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Differentiable Rigidity under Ricci curvature lower
bound

L. Bessières, G. Besson, G. Courtois and S. Gallot

March 12, 2010

Abstract

In this article we prove a differentiable rigidity result. Let (Y, g) and (X, g0)
be two closed n-dimensional Riemannian manifolds (n > 3) and f : Y → X be
a continuous map of degree 1. We furthermore assume that the metric g0 is real
hyperbolic and denote by d the diameter of (X, g0). We show that there exists
a number ε := ε(n, d) > 0 such that if the Ricci curvature of the metric g is
bounded below by −n(n− 1) and its volume satisfies volg(Y ) 6 (1 + ε) volg0(X)
then the manifolds are diffeomorphic. The proof relies on Cheeger-Colding’s
theory of limits of Riemannian manifolds under lower Ricci curvature bound.

1 Introduction

Let Y and X be two closed manifolds. The manifold Y is said to dominate X if there
is a continuous map f : Y → X of degree one. An n-dimensional hyperbolic manifold
X has the smallest volume among the set of all Riemannian manifolds (Y, g) such that
Y dominates X and the metric g has Ricci curvature Ricg ≥ −(n− 1)g. In dimension
n = 2 this is a consequence of the Gauss-Bonnet formula and in dimension n ≥ 3 this
follows from the

Theorem 1.1. [5] Let (X, g0) be an n-dimensional closed hyperbolic manifold and
Y a closed manifold which dominates X. Then, for any metric g on Y such that
Ricg ≥ −(n − 1)g, one has volg(Y ) ≥ volg0(X), and equality happens if and only if
(Y, g) and (X, g0) are isometric.

The minimal volume of a closed manifold Y is defined as

minvol(Y ) = inf {volg(Y ) / |Kg| ≤ 1}

where Kg is the sectional curvature of the Riemannian metric g. An n-dimensional
hyperbolic manifold X is characterized by its minimal volume among the set of all
Riemannian manifolds Y such that Y is homotopy equivalent to X . Namely,
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Theorem 1.2. [1] Let X be an n-dimensional closed hyperbolic manifold and Y a
closed manifold which dominates X. Then, minvol(Y ) = minvol(X) if and only if X
and Y are diffeomorphic.

The aim of this paper is to show the following gap result. It improves the above theorem
1.2 since we now require a lower bound on the Ricci curvature instead of a pinching of
the sectional curvature; moreover, under the hypothesis, we prove that if the volume
of Y is close to the volume of X then these two manifolds are diffeomorphic. More
precisely,

Theorem 1.3. Given any integer n ≥ 3 and d > 0, there exists ε(n, d) > 0 such
that the following holds. Suppose that (X, g0) is an n-dimensional closed hyperbolic
manifold with diameter ≤ d and that Y is a closed manifold which dominates X. Then
Y has a metric g such that

Ricg ≥ −(n− 1)g (1)

volg(Y ) ≤ (1 + ε) volg0(X) (2)

if and only if f is homotopic to a diffeomorphism.

In [15] the authors prove the existence of closed n-dimensional manifolds Y which are
homeomorphic to a closed n-dimensional hyperbolic manifold (X, g0) but not diffeo-
morphic to it. An immediate corollary of the above theorem is the following.

Corollary 1.4. With the above notations, there exists ε > 0 depending on n and on
the diameter of X with the property that for any such Y and any Riemannian metric
g on Y whose Ricci curvature is bounded below by −(n− 1) one has,

vol(Y, g) > (1 + ε) vol(X, g0) .

To be more precise in [15] the manifold Y is obtained as follows:

Y = X♯Σ ,

where Σ is an exotic sphere. Not every closed hyperbolic manifold X gives rise to such
a Y that is (obviously) homeomorphic but not diffeomorphic to X . Indeed, we may
have to take a finite cover of X . But when we get one construction that works, it does
on any finite cover X of X as well. The authors also prove that by taking covers of
arbitrary large degree we can put on Y a metric whose sectional curvature is arbitrarily
pinched around, say −1. The stronger the pinching, the larger the degree. Now assume
that ε could be taken independent of the diameter of X ; applying the results of [5]
one could show that the volumes of the two manifold are very close when the pinching
on Y is very sharp (close to −1). The volume of Y endowed with this pinched metric
could then be taken smaller than (1 + ε) vol(X, g0), by choosing a covering of large
degree; the manifolds though are not diffeomorphic. This gives a contradiction and
shows that ”size” of X has to be involved in the statement of the theorem, for example
its diameter.

This work was supported by the grant ANR: ANR-07-BLAN-0251.
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1.1 Sketch of the Proof

We argue by contradiction. Suppose that there is a sequence (Xk)k∈N of closed hyper-
bolic manifolds with diameter ≤ d and a sequence of closed manifolds Yk, of degree
one continuous maps fk : Yk→Xk and metrics gk on Yk satisfying the hypothesis (3)
and (4) for some εk going to zero. Since fk is of degree one and Xk is hyperbolic, it is
equivalent to say (thanks to Mostow’s rigidity Theorem) that fk is homotopic to a dif-
feomorphism or simply that Xk and Yk are diffeomorphic. We thus assume that Yk and
Xk are not diffeomorphic. One then shows that up to a subsequence, for large k, Yk is
diffeomorphic to a closed manifold Y , Xk is diffeomorphic to a closed manifold X , and
X and Y are diffeomorphic. One argues as follows: by the classical finiteness results
we get the sub-convergence of the sequence {Xk}. Indeed, the curvature is −1, the
diameter is bounded by hypothesis, and there is a universal lower bound for the volume
of any closed hyperbolic manifold of a given dimension, thanks to Margulis’ Lemma
(see [3]). Cheeger’s finiteness theorem then applies. Moreover, on a closed manifold
of dimension ≥ 3, there is at most one hyperbolic metric, up to isometry. We can
therefore suppose that Xk = X is a fixed hyperbolic manifold. The inequality proved
in theorem 1.1 provides a lower bound for the volume of Yk as it is explained below. We
have no a priori bounds on the diameter of (Yk, gk), but we can use Cheeger-Colding’s
theory to obtain sub-convergence in the pointed Gromov-Hausdorff topology to a com-
plete metric space (Z, d) with small singular set. To obtain more geometric control, the
idea is to use the natural maps between Yk and X (see [5]). One can show that they
sub-convergence to a limit map between Z and X , which is an isometry. Then X is
an n-dimensional smooth closed Riemannian manifold which is the Gromov-Hausdorff
limit of the sequence (Yk, gk) of Riemannian manifold of dimension n satisfying the
lower bound (3) on Ricci curvature, therefore X and Yk are diffeomorphic for large k
by a theorem of J. Cheeger and T. Colding.

The paper is organised as follows. The construction and the properties of the natural
maps are given in Section 2. In Section 3, we construct the limit space Z and the limit
map F : Z→X . In Section 4, we prove that F is an isometry and conclude.

1.2 Maps of arbitrary degree, scalar curvature

For two closed manifolds Y and X we said above that Y dominates X if there exists
a map of degree one from Y onto X . We could have required that there exists a map
f : Y → X of non-zero degree. The main theorem of [5] was stated and proved in this
set up. More precisely, the following statement holds

Theorem 1.5. [5] Let (X, g0) be an n-dimensional closed hyperbolic manifold and
Y a closed manifold such that there exists a map f : Y → X with non-zero degree
denoted deg(f). Then, for any metric g on Y such that Ricg ≥ −(n − 1)g, one has
volg(Y ) ≥ |deg(f)| volg0(X), and equality happens if and only if f is homotopic to
a Riemannian covering (i.e. locally isometric) of degree —deg(f)— from (Y, g) onto
(X, g0).
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With the technique developed in this article, the following result can be proved

Theorem 1.6. Given any integer n ≥ 3 and d > 0, there exists ε(n, d) > 0 such
that the following holds. Suppose that (X, g0) is an n-dimensional closed hyperbolic
manifold with diameter ≤ d and that Y is a closed manifold such that there exists a
map f : Y → X with non-zero degree. Then Y has a metric g such that

Ricg ≥ −(n− 1)g (3)

volg(Y ) ≤ (1 + ε)|deg(f)| volg0(X) (4)

if and only if f is homotopic to a covering of degree |deg(f)|.

The proof is essentially the one described above; it uses the technique described below
and the treatment of an arbitrary degree given in [1]. The fact that the degree can be,
in absolute value, greater than one yields extra technicalities. For the sake of clarity
we shall omit this proof in the present article and leave it to the reader. A corollary is,

Corollary 1.7. Let (X, g0) be a closed n-dimensional hyperbolic manifold, then there
exists ε > 0, such that, for any metric g on the connected sum X♯X satisfying that its
Ricci curvature of g is not smaller than −(n− 1),

vol(X♯X, g) ≥ 2(1 + ε) vol(X, g0) .

We may now ask whether such a result could be true with a lower bound on the scalar
curvature instead of a lower bound on the Ricci curvature. The situation in dimension
3, completely clarified by Perelman’s work, shows that the answer to this question is
negative. More precisely, if (X, g0) is a 3-dimensional closed hyperbolic manifolds, a
consequence of [2, Inequality 2.10] is that,

inf{vol(X♯X, g)/ Scal(g) ≥ −6} = 2 vol(X, g0) .

In dimension greater or equal to 4, it follows from [16] and the solution to the Yamabe
problem that,

inf{vol(X♯X, g)/ Scal(g) ≥ −6} 6 2 vol(X, g0) .

2 Some a priori control on (Y, g)

Some a priori control on the metric g will be needed in section 2 and 3. We give here
the necessary results.

Let (X, g0) be an hyperbolic manifold and Y be a manifold satisfying the assumptions
of Theorem 1.3. For any riemannian metric g on Y satisfying the curvature assumption
(3), one has the following inequality

volg(Y ) ≥ volg0(X) . (5)
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It is a consequence of Besson-Courtois-Gallot’s inequality (see [5])

h(g)n volg(Y ) ≥ h(g0)
n volg0(X) , (6)

where h(g) is the volume entropy, or the critical exponent, of the metric g, i.e.:

h(g) = lim
R→+∞

1

R
ln(volg̃(Bg̃(x,R))) ,

where g̃ is the lifted metric on Ỹ . Indeed, any metric g on Y which satisfies (3), verifies,
by Bishop’s Theorem,

h(g) ≤ h(g0) = n− 1 . (7)

One can obtain a lower bound of the volume of some balls by Gromov’s isolation Theo-
rem (see [13, Theorem 0.5]). It shows that if the simplicial volume ||Y || – a topological
invariant also called Gromov’s norm– of Y is non-zero, then for any riemannian metric
g on Y satisfying the curvature assumption (3), there exists at least one point yg ∈ Y
such that

volg(B(yg, 1)) ≥ vn > 0. (8)

Here B(yg, 1) is the geodesic ball of radius 1 for the metric g and vn is a universal
constant. This theorem applies in our situation since, by an elementary property of
the simplicial volume, ||Y || ≥ ||X|| if there is a degree one map from Y to X (see
[13]). On the other hand, X has an hyperbolic metric and hence ||X|| > 0 by Gromov-
Thurston’s Theorem (see [13]).

Given this universal lower bound for the volume of a unit ball B(yg, 1), the volume
of any ball B(y, r) is bounded from bellow in terms of r and d(yg, y). Indeed, recall
that under the curvature assumption (3), Bishop-Gromov’s Theorem shows that for
any 0 < r ≤ R, one has

volg(B(y, r))

volg(B(y, R))
≥ volHn(BHn(r))

volHn(BHnR))
, (9)

where BHn(r) is a ball of radius r in the hyperbolic space Hn. As B(yg, 1) ⊂ B(y, 1 +
d(yg, y) + r), one deduces from (9) that

volg(B(y, r)) ≥ volg (B(y, 1 + d(yg, y) + r))
volHn(BHn(r))

volHn(BHn(1 + d(yg, y) + r))
(10)

≥ vn
volHn(BHn(r))

volHn(BHn(1 + d(yg, y) + r))
. (11)

The curvature assumption (3) and the volume estimates (9) or (11) are those required
to use the non-collapsing part of Cheeger-Colding’s Theory, as we shall see in section
3.

3 The natural maps

In the following sections 2.1 and 2.2 we recall the construction and the main properties
of the natural maps defined in [5] (see also [6]).
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3.1 Construction of the natural maps

Suppose that (Y, g) and (X, g0) are closed riemannian manifolds and that

f : Y→X ,

is a continuous map of degree one. For the sake of simplicity, we assume that g0 is
hyperbolic (the construction holds in a much more general situation). Then, for any
c > h(g) there exists a C1 map

Fc : Y −→ X ,

homotopic to f , such that for all y ∈ Y ,

| JacFc(y)| ≤
(

c

h(g0)

)n

, (12)

with equality for some y ∈ Y if and only if dyFc is an homothety of ratio c
h(g0)

.

Inequality (6) is then easily obtained by integration of (12) and by taking a limit when
c goes to h(g). To obtain global rigidity properties, one has in general to study carefully
the behaviour of Fc as c goes to h(g).

The construction of the maps is divided in four steps. Let Ỹ and X̃ be the universal
coverings of Y and X respectively, and f̃ : Ỹ→X̃ a lift of f .

Step 1: For each y ∈ Ỹ and c > h(g), let νcy be the finite measure on Ỹ defined by

dνcy(z) = e−c.ρ(y,z)dvg̃(z)

where z ∈ Ỹ , g̃ is the lifted metric on Ỹ and ρ(., .) is the distance function of (Ỹ , g̃).

Step 2: Fushing forward this measure gives a finite measure f̃∗ν
c
y on X̃ . Let us recall

that it is defined by
f̃∗ν

c
y(U) = νcy(f̃

−1(U)).

Step 3: One defines a finite measure µcy on ∂X̃ by convolution of f̃∗νy with all visual

probability measures Px of X̃ . Recall that the visual probability measure Px at x ∈ X̃ is
defined as follows: the unit tangent sphere at x noted UxX̃ projects onto the geometric
boundary ∂X̃ by the map

v ∈ UxX̃
Ex−→ γv(∞) ∈ ∂X̃,

where γv(t) = expx(tv). The measure Px is then the push-forward by Ex of the canon-
ical probability measure on UxX̃, i.e., for a Borel set A ∈ ∂X̃ , Px(A) is the measure of
the set of vectors v ∈ UxX̃ such that γv(+∞) ∈ A.

Then

µcy(A) =

∫

X̃

Px(A) df̃∗ν
c
y(x)

=

∫

Ỹ

Pf̃(z)(A) dν
c
y(z).
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One can identifies ∂X̃ with the unit sphere in Rn, by choosing an origin o ∈ X̃ and
using E0. The density of this measure is given by (see [5])

dµcy(θ) =

(
∫

Ỹ

e−h(g0)B(f̃ (z),θ)e−cρ(y,z)dvg̃(z)

)

dθ,

where θ ∈ ∂X̃ , dθ is the canonical probability measure on Sn−1 and B(., θ) is a Buse-
mann function on X̃ normalised to vanish at x = o. We will use the notation

p(x, θ) = e−h(g0)B(x,θ).

Step 4: The map
Fc : Ỹ−→X̃

associates to any y ∈ Ỹ the unique x ∈ X̃ which minimizes on X̃ the function

x→ B(x) =
∫

∂X̃

B(x, θ) dµcy(θ).

(see Appendix A in [5]).

The maps Fc are shown to be C1 and equivariant with respect to the actions of the
fundamental groups of Y andX on their respective universal cover. The quotient maps,
which are also denoted by Fc : Y → X , are homotopic to f . Note that Fc depends
heavily on the metric g.

3.2 Some technical lemmas

Let us give some definitions.

Definition 3.1. For y ∈ Ỹ let σcy be the probability measure on ∂X̃ defined by

σcy =
µcy

µcy(∂X̃)
.

Let us remark that we have

||µcy|| = µcy(∂X̃) =

∫

Ỹ

e−cρ(y,z)dvg̃(z) = ||νcy||.

We consider two positive definite bilinear forms of trace equal to one and the corre-
sponding symmetric endomorphisms.

Definition 3.2. For any y ∈ Ỹ , u, v ∈ TFc(y)X̃,

hc
y(u, v) =

∫

∂X̃

dB(Fc(y),θ)(u)dB(Fc(y),θ)(v) dσ
c
y(θ) = g0(H

c
y(u), v).

And, for any y ∈ Ỹ , u, v ∈ TyỸ ,

h′
y

c
(u, v) =

1

µcy(∂X̃)

∫

Ỹ

dρ(y,z)(u)dρ(y,z)(v) dν
c
y(z) = g(H′

y

c
(u), v).
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Lemma 3.3. For any y ∈ Ỹ , u ∈ TyỸ , v ∈ TF (y)X̃, one has

∣

∣g0((I −Hc
y)dyFc(u), v)

∣

∣ ≤ c
(

g0(H
c
y(v), v)

)1/2 (
g(H ′

y
c
(u), u)

)1/2
. (13)

Proof. Since Fc(y) is an extremum of the function B, one has

dFc(y)B(v) =
∫

∂X̃

dB(Fc(y),θ)(v) dµ
c
y(θ) = 0 (14)

for each v ∈ TFc(y)X̃ . By differentiating this equation in a direction u ∈ TyỸ , one
obtains

∫

∂X̃

DdB(Fc(y),θ)(dyFc(u), v)dµ
c
y(θ) + . . .

· · ·+
∫

∂X̃

dB(Fc(y),θ)(v)

(
∫

Ỹ

p(f̃(z), θ)(−cdρ(y,z)(u))dνcy(z)
)

dθ = 0

Using Cauchy-Schwarz inequality in the second term, one gets

∣

∣

∣

∣

∫

∂X̃

DdB(Fc(y),θ)(dyFc(u), v)dµ
c
y(θ)

∣

∣

∣

∣

≤
∫

∂X̃

|dB(Fc(y),θ)(v)|
(
∫

Ỹ

p(f̃(z), θ)dνcy(z)

)1/2(∫

Ỹ

p(f̃(z), θ)|cdρ(y,z)(u)|2dνcy(z)
)1/2

dθ

which is, using Cauchy-Schwarz inequality again

≤ c

(
∫

∂X̃

|dB(Fc(y),θ)(v)|2
∫

Ỹ

p(f̃(z), θ)dνcy(z)dθ

)1/2(∫

∂X̃

∫

Ỹ

p(f̃(z), θ)|dρ(y,z)(u)|2dνcy(z)dθ
)1/2

= c

(
∫

∂X̃

|dB(Fc(y),θ)(v)|2dµcy(θ)
)1/2(∫

Ỹ

|dρ(y,z)(u)|2 dνcy(z)
)1/2

= cµcy(∂X̃)
(

g0(H
c
y(v), v)

)1/2 (
g(H ′

y
c
(u), u)

)1/2

It is shown in [5, Chapter 5] that DdB = g0 − dB ⊗ dB for an hyperbolic metric.
The left term of the inequality is thus µcy(∂X̃)g0((I −Hc

y)dyFc(u), v). This proves the
lemma.

Definition 3.4. Let 0 < λc1(y) ≤ ... ≤ λcn(y) < 1 be the eigenvalues of Hc
y.

Proposition 3.5. There exists a constant A := A(n) > 0 such that, for any y ∈ Y ,

|JacFc(y)| ≤
(

c

h(g0)

)n
(

1−A
n
∑

i=1

(λci(y)−
1

n
)2

)

(15)

Proof. The proof is based on the two following lemmas.
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Lemma 3.6. At each y ∈ Ỹ ,

| JacFc(y)| ≤
(

c√
n

)n
det(Hy

c)1/2

det(I −Hy
c)
.

Proof of lemma 3.6. Let {vi} be an orthonormal basis of TFc(y)X̃ which diagonalizes
Hy

c. We can assume that dyFc is invertible otherwise the above inequality is obvious.
Let u′i = [(I −Hy

c) ◦ dyFc]−1 (vi). The Schmidt orthonormalisation process applied to
(u′i) gives an orthonormal basis (ui) at TyỸ . The matrix of (I−Hy

c)◦dyFc in the basis
(ui) and (vi) is upper triangular, then

det(I −Hy
c) JacFc(y) =

n
∏

i=1

g0((I −Hy
c) ◦ dyFc(ui), vi) ,

which gives, with (13),

det(I −Hy
c)| JacFc(y)| ≤ cn

(

n
∏

i=1

g0(Hy
c(vi), vi)

)1/2( n
∏

i=1

g(H ′
y
c
(ui), ui)

)1/2

≤ cn det(Hy
c)1/2

[

1

n

n
∑

i=1

g(H ′
y
c
(ui), ui)

]n/2

,

this proves the desired inequality since trace(H ′
y
c) = 1.

Lemma 3.7. Let H a symmetric positive definite n×n matrix whose trace is equal to
one then, if n ≥ 3,

det(H1/2)

det(I −H)
≤
(

n

h(g0)2

)n/2
(

1−A
n
∑

i=1

(λi −
1

n
)2

)

for some positive constant A(n).

Proof of lemma 3.7. The proof is given in Appendix B5 of [5]. This is the point where
the rigidity of the natural maps fails in dimension 2. This completes the proof of
proposition 3.5.

3.3 Some nice properties

We now show that when the volumes of (Y, g) and (X, g0) are close then the natural
maps Fc have nice properties. In this section, we shall consider Fc as a map from (Y, g)
to (X, g0). We suppose that the metric g satisfies the curvature assumption (3) and
the assumption on its volume (4) for some ε > 0. Let us introduce some terminology.
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Definition 3.8. Let 0 < α < 1. We say that a property holds α-ae (α-almost every-
where) on a set A if the set A+ of points of A where the property holds has relative

volume bigger or equal to 1− α, i.e. vol(A+)
vol(A)

≥ 1− α.

We show that dFc is α-close to be isometric α-ae on Y for some positive α(ε, c). More-
over α(ε, c) → 0 as ε → 0 and c → h(g). On the other hand, given any radius
R > 0, one shows that ||dFc|| is uniformly bounded on balls B(yg, R), provided c is
close enough to h(g). Recall that we have a lower bound for the volume of (Y, g) but
we do not have an upper bound for its diameter. The key point is to show that Hc

y is
α-close to 1

n
Id on a set of large volume, and is bounded on a ball of fixed radius, with

respect to the parameters ε, c.

To estimate from above c−h(g) we introduce a parameter δ > 0. We suppose that the
volume entropy of g satisfies the inequalities

h(g) < c ≤ h(g) + δ. (16)

Observe that (7), (15) and (16) implies that

| JacFc(y)| ≤
(

h(g) + δ

h(g0)

)n

≤
(

1 +
δ

n− 1

)n−1

, (17)

for all y ∈ Y . The map Fc is thus almost volume decreasing. On the other hand, as
volg(Y ) is close to volg0(X), the set in Y where Fc decreases the volume a lot must
have a small measure. Equivalently, | JacFc| must be close to 1 in L1 norm. We now
give a precise statement.

Lemma 3.9. If δ is small enough, there exists α1 = α1(ε, δ) > 0 such that α1-ae on Y
one has,

1− α1 ≤ | JacFc(y)|, (18)

and for all y ∈ Y one has
| JacFc(y)| ≤ 1 + α1. (19)

Moreover, α1(ε, δ)→0 as ε and δ→0.

Proof. Let

α = max





√

(

1 +
δ

n− 1

)n−1

− 1,
√
ε



 .

Thus
(

1 + δ
n−1

)n−1 ≤ 1 + α2 and ε ≤ α2. In particular, | JacFc(y)| ≤ 1 + α2 ≤ 1 + α
for all y ∈ Y , if δ is small enough so that α is less than 1 (we also assume that ε is
small).

As Fc has degree one, we have

volg0(X) =

∫

Y

F ∗
c (dvg0) =

∫

Y

JacFc(y)dvg(y)

10



Denote by Yα1 the set of points y ∈ Y such that

| JacFc(y)| ≥ 1− α.

We have

volg0(X) ≤
∫

Y

| JacFc(y)|dvg(y) (20)

=

∫

Yα1

| JacFc(y)|dvg(y) +
∫

Y \Yα1

| JacFc(y)|dvg(y) (21)

≤ (1 + α2) volg(Yα1) + (1− α) volg(Y \ Yα1) (22)

= volg(Y ) + α2 volg(Yα1)− α volg(Y \ Yα1) (23)

Then, using the assumption (4) and the inequality (5) on the volume, we get

volg(Y \ Yα1) ≤ volg(Y )− volg0(X)

α
+ α volg(Yα1) (24)

≤
( ε

α
+ α

)

volg(Y ) (25)

≤ 2α volg(Y ). (26)

Clearly, 1 − 2α ≤ | JacFc(y)| on Yα1 and | JacFc(y)| ≤ 1 + 2α on Y which proves the
lemma with α1(ε, δ) = 2α.

From this lemma, we deduce that Fc is almost injective. Indeed, let x ∈ X , one defines
N(Fc, x) ∈ N∪ {∞} to be the number of preimages of x by Fc. As Fc has degree one,
one has N(Fc, x) ≥ 1 for all x ∈ X . We then define X1 := {x ∈ X,N(Fc, x) = 1}.
Observe that N(Fc, x) ≥ 2 on X \X1.

Lemma 3.10. There exists α2 = α2(ε, δ) > 0 such that

volg0(X1) ≥ (1− α2) volg0(X) (27)

and
∫

X\X1

N(Fc, x) dvg0(x) ≤ α2(ε, δ) volg0(X) . (28)

Moreover, α2(ε, δ)→0 as ε and δ→0.

In particular, there exists α′ > 0 such that N(Fc, x) = 1 α′-ae on X .

Proof. One defines

α2(ε, δ) = 2

((

1 +
δ

n− 1

)n

(1 + ε)− 1

)

.
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From (15) and the area formula (see [14, 3.7]), we have
(

c

h(g0)

)n

volg(Y ) ≥
∫

Y

| JacFc(y)| dvg(y) (29)

=

∫

X

N(Fc, x) dvg0(x) (30)

=

∫

X1

N(Fc, x) dvg0(x) +

∫

X\X1

(N(Fc, x)− 1 + 1)dvg0(x)(31)

= volg0(X) +

∫

X\X1

(N(Fc, x)− 1)dvg0(x). (32)

And

volg0(X \X1) ≤
∫

X\X1

(N(Fc, x)− 1)dvg0(x) (33)

≤
(

c

h(g0)

)n

volg(Y )− volg0(X) (34)

≤
((

c

h(g0)

)n

(1 + ε)− 1

)

volg0(X) (35)

≤ α2(ε, δ)

2
volg0(X). (36)

Thus, since N(Fc, x) ≤ 2(N(Fc, x)− 1) on X \X1, we get

volg0(X \X1) ≤
∫

X\X1

N(Fc, x) dvg0(x) ≤ α2(ε, δ) volg0(X),

and this proves the lemma.

The following lemma says that dFc(y) is almost isometric at points y where JacFc(y)
is almost equal to 1.

Lemma 3.11. There exists α3 = α3(ε, δ) > 0 such that the following holds. Let Yα1 be
the set of points where (18) holds, that is 1 − α1(ε, δ) ≤ | JacFc(y)|. Let y be a point
in Yα1 and u ∈ TyY , then

(1− α3)‖u‖g ≤ ‖dyFc(u)‖g0 ≤ (1 + α3)‖u‖g . (37)

Moreover, α3(ε, δ)→0 as ε, δ→0.

Proof. The inequality (15) implies that for all y ∈ Y

‖ Hc
y −

1

n
Id‖2 ≤ 1

A

(

1− | JacFc(y)|
(

1 + δ
n−1

)n

)

.

Let us define

β1 = β1(ε, δ) =
1

A1/2

(

1− 1− α1(ε, δ)
(

1 + δ
n−1

)n

)1/2

. (38)
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where α1(ε, δ) is the constant from Lemma 3.9. Clearly, β1(ε, δ) → 0 as ε and δ→0.
Let Yα1 be the set of points where (18) holds. On Yα1 , one has

‖ Hc
y −

Id

n
‖2 ≤ β1

2. (39)

Let {ui}i=1,...,n be an orthonormal basis of TyY and vi = dyF (ui). Writing Id−Hc
y =

n−1
n
Id + 1

n
Id−Hc

y, one gets

∣

∣g0
(

(Id−Hc
y)dyFc(ui), dyFc(ui)

)∣

∣ ≥
∣

∣

∣

∣

g0

(

(
n− 1

n
Id)dyFc(ui), dyFc(ui)

)∣

∣

∣

∣

−
∣

∣

∣

∣

g0

(

(
1

n
Id−Hc

y)dyFc(ui), dyFc(ui)

)∣

∣

∣

∣

(40)

≥ n− 1

n
||dyFc(ui)||2g0− ‖ 1

n
Id−Hc

y||.||dyFc(ui)||2g0
(41)

≥
(

n− 1

n
− β1

)

||dyFc(ui)||2g0 . (42)

Writing Hc
y =

1
n
Id +Hc

y − 1
n
Id, one has

g0
(

Hc
ydyFc(ui), dyFc(ui)

)1/2 ≤ g0

(

(
1

n
Id)dyFc(ui), dyFc(ui)

)1/2

+

∣

∣

∣

∣

g0

(

(Hc
y −

1

n
Id)dyFc(ui), dyFc(ui)

)∣

∣

∣

∣

1/2
(43)

≤
(

1√
n
+ β

1/2
1

)

||dyFc(ui)||g0 . (44)

Taking the trace of the right hand side of (13) and using the Cauchy-Schwarz inequality,
one has

n
∑

i=1

g0
(

Hc
ydyFc(ui), dyFc(ui)

)1/2
g(H ′

y
c
(ui), ui)

1/2 ≤
(

1√
n
+ β

1/2
1

)

(

n
∑

i=1

||dyFc(ui)||2g0

)1/2

×
(

n
∑

i=1

g(H ′
y
c
(ui), ui)

)1/2

(45)

=

(

1√
n
+ β

1/2
1

)

(

n
∑

i=1

||dyFc(ui)||2g0

)1/2

(46)

By (13), the trace of (42) is not greater than the right hand side of (46) multiplied by
c, hence

(

n− 1

n
− β1

) n
∑

i=1

||dyFc(ui)||2g0 ≤ c

(

1√
n
+ β

1/2
1

)

(

n
∑

i=1

||dyFc(ui)||2g0

)1/2

,
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and
(

n
∑

i=1

||dyFc(ui)||2g0

)1/2

≤ c

1√
n
+ β

1/2
1

n−1
n

− β1
≤

√
n(1 +

δ

n− 1
)
1 +

√
nβ

1/2
1

1− n
n−1

β1
.

Let us define

β2 := β2(ε, δ) = (1 +
δ

n− 1
)2

(

1 +
√
nβ

1/2
1

1− n
n−1

β1

)2

− 1.

Clearly, β2(ε, δ)→0 as ε and δ→0. One has

n
∑

i=1

||dyFc(ui)||2g0 ≤ n(1 + β2).

Let L be the endomorphism of TyY defined by L = (dyFc)
∗ ◦ dyFc. We have

trace(L) =

n
∑

i=1

g(L(ui), ui) =

n
∑

i=1

g(dyFc(ui), dyFc(ui)) ≤ n(1 + β2). (47)

On the other hand

|1− α|2 ≤ | JacFc(y)|2 = det(L) ≤
(

trace(L)

n

)n

≤ (1 + β2)
n,

which shows that there is almost equality in the arithmetico-geometric inequality. We
then get that there exists some α3(ε, δ) > 0, with α3(ε, δ)→0 as ε, δ→0, such that

||L− Id|| ≤ α3(ε, δ).

Thus for any y ∈ Yα1 and u ∈ TyY

(1− α3)‖u‖ ≤ ‖dyFc(u)‖g0 ≤ (1 + α3)‖u‖ (48)

and dyFc is almost isometric.

We now prove that given a fixed radius R > 0, the natural maps Fc have uniformly
bounded differential dFc on B(yg, R) if the parameters ε, δ are sufficiently small. Recall
that the point yg has been chosen such that (8) holds, namely volg(B(yg, 1)) ≥ vn.

Lemma 3.12. Let R > 0, then there exist ε(R) > 0 and δ(R) > 0 such that for any
0 < ε < ε(R) and 0 < δ < δ(R), and for any y ∈ B(yg, R),

‖dyFc‖ ≤ 2
√
n (49)

Proof. We first prove that for all y ∈ Y , ‖dyFc‖ is bounded from above by λcn(y), the
maximal eigenvalue of Hc

y (see Definition 3.4 ). Recall that 0 < λcn < 1. Let u be a

unit vector in TyỸ and v = dyFc(u). Equation(13) gives

(1− λcn(y)) |g0(dyFc(u), dyFc(u))| ≤ cλcn(y)
1/2g0 (dyFc(u), dyFc(u))

1/2 (50)

14



hence

‖dyFc(u)‖g0 ≤
c
√

λcn(y)

1− λcn(y)
. (51)

We thus have to show that λcn(y) is not close to 1. More precisely, let β > 0 such that
1
n
+ β < 1, one then defines

γ(δ, β) :=

(

n− 1 + δ

n− 1− nβ

)

√

1 + nβ − 1 > 0.

Clearly, γ(β, δ)→0 as δ, β→0. One can check that if λcn(y) ≤ 1
n
+β, then ‖dyFc(u)‖g0 ≤√

n(1 + γ). For our purpose, we may suppose that γ ≤ 1. Now let δn > 0 and βn > 0
be such that if 0 < δ ≤ 10δn and 0 < β ≤ 10βn, then γ(δ, β) ≤ 1. Moreover we define
εn > 0 such that if 0 < ε < εn and 0 < δ ≤ 10δn then, with the notations (38) of
Lemma 3.11 β1(ε, δ) ≤ βn. In what follows, we suppose ε and δ sufficiently small.

By (39) we have that |λcn(y) − 1
n
| ≤ β1(ε, δ) on Yα1 . Recall that Yα1 has a large

relative volume in Y . The idea is first to estimate λcn on a neighbourhood of Yα1 and
then to show that this neighbourhood contains B(yg, R) if the parameters ε and δ are
sufficiently small relatively to R.

For this purpose we need to estimate the variation of λcn. Recall that H
c
y is defined by

g0(H
c
y(u), v) =

∫

∂X̃

dB(Fc(y),θ)(u)dB(Fc(y),θ)(v) dσ
c
y(θ).

Let U , V be parallel vector fields near Fc(y) extending unit tangent vectors at Fc(y),
u and v. We compute the derivative of g0(H

c
y(U), V ) in a direction w ∈ TyY :

w.g0(H
c
y(U), V ) =

∫

∂X̃

DdB(Fc(y),θ)(dyF (w), U)dB(Fc(y),θ)(V )dσcy(θ)+
∫

∂X̃

dB(Fc(y),θ)(U)DdB(Fc(y),θ)(dyF (w), V )dσ
c
y(θ) +

∫

∂X̃

dB(Fc(y),θ)(U)dB(Fc(y),θ)(V )w.dσ
c
y(θ)

The Buseman functions of the hyperbolic space satisfies ‖DdB‖ ≤ 1 and ‖dB‖ ≤ 1
and thus

|w.g0(Hc
y(U), V )| ≤ 2‖dyFc(w)‖g0 +

∣

∣

∣

∣

∫

∂X̃

w.dσcy(θ)

∣

∣

∣

∣

.

Recall that

dσcy(θ) =
dµcy(θ)

µcy(∂X̃)
=

∫

Ỹ
p(f̃(z), θ)e−cρ(y,z)dvg̃(z)
∫

Ỹ
e−cρ(y,z)dvg̃(z)

dθ .

Differentiating this formula yields

w.dσcy(θ) =

∫

Ỹ
p(f̃(z), θ)(−c.dρ(y,z)(w))e−cρ(y,z)dvg̃(z)

µcy(∂X̃)
dθ − (52)

dµcy(θ)

µcy(∂X̃)2
.

∫

Ỹ

(−c.dρ(y,z)(w))e−cρ(y,z)dvg̃(z) . (53)
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Since |dρ(y,z)(w)| ≤ ‖w‖g, we have

∣

∣

∣

∣

∫

∂X̃

w.dσcy(θ)

∣

∣

∣

∣

≤
∫

∂X̃

2c‖w‖gdσcy(θ) = 2c‖w‖g , (54)

we gives that,
∣

∣w.g0(H
c
y(U), V )

∣

∣ ≤ 2‖dyFc(w)‖g0 + 2c‖w‖g. If w is a unit vector, (51)
yields

∣

∣w.g0(H
c
y(U), V )

∣

∣ ≤ 2c

(

√

λcn(y)

1− λcn(y)
+ 1

)

. (55)

Let us now consider small constants η > β > 0 and define

r(δ, β, η) :=
η − β

2(n− 1 + δ)

( √
1
n
+η

1−( 1
n
+η)

+ 1

) > 0.

Our goal is to prove that

inf
{

d(y0, y1) |y0, y1 ∈ Y, λcn(y0) ≤
1

n
+ β, λcn(y1) ≥

1

n
+ η
}

≥ r(δ, β, η).

Let y0 ∈ Y so that λcn(y0) ≤ 1
n
+ β. Assume that there exists y ∈ Y such that

λcn(y) ≥ 1
n
+ η. One defines

r := inf
{

d(y0, y) |y ∈ Y, λcn(y) ≥
1

n
+ η
}

.

By continuity, there exists y1 ∈ Y such that λcn(y1) =
1
n
+ η and d(y0, y1) = r.

Let γ : [0, r] −→ Y be a minimising geodesic from y0 to y1. We easily see that
λcn(γ(t)) < 1

n
+ η for any 0 ≤ t < r. Let U(t) be a parallel vector field in X

along Fc(γ) such that U(r) is a unit eigenvector of Hc
y1
. Then, using (55) with

γ̇.g0(H
c
γ(t)U(t), U(t)) =

d
dt
g0(H

c
γ(t)U(t), U(t)), one has

|λcn(y1)− λcn(y0)| ≤
∣

∣g0(H
c
γ(r)U(r), U(r))− g0(H

c
γ(0)U(0), U(0))

∣

∣ (56)

=

∣

∣

∣

∣

∫ r

0

d

dt
g0(H

c
γ(t)U(t), U(t))dt

∣

∣

∣

∣

(57)

≤ 2c

∫ r

0

(

√

λcn(γ(t))

1− λcn(γ(t))
+ 1)dt (58)

≤ 2cr





√

1
n
+ η

1− ( 1
n
+ η)

+ 1



 . (59)

As a consequence

r ≥ η − β

2(n− 1 + δ)

( √
1
n
+η

1−( 1
n
+η)

+ 1

) = r(δ, β, η).
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We now set η = 2βn so that γ(δ, η) ≤ 1 for any δ ≤ δn . One then defines
rn := r(δn, βn, 2βn). Let us recall that for ε ≤ εn and δ ≤ δn, we have β1(ε, δ) ≤ βn.
On Yα1 , one has λcn(y) ≤ 1

n
+ β1(ε, δ) ≤ 1

n
+ βn. Hence, if λ

c
n(y1) ≥ 1

n
+ 2βn, one has

d(y1, Yα1) ≥ r(δ, β1(ε, δ), 2βn) ≥ r(δn, βn, 2βn) = rn.

We thus have proved that in the rn-neighbourhood of Yα1, one has λcn(y) ≤ 1
n
+ 2βn.

This implies that
||dyFc|| ≤ (1 + γ(δ, 2βn))

√
n ≤ 2

√
n.

Let us denote by Vrn(Yα1) the rn-neighbourhood of Yα1. It remains to show that

B(yg, R) ⊂ Vrn(Yα1), if ε ≤ ε(R) and δ ≤ δ(R). Let us recall that
volg(Yα1 )

volg(Y )
≥ 1 − α1,

hence
volg(Y \ Yα1) ≤ α1 volg(Y ) ≤ α1(1 + ε) volg0(X) := v(ε, δ).

Clearly, v(ε, δ)→0 when ε, δ→0. On the other hand, by (11) for any y ∈ B(yg, R) we
have

volg(Bg(y, r0)) ≥ vn
volHn(BHn(r0))

volHn(BHn(1 + R + r0))
:= v0(R) > 0. (60)

If v0(R) > v(ε, δ), then for any y ∈ B(yg, R) one has Bg(y, rn) 6⊂ Y \ Yα1 , which means
that Bg(y, rn) intersects Yα1 . This shows that d(y, Yα1) < rn and y ∈ Vrn(Yα1).

The lemma is proved if we define ε = ε(R) > 0 and δ = δ(R) > 0 to be sufficiently
small constants such that v(ε, δ) < v0(R).

We now prove that Fc is almost 1-lipschitz.

Lemma 3.13. For any fixed R > 0, there exists ε2(R) > 0 and δ2(R) > 0 such that
for every 0 < ε < ε2(R) and 0 < δ < δ2(R), there exists κ = κ(ε, δ, R) > 0 such that
on Bg(yg, R):

dg0(Fc(y1), Fc(y2)) ≤ (1 + κ)dg(y1, y2) + κ . (61)

Moreover, κ(ε, δ, R)→0 as ε, δ→0.

Proof. The idea goes as follows. We have proved that dyFc is almost isometric on
Yα1. On the other hand, ||dyFc|| is uniformly bounded in B(yg, R) if the parameters
ε and δ are chosen sufficiently small. To prove the lemma one computes the lengths
of Fc(γ) where γ is a minimising geodesic in B(yg, R) whose intersection with Yα1 is
large. Existence of such geodesics follows from an integral geometry lemma due to T.
Colding.

Fix some R > 0. We define the following constants :

If d > 0,

c1(n, d) := sup
0<s/2<r<s<d

volHn(∂BHn(s))

volHn(∂BHn(r))
.

If τ > 0, R > 0,
c2(n, τ, R) := c1(n, 2R)(2τ volHn(BHn(τ)).
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If ε > 0, δ > 0,

θ(ε, δ) := 2α2
3(ε, δ) volg0(X) + 2(4n+ 1)α1(ε, δ) volg0(X).

Clearly, θ(ε, δ)→0 as ε, δ→0.

Let τ(ε, δ, R) > 0 be the function implicitely defined by

volHn(τ)τ := θ(ε, δ)
2c1(n, 2R) volHn(1 +R + 1)2

v2n
.

Again, we easily see that, for fixed R, τ(ε, δ, R)→0 as ε, δ→0. We also choose ε2(R) > 0
and δ2(R) > 0 such that ε2(R) ≤ ε(2R), δ2(R) < δ(2R) and such that, if 0 < ε ≤ ε2(R)
and 0 < δ < δ2(R), then τ(ε, δ, R) << 1.

Finally, one defines κ(ε, δ, R) := max(2
√
n
√
τ , 8

√
τ). From the remarks above we can

choose ε2(R) and δ2(R) so that κ(ε, δ, R) < 1/R (for 0 < ε ≤ ε2(R), 0 < δ < δ2(R)
and R big).

There are two cases.

Case i) Let y1, y2 in Bg(yg, R) such that d(y1, y2) ≤
√
τ . Using (49), if 0 < ε < ε(2R),

0 < δ < δ(2R) one has

d(Fc(y1), Fc(y2)) ≤ 2
√
n
√
τ ≤ κ. (62)

Case ii) : Let y1, y2 in Bg(yg, R) such that d(y1, y2) ≥
√
τ . We will use the following

theorem, due to J. Cheeger and T. Colding, cf. [9, Theorem 2.11] that we describe now
in a particular case. We keep the notations of [9].

Let us define A1 = Bg(y1, τ), A2 = Bg(y2, τ) and W = Bg(yg, 2R) where y1 and y2 are
points as above sitting on a complete riemannian manifold (Y, g) with Ricg ≥ −(n−1)g.
For any z1 ∈ A1 and any unit vector v1 ∈ Tz1Y , the set I(z1, v1) defined by

I(z1, v1) = {t | γ(t) ∈ A2, γ|[0,t] is minimal , γ′(0) = v1}

has a measure |I(z1, v1)| bounded above by 2τ . Thus

D(A1, A2) := sup
z1,v1

|I(z1, v1)| ≤ 2τ,

and similarly, D(A2, A1) ≤ 2τ . For any z1 ∈ A1 and z2 ∈ A2, let γz1z2 be a minimizing
geodesic from z1 to z2. Clearly, γ ⊂ B(yg, 2R). Then, by [9, Theorem 2.11], we have
for any non negative integrable function e defined on Y ,

∫

A1×A2

∫ d(z1,z2)

0

e(γz1,z2)(s) ds ≤ c1(n, 2R) (D(A1, A2) vol(A1) +D(A2, A1) vol(A2))

×
∫

W

e(y) dvg(y). (63)
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By Bishop’s Theorem, for i = 1,2 we have

volg(Ai) ≤ volHn(BHn(τ)),

and thus

c1(n, 2R) (D(A1, A2) vol(A1) +D(A2, A1) vol(A2)) ≤ c2(n, τ, R).

Therefore, applying (63) to the function

e(y) = sup
u∈UyY

(‖dyFc(u)‖ − ‖u‖)2

and using (37) on W ∩ Yα1 and (49) on W \ Yα1 , we get

∫

A1×A2

∫ d(z1,z2)

0

e(γz1,z2)(s) ds ≤ c2(n, τ, R)

(

∫

W∩Yα1

e(y) dvg(y) +

∫

W\Yα1

e(y) dvg(y)

)

≤ c2(n, τ, R)
(

α2
3. volg(Y ) + (4n+ 1) volg(Y \ Yα1)

)

≤ c2(n, τ, R)θ(ε, δ). (64)

Now, if we denote by γ := γz1z2 , we have

|ℓ(Fc ◦ γ)− ℓ(γ)| =

∣

∣

∣

∣

∣

∫ d(z1,z2)

0

‖dγ(s)Fc(γ̇)‖ − ‖γ̇‖ ds
∣

∣

∣

∣

∣

≤
∫ d(z1,z2)

0

sup
u∈TyY

∣

∣‖dγ(s)Fc(u)‖ − ‖u‖
∣

∣ ds.

Using Cauchy-Schwarz inequality we have

|ℓ(Fc ◦ γ)− ℓ(γ)|2
d(z1, z2)

≤

(

∫ d(z1,z2)

0
supu

∣

∣‖dγ(s)Fc(u)‖ − ‖u‖
∣

∣ ds
)2

d(z1, z2)

≤
∫ d(z1,z2)

0

e(γ(s)) ds.

Integrating on A1 ×A2, we deduce from (64) that

∫

A1×A2

|ℓ(Fc ◦ γz1z2)− ℓ(γz1z2)|2
d(z1, z2)

dvg(z1)dvg(z2) ≤ c2(n, τ, R)θ(ε, δ) . (65)

By (11), for i = 1,2 one has

volg(Ai) ≥ vn
volHn(BHn(τ))

volHn(BHn(1 + R + τ))
:= v0(τ, R) > 0.

From the obvious inequality

c2(n, τ, R)θ(ε, δ) ≤
1

v0(τ, R)2

∫

A1×A2

c2(n, τ, R)θ(ε, δ) dvg(z1)dvg(z2).
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We get
∫

A1×A2

|ℓ(Fc ◦ γz1z2)− ℓ(γz1z2)|2
d(z1, z2)

≤
∫

A1×A2

c2(n, τ, R)θ(ε, δ)

v0(τ, R)2
. (66)

As a consequence there exist z1 ∈ A1 and z2 ∈ A2 such that

|ℓ(Fc ◦ γz1z2)− ℓ(γz1z2)|2 ≤ d(z1, z2)
c2(n, τ, R)θ(ε, δ)

v0(τ, R)2
.

On the other hand one can check that by definition of τ ,

c2(n, τ, R)θ(ε, δ)

v0(τ, R)2
= θ(ε, δ)

2c1(n, 2R) volHn(1 +R + 1)2

v2n volHn(τ)
τ = τ 2.

This yields
|ℓ(Fc ◦ γz1z2)− ℓ(γz1z2)|2 ≤ d(z1, z2)τ

2,

and
d(Fc(z1), Fc(z2)) ≤ ℓ(Fc ◦ γz1z2) ≤ d(z1, z2) + τ

√

d(z1, z2).

Since d(yi, zi) < τ and d(y1, y2) ≥
√
τ , we have

d(z1, z2) ≤ d(y1, y2) + 2τ ≤ d(y1, y2)(1 + 2
√
τ).

With our choice of τ very small compared to 1, we also have

d(z1, z2) ≥ d(y1, y2)− 2τ ≥
√
τ

2
.

We then have

d(Fc(y1), Fc(y2)) ≤ d(Fc(y1), Fc(z1)) + d(Fc(z1), Fc(z2)) + d(Fc(z2), Fc(y2)) (67)

≤ 2
√
nτ + d(z1, z2) + τ(d(z1, z2))

1/2 + 2
√
nτ (68)

≤ 4
√
nτ + d(y1, y2)

d(z1, z2)

d(y1, y2)
(1 + τ(d(z1, z2))

−1/2) (69)

≤ 4
√
nτ + d(y1, y2)(1 + 2

√
τ )(1 +

√
2τ 3/4) (70)

≤ 4
√
nτ + d(y1, y2)(1 + 8

√
τ ) . (71)

We finally get
d(Fc(y1), Fc(y2)) ≤ κ+ (1 + κ)d(y1, y2) , (72)

in case ii).

4 A limit map on the limit space

In this section, we consider a sequence (Yk, gk)k∈N of closed Riemannian n-manifolds
satisfying the curvature bound (3) and the following assumption: we suppose that
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there exist an closed hyperbolic n-manifold (X, g0), degree one maps fk : Yk → X and
a sequence εk→0 such that

volgk(Yk)→ volg0(X) , (73)

as k goes to +∞. From (8), for every k ∈ N, there exists ygk ∈ Yk satisfying the local
volume estimate, that is vol(Bgk(ygk , 1)) ≥ vn > 0. For the sake of simplicity we shall
use the notation yk instead of ygk .

Below, we prove that (Yk, gk, yk) sub-converges in the pointed Gromov-Haudorff topol-
ogy to a limit metric space (Y∞, d∞, z∞). Moreover, there exists a sequence of natural
maps Fck : (Yk, gk) → (X, g0), with suitably chosed parameters ck, which sub-converges
to a ”natural map” F : Y∞ −→ X .

Let us recall the definition of the Gromov-Hausdorff topology. For two subsets A,B of
a metric space Z the Hausdorff distance between A and B is

dH
Z(A,B) := inf{ε > 0 | B ⊂ Vε(A) and A ⊂ Vε(B)} ∈ R ∪ {∞}.

It is a distance on compact subsets of Z (see [10]).

Definition 4.1 ([12]). Let X1, X2 be two metric spaces, then the Gromov-Hausdorff
distance dGH(X1, X2) ∈ R ∪∞ is the infimum of the numbers

dH
Z(f1(X1), f2(X2)))

for all metric spaces Z and all isometric embeddings fi : Xi → Z.

It is a distance on the space of isometry classes of compact metric spaces. One says that
a sequence (Xi)i∈N of metric spaces converges in the Gromov-Hausdorff topology to a
metric space X∞ if dGH(Xi, X∞) → 0 as i → ∞. Let xi ∈ Xi and x∞ ∈ X∞, one says
that the sequence (Xi, xi)i∈N converges to (X∞, x∞) in the pointed Gromov-Hausdorff
topology if for any R > 0, dGH(BXi

(xi, R), BX∞
(x∞, R)) → 0 as i → +∞ (in fact this

definition holds only for length spaces, which will be sufficient in our situation).

To deal with the Gromov-Hausdorff distance between X1 and X2, it is convenient to
avoid the third space Z by using ε-approximations between X1 and X2 .

Definition 4.2. Given two metric spaces X1,X2 and ε > 0, an ε-approximation (or
ε-isometry) from X1 to X2 is a map f : X1 → X2 such that

1. for any x, x′ ∈ X1, |dX2(f(x), f(x
′))− dX1(x, x

′)| < ε.

2. the ε-neighbourhood of f(X1) is equal to X2.

Then one can show (see [4, Corollary 7.3.28]) that dGH(X1, X2) < ε if there exists a 2ε-
approximation from X1 to X2 and similarly an ε-approximation exists if dGH(X1, X2) <
2ε. Let us insist on the fact that these approximations may be neither continuous nor
even measurable.

Our goal is to prove the :
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Proposition 4.3. Up to extraction and renumbering, the sequence (Yk, gk, yk) satisfies
the following.

1. There exists a complete pointed length space (Y∞, d∞, y∞) such that (Yk, gk, yk)
converges in the pointed Gromov-Hausdorff topology to a metric space (Y∞, d∞, y∞).
Moreover, (Y∞, d∞) has Hausdorff dimension equal to n.

2. there exist sequences of positive numbers εk, δk going to 0, ck such that h(gk) <
ck < h(gk) + δk, Rk going to +∞ such that εk ≤ ε(Rk) and δk ≤ δ(Rk). There
also exist and αk-approximations ψk : Bd∞(y∞, Rk)→Bgk(ygk , Rk) such that the
following holds. Let

Fck : (Yk, gk)→(X, g0)

be the natural map as defined in section 2. Then Fck ◦ψk converges uniformly on
compact sets to a map

F : Y∞ −→ X,

which is 1-lipschitz.

The proof is divided in two steps described in the following sections.

Existence of the limit and its properties

Under the curvature bound (3) and the local volume estimate (11), (1) of Proposition
4.3 is a straightforward application of Gromov & Cheeger-Colding compactness theo-
rem, see [7, Theorem 1.6]. Before proving point (2) of Proposition 4.3, let us describe
some features of the convergence and of the limit space which will be used later.

The continuity of the volume under the (pointed) Gromov-Hausdorff convergence is
crucial for our purposes. For ℓ > 0, note Hℓ the ℓ-dimensional Hausdorff measure of a
metric space (see [4] definition 1.7.7).

Theorem 4.4 ([7], Theorem 5.9). Let pi ∈ Yi and p∞ ∈ Y∞ their limit, and let R > 0.
Then

lim
i→+∞

volgi(B(pi, R)) = Hn(B(p∞, R)) . (74)

In particular, Y∞ satisfies the Bishop-Gromov inequalities (9) and the Bishop inequal-
ity. By definition, a tangent cone at p ∈ Y∞ is a complete pointed Gromov-Hausdorff
limit, {Y∞,p, d∞, p∞} of a sequence of rescaled space, {(Y∞, r−1

i d, p)}, where {ri} is
a positive sequence such that ri→0. Indeed, by [11, Proposition 5.2], every such se-
quence has a convergent subsequence, but the limit might depend on the choice of
the sub-sequence. Notice that this notion is different from the one described in [4,
Chapter 8] where the authors require that the limit is unique (does not depend on the
sub-sequence).

Definition 4.5. The regular set R consists of those points, p ∈ Y∞, such that every
tangent cone at p is isometric to Rn. The complementary S = Y∞ \ R is the singular
set.
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Let Bn
0 (1) ⊂ Rn be the unit ball.

Definition 4.6. The ε-regular set Rε consists of those points, p ∈ Y∞, such that every
tangent cone, (Y∞,p, p∞), satisfies dGH(B(p∞, 1), B

n
0 (1)) < ε. A point in Y∞ \Rε = Sε

is called ε-singular,

Theorem 4.7 ([7], Theorem 5.14). There exists εn > 0 such that for ε ≤ εn,
◦
Rε has a

natural smooth manifold structure. Moreover, for this parametrization, the metric on
◦
Rε is bi-hölder equivalent to a smooth Riemannian metric. The exponent α(ε) in this
bi-hölder equivalence satisfies α(ε)→1 as ε→0.

Theorem 4.8 ([7], Theorem 6.1).

Hn−2(S) = 0 (75)

Remark 4.9. Clearly, R = ∩ε>0Rε. The sets Rε, R are not necessarily open. How-

ever, for any ε > 0, there is some ε > δ > 0 such that Rδ ⊂
◦
Rε (see [7, Appendix

A.1.5]). In [8, Section 3], it is also proved that
◦
Rε is path connected. This important

fact will be used in the last part of this text.

We now study the density of the Hausdorff measure. A consequence of Bishop’s in-
equality is that

lim sup
r→0

Hn(B(p, r))

volRn(r)
≤ 1.

Definition 4.10. The density at p of Y∞ is

θ(p) := lim inf
r→0

Hn(B(p, r))

volRn(r)
. (76)

A consequence of [7, A.1.5] is the existence of some positive function τ(ε), with τ(ε)→0
as ε→0, such that for every p ∈ Rε,

θ(p) > 1− τ(ε). (77)

Conversely, there exists a positive function ε(τ), satisfying ε(τ)→0 as τ→0 and such
that

θ(p) ≥ 1− τ =⇒ p ∈ Rε(τ) . (78)

Remark 4.11. A point p is regular if and only if θ(p) = 1. From now on, we consider
ε ≤ ε0, where ε0 ≤ εn is sufficiently small so that τ(ε0) < 1/2, the density is thus
strictly greater than 1/2 on Rε.
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Existence of the natural map at the limit

Let us now prove (2) of Proposition 4.3.

Proof. For every k ∈ N and c > h(gk), there exists a natural map Fc : (Yk, gk) →
(X, g0), described in Section 2. We need to choose the values of c for each gk in order
that Fc to satisfies some good properties. One argues as follows.

Given m ∈ N∗, one chooses positive numbers εm ≤ ε2(m) and δm ≤ δ2(m) sufficiently
small such that κ(εm, δm, m) ≤ 1

m
, where δ2, ε2 and κ are given by Lemma 3.13. One

then defines

αm = max
{

α1(εm, δm), α2(εm, δm), α3(εm, δm)κ(εm, δm, m)
}

.

We check that αm→0 as m→ + ∞. By the hypothesis (73), there exists k1(m) ∈
N such that for any k ≥ k1(m), volgk(Yk) ≤ (1 + εm) volg0(X). Since for m fixed
Bgk(yk, m) converges to B∞(y∞, m), there exists k2(m) ∈ N such that for any k ≥
k2(m), there exists αm-approximations from B∞(y∞, m) to Bgk(yk, m). Define k(m) :=
max{k1(m), k2(m)} and let ψm : B∞(y∞, m)−→Bgk(yk(m), m) be an αm-approximation.
One can assume that ψm(y∞) = ygk(m)

. Choose h(gk) < cm < h(gk) + δm and consider

Fcm ◦ ψm : B∞(y∞, m)−→X.

Lemma 3.13 applies to Fcm on Bgk(m)
(yk(m), m). Hence, for any p, q ∈ B∞(y∞, m),

dg0(Fcm ◦ ψm(p), Fcm ◦ ψm(q)) ≤ (1 + αm)dgk(ψm(p), ψm(q)) + αm

≤ (1 + αm)d∞(p, q) + (1 + αm)αm + αm.

Applying the same reasoning as in Ascoli’s theorem, one can show that for any compact
K ⊂ Y∞, there exists a sub-sequence of Fcm converging to a map FK : K → X . We
denote it by Fcφ(m)

. If one uses an exhaustion of Y∞ by compact sets and a standard
diagonal process, one can extract a sub-sequence of Fcφ(m)

◦ ψφ(m) which converges
uniformly on any compact set to a map F : Y∞→X . It is easy to see that the map F
is 1-lipschitz.

Then one renumbers the sub-sequences Yk(φ(m)), ψφ(m) and Fcφ(m)
such that, for any

m ∈ N∗, volgm(Ym) ≤ (1 + εm) volg0(X), h(gm) < cm < cm + δm, the inequalities of
Lemmas 3.5, 3.11 hold with α1, α2, α3 replaced by αm and those of Lemmas 3.12, 3.13
hold on B(ym, m) ⊂ Ym with κ replaced by αm. For simplicity, the map Fcm will be
denoted Fm.

5 The limit map F : Y∞−→X is isometric

In this section we aim at proving that the limit map F = limFk ◦ ψk is an isometry,
i.e. it is distance preserving. We prove first that F preserves the volume.
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Lemma 5.1. Let A ⊂ Y∞ be a measurable subset. Then,

volg0(F (A)) = Hn(A) . (79)

Proof. It suffices to prove the lemma when the set A is an open ball. Indeed, let us
assume that F preserves the volume of balls and let A be a measurable set included in
a ball B := B∞(p, r). Since F is contracting it does not increase the volumes (see [14,
Proposition 3.5]). Now, if volg0(A) < Hn(A) and since we have volg0(B\A) ≤ Hn(B\A)
we have a contradiction with the preservation of the volume of B. Similarly, if A is a
measurable set of finite measure we can apply the same argument with A and B \ A
for any ball B.

It is then enough to prove that for every B∞(p, r) ⊂ Y∞, volg0(F (B∞(p, r))) ≥ Hn(B∞(p, r)).

By construction, F (B∞(p, r)) is the Hausdorff limit of Fk ◦ ψk(B∞(p, r)).

We first show that this is also the Hausdorff limit of Fk(Bgk(ψk(p), r)). Let x ∈
F (B∞(p, r)) and xk ∈ F (B∞(p, r)) such that xk→x. Let pk ∈ B∞(p, r) such that
F (pk) = xk. By definition of the αk-approximation, one has dgk(ψk(pk), ψk(p)) <
r + αk. There exists zk ∈ Bgk(ψk(p), r) such that dgk(ψk(pk), zk) < αk (for example
zk may be on the segment [ψk(pk), ψk(p)]). Note that, by the triangular inequality,
d∞(pk, y∞) ≤ r + d∞(p, y∞) and recall that ψk(y∞) = ygk . Thus ψk(pk) remains at
bounded distance from ygk . Then, applying Lemma 3.13 we have

dg0(Fk(zk), Fk(ψk(pk)) ≤ (1 + αk)dgk(zk, ψk(pk)) + αk

≤ (1 + αk)αk + αk

−→
k→+∞

0.

On the other hand, since Fk ◦ψk converges uniformly to F on compact sets, Fk(ψk(pk))
has the same limit as F (pk) = xk, that is Fk(ψk(pk))→x. From the inequality above
one deduces that Fk(zk)→x which shows that x ∈ limk→∞ Fk(Bgk(ψk(p), r)). One

has then proved that F (B∞(p, r)) ⊂ limk→∞ Fk(Bgk(ψk(p), r)). In order to prove the

other inclusion one argues similarly. Given x ∈ limk→∞ Fk(Bgk(ψk(p), r)), there exists
xk ∈ Fk(Bgk(ψk(p), r)) such that xk→x, with xk = Fk(zk) where zk ∈ Bgk(ψk(p), r).
As ψk is an αk-approximation from B∞(y∞, k) to B(ygk , k), one has the inclusion
Bgk(ψk(p), r) ⊂ Uαk

ψk(B∞(p, r + αk)) for large k, thus there exists qk ∈ B∞(p, r + αk)
satisfying dgk(zk, ψk(qk)) < αk. As Y∞ is a length space, there exists q′k ∈ B∞(p, r) such
that d∞(q′k, qk) < αk. Then dgk(ψk(q

′
k), zk) ≤ dgk(ψk(q

′
k), ψk(qk)) + dgk(ψk(qk), zk)) <

3αk. Thus

dg0(Fk ◦ ψk(q′k), xk) = dg0(Fk ◦ ψk(q′k), Fk(zk)) ≤ (1 + αk)dgk(ψk(q
′
k), zk) + αk

≤ (1 + αk)3αk + αk→0.

Hence dg0(Fk ◦ ψk(q′k), x)→0. As Fk ◦ ψk converges uniformly to F on compact sets,

one has dg0(F (q
′
k), x)→0 thus x ∈ F (B∞(p, r)). This shows that x ∈ F (B∞(p, r)) is

the Hausdorff limit of Fk(Bgk(ψk(p), r)).
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In order to prove the lemma it is then sufficient to prove that

lim inf
k→+∞

volg0(Fk(Bgk(ψk(p), r)) ≥ lim inf
k→+∞

volg0(Fk(Bgk(ψk(p), r)) ≥ Hn(B∞(p, r)) .

(80)
Indeed, inequality (80) will imply that

volg0(F (B∞(p, r))) ≥ volg0(F (B∞(p, r))) ≥ Hn(B∞(p, r))

and thus volg0(F (B∞(p, r))) ≥ Hn(B∞(p, r)) since F being Lipschitz, we have

volg0(F (B∞(p, r))) = volg0(F (B∞(p, r))).

Recall that N(Fk, x) is the number of preimages of x by Fk. We denote by Xk,1 the
set of x ∈ X such that N(Fk, x) = 1. The construction of the sequence (Fk), Lemma
3.10 and our choice of the αk’s imply that volg0(Xk,1) ≥ (1− αk) volg0(X) and

∫

X\Xk,1

N(Fk, x)dvg0(x) ≤ αk volg0(X) . (81)

We also denote by Yk,αk
the set of y ∈ Yk such that

1− αk ≤ | JacFk(y)| ≤ 1 + αk. (82)

Then Lemma 3.9 implies that volgk(Yk,αk
) ≥ (1−αk) volgk(Yk), for k large enough. We

then have

volg0(Fk(Bgk(ψk(p), r))) =

∫

Fk(Bgk
(ψk(p),r))

dvg0

=

∫

Fk(Bgk
(ψk(p),r))∩Xk,1

N(Fk, x)dvg0(x) + volg0(Fk(Bgk(ψk(p), r)) \Xk,1)

≥
∫

Bgk
(ψk(p),r)∩F−1

k
(Xk,1)∩Yk,αk

| JacFk(y)|dvgk(y)

≥ (1− αk) volgk
(

Bgk(ψk(p), r) ∩ F−1
k (Xk,1) ∩ Yk,αk

)

. (83)

On the other hand, using (82) and (81) we have

vol(F−1
k (X \Xk,1) ∩ Yk,αk

) ≤
∫

F−1
k

(X\Xk,1)∩Yk,αk

| JacFk|
1− αk

dvgk

≤ 1

1− αk

∫

X\Xk,1

N(Fk, x)dvg0(x)

≤ αk
1− αk

volg0(X),

consequently

volgk(Bgk(ψk(p), r) ∩ F−1
k (Xk,1) ∩ Yk,αk

) = volgk(Bgk(ψk(p), r) ∩ Yk,αk
)

− volgk(Bgk(ψk(p), r) ∩ F−1
k (X \Xk,1) ∩ Yk,αk

)

≥ volgk(Bgk(ψk(p), r))− αk volgk(Yk)−
αk

1− αk
volg0(X).
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Plugging this inequality in (83) one gets

volg0(Fk(Bgk(ψk(p), r)) ≥ (1−αk) volgk(Bgk(ψk(p), r))−(1−αk)αk volgk(Yk)−αk volg0(X).

As Bgk(ψk(p), r) converges to B∞(p, r) in the Gromov-Hausdorff topology, Theorem
4.4 implies that limk→∞ volgk(Bgk(ψk(p), r)) = Hn(B∞(p, r)), hence

lim inf
k→∞

volg0(Fk(Bgk(ψk(p), r)) ≥ Hn(B∞(p, r)),

which proves the lemma.

We now prove that F is injective on the set of points where the density is larger than
1/2.

Lemma 5.2. The map F is injective on Rε for ǫ ≤ ǫ0.

Proof. Suppose that there are p1,p2 ∈ Rε such that F (p1) = F (p2). As F is 1-lipschitz,
we have for every r > 0,

F (B∞(p1, r) ∪B∞(p2, r)) ⊂ Bg0(F (p1), r) .

By the previous lemma,

Hn (B∞(p1, r) ∪B∞(p2, r)) = volg0 (F (B∞(p1, r) ∪B∞(p2, r)))

≤ volg0 (B∞(F (p1), r)) . (84)

For r < d(p1, p2)/2 the balls B∞(p1, r) and B∞(p2, r) are disjoint. Hence, dividing (84)
by volRn(r), we get

Hn(B∞(p1, r))

volRn(r)
+

Hn(B∞(p2, r))

volRn(r)
≤ volg0 (Bg0(F (p1), r))

volRn(r)
.

Taking the liminf as r→0 yields

θ(p1) + θ(p2) ≤ θ(F (p1)) = 1,

which is a contradiction, since θ > 1/2 on Rε if ε < ε0 (see remark 4.11).

Lemma 5.3. The map F is open on
◦
Rε for ǫ ≤ ǫ0.

Proof. Let p ∈
◦
Rε. We have to prove that there exists η > 0 such that Bg0(F (p), η) ⊂

F (
◦
Rε). There exists r > 0 such thatB∞(p, 2r) ⊂

◦
Rε. For the sake of simplicity we shall

note B := B∞(p, r). By the previous lemma, F (p) /∈ F (∂B). Thus, by compactness
of ∂B and continuity of F , there exists η > 0 such that dg0(F (p), F (∂B)) > η. Notice
that, since F is 1-Lipschitz, η < r. Here, one could use the theory of local degree as
in [5, Appendix C], however Y∞ is not, a priori a manifold and it may even be not
locally lipschitz equivalent to Rn. Let R > 2r+ d∞(y∞, p) be a fixed radius; it satisfies
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ψk(B∞(p, 2r)) ⊂ Bgk(ygk , R) for large k. Let zk = ψk(p) and Bk := B(zk, r). The
choice of R and the fact that the ψk’s are approximations shows that Bk ⊂ B(ygk , R),
for k large enough. We choose k large enough such that dH(Fk(∂Bk), F (∂B)) ≤ η

10
.

This is possible since dH(ψk(∂B), ∂Bk) goes to zero, Fk ◦ ψk converges to F and F (p)
is at distance from F (∂B) larger than η. Let C (resp. Ck) be the connected component
of X \ F (∂B) (resp. X \ Fk(∂Bk)), which contains F (p), (resp Fk(zk)). Now the ball
B(F (p), η/10) is included in C and for k large enough B(Fk(zk), η/10) is included in
Ck. On the other hand by Corollary 4.1.26 of [10], deg(Fk|Bk) is constant on Ck, where,
for a subset A ⊂ Yk,

deg(Fk|A)(x) =
∑

y∈F−1
k

(x)∩A

sign JacFk(y).

We show that deg(Fk|Bk) = 1 on Ck as follows. We have to show that at least one
point in Ck this degree is 1 since it is constant on this set. In order to do that,
we shall show that the set of such points has positive measure. Denote again by
Xk,1 ⊂ X the set of x ∈ X such that N(Fk, x) = 1, that is x has one preimage
by Fk. By Lemma 3.10, volg0(Xk,1) ≥ (1 − αk) volg0(X). The intersection of Xk,1

with Ck has a positive measure for k large enough; indeed, B(Fk(zk),
η
10
) ⊂ Ck and

its volume is bounded below by (11) and vol(B(Fk(zk),
η
10
) \ Xk,1)−→0 as k→ + ∞.

Now, by Lemma 3.12 one has Fk(B(zk,
η

20
√
n
)) ⊂ B(Fk(zk),

η
10
) and B(zk,

η
20

√
n
) ⊂ Bk

for large k, and an argument similar to the one used in 80 shows that the volume
of the image is bounded below. It thus intersects Xk,1 on a set of positive measure
for k large enough. This proves that deg(Fk|Bk) = 1 on Ck. Since B(Fk(zk), η/10)
converges to B(F (p), η/10), this last ball is included in Ck for k large; hence, any point
in B(F (p), η

10
) has a preimage by Fk in Bk. By taking the limit when k goes to +∞,

we get B(F (p), η
10
) ⊂ F (B(p, r)) ⊂ F (B(p, 2r)) ⊂ F (

◦
Rε).

Lemma 5.4. There exists c(ε) > 0 such that F :
◦
Rε−→F (

◦
Rε) ⊂ X is locally (1+c(ε))-

bi-Lipschitz. Moreover, c(ε)→0 as ε→0.

Proof. The idea is the following: we already know that F is 1-lipschitz and volume
preserving. In particular, a ball B∞(p, r) ⊂ Y∞ is sent into a ball Bg0(F (p), r) ⊂ X . If
the ball in Y∞ is in the almost regular part and has a small radius, its volume is close to
the Euclidean one, so is the volume of the hyperbolic ball. One can then estimate how
much the image of B∞(p, r) is close to fill Bg0(F (p), r). If one considers the images of
two disjoint balls, one can estimate how the corresponding hyperbolic balls overlapp,
and thus the distance between their centers.

Let p ∈
◦
Rε. Let r(p, ε) > 0 be a radius such that for every 0 < r ≤ r(p, ε),

Hn(B∞(p, r))

volRn(r)
≥ 1− τ(ε),

and let rε = min{ε, r(p, ε)}. One can assume that rε is smaller than the injectivity
radius of X . Let 0 < r < r2ε be such that B∞(p, r) ⊂ Rε. For every q ∈ B∞(p, r),

28



B∞(p, rε − r2ε) ⊂ B∞(q, rε). Thus,

Hn(B∞(q, rε)) ≥ Hn(B∞(p, rε − r2ε)) (85)

≥ (1− τ(ε)) volRn(rε − r2ε) (86)

≥ (1− τ(ε))(1− rε)
n volRn(rε) . (87)

Suppose that there exists p1,p2 ∈ B∞(p, r), p1 6= p2 and a number 0 < ρ < 1 such that

dg0(F (p1), F (p2)) ≤ ρd∞(p1, p2).

Define r′ = d∞(p1, p2)/2 > 0 and notice that r′ < r. By (74) and the Bishop-Gromov
inequality (9), for i = 1, 2 one has

Hn(B∞(pi, r
′)) ≥ Hn(B∞(pi, rε))

volHn(r′)

volHn(rε)
.

Thus, by Lemma 5.1, (87) and Bishop-Gromov inequality we have

volg0 (F (B∞(p1, r
′) ∪ B∞(p2, r

′))) = Hn(B∞(p1, r
′)) +Hn(B∞(p2, r

′)) (88)

≥ 2(1− τ(ε))(1− rε)
n volHn(r′)

volHn(rε)
volRn(rε)(89)

≥ 2(1− τ(ε))(1− rε)
n volRn(ε)

volHn(ε)
volRn(r′) (90)

≥ 2ϑ(ε) volRn(r′) (91)

where ϑ(ε) = (1− τ(ε))(1− ε)n volRn (ε)
volHn (ε)

→1 as ε→0.

On the other hand,

F (B∞(p1, r
′) ∪ B∞(p2, r

′)) ⊂ Bg0(F (p1), r
′) ∪ Bg0(F (p2), r

′),

Hence

volg0 (F (B∞(p1, r
′) ∪ B∞(p2, r

′))) ≤ volg0(Bg0(F (p1), r
′)) + volg0(Bg0(F (p2), r

′))

− volg0(Bg0(F (p1), r
′) ∩Bg0(F (p2), r

′)).

(92)

For any x ∈ X and any s > 0 smaller than the injectivity radius of X one has
volg0(B(x, s)) = volHn(s). Let x be the middle point of the segment [F (p1)F (p2)].
Then

B(x, r′(1− ρ)) ⊂ B(F (p1), r
′) ∩ B(F (p2), r

′).

Indeed, if x′ ∈ B(x, r′(1−ρ)) then d(x′, F (pi)) ≤ d(x′, x)+d(x, F (pi)) < r′(1−ρ)+ρr′ =
r′ for i = 1, 2. Thus (92) gives

volg0 (F (B(p1, r
′) ∪B(p2, r

′))) ≤ 2 volHn(r′)− volHn(r′(1− ρ)) (93)

≤ 2 volRn(r′)
volHn(r′)

volRn(r′)
− (1− ρ)n volRn(r′) (94)

≤ 2 volRn(r′)
volHn(ε)

volRn(ε)
− (1− ρ)n volRn(r′) (95)

=

(

2
volHn(ε)

volRn(ε)
− (1− ρ)n

)

volRn(r′). (96)
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For the third inequality we have used Bishop-Gromov’s inequality. From (91) and (96),
we find

(1− ρ)n ≤ 2

(

volHn(ε)

volRn(ε)
− ϑ(ε)

)

→0,

therefore

ρ ≥ 1− 21/n
(

volHn(ε)

volRn(ε)
− ϑ(ε)

)1/n

:= 1− c(ε)→1,

as ε→0. One has proved that inside the ball B(p, r),

dg0(F (p1), F (p2)) ≥ (1− c1(ε))d∞(p1, p2),

and the proof of the lemma follows by choosing c(ε) so that 1−c1(ε) ≥ (1+c(ε))−1.

Remark 5.5. On the connected (see Remark 4.9) open set F (
◦
Rε) ⊂ X, the metric g0

induces a distance ρε. The above lemma shows that F : (
◦
Rε, d∞)−→(F (

◦
Rε), ρε) is a

(1 + c(ε))-bi-Lipschitz homeomorphism. If one can prove that ρε = dg0, one deduces
that Rε has bounded diameter. One then concludes that dGH(Yk, Y∞)→0 and that F :
Y∞→X is isometric.

More precisely, we prove the following proposition.

Proposition 5.6. The set F (
◦
Rε) satisfies,

1. For any x1, x2 ∈ F (
◦
Rε), dg0(x1, x2) = ρε(x1, x2).

2. F (
◦
Rε) = X.

3. F : (Y∞, d∞)−→(X, dg0) is an isometry.

Proof. Let x1,x2 ∈ F (
◦
Rε). Without loss of generality, one can suppose that x2 is not

in the image of the cut-locus of x1. Clearly, ρε(x1, x2) ≥ dg0(x1, x2). Let γ : [0, 1]−→X

be a g0-minimal geodesic from x1 to x2. We do not know that γ is in F (
◦
Rε) we then

prove that there exist paths in F (
◦
Rε) arbitrarily close to γ. Let r > 0 be a radius such

that Bg0(x2, r) ⊂ F (
◦
Rε). We consider geodesics with the origin x1 and the extremity

in B(x2, δ), for a small δ > 0. More precisely, let u = γ̇(0), then for any v ∈ Ux1X such
that and u ⊥ v, one defines γs,v(t) = expx1(t(u+ s.v)d(x1, x2)). There exists r(δ) > 0
such that γs,v(1) ∈ B(x2, δ) if |s| ≤ r(δ) and one can choose r(δ)→0 as δ goes to 0.

We claim that for every δ > 0, there exists such γs,v which is imbedded in F (
◦
Rε).

Let us show that one can find such γs,v disjoint from F (S), where S is the singular
set of Y∞ defined in 4.5. The idea is that if any γs,v would hit F (S) at least in one

30



point, then the Hausdorff dimension of F (S) would be larger than n − 1, which is a
contradiction. More precisely, one considers a truncated cone Uδ defined as follows.
Let

Γ :]0, r(δ)]× (Ux1X ∩ u⊥)× [0, 1] → X

be defined by Γ(s, v, t) = γs,v(t). If δ is sufficiently small, Γ is an embedding. One
defines Uδ = Γ(]0, r(δ)]×(Ux1X∩u⊥)×[0, 1]). Let us denote by Uδ(1/2) the hypersurface
in Uδ defined as Γ(]0, r(δ)])× (Ux1X ∩ u⊥)× {1/2}).

δ

x1

x2

γs,v
Uδ(1/2)

Uδ

Let P : Uδ→Uδ(1/2) be the projection along geodesics defined by P (γs,v(t)) = γs,v(1/2).
Since we are on a fixed Riemannian manifold, there exists a constant C > 0 such that
P is C-lipschitz from Uδ to X . In particular, P decreases the Hausdorff dimension,that
is

dimH(P (Uδ ∩ F (S))) ≤ dimH(Uδ ∩ F (S))
≤ dimH(S)
≤ n− 2

< dimUδ(1/2) = n− 1.

Hence, there exists x ∈ Uδ(1/2) such that x /∈ Π(F (S)). This implies that the geodesic
γs,v such that x = γs,v(1/2) does not intersect F (S).

We now prove that γs,v is embedded in F (
◦
Rε). Let t0 ∈ (0, 1] be maximal such

that γs,v([0, t0[) ⊂ F (
◦
Rε). By Lemma 5.4, the path β = F−1 ◦ γs,v is well-defined

on [0, t0[ and has a length bounded by (1 + c(ε))d(x1, x2). Since F is bi-Lipschitz,
dgk(β(t), β(t

′)) ≥ C|t′ − t| and hence there exists a limit p = limt→t0 β(t) ∈ Y∞. By
continuity of F , F (p) = γs,v(t0) and since γs,v(t0) /∈ F (S) we have that p /∈ S. This

implies that p ∈ R = ∩εRε = ∩ε>0

◦
Rε and consequently that t0 = 1, because

◦
Rε is

open.

Hence

ρε(x1, x2) ≤ ℓ(γs,v) + d0(γs,v(1), x2)

≤
√

1 + r2(δ)d0(x1, x2) + δ

As δ was arbitrary, this gives ρε(x1, x2) ≤ d0(x1, x2).

The second assertion is proved in a similar way. Suppose there is a ball B(x, r) ⊂
X \ F (

◦
Rε) and consider a geodesic γ from a point x1 inside F (

◦
Rε) to x. Then we
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find another geodesic from x1, close to γ, disjoint from F (S) and with extremity in

X \ F (
◦
Rε). Arguing as above, we find a contradiction.

Now 3) is straightforward. Using the density of
◦
Rε in Y∞ and of F (

◦
Rε) in X , we

find that F : (Y∞, d∞)−→(X, d0) is a (1 + c(ε))-bi-Lipschitz homeomorphism for any
0 < ε < ε0 thus is isometric.

End of Proof of theorem 1.3. Proposition 5.6 implies that the diameter of (Y, gk) re-
mains bounded. Thus, dGH((Y, gk), (Y∞, d∞))→0 (for the non pointed convergence).
As (Y∞, d∞) is isometric to (X ; g0), one deduces that dGH((Y, gk), (X, g0))→0 as k→∞.
By theorem A.1.12 of [7], Y is diffeomorphic to X . The fact that f is homotopic to a
diffeomorphism is classic for hyperbolic manifolds.
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[11] Michaël Gromov, Jacques Lafontaine, Pierre Pansu, Structures métriques pour les
variétés riemanniennes Cédic Fernand Nathan.
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