε‖1,IT + 1). (7.4)We estimate the right hand side of (7.4) in the following way:
‖Aε‖1,IT =

∫

IT

|ρεx − τκε|

≤
∫

IT

κεx + τ |κε|

≤ (1 + τ)T,where we have used the fa
t that |ρεx| < κεx (see (3.5) of Theorem 3.1) in the se
ond line,and the fa
t that 0 ≤ κε ≤ 1 (see Remark 3.3) in the last line. Therefore, inequality (7.4)implies:
‖Aε‖

W 2,1
p (V )

≤ c6, 1 < p <∞. (7.5)We use the above inequality for p > 3. In this 
ase, the Sobolev embedding in Hölderspa
es (see [16, Lemma 2.8℄) gives:
W 2,1
p (V ) →֒ C1+α, 1+α

2 (V ), α = 1 − 3/pand hen
e (7.5) implies:
‖Aε‖

C1+α,
1+α

2 (V )
≤ c7, (7.6)whi
h guarantees the equi
ontinuity and the equiboundedness of (Aε)ε and (Aεx)ε. Bythe Arzela-As
oli Theorem (see for instan
e [3℄), we �nally obtain

Aε −→ A and Aεx −→ Ax, (7.7)up to a subsequen
e, uniformly on V as ε→ 0.19



Step 2. (Convergen
e of κε)We 
ontrol the modulus of 
ontinuity of κε in spa
e and in time, lo
ally uniformly withrespe
t to ε.Step 2.1. (Control of the modulus of 
ontinuity in time)The �rst equation of (7.1) gives:
κεt = εκεxx +

ρεx
κεx
Aεx,and hen
e, using the fa
t that ∥∥∥ ρεxκεx∥∥∥∞ ≤ 1, together with (7.6), we get:

‖κεt − εκεxx‖∞,V ≤
∥
∥
∥
∥

ρεx
κεx

∥
∥
∥
∥
∞,V

‖Ax‖∞,V ≤ c7. (7.8)Also, by (3.6), we have:
‖κε‖∞,V ≤ 1.This uniform bound on κε together with (7.8) permit to use Lemma 3.4 to 
on
lude that

|κε(x, t) − κε(x, t+ h)| ≤ c8h
β, (x, t), (x, t + h) ∈ V, 0 < β < 1, (7.9)whi
h 
ontrols the modulus of 
ontinuity of κε with respe
t to t uniformly in ε. We nowmove to 
ontrol the moduls of 
ontinuity in spa
e.Step 2.2 (An ε-uniform bound on S(0))Re
all the de�nition (5.2) of S(t):

S(t) =

∫

I

∑

±

θ±,ε(x, t) log θ±,ε(x, t)dx,with
θ±,ε =

κεx ± ρεx
2

.Hen
e
S(0) =

∫

I

κ0,ε
x + ρ0,ε

x

2
log

(

κ0,ε
x + ρ0,ε

x

2

)

+

∫

I

κ0,ε
x − ρ0,ε

x

2
log

(

κ0,ε
x − ρ0,ε

x

2

)

.Using the elementarty identity x log x ≤ x2 and (x± y)2 ≤ 2(x2 + y2), we 
ompute:
S(0) ≤

∫

I

(

κ0,ε
x + ρ0,ε

x

2

)2

+

∫

I

(

κ0,ε
x − ρ0,ε

x

2

)2

≤ ‖ρ0,ε
x ‖2

2,I + ‖κ0,ε
x ‖2

2,I . (7.10)20



From (4.1) and (4.2), we know that:
|ρ0,ε
x | =

∣
∣
∣
∣
∣

ρ0
x + ετφ

′

(1 + ε)2

∣
∣
∣
∣
∣
≤ |ρ0

x| + ε

(1 + ε)2
≤ |ρ0

x| + 1,and
|κ0,ε
x | =

∣
∣
∣
∣

κ0
x + ε

1 + ε

∣
∣
∣
∣
≤ |κ0

x| + 1.Using the above two inequalities into (7.10), we dedu
e that:
S(0) ≤ 2(‖ρ0

x‖2
2,I + ‖κ0

x‖2
2,I + 2).Step 2.3. (Control of the modulus of 
ontinuity in spa
e and 
on
lusion)We use the uniform bound obtained for S(0) in Step 2.1, together with the spe
ial 
ontrol(5.6) of κεx given in Corollary 5.2, we get for all 0 ≤ t ≤ T :

∫

I
κεx(x, t) log(κεx(x, t))dx ≤ 2(‖ρ0

x‖2
2,I + ‖κ0

x‖2
2,I + 2) +

τ2T

4
+ 1,therefore ∫

I
κεx(x, t) log(κεx(x, t))dx ≤ c9, ∀ 0 ≤ t ≤ T. (7.11)Inequality (7.11) permit to use Lemma 5.4, hen
e we obtain:

|κε(x+ h, t) − κε(x, t)| ≤ c10
| log h| , (x, t), (x + h, t) ∈ IT , (7.12)Inequalities (7.9) and (7.12) give the equi
ontinuity of the sequen
e (κε)ε on V , and againby the Arzela-As
oli Theorem, we get:
κε → κ, (7.13)up to a subsequen
e, uniformly on V as ε→ 0.Step 3. (Convergen
e of ρε)As in step 2, we 
ontrol the modulus of 
ontinuity of ρε in spa
e and in time, lo
allyuniformly with respe
t to ε.Step 3.1. (Control of the modulus of 
ontinuity in time)The se
ond equation of (7.1) gives:

ρεt − ερεxx = Aεx,hen
e, from (7.6), we dedu
e that:
‖ρεt − ερεxx‖∞,V ≤ c7,21



and from (3.6), we have:
‖ρε‖∞,V ≤ 1.The above two inequalities permit to use Lemma 3.4, we �nally get:

|ρε(x, t) − ρε(x, t+ h)| ≤ c8h
β, (x, t), (x, t + h) ∈ V, 0 < β < 1, (7.14)whi
h 
ontrols the modulus of 
ontinuity of ρε with respe
t to t uniformly in ε.Step 3.2. (Control of the modulus of 
ontinuity in spa
e and 
on
lusion)The 
ontrol of the spa
e modulus of 
ontinuity is based on the following observation.From (3.5), we know that |ρεx| ≤ κεx on IT . Using this inequality, we get, for every

(x, t), (x + h, t) ∈ IT :
|ρε(x+ h, t) − ρε(x, t)| ≤

∫ x+h

x
|ρεx(y, t)|dy ≤

∫ x+h

x
κεx(y, t)dy ≤ |κε(x+ h, t) − κε(x, t)|.Inequality (7.12) gives immediately that:

|ρε(x+ h, t) − ρε(x, t)| ≤ c10
| log h| , (x, t), (x + h, t) ∈ IT . (7.15)From (7.14) and (7.15), we dedu
e that:
ρε → ρ, (7.16)up to a subsequen
e, uniformly on V as ε→ 0.Step 4. (Convergen
e of ρεx and 
on
lusion)In fa
t, this follows from Step 1, Step 2, and the fa
t that

ρεx = Aε + τκε → ρx, (7.17)uniformly on V as ε→ 0. In this 
ase, we also dedu
e that
A = ρx − τκ.The proof of Proposition 7.1 is done. 2We now move to the proof of the main result.Proof of Theorem 1.1. We �rst remark that κε is a vis
osity solution of the �rstequation of (7.1):

κεtκ
ε
x − εκεxκ

ε
xx − ρεxA

ε
x = 0 on IT . (7.18)Indeed, let φ ∈ C2(IT ) su
h that κε−φ has a lo
al maximum at some point (x0, t0) ∈ IT .Then Dκε = Dφ and D2κε ≤ D2φ. From this and the fa
t that κεx > 0, we 
al
ulate at

(x0, t0):
φtφx − εφxφxx − ρεxA

ε
x = κεtκ

ε
x − εκεxφxx − ρεxA

ε
x

≤ κεtκ
ε
x − εκεxκ

ε
xx − ρεxA

ε
x

≤ 0.22



On the other hand, if κε − φ has a lo
al minimum at (x0, t0), we similarly get:
φtφx − εφxφxx − ρεxA

ε
x ≥ 0,and hen
e κε is a vis
osity solution.Remark 7.2 The equation (7.18) 
an be viewed as the following Hamilton-Ja
obi equa-tion of se
ond order:

Hε(X,Dκε,D2κε) = 0, X = (x, t) ∈ IT (7.19)with
Dκε = (κεx, κ

ε
t ) and D2κε =

(
κεxx κεxt
κεtx κεtt

)

,where Hε is the Hamiltonian fun
tion given by:
Hε : IT × R

2 ×M2×2sym −→ R

(X, p,M) 7−→ Hε(X, p,M) = p1p2 − εp1M11 − ρεx(X)Aεx(X),
(7.20)

p = (p1, p2) and M = (Mij)i,j=1,2.From (7.7) and (7.17), we dedu
e that (Hε)ε 
onverges lo
ally uniformly in IT×R
2×M2×2

symto the fun
tion H given by:
H : IT × R

2 ×M2×2sym −→ R

(X, p,M) 7−→ H(X, p,M) = p1p2 − ρx(X)Ax(X).
(7.21)This, together with the lo
al uniform 
onvergen
e of κε to κ (see 7.13), and the fa
t that

κε is a vis
osity solution of (7.18), permit to use the stability of vis
osity solutions (seeTheorem 3.7), whi
h proves that κ is a vis
osity solution of
H(X,Dκ,D2κ) = κtκx − ρxAx = 0 in IT . (7.22)We now pass to the limit ε→ 0 in the se
ond equation of (7.1), we obtain

ρt = Ax in D′(IT ). (7.23)From (7.22) and (7.23), we get:1. κ is a vis
osity solution of κtκx = ρtρx in IT ;2. ρ is a distributional solution of ρt = ρxx − τκx in IT .Let us now prove inequality (1.13). Let φ ∈ C∞
0 (IT ) be a non-negative test fun
tion.From (3.5), we know that

κεx > |ρεx| in IT ,and hen
e
κεx > ρεx and κεx > −ρεx in IT .23



Multiplying these inequalities by a test fun
tion φ ∈ D(IT ), φ ≥ 0; integrating by partsover IT , and passing to the limit as ε→ 0, we obtain
κx ≥ ρx and κx ≥ −ρx in D′(IT ),therefore

κx ≥ |ρx| in D′(IT ).Finally, let us show that the two solutions ρ and κ 
an be extended by 
ontinuity tothe paraboli
 boundary of IT , in order to retrieve the initial and boundary 
onditions.Indeed, the lo
al uniform 
onvergen
e (ρε, κε) → (ρ, κ), together with the uniform 
ontrolof the modulus of 
ontinuity of these solutions:
• with respe
t to x near ∂I × [0, T ] by (7.12);
• with respe
t to t near I × {t = 0}, away from 0 and 1 by (7.9),and the fa
t that κ0,ε → κ0, ρ0,ε → ρ0 uniformly in Ī,

κε(0, .) → 0, κε(1, .) = 1, ρε = 0 on ∂I × [0, T ],show that (ρ, κ) ∈ (C(IT ))2, so the initial and boundary 
onditions are satis�ed point-wisely, and the proof of the main result is done. 28 Appli
ation: simulations for the evolution of elastovis-
oplati
 materialsMotivated by the simulation of the elastovis
oplasti
 behavior that are formulated bythe model of Groma, Csikor and Zaiser [12℄, this se
tion is devoted to write down theequations of the displa
ement ve
tor u inside the 
rystal when it is applied to a 
onstantexterior shear stress τ on the boundary walls (see Figure 1). Also, at the end of thisse
tion, we present some numeri
al simulations revealing the evolution of a 
rystal ofsmall size.
PSfrag repla
ements

e1
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e2
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Figure 1: Geometry of the 
rystal.Here, as we have already mentioned in the introdu
tion, we suppose that the distri-bution of dislo
ations is invariant by translation in the y-dire
tion. Also, we assume,24



without loss of generality (up to a 
hange of variables in (x, t) and a re-de�nition of τ),that
I = (−1, 1).We 
onsider a 2-dimentional 
rystal (Figure 1) with the displa
ement ve
tor:

u = (u1, u2) : R
2 7−→ R

2.For x = (x1, x2) and an orthonormal basis (e1, e2), we de�ne the total strain by:
ε(u) =

1

2
(∇u+ t∇u), (8.1)i.e.

εij(u) =
1

2
(∂jui + ∂iuj)with

∂jui =
∂ui
∂xj

, i, j = 1, 2.This total strain 
an be de
omposed into two parts as follows:
ε(u) = εe(u) + εp, (8.2)where εe(u) is the elasti
 strain and εp is the plasti
 strain whi
h is given by:

εp = γε0, (8.3)with
ε0 =

1

2
(e1 ⊗ e2 + e2 ⊗ e1) =

1

2

(
0 1
1 0

)

,in the spe
ial 
ase of a single slip system where dislo
ations move following the Burgersve
tor ~b = e1. Here γ is the resolved plasti
 strain that 
an be expressed in terms of thedislo
ation densities as:
γ = ρ+ − ρ− = ρ,therefore (8.3) implies that

εp = ρε0.The stress �eld σ inside the 
rystal is given by:
σ = Λ : εe(u),where for i, j = 1, 2,

σij = (Λ : εe(u))ij = 2µεeij(u) + λδijtr(ε
e(u)), (8.4)with λ, µ > 0 are the 
onstants of Lamé 
oe�
ients of the 
rystal that are assumed (forsimpli�
ation) to be isotropi
, and δij is the Krone
ker delta symbol. This stress �eld σhas to satisfy the equation of elasti
ity:divσ = 0. (8.5)25



Finally, the fun
tions ρ, κ (solutions of (1.3)) and u are solutions of the following 
oupledsystem:






divσ = 0 in I × (0,∞),

σ = Λ : (ε(u) − εp) in I × (0,∞),

ε(u) =
1

2
(∇u+ t∇u) in I × (0,∞),

εp = ε0(ρ+ − ρ−) in I × (0,∞),

κtκx = ρtρx in I × (0,∞),

ρt = ρxx − τκx in I × (0,∞),

(8.6)
Equation (8.5) 
an be reformulated as:div (2µε(u) + λtr(ε(u))Id) = div (2µεp + λtr(εp)Id),whi
h implies that:

µ∆u+ (λ+ µ)∇(divu) = µ

(
∂2ρ
∂1ρ

)

= µ

(
0
∂1ρ

)

. (8.7)Here ∂2ρ = 0 is due to the homogeneity of the distribution of dislo
ations in the e2-dire
tion.Cal
ulation of u. We �rst 
al
ulate the value of the displa
ement u on the boundarywalls. Remark �rst that sin
e we are applying a 
onstant shear stress �eld on the walls,the stress �eld σ there 
an be evaluated as: σ · n = ±τe2, n = ±e1,
σb =

(
0 τ
τ 0

)

, on ∂I. (8.8)Using (8.8) and (8.4), we 
an derive the following equations on the boundary:
{

∂1u1 = 0 on ∂I,

µ(∂1u2 − ρ) = τ on ∂I.
(8.9)Equation (8.7) leads to the following two equations inside I:

{

∂1[(λ+ 2µ)∂1u1] = 0 on I

∂1(∂1u2 − ρ) = 0 on I.
(8.10)Combining (8.9) and (8.10) we dedu
e that:







∂1u1 = 0 on I

∂1u2 − ρ =
τ

µ
on I.

(8.11)By the antisymmetry of our parti
ular 
on�guration with respe
t to the line x1 = 0, andthe fa
t that we are applying a shear stress on the walls, we eventually have:
u1(0, x2) = u2(0, x2) = 0,26



whi
h together with (8.11) �nally lead:






u1(x1, x2) = 0, (x1, x2) ∈ I × R

u2(x1, x2) =
τ

µ
x1 +

∫ x1

0
ρ(x)dx, (x1, x2) ∈ I × R.

(8.12)As an elastovis
oplasti
 material of small size, the double-ended pile-up distribution of dis-lo
ations a�e
ts the internal 
ontribution (displa
ement) of the material near the bound-ary (see Figures 2, 3 and 4). It appears that the 
rystal is perfe
tly elasti
 at a verysmall time t = 0+, while the plasti
 
ontribution starts to take pla
e at t > 0 with twoboundary layers 
reated at the walls (see Figure 4). The following �gures are numeri
ally
omputed after 
al
ulating the displa
ement u2 (see (8.12)) by dis
retizing the last twoequations of (8.6) in order to 
al
ulate ρ.

Figure 2: The material at t = 0.

Figure 3: The elasti
 deformation at t = 0+.27



Figure 4: The total deformation at t = +∞.9 AppendixA1. Proof of Lemma 3.4 (
ontrol of the modulus of 
ontinuity in time)Let V be a 
ompa
tly 
ontained subset of IT . Throughout the proof, the 
onstant c maytake several values but only depending on V . Sin
e V ⊂⊂ IT , then there is a re
tangular
ube of the form
Q = (x1, x2) × (t1, t2),su
h that V ⊂⊂ Q ⊂⊂ IT . In this 
ase, there exists a 
onstant ε0, also depending on Vsu
h that for any

0 < ε < ε0,and any (x, t) ∈ V , we have:
(x− 2

√
ε, x+ 2

√
ε) × {t} ⊂ Q.Moreover, for any (x, t), (x, t + h) ∈ V , we 
an always �nd two intervals I and J su
hthat

(t, t+ h) ⊂ I ⊂⊂ J ,with
{x} × I ⊂ Q and {x} × J ⊂ Q.Let us indi
ate that these intervals might have di�erent lengths depending on h and Vbut we always have

|J |, |I| ≤ |t2 − t1|.Consider the following res
aling of the fun
tion uε de�ned by:
ũε(x, t) = uε(

√
εx, t). (9.1)28



This fun
tion satis�es
ũεt = ũεxx + f̃ ε, (x, t) ∈ (0, 1/

√
ε) × (0, T ),where f̃ ε(x, t) = f ε(

√
εx, t). Take (x0, t0), (x0, t0 + h) in V , and let

Q1 = (x0 −
√
ε, x0 +

√
ε) × I and Q2 = (x0 − 2

√
ε, x0 + 2

√
ε) × J .These two 
ylinders are transformed by the above res
aling into

Q̃1 =

(
x0√
ε
− 1,

x0√
ε

+ 1

)

× I and Q̃2 =

(
x0√
ε
− 2,

x0√
ε

+ 2

)

×J .We apply the interior Lp, p > 3, estimates for paraboli
 equations (see for instan
e [19,Theorem 7.13, page 172℄) to the fun
tion ũε over the domains Q̃1 ⊂⊂ Q̃2, we get
‖ũε‖

W 2,1
p (Q̃1)

≤ c(‖ũε‖p,Q̃2
+ ‖f̃ ε‖p,Q̃2

). (9.2)We 
ompute:
‖ũε‖p

Lp(Q̃2)
=

∫

Q̃2

|ũε(x, t)|pdxdt

=

∫

Q̃2

|uε(
√
εx, t)|pdxdt

=
1√
ε

∫

Q2

|uε(y, t)|pdydt

≤ c, (9.3)where for the last line, we have used the lo
al uniform boundedness of (uε)ε, and inexa
tly the same way (from the lo
al uniform boundedness of and (f ε)ε) we obtain:
‖f̃ ε‖p

Lp(Q̃2)
≤ c. (9.4)Therefore, from (9.3), (9.4), inequality (9.2) implies:

‖ũε‖
W 2,1
p (Q̃1)

≤ c. (9.5)We use the Sobolev embedding in Hölder spa
es (see for instan
e [16, Lemma 2.8℄):
W 2,1
p (Q̃1) →֒ C1+α 1+α

2 (Q̃1), p > 3, α = 1 − 3/p,to obtain, from (9.5), that:
‖ũε‖

C1+α
1+α

2 (Q̃1)
≤ c,and hen
e

|ũε(x0/
√
ε, t0 + h) − ũε(x0/

√
ε, t0)|

h
1+α

2

≤ c,then from (9.1),
|uε(x0, t0 + h) − uε(x0, t0)|

h
1+α

2

≤ c.29



Choosing β = 1+α
2 we get the desired result. 2A2. Proof of Lemma 3.5 (An interior estimate for the heat equation)Re
all that a is a solution of the heat equation on IT ,

at = axx.The proof of lemma 3.5 depends mainly on a mean value formula for solutions of the heatequations. Usually, basi
 mean value formulae of the solution of the heat equation areexpressed through unbounded kernels (see for example [7, Theorem 1℄), where a 
an beexpressed as:
a(x0, t0) = (4πr2)−1/2

∫

Ωr(x0,t0)
a(x, t)

(x0 − x)2

4(t0 − t)2
dxdt. (9.6)Here, (x0, t0) ∈ IT , (x, t) ∈ Ωr(X0), and r > 0 small enough in order to ensure that theparaboli
 ball of radius r:

Ωr(x0, t0) =

{

(x, t); t0 − r2 < t < t0, (x− x0)
2 < 2(t0 − t) log

(
r2

t0 − t

)}

⊂ IT . (9.7)In our 
ase, we need a mean value formula similar to (9.6) but with a bounded kernel on
Ωr(x0, t0). In [10℄, the authors have given su
h a representation formula for the solutionof the heat equation. We present their result in a simpli�ed version.Theorem 9.1 (Mean value formula with bounded kernels, [10, Theorem 3.1℄)Let u ∈ C2(D) be a solution of the heat equation:

ut = uxx on D,where D is an oben subset of R
2 
ontaining the modi�ed unit paraboli
 ball Ω′

1(0, 0), with
Ω′

1(0, 0) =
{
(x, t); −1 < t < 0, x2 < 8t log(−t)

}
.Then we have:

u(0, 0) =

∫

Ω′

1
(0,0)

u(x, t)E(x, t)dxdt, (9.8)where the kernel E satis�es:
‖E(x, t)‖∞,Ω′

1
(0,0) ≤ c, (9.9)and c > 0 is a �xed positive 
onstant.Remark 9.2 The above Theorem is an appli
ation of [10, Theorem 3.1℄ in the 
ase

m = 3. In this 
ase, an expli
it expression of E is given by:
E(x, t) =

ω3

16π2

(
−x2 + 8t log(−t)

)3/2
[
x2

4t2
+

3(−x2 + 8t log(−t))
20t2

]

,where ω3 is the volume of the unit ball in R
3. For a more general expression of E, wesend the reader to [10, Equality (3.6) of Theorem 3.1℄.30



Using the paraboli
 res
aling, we 
an obtain a similar mean value representation at any
(x0, t0) ∈ R

2. More pre
isely, we have:Corollary 9.3 (Mean value formula at any point (x0, t0) ∈ R
2)Let u ∈ C2(D) be a solution of the heat equation:

ut = uxx on D,where D is an oben subset of R
2 
ontaining the modi�ed unit paraboli
 ball Ω′

r(x0, t0),
r > 0, with

Ω′
r(x0, t0) =

{

(x, t); t0 − r2 < t < t0, |x− x0|2 < 8(t0 − t) log

(
r2

t0 − t

)}

.Then we have:
u(x0, t0) =

c̄

|Ω′
r(x0, t0)|

∫

Ω′
r(x0,t0)

u(x, t)E

(
x− x0

r
,
t− t0
r2

)

dxdt, (9.10)where c̄ > 0 and |Ω′
r(x0, t0)| = c̄r3.Ba
k to the proof of Lemma 3.5. Sin
e V ⊂⊂ IT , then there exists a �xed

r0 = r0(dist(V, ∂pIT )),su
h that:
Ω′
r0(x0, t0) ⊂ IT , ∀ (x0, t0) ∈ V.We use the mean value formula (9.10) at the point (x0, t0), we obtain:

a(x0, t0) = r−3
0

∫

Ω′

r0
(x0,t0)

a(x, t)E

(
x− x0

r0
,
t− t0
r20

)

dxdt,and hen
e from the L∞ bound (9.9)of E on Ω′
1(0, 0), we dedu
e that:

‖a‖∞,V ≤ cr−3
0 ‖a‖1,IT ,where the 
onstant c is given by (9.9). Finally, we obtain:

‖a‖p,V ≤ cr−3
0 |V |1/p‖a‖1,IT ,and the result follows. 2Referen
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