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Dynamics of dislocation densities
in a bounded channel. Part II: existence of weak
solutions to a singular Hamilton-Jacobi/parabolic
strongly coupled system

H. IBRAHIM *, M. JAZAR ', R. MONNEAU *

May 25, 2008

Abstract

We study a strongly coupled system of a parabolic equation and a singular Hamilton-Jacobi
equation in one space dimension. This system describes the dynamics of dislocation densities in
a material submitted to an exterior applied stress. Our system is a natural extension of that
studied in [15] where the applied stress was set to be zero. The equations are written on a
bounded interval and require special attention to the boundary layer. For this system, we prove
a result of existence of a solution. The method of the proof consists in considering first a parabolic
regularization of the full system, and then passing to the limit. For this regularized system, a
result of global existence and uniqueness of a solution has been given in [16]. We show some
uniform bounds on this solution which uses in particular an entropy estimate for the densities.

AMS Classification: 70H20, 49125, 54C70, 46E30.
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1 Introduction

1.1 Physical motivation and setting of the problem

In [12], Groma, Czikor and Zaiser have proposed a model describing the dynamics of
dislocation densities. Dislocations are defects in crystals that move when a stress field is
applied on the material. These defects are one of the main explanations of the elastovis-
coplasticity behavior of metals (see [8] and [9] for various models relating dislocations and
elastoviscoplastic preperties of metals). This model has been introduced to describe the
possible accumulation of dislocations on the boundary layer of a bounded channel. More
precisely, let us call 67 and 6~ the densities of the positive and negative dislocations
respectively. In fact, dislocations are distinguished by the sign of their Burgers vector b
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(see [13] for a description of the Burgers vector). The non-negative densities 07 (x,t) and
0~ (z,t) are governed by the following system:

+ —
or = (S =0 _ )y in Ix(0,7T)
t 0++0_ . ) )

_ 05 — 0, _ :

where 7 is the stress field, T > 0, and [ := (0,1) C R. The channel is bounded by walls
that are impenetrable by dislocations (i.e., the plastic deformation in the walls is zero).
In this case the boundary conditions are represented by the zero flux condition, i.e.

(1.1)

05 -0,

m—’r:o, at =0 and x = 1. (12)

The original model in [12] is written in two space dimensions (z,y). Here, system (1.1)
corresponds to a situation where the problem is assumed invariant by translation in the y
direction. In that case 7 appears to be the applied stress field and will be assumed to be
a constant. However, the term z{:—z{ is called the back stress and can be interpreted as
the contribution to the stress of the short-range interactions between dislocations. This
term was, for instance, neglected in the Groma-Balogh model [11]. Moreover, for the
model described in [11], we refer the reader to |5, 6] for a one-dimensional mathematical
and numerical study, and to [4] for a two-dimensional existence result. The special case
7 = 0 for system (1.1) has been studied in [15] where a result of existence and uniqueness

has been proved. In the present paper we study the case where 7 # 0.

1.2 Setting of the problem

We consider an integrated form of (1.1) and we let
pr=0%, p=p"—p  and k=pT+p,

to obtain (at least formally), for special values of the constants of integration, the following
system in terms of p and k:

Kikg = PtPe on Ix(0,7) 13)
Pt = Paz — Thg on I x(0,7), '
with the initial conditions:
k(x,0) = k%(z) and p(z,0) = p°(z). (1.4)

To formulate heuristically the boundary conditions at the walls located at x = 0 and
x = 1, we suppose that x; # 0 at x =0 and £ = 1. We note that the dislocation fluxes
at the walls must be zero, which require (see 1.2) that :

P

Z6’+—9_)—T(9+—|—9_) =0, at z=0 andz =1 (1.5)

T x




Rewriting system (1.3) in terms of p, k and ®, we get

Kkt = (pu/kz)®,
(st »

From (1.5) and (1.6), we deduce that

pe(0,.) = pe(1,.) = 0. (1.7)
Also, from (1.5) and (1.6), and if K, # 0 at x = 0 and = = 1, we deduce that

k(0,.) = ke(1,.) = 0. (1.8)
Using (1.7) and (1.8), we can formally reformulate the boundary conditions as follows:

%(0,.) = k°(0) and k(1,.) = K°(1),
p(07 ) = ,0(1, ) =0,

where we have taken the zero normalization for p on the boundary of the interval.

(1.9)

The positivity of #7 and 6~ reduces in terms of p and & to the following condition:
Ko 2 |pal, (1.10)

and hence a natural assumption to be considered concerning the initial conditions p° and
kY is to satisfy
KO > p2 on . (1.11)

Problem (1.3), (1.4) and (1.9), in the case 7 = 0, has been studied in [15] where a result

of existence and uniqueness is given using the viscosity /entropy solution framework. Let
us just mention that in this situation, system (1.3) becomes decoupled and easier to be
handled.

1.3 Statement of the main result

In this paper, we assume that 7 is a real constant,

T#0

and we examine the existence of solutions of (1.3), (1.4) and (1.9). To be more precise,
our main result is:

Theorem 1.1 (Ezistence of a solution)
Let p°, k% € C*°(I) satisfying (1.11), (1.9) and the additional conditions:

Dip? =Dk’ =0, s=1,2, z=0,1. (1.12)
Then for every T > 0, there exists

(p,k) € (C(Ix[0,T])? and peCYIx(0,T)),



solution of (1.3), (1.4) and (1.9). Moreover, this solution satisfies (1.10) in the distribu-
tional sense, i.e.

Ke > |pe] in D'(I x (0,7)). (1.13)
However, the solution has to be interpreted in the following sense:
1. K is a viscosity solution of Kiky = pipy in Ip =1 x (0,T),
2. p is a distributional solution of pp = pye — TKy 0 I,

3. the initial and boundary conditions are satisfied pointwisely.

Remark 1.2 (Compatibility of the regularized solution)

The method of the proof of Theorem 1.1 consists in considering a parabolic reqularization
of (1.3), and then passing to the limit. This method is called the “vanishing viscosity”
method. We use a result of global existence and uniqueness of the regularized system from
[16], which requires some compatibility conditions on the initial data of the problem. The
additional boundary conditions (1.12) was taken for achieving the compatibility at the
reqularized level.

Remark 1.3 The C™ regularity of p° and k°, together with (1.12) seems to be essentially
technical.

Vanishing viscosity method is common in order to approach viscosity solutions for a
Hamilton-Jacobi equation. It consists to add €A to the Hamilton-Jacobi equation
H(x,u, Du) = 0 and then obtain a more standard parabolic equation, after that we
need to pass to the limit € — 0. The literature is very rich and one can cite for instance
the Book of Barles [2| and the references therein, see also [20, 14].

In our case, we are interested in a singular Hamilton-Jacobi equation, strongly coupled
with a parabolic equation. The singularity comes from the following formal formulation

of the first equation of (1.3):

_ PtPz
Rt = )
K

that becomes a singular parabolic equation after adding the eA term:

_ PtPx
Ky

Kt + ERpg-
For a mathematical treatement of the above equation and various singular parabolic
equations, see [16] and the references therein.

1.4 Organization of the paper

This paper is organized as follows: in section 2, we present the strategey of the proof.
In section 3, we present the tools needed throughout this work. This includes some
miscellaneous results for parabolic equations; a brief recall to the definition and the
stability result of viscosity solutions; and a brief recall to Orlicz spaces. In section 4, we
show how to choose the regularized solution. An entropy inequality used to determine



some uniform bounds on the regularized solution is presented in section 5. Further
uniform bounds and convergence arguments are done in section 6. Section 7 is devoted
to the prove of our main result: Theorem 1.1. In section 8, some mumerical simulations
related to our physical model are presented. Finally, section 9 is an appendix where we
show the proofs of some standard results.

2 Strategy of the proof
The main difficulty we have to face is to work with the equation
Ktky = PtPz- (2.1)

Since p solves itself a parabolic equation (see (1.3)), we expect enough regularity on
p (indeed p is C1), and then we need a framework where the equation on & is stable
under approximation. This property is naturally satisfied in the framework of viscosity
solutions. Then, assuming k, > 0, we interpret x as the viscosity solution of (2.1).
Assuming (1.11), we will indeed show that

M = ky — |ps| > 0.
This is formally true because M formally satisfies:

M, = bM,, + cM,

with 2
b=rsgn(p,) - 20 o= Pon Paza 80 (Pz)
K2 K2 o

where for suitable boundary conditions, we can (again formally) see that
M > 0.

In order to justify the computations on M, we modify the system and we consider the
following parabolic regularization for € > 0 small enough:

K; = €KL, + Pabas _ TP, in Ix(0,7)
pi = (1 +e)pey — T in I x(0,7),

which formally reduces to (1.3) for ¢ = 0, with initial conditions (1.4) and boundary
conditions (1.9). In fact, system (2.2), (1.4) , (1.9), and under some conditions on the
initial and boundary data, has a unique smooth global solution (see [16, Theorem ?7])
for a € (0,1):

(p°, k%) € C’3+a’3+7a(f x [0,00)) NC(I x (0,00)).

This result will be clearly presented in the tools (see Theorem 3.1, Section 3). The next
step is to find some uniform bounds (independent of ) on this solution; this is done via:



(1) an entropy inequality shown to be valid for our special approximated model (2.2);
(2) a bound on kf — ekg, uniformly in €.

In fact, (1) guarantees the global uniform-in-time control of the modulus of continuity
in space of our approximated solution, while (2) guarantees the local uniform-in-space
control of the modulus of continuity in time. The entropy inequality can be easily under-
stood. For instance, for ¢ = 0 and 7 = 0, we can formally check that the entropy of the
dislocation densities

+ Ry + Pz
0~ = —5
defined by:
S(t) = /Zei(.,t) log(6%(., 1)),
I+
satisfies:

0 __ [0,
dt ;0T +60- —

Therefore we get S(t) < S(0) which controls the entropy uniformly in time. Finally, we
need to pass to the limit ¢ — 0 in the approximated solution after multiplying the first
equation of (2.2) by xZ. Having enough control on the approximared solutions, we can
find a solution of the limit equation using in particular the stability of viscosity solutions
of Hamilton-Jacobi equations. However, the passage to the limit in the second equation
of (2.2) is done in the distributional sense.

3 Tools: miscellaneous parabolic results, viscosity solution,
and Orlicz spaces

3.1 Miscellaneous parabolic results

We first fix some notations. Denote
It :=1x(0,T), Ir:=Ix[0,T] and OPIr:=TU(dI x [0,T)).

Define the Sobolev space Wg’l(IT) , 1 <p< oo by:

W2 (1) = {u € LP(I7); (us, s, Uzs) € (LP(IT))3} .

We start with a result of global existence and uniqueness of smooth solutions of the
regularised system (2.2), with the initial and boundary conditions (1.4) and (1.9).

Theorem 3.1 (Global existence for the regularized system, [16, Theorem 1.1])
Let 0 <a<1and0<e < 1. Let p°¢, K%¢ satisfying:

P R0T e 0D, O(0) = )51 = £2(0) =0, KOS =1,  (3.1)

(1+¢e)p%e = 7k on OI (3.2)
(1+¢e)k2e = 7p2¢ on OI, .



and

min (13% () — [p*(2)]) > 0. (3.3)

Then there exists a unique global solution
(p°, k) € O3+ 55 (T x [0,00)) N C(T x (0, 00)), (3.4)
of the system (2.2), (1.4) and (1.9). Moreover, this solution satisfies :
KS > [pS] on T x[0,00). (3.5)

Remark 3.2 Conditions (3.2) are natural here. Indeed, the reqularity (3.4) of the so-
lution of equation (2.2) with boundary conditions (1.4) and (1.9) imply in particular
condition (3.2).

Remark 3.3 (Uniform L*° bound on p° and k°)
We remark, from the boundary conditions (1.9) and from the inequality (3.5), that:

6%l oo (7x[0,00)) S 1 and |5 Loo (Tx[0,00)) < 1- (3.6)

We now present two technical lemmas that will be used in the proof of Theorem 1.1. The
proofs of these lemmas will be given in the Appendix.

Lemma 3.4 (Control of the modulus of continuity in time uniformly in )
Let p > 3, and
ut € Wrl(Ir). (3.7)

Suppose furthermore that the sequences
(W) and  (f%)e = (v — eugy)e, (3.8)

are locally bounded in It uniformly for e € (0,1). Then for every V. CC Ir, there exist
two constants ¢ > 0, €9 > 0 depending on V, and 0 < 8 < 1 such that for all 0 < e < gq:
‘ue(x7 L+ h) — uz—:(x7 t)’

hB

<e, Y(x,t),(z,t+h)eV. (3.9)

Lemma 3.5 (An interior estimate for the heat equation)
let a € C>®(I7) N LY(I7) satisfying:

ay = Qg on Ip, (3.10)
then for any V CC Ip, an open set, we have:
”CLHILV < cHa”lJTv V1<p<oo, (3.11)

with ¢ = ¢(p, V') > 0 is a positive constant.



3.2 Viscosity solution: definition and stability result

Let 2 C R™ be an open domain, and consider the following Hamilton-Jacobi equation:
F(z,u(x), Du(z), D*u(x)) =0, Vze€Q, (3.12)

where F':  x R x R™ x Mg=t — R is a continuous mapping.
Definition 3.6 (Viscosity solution of Hamilton-Jacobi equations)

A continuous function u : Q +— R is a viscosity sub-solution of (3.12) if for any ¢ €
C2(;R) and any local mazimum xo € Q of u — ¢, one has

F(zo, u(zo), D (z0), D*p(20)) < 0.

Similarly, u is a viscosity super-solution of (3.12), if at any local minimum point xo € §)
of u— ¢, one has
F($07 u(l‘o), D¢($0)7 D2¢($0)) > 0.

Finally, if u is both a viscosity sub-solution and a viscosity super-solution, then u is called
a viscosity solution.

To get a "non-empty" and useful definition, it is usually assumed that F' is elliptic (see
[2]). This notion of ellipticity will be indirectly used in Section 7. In fact, this definition
is used for interpreting solutions of the first equation of (1.3) in the viscosity sense. This
will be shown in Section 5. To be more precise, in the case where 2 = I, we say that u
is a viscosity solution of the Dirichlet problem (3.12) with u = ¢ € C(dPIy) if:

(1) uw e C(Ip),
(2) w is a viscosity solution of (3.12) in Ir,
(3) u=C on OPIp.

For a better understanding of the viscosity interpretation of boundary conditions of
Hamilton-Jacobi equations, we refer the reader to |2, Section 4.2]. We now state the
stability result for viscosity solutions of Hamilton-Jacobi equations. An important result
concerning viscosity solutions is presented by the following theorem:

Theorem 3.7 (Stability of viscosity solutions, [2, Lemma 2.3])
Suppose that, for e > 0, u® € C(Q) is a viscosity sub-solution (resp. super-solution) of
the equation

He(z,uf, Duf, D*u®) =0 in Q, (3.13)

where (HE®). is a sequence of continuous functions. If u® — u locally uniformly in Q and
if H® — H locally uniformly in Q x R x R™ x Mg, then u is a viscosity sub-solution
(resp. super-solution) of the equation:

H(z,u,Du,D*u) =0 in Q. (3.14)



3.3 Orlicz spaces: definition and properties

We recall the definition of an Orlicz space and some of its properties (for details see [1]).
A real valued function W : [0,00) — R is called a Young function if

W(t) = /0 (s)ds,

where 1) : [0,00) — [0, 00) satisfying:
e (0) =0, 1 >0on (0,00), ¥(t) — oo as t — o0;
e ) is non-decreasing and right continuous at any point s > 0.

Let ¥ be a Young function. The Orlicz class Ky(I) is the set of equivalence classes of
real-valued measurable functions u on [ satisfying

/\P(\u(az)])da: < +00.

I

Definition 3.8 (Orlicz spaces)
The Orlicz space Ly (I) is the linear span of Ky (I) supplemented with the Luzemburg

norm
]|y (1) = inf {k > 0; /qu ('“(;)') < 1} , (3.15)

and with this norm, the Orlicz space is a Banach space.

The function

t
B(t) = / o(s)ds, B(s) = sup ¢,
0 P(t)<s

is called the complementary Young function of ¥. An example of such pair of comple-
mentary Young functions is the following:

U(s)=(1+s)log(l+s)—s and P(s)=e€"—s—1. (3.16)

We now state a lemma giving two useful properties of Orlicz spaces that will be used in
the proof of Lemma 5.4.

Lemma 3.9 (Norm control and Hélder inequality, [17])
If uw € Lg(I) for some Young function W, then we have:

lullym <1+ /I (fu(z)|)de. (3.17)

Moreover, if v € Lg(I), ® being the complementary Young function of ¥, then we have
the following Hélder inequality:

/ uvdx
I

< 2lull g (vl g 1)- (3.18)




4 The regularized problem

As we have already mentioned, we will use a parabolic regularization of (1.3), and a result
of global existence of this regularized system from [16] (see Theorem 3.1). In order to use
this result, we need to give a special attention to the conditions on the initial data of the
approximated system p%¢ and k% (see (3.1), (3.2) and (3.3)). This section aims to show
how to choose the suitable initial data p¢ and £%¢ in order to benefit Theorem 3.1.

Let p? and " be the functions given in Theorem 1.1. Set

0
076 = —p + €T¢7 (41)
(1+¢)?
and 0
O _ K +E.'L'7 (42)
1+e¢
with the function ¢ defined by:
1 2
¢(z) = = [1 — cosT(z” — )]. (4.3)

T

The function ¢ enjoys some properties that are shown in the following lemma.

Lemma 4.1 (Properties of ¢)
The function ¢ given by (4.3) satisfies the following properties:

(Pl) gb) ¢l|61 = 0;'
(P2) ¢

or =L
(P3) ¢ (x)| <1/7 for zel

Proof. (P1) and (P2) directly follows by simple computations. For (P3), we calculate
on I

¢ (2)] = (1/7)]2z — 1||sinT(2® — 2)|
< 1/7.

In order to obtain the strict inequality, we remark that
12z —1||sinT(z? —2)| #1 on I,
hence |¢ ()| < 1/7. O

Form the above lemma, and from the construction of p*¢ and £%¢ (see (4.1) and (4.2))

together with the properties enjoyed by p° and x° (see (1.9) and (1.12)), we write down

0,e

some properties of p*€ and k¢,

10



Lemma 4.2 (Properties of p°¢ and x%°)
The functions p¢ and k% given respectively by (4.1) and (4.2) , satisfy the following
properties:

(P4) p%2(0) = p*(1) =x%°(0) =0 and £*(1) =1,

(P5) (1+¢)r ‘aI—Tpx | and (1+¢) pmbl—ﬂim |81,

7|¢'))
1+¢

Proof. We only show (P5) and (P6). For (P5), we calculate:

(P6) K2° > |p2°| + ———~ sl=rle)) > |p2%).

0. _ Patetd oo Pl teTd

= 4.4
and 0, 0
HO,E — Ky € O _ Kza )
v 1+¢’ 14

Therefore, on 01, we have:

€
et e (2) =,
and

(1+E) (E{E _Tpx _07

Where we have used (P1) and (P2) from Lemma 4.1, and the properties (1.9), (1.12) of p"
and x° on OI. For (P6), we proceed as follows. We first use the inequality (1.11) between
p% and k9, to deduce that:

0. _fate  |mlte

iz 1+ = 1+4¢
and then from the left identity of (4.4), we deduce that:

)

P =(1+e)?pd —erd,

therefore )
e(l—7lol)
1+e
The inequality (P6) then directly follows. O

KOF > (1+¢)|p0¢) +

Remark 4.3 (The regularized solution (p°, k%))
Properties (P4)-(P5)-(P6) of Lemma 4.2 implies condition (3.1)-(3.2)-(3.3) of Theorem
3.1. In this case, call
(o2, (45)
the solution of (2.2), (1.4) and (1.9), given in Theorem 3.1, with the initial conditions
p(z,0) = p°° and k(x,0) = KO,

that are given by (4.1) and (4.2) respectively.

11



5 Entropy inequality

Proposition 5.1 (Entropy inequality)
Let (pf, k%) be the regqular solution given by (4.5). Define 67 by:

kS + pS
g = L 5.1
=4 5.)
then the quantity S(t) given by:
S(t) = / S 0% (2, ) log 02<(z, 1)da, (5.2)
I3
satisfies for every t > 0:
2
t
S(t) < S(0) + TT (5.3)
Proof. From (3.5), we know that
ke > |05l
hence
6% > 0,

and the term log(6%°) is well defined. Also from the regularity (3.4) of the solution
(p, k%), we know that )
0==(.,t) e C(I), Vt>0,

hence the term S(¢) is well defined. We derive system (2.2) with respect to z, and we
write it in terms of §5°, we get:

+,6 _ pn—,€
T [ SR P

e + 0 .
. O 0=, N\ . . (54
Ht T = |:— <—0+’€ T 9—,6 — ’7') 9 =4 69w ) :|w

We first remark that:

(6+7€ — 6_76)96 +,& +e_ Kt + Pt
( Gre 1 o< T)OT" el " = 5

and

(9+’8 — 9_’8)x — —e Kt —pt
— (W —T )07 +el, " = 7

Since k§ and p§ are zeros on 91 X [0,00), then

(94—,& _ 9—,E)m i e (9-1-75 _ 9—,a)m _ e
<W—T 0 €+59m€__ W—T 0 €+€9m€—0011 aIX[0,00)
(5.5)

12



Using (5.5), we compute for ¢t > 0:

S0 = Y [0 toset) + 07,
+ JI
(o 0. (0:)°
(-
9;—,8 _0;76 2 0;—75 2 0;75 2
- ) H(m,a_@_,a)_g(( NCRY
1

Gt + f—€ r o+ 0—<

By Young’s Inequality, we have:

e g < LI 05’

T _
T OtEL09-E + 1(94‘75 + 6 76),

and hence

IN

+,6\2 —.e\2

/ e gmey o [(62°)7 (62

S (1) / 0+ +6-°) <9+7e S
< _/9+6+6,e

Moreover, we have from (1.9), that

/(0+’€(.,t) +07°(.,t)) = /mx(.,t) = w(L1) = r(0,1) =
1

1

and therefore

’ T2

S(t) < —.

(<

Integrating the previous inequality from 0 to ¢, we get (5.3). O
An immediate corollary of Proposition 5.1 is the following:

Corollary 5.2 (Special control of k%)
For allt > 0, we have:

//ﬁi(az,t) log (k5 (x,t))dz < S(0) + %2]5 +1, (5.6)
I

where S is given by (5.2).
The proof of Corollary 5.2 depends on the inequality shown by the next lemma.

Lemma 5.3 For every x,y > 0, we have:

(x 4+ y)log(x 4+ y) < xlog(z) + ylog(y) + xlog(2) + . (5.7)

13



Proof. Fix y > 0. consider the function f defined by:

f(z) = (z +y)log(z +y) — zlog(x) —ylog(y) — zlog(2) —y, x>0. (5.8)

We claim that f(xz) < 0 for every > 0. Indeed, we have lim, 5+ f(x) = —y < 0. We
compute

f'(z) = log(z + y) — log(x) — log(2), (5.9)

and we remark that this is always a decreasing function with

lim f/(z) =400 and lim f'(z) = —log(2),

x—0t T—-+00

hence the function f(z) can only be positive if f(x¢) > 0 where z( satisfies

f/(.%'()) = 0.
A simple computation shows that g = y, then
fly) = 2ylog(2y) —2ylog(y) — ylog(2) —y

= 2ylog(2) + 2ylog(y) — 2ylog(y) — ylog(2) —y
= leg(Z) -y < 07

and therefore f(z) <0, Vz > 0, which ends the proof. O

Proof of Corollary 5.2. From (5.1), it follows that
Ko =014 607°>0.
Then we have for ¢ > 0:
/1 K log kS = /I (67 + 67 log(8+ + 67)

/HJ“E log(07°) + 0~ 1log(0~°) + 6T log2 + 6~°
I

IN

< /9+’E log(61°) + 0~ log(6~°) + %(log 2+1)
I
S(t) + 1.

N

Here we have used Lemma 5.3 with x = 67° and y = 6 for the second line, and we
have used for the third line, the fact that

1 1
/eiva _1 /HI o = S[e(1,) = 5(0, )] = 1/2.
I 2 Jr 2
Using (5.3), the result follows. |

Lemma 5.4 (Control of the modulus of continuity in space)
Let u € CY(I), ugy > 0, satisfying

/uw log(uz) < eq, (5.10)
I
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then we have for any x, x +h € I:

jufe +B) — u(z)| < 2L

— A1

where co > is a universal constant.

Proof. Let z,z +h € I.
Step 1. (uy € Ly(x,z + h) with ¥ given in (3.16))

We compute

z+h z+h
/ U(u,) = / (14 ug)log(l + uy) — ug

< /(1 + ug) log(1 4 uy) — uy
I

IN

/um log(u,) + log 2
I

< ¢ +log2,

where we have used (5.7) in the third line, and (5.10) in the last line. Hence from (3.17),
we get
vl Ly (z,04n) < €1+ 14 log2,

and hence u, € Ly(x,x + h).
Step 2. (Estimating the modulus of continuity)

It is easy to check that the function 1 lies in Lg(x,x + h), ® is also given by (3.16).
Therefore, by Holder inequality (3.18), we obtain:

z+h
/ Ugp - 1
xr

2l uzll Ly z24+0) |1 L] Lo (2,241)
2(61 +1+log 2)||1||Lq>(m,m+h)- (512)

lu(z +h) —u(z)| =

<
<

We turn our attention now to the term ||1{|1, (z,2+n). We have

Ly @arny = inf{k S0 / o <z> - 1}
xw—l—h
= inf{k>0;/ (el/k—l/k—l)gl}

- inf{k > 0; h(e* —1/k—1) < 1}
1
log(h)’

15



where we have used in the last line the fact that for 0 < h < 1 and k = —@, the
following inequality holds:
h(e*F —1/k—1) < 1.

Hence, (5.12) implies

jule + h) — u(@)] < 2ex + 1+ log2)

u(x —u(z & 0
and then (5.11) follows. O
6 An interior estimate
In this section, we give an interior estimate for the term

A® = pS — 7K. (6.1)

that will be used in the passage to the limit as € goes to zero in the regularized system.
We start by deriving an equation satisfied by A°®.

Lemma 6.1 The quantity A® given by (6.1) satisfies for any T > 0:

e
A7 = (L )A5, — LA (6.2)

Proof. From (2.2), we calculate:
A = e

£ &
R T )
xr

TPS
= (1 + E)(pirx:c - Tﬁix) - K =

= (Pow — TH)
T

TP
= (1 + g)Aim - /{f Aiv
X

hence (6.2) is satisfied. O

We now show an interior LP estimate concerning the term A®. This estimate gives a
control on the local LP norm of A% by its global L' norm over Iy, and it will be used in
the following section. More precisely, we have the following lemma.

Lemma 6.2 (Interior LP estimate)
Let 0 <e <1 and 1< p<oo. Then the quantity A® given by (6.1) satisfies:

1A%y < (A% + 1), (6.3)

where V' is an open subset of It such that V' CC Iy, and ¢ = ¢(p, V') > 0 is a constant
independent of €.

16



Proof. Throughout the proof, the term ¢ = ¢(p, V') > 01is a positive constant independent
of €, and it may vary from line to line. A simple computation gives:

Py
—T2A, = —12(p5, —TK)
— pfcpsec:c +T2 ;
K
= —7(k; —ergy) (6.4)

Define k° as the unique solution of

{@:@+@@N%E on I,

6.5
RF=0 on PlIp, (6.5)

where the existence and uniqueness of this equation is a direct consequence of the LP
theory for parabolic equations (see for instance [18, Theorem 9.1]) using in particular the
fact that x° € C'(Ir). Moreover, from the regularity (3.4) of k%, we can deduce that
K € C(Ir). Let A® be given by:

A® = —7(R] — ek.,), (6.6)
and
o = A° — A° (6.7)
We calculate:
A? = T[R tt CCCCt]
= T[( + ) Kyt + ’{t - 6((1 + €)R’xmvx + ’{mm)]
= T( +€)( Rt €Rimmm) - 7—( i - 6’{ )

T
= (1+¢)Au K; A,
where for the first two line, we have used (6.5), and for the last line, we have used (6.4).
In this case, we obtain:

0 = A A
e i TP
= (14+¢)AS, — p Al — (1+¢e)Aus —A;
= (1+e)(A%, — A%,)
- (1+€) xwv

where for the first line, we have used the equation (6.2). We apply Lemma 3.5 to the

function af, after doing parabolic rescaling of the form a®(z,t) = a® ( x, 1%’_6 , we get:
1—1
la*llpy < el +e) 7 a1z,
and since 0 < € < 1, we finally obtain
la*llp.v < clla®[lpzr- (6.8)

17



From the definition of a® (see (6.7) above), and the above inequality (6.8), we finally
deduce that:
1A% < e(lA [z + 1A% Ip.1r)- (6.9)

In order to complet the proof, we need to control the term ||A%[|, 1, in (6.9). We use the
equation (6.5) satisfied by &° to obtain:

1A prr = 7I&F — eRZellp.tr
= 7lRGe + & llp,1r
18z llp, 1 + 1165 |p,r)- (6.10)

IN

The LP estimates for parabolic equations (see [16, Lemma ??]|) applied to (6.5) gives:

c
1+¢

[ PR S 165 p. 15

then (6.10), together with the fact that 0 < x® <1 (see (1.9)), implies that:

1A% 1y < €|l llpy it < TVP,

hence the result follows. O

7 Proof of the main theorem

At this stage, we are ready to present the proof of our main result (Theorem 1.1). This
depends essentially on the passage to the limit in the family of solutions (p%, k%) of system
(2.2). Since k% # 0, we multiply the first equation of (2.2) by &% and we rewrite system
(2.2) in terms of A%, we obtain:

RiKy = eRoKL, + po AL on Ip (7.1)
p; =eps, + A on Ip.

We will pass to the limit in the framework of viscosity solutions for the first equation of

(7.1), and in the distributional sense for the second equation. We start with the following

proposition.

Proposition 7.1 (Local uniform convergence)
The sequences (p°)e, (p5)e, (K%)e, (A%)e and (AS). converge (up to extraction of a subse-
quence) locally uniformly in I7 as € goes to zero.

Proof. Let V be an open compactly contained subset of I;. The constants that will
appear in the proof are all independent of €. However, they may depend on other fixed
parameters including V. The idea is to give an e-uniform control of the modulus of con-
tinuity in space and in time of the quantities mentioned in Proposition (7.1), which gives
the local uniform convergence. The e-uniform control on the space modulus of continuity
will be derived from the Corollary 5.2 and Lemma 5.4, while the e-uniform control on the
time modulus of continuity will be derived from Lemma 3.4. The proof is divided into

18



five steps.

Step 1. (Convergence of A° and A%)

(>
Pz

€
Hm

From (3.5), we know that

< 1. We apply the interior LP, p > 1, estimates

o

for parabolic equations (see for instance [19, Theorem 7.13, page 172]) to the term A®
satisfying (6.2), we obtain:
1A% w21 1y < eall A%l (7.2)

where V'’ is any open subset of Ip satisfying V' cC V'’ <cC Ip. The constant
c3 = c3(p,7,V,V’) can be chosen independent of ¢ first by applying a parabolic rescal-
ing of (6.2), and then using the fact that the factor multiplied by A%, in (6.2) satisfying
1 <1+e <2. At this point, we apply Lemma 6.2 for A% on V', we get:

1A%y < eall A%l + 1), (7.3)
and hence the above two equations (7.2) and (7.3) give:
1A%z 0y < es (1A% + 1) (7.4)

We estimate the right hand side of (7.4) in the following way:

A%, = lpg — 7K
It
< /nfcwlﬂa\
It
< (1+7)7T,

where we have used the fact that [pS| < kS (see (3.5) of Theorem 3.1) in the second line,
and the fact that 0 < k® <1 (see Remark 3.3) in the last line. Therefore, inequality (7.4)
implies:

|]A€HW§,1(V) <c¢s, 1l<p<oo. (7.5)
We use the above inequality for p > 3. In this case, the Sobolev embedding in Holder
spaces (see |16, Lemma 2.8]) gives:

a

W2L(V) = OS5 (V), a=1-3/p

and hence (7.5) implies:

1A% <er, (7.6)

Cl+a (V)

which guarantees the equicontinuity and the equiboundedness of (A%). and (A%).. By
the Arzela-Ascoli Theorem (see for instance [3]), we finally obtain

A — A and A, — A, (7.7)

up to a subsequence, uniformly on V as ¢ — 0.
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Step 2. (Convergence of k%)

We control the modulus of continuity of x° in space and in time, locally uniformly with
respect to €.

Step 2.1. (Control of the modulus of continuity in time)

The first equation of (7.1) gives:

ps
g __ g €T €
Ky = €K + —EAI,

T

< 1, together with (7.6), we get:

and hence, using the fact that ‘

(>
Pz

£
HI

e}

()
Pz

3

x

|Az||oo v < c7. (7.8)
0o,V

I = e oo < 1

Also, by (3.6), we have:
165 oo, < 1.

This uniform bound on x° together with (7.8) permit to use Lemma 3.4 to conclude that
K (z,t) — K5 (z,t + h)| < egh®, (1), (z,t+h) eV, 0<B<1, (7.9)

which controls the modulus of continuity of k* with respect to ¢ uniformly in e. We now
move to control the moduls of continuity in space.

Step 2.2 (An e-uniform bound on S(0))

Recall the definition (5.2) of S(t):
S(t) = /Zei’e(az,t) log 0% (x, t)dz,
L

with

kg £ 0%
it

9:|:,€ _

Hence

HO,E + pO,a KO,& + pO,a HO,E _ pO,a KO,& . pO,a
S(O) _ / x b log T z + / T b log T p ‘
;2 2 ;2 2

Using the elementarty identity xlogz < 2% and (z £+ y)? < 2(2? + y?), we compute:

/{O,e_i_po,e 2 /{O,e_po,e 2
o < [(Z) [ (T

o215, + w2131 (7.10)

IN
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From (4.1) and (4.2), we know that:

po +erd’
(1+4¢)?

0
+ e
<loelte oy,

0,61 —
|p:l: | — (1+E)2 -

and
KO +¢
1+¢

Using the above two inequalities into (7.10), we deduce that:

"] = < [rg| + 1.

S(0) < 2(lp2l13.1 + IK2113.1 + 2)-

Step 2.3. (Control of the modulus of continuity in space and conclusion)

We use the uniform bound obtained for S(0) in Step 2.1, together with the special control
(5.6) of kS given in Corollary 5.2, we get for all 0 <t < T"

2
7T
] Rl oo o) < 201681 + 1213 +2)+ T 1

therefore

//{fc(:n,t) log(kE (2, 1))dz < co, VO<t<T. (7.11)
I

Inequality (7.11) permit to use Lemma 5.4, hence we obtain:

C10
¢ h,t) — k°(z,t)] <
65t ) = (o ) < o

(z,t), (x + h,t) € Ir, (7.12)

Inequalities (7.9) and (7.12) give the equicontinuity of the sequence (k%) on V', and again
by the Arzela-Ascoli Theorem, we get:

kS — R, (7.13)
up to a subsequence, uniformly on V as e — 0.

Step 3. (Convergence of p°)

As in step 2, we control the modulus of continuity of p® in space and in time, locally
uniformly with respect to €.

Step 3.1. (Control of the modulus of continuity in time)

The second equation of (7.1) gives:
Pi— €Pa = Az,
hence, from (7.6), we deduce that:

o — epzzlloc,v < 7,
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and from (3.6), we have:

167 [oo,v < 1.
The above two inequalities permit to use Lemma 3.4, we finally get:
|p° (2, t) — p°(z,t + h)| < cgh®,  (z,t),(x,t+h) eV, 0<f<1, (7.14)

which controls the modulus of continuity of p® with respect to ¢ uniformly in €.
Step 3.2. (Control of the modulus of continuity in space and conclusion)

The control of the space modulus of continuity is based on the following observation.
From (3.5), we know that [p5| < kS on Ip. Using this inequality, we get, for every
(x,t), (x + h,t) € I:

z+h

z+h
[p°(z + h,t) — p*(z, t)] é/ 1pz(y,t)|dy S/ Kz (Y, t)dy < [r°(z + h,t) — K7 (, t)].

T

Inequality (7.12) gives immediately that:

10°(z + h,t) — p(a,t)| < |1§;0h| , (z,0), (z + ht) € I, (7.15)
From (7.14) and (7.15), we deduce that:
£ =, (7.16)

up to a subsequence, uniformly on V as ¢ — 0.
Step 4. (Convergence of pZ and conclusion)

In fact, this follows from Step 1, Step 2, and the fact that

ps = A"+ 7K — pg, (7.17)
uniformly on V' as € — 0. In this case, we also deduce that
A=p,—TK.
The proof of Proposition 7.1 is done. O

We now move to the proof of the main result.

Proof of Theorem 1.1. We first remark that x° is a viscosity solution of the first
equation of (7.1):

RiK, — ERGKS, — poAS =0 on  Ip. (7.18)
Indeed, let ¢ € C?(Ir) such that k¥ — ¢ has a local maximum at some point (xg,tg) € Ir.
Then Dx® = D¢ and D%k < D?¢. From this and the fact that x5 > 0, we calculate at

(xo,to):

c A€ €, € c A€
OtPy — EQzPua — p;pA;p = KiKy — €Ky Qqq — prx
€, €€ c A€
S Kyhy = ERgRgy — prx
< 0.



On the other hand, if k¥ — ¢ has a local minimum at (zg,ty), we similarly get:
¢t¢:c - E¢x¢xz - PiAi Z 07
and hence k° is a viscosity solution.

Remark 7.2 The equation (7.18) can be viewed as the following Hamilton-Jacobi equa-
tion of second order:

H®(X,Dk®,D*:%) =0, X = (z,t) € Iy (7.19)
with
DHE_(Hs HE) and D2 g __ ch:c ’%fct
e K ki )

where H® is the Hamiltonian function given by:

He: Ip xR* x M7, — R

(7.20)
(X,p, M) — H*(X,p, M) = pips — ep1 M11 — p5(X) AL (X),

p = (p1,p2) and M = (M;j;); j=1,2-

From (7.7) and (7.17), we deduce that (H¢). converges locally uniformly in Iz x R? stzyfq%
to the function H given by:

H:Ip xR x MX32 — R
4 sym (7.21)
(X,p, M) — H(X,p, M) = pips — pz(X)A;(X).

This, together with the local uniform convergence of k¢ to k (see 7.13), and the fact that
KE is a viscosity solution of (7.18), permit to use the stability of viscosity solutions (see
Theorem 3.7), which proves that x is a viscosity solution of

H(X,DH,D2/£) = Ktkg — ppAe =0 in  Ip. (7.22)
We now pass to the limit € — 0 in the second equation of (7.1), we obtain
pr=A, in D'(I7). (7.23)
From (7.22) and (7.23), we get:
1. K is a viscosity solution of Ktk = prp, in I7;
2. pis a distributional solution of p; = pgr — TRy in I7.

Let us now prove inequality (1.13). Let ¢ € C5°(Ir) be a non-negative test function.
From (3.5), we know that
kg > lpz| in It

and hence
Kk, >pS and kL > —pS in Ip.
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Multiplying these inequalities by a test function ¢ € D(Ir), ¢ > 0; integrating by parts
over I7, and passing to the limit as € — 0, we obtain

Kz > py and Ky > —p; in D,(IT)y
therefore
ke > |pe| in D'(Ir).

Finally, let us show that the two solutions p and x can be extended by continuity to
the parabolic boundary of I, in order to retrieve the initial and boundary conditions.
Indeed, the local uniform convergence (p®, k%) — (p, k), together with the uniform control
of the modulus of continuity of these solutions:

e with respect to x near 9I x [0,T] by (7.12);
e with respect to ¢t near I x {t = 0}, away from 0 and 1 by (7.9),

and the fact that k% — k0, p%¢ — p% uniformly in I,
k°(0,.) = 0, k°(1,.)=1, p°=0 on II x[0,7],

show that (p,k) € (C(Ir))?, so the initial and boundary conditions are satisfied point-
wisely, and the proof of the main result is done. O

8 Application: simulations for the evolution of elastovis-
coplatic materials

Motivated by the simulation of the elastoviscoplastic behavior that are formulated by
the model of Groma, Csikor and Zaiser [12], this section is devoted to write down the
equations of the displacement vector u inside the crystal when it is applied to a constant
exterior shear stress 7 on the boundary walls (see Figure 1). Also, at the end of this
section, we present some numerical simulations revealing the evolution of a crystal of
small size.

€2

L

el

-1 1

Figure 1: Geometry of the crystal.

Here, as we have already mentioned in the introduction, we suppose that the distri-
bution of dislocations is invariant by translation in the y-direction. Also, we assume,
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without loss of generality (up to a change of variables in (x,t) and a re-definition of 7),

that
I=(-1,1).

We consider a 2-dimentional crystal (Figure 1) with the displacement vector:

u = (uy,uz) : R? — R2,

For x = (x1,22) and an orthonormal basis (e1, e2), we define the total strain by:

e(u) = %(Vu +'Vu),

i.e.
1
E€ij (u) = 5 (8ju,~ + 8,~uj)
with 5
8jui287;, Z,]:1,2.

This total strain can be decomposed into two parts as follows:
e(u) =€ (u) + €7,
where £°(u) is the elastic strain and €P is the plastic strain which is given by:
eP = ~el,
with

1 1 0 1
0—_ e
£ —2(e1®62+ez®e1) 2<1 0>,

in the special case of a single slip system where dislocations move following the Burgers
vector b = ej. Here « is the resolved plastic strain that can be expressed in terms of the

dislocation densities as:

y=pt—p" =p,

therefore (8.3) implies that
e = peb.

The stress field o inside the crystal is given by:
o=A:eu),
where for ¢,7 = 1,2,

oy = (A e%(u))ij = 2uef;(u) + Aoijtr(e®(u)),

(8.4)

with A\, > 0 are the constants of Lamé coefficients of the crystal that are assumed (for
simplification) to be isotropic, and ¢;; is the Kronecker delta symbol. This stress field o

has to satisfy the equation of elasticity:

dive = 0.
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Finally, the functions p, x (solutions of (1.3)) and u are solutions of the following coupled
system:
(dive = 0 in Ix

(0,00),
o = A:(e(u)—¢€P) in Ix(0,00),
1
e(u) = E(Vu + 'Vu) in I x(0,00), (.6)
eP = LT -p) in I x(0,00),
Ktky = PPz in I x(0,00),
Pt = pPrz — TKg in I x(0,00),

Equation (8.5) can be reformulated as:
div 2ue(u) + Xtr(e(u))Ily) = div (2ue? + \tr(eP)1y),

which implies that:

pAu A+ (A + p)V(divu) = g < gfz > _ ( 8(1)/) ) . (8.7)

Here 05p = 0 is due to the homogeneity of the distribution of dislocations in the es-
direction.

Calculation of u. We first calculate the value of the displacement u on the boundary
walls. Remark first that since we are applying a constant shear stress field on the walls,
the stress field o there can be evaluated as: o0 -n = +7eq, n = *ey,

0 7
b
o —<7_ 0), on OI. (8.8)
Using (8.8) and (8.4), we can derive the following equations on the boundary:
O1u; =0 oI,
1U1 on (8,9)
w(Orug — p) =71 on OI.
Equation (8.7) leads to the following two equations inside I:
O [N+ 21)01u1] =0 on [
L[(A + 2) 01 ua ] n (8.10)
81(81’&2 — p) =0 on I.
Combining (8.9) and (8.10) we deduce that:
81U1 =0 on I
(8.11)

(‘91u2—,0:z on I.
1

By the antisymmetry of our particular configuration with respect to the line 1 = 0, and
the fact that we are applying a shear stress on the walls, we eventually have:

ul(O,azg) = UQ(O,JIQ) = 0,
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which together with (8.11) finally lead:

ul(l’l,l’g) =0, (l’l,ZL'g) eI xR

T z1 (8.12)
ug (1, T2) = ;wl +/ p(x)dx, (r1,22) € I xR,
0

As an elastoviscoplastic material of small size, the double-ended pile-up distribution of dis-
locations affects the internal contribution (displacement) of the material near the bound-
ary (see Figures 2, 3 and 4). It appears that the crystal is perfectly elastic at a very
small time ¢t = 0%, while the plastic contribution starts to take place at ¢ > 0 with two
boundary layers created at the walls (see Figure 4). The following figures are numerically
computed after calculating the displacement uy (see (8.12)) by discretizing the last two
equations of (8.6) in order to calculate p.

Figure 2: The material at ¢ = 0.

Figure 3: The elastic deformation at t = 0.
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Figure 4: The total deformation at ¢t = +o0.

9 Appendix

A1l. Proof of Lemma 3.4 (control of the modulus of continuity in time)

Let V be a compactly contained subset of I7. Throughout the proof, the constant ¢ may
take several values but only depending on V. Since V' CC I, then there is a rectangular
cube of the form

Q = (z1,72) X (t1,12),

such that V' CC Q CC Ir. In this case, there exists a constant g, also depending on V
such that for any
0<e <eg,

and any (x,t) € V, we have:

(x — 2ve, 2+ 2ye) x {t} C Q.

Moreover, for any (x,t), (z,t + h) € V, we can always find two intervals Z and J such
that
(t,t+h) CZ cC T,

with
{z} xZT CQ and {z}xJCQ.

Let us indicate that these intervals might have different lengths depending on h and V
but we always have
T 2] < [t = tal.

Consider the following rescaling of the function u® defined by:

W (x,t) = u®(Vex,t). (9.1)
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This function satisfies
U =5, + 5, (x,t) € (0,1/y/2) x (0,T),
where f(z,t) = fe(\/ex,t). Take (x0,t0), (xo,to + h) in V, and let
Q1 = (29 — Ve, m0+Ve) xZ and Qs = (19— 2Ve, 20+ 2Ve) X T

These two cylinders are transformed by the above rescaling into

Q1—<——1 >><I and Q2=<——2 >><j.

Ve LV Ve PV

We apply the interior L?, p > 3, estimates for parabolic equations (see~ for instance [19,
Theorem 7.13, page 172]) to the function a° over the domains Q; CC Qa, we get

1 20,y < il 0, + 170,6,): (9.2)

We compute:

~c o ~c D
512, 0, = /Q i et daa
= /~\u€(\/5x,t)]pda:dt
Q2

1 €
= — u®(y, t)|Pdydt

< ¢ (9.3)

where for the last line, we have used the local uniform boundedness of (u®)., and in
exactly the same way (from the local uniform boundedness of and (f¢).) we obtain:

fe||P
Therefore, from (9.3), (9.4), inequality (9.2) implies:

”ae”wg»l(gl) <ec (9.5)

We use the Sobolev embedding in Holder spaces (see for instance |16, Lemma 2.8|):

1+a ~

21(Q)) — CT2(Q1), p>3, a=1-3/p,

to obtain, from (9.5), that:
u® a o~ <
@ ”CH"%(QQ =6

and hence

|u (w0 /+/,to + h) — 4 (20/V/E, t0)|

14+ —
2

then from (91)/
(xo,to + h) — ut(xg,t
’u ( 0,0 1)a U ( 0, 0)‘ < e

h=2
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Choosing 8 = HT" we get the desired result. O

A2. Proof of Lemma 3.5 (An interior estimate for the heat equation)

Recall that a is a solution of the heat equation on I,
At = Qgy-

The proof of lemma 3.5 depends mainly on a mean value formula for solutions of the heat
equations. Usually, basic mean value formulae of the solution of the heat equation are
expressed through unbounded kernels (see for example |7, Theorem 1]), where a can be
expressed as:
_ (zo — x)?
a(zo,to) = (4mr? 1/2/ a(xr,t)—=dzxdt. 9.6
(o,to) = () [ o) (9.6
Here, (x0,t0) € Ir, (z,t) € Q,(Xp), and r > 0 small enough in order to ensure that the
parabolic ball of radius r:

2
QT(ZEo,tO) = {(l‘,t); to —r? <t <tp, (l‘ — ZE0)2 < Q(to — t) log (t ! t>} C Ir. (97)
0 —

In our case, we need a mean value formula similar to (9.6) but with a bounded kernel on
Q,(xo,t0). In [10], the authors have given such a representation formula for the solution
of the heat equation. We present their result in a simplified version.

Theorem 9.1 (Mean value formula with bounded kernels, [10, Theorem 3.1])
Let u € C?(D) be a solution of the heat equation:

Ut = Ugpye 0N D,
where D is an oben subset of R? containing the modified unit parabolic ball )(0,0), with
Q1(0,0) = {(z,t); —1 <t <0, z°<8tlog(—t)}.
Then we have:

u(0,0) = / w(e, ) B, ) dadt, (9.8)
Qll(0,0)

where the kernel E satisfies:
1E(2, )]l 0,02 (0,0) < €, (9.9)
and ¢ > 0 is a fixed positive constant.

Remark 9.2 The above Theorem is an application of [10, Theorem 3.1] in the case
m = 3. In this case, an explicit expression of E is given by:

2 2
w3 9 3/2 | T 3(—z* + 8tlog(—t))
_ log(— il
1672 (= + 8tlog(~1)) 42 202 ’

E(x,t) =

where w3 is the volume of the unit ball in R3. For a more general expression of E, we
send the reader to [10, Equality (3.6) of Theorem 3.1].

30



Using the parabolic rescaling, we can obtain a similar mean value representation at any
(wg,t0) € R2. More precisely, we have:

Corollary 9.3 (Mean value formula at any point (xg,ty) € R?)
Let u € C?(D) be a solution of the heat equation:

Ut = Uy 0N D,

where D is an oben subset of R? containing the modified unit parabolic ball U.(zq,to),
r > 0, with

2
. (2, o) = {@:,t); to—r? <t <to, |z —aof* <8(to —t)log <tor— t) }

Then we have:

c

w(z, t)E <x — ot to) ddt, (9.10)

to) =
u(z0, o) | " >

Q7.(z0,t0)| Jor (wo,to)
where ¢ > 0 and | (xg,t0)| = cr®.

Back to the proof of Lemma 3.5. Since V' CC I, then there exists a fixed
ro = ro(dist(V, 0P Ir)),

such that:
Q, (wo,t0) C I, VY (zo,t9) € V.

We use the mean value formula (9.10) at the point (xg,ty), we obtain:

rT—x9 t—1
a(xg,tg) = 7‘0_3/ a(z,t)E < 0 5 0> dzxdt,
0} (z0,to) o 7o

and hence from the L bound (9.9)of E on /(0,0), we deduce that:
lallo,v < erg®llallvzr,
where the constant ¢ is given by (9.9). Finally, we obtain:
lallp,v < erg®|VIVP a1,z

and the result follows. O
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