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1 Introduction

The aim of this paper is to show the following result.

Theorem 1.1. Given any integer n ≥ 3 and d > 0, there exists ε(n, d) > 0 such
that the following holds. Suppose that (X, g0) is an n-dimensional hyperbolic compact
manifold with diameter ≤ d and that Y is a compact manifold which dominates X,
that is, there exist a continuous map f : Y → X of degree one. Then Y has a metric
g such that

Ricg ≥ −(n− 1)g (1)

volg(Y ) ≤ (1 + ε) volg0(X) (2)

if and only if f is homotopic to a diffeomorphism.

Sketch of the Proof:
We argue by contradiction. Suppose that there is a sequence (Xk)k∈N of compact
hyperbolic manifolds with diameter ≤ d and a sequence of compact manifolds Yk, of
degree one continuous maps fk : Yk→Xk and metrics gk on Yk fulfilling the hypothesis
(1) and (2) for some εk→0. Since fk has degree one and Xk is hyperbolic, it is equiv-
alent to say that fk is homotopic to a diffeomorphism or simply that Xk and Yk are
diffeomorphic. We thus assume that Yk and Xk are not diffeomorphic. One then shows
that up to a subsequence, for large k, Yk is diffeomorphic to a compact manifold Y ,
Xk is diffeomorphic to a compact manifold X, and X and Y are diffeomorphic. One
argue as follows: by the classical finiteness results we get the sub-convergence of (Xk).
Indeed, the curvature is −1, the diameter is bounded by hypothesis, and there is a
universal lower bound for the volume of any hyperbolic compact manifold of a given
dimension. Cheeger’s finiteness theorem then applies. Moreover, on a compact mani-
fold of dimension ≥ 3, there is at most one hyperbolic metric, up to isometry. We can
therefore suppose that Xk = X is a fixed hyperbolic manifold. The inequality proved
in [BCG] provides a lower bound for the volume of Yk as it is explained below. We
have no a priori bounds on the diameter of (Yk, gk), but we can use Cheeger-Colding’s
theory to obtain sub-convergence in the pointed Gromov-Hausdorff topology to a com-
plete metric space (Z, d) with small singular set. To obtain more geometric control,
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the idea is to use the natural maps between Yk and X (see [BCG]). One can show that
they sub-convergence to a limit map between Z and X, which is an isometry. Then Z
is compact and diffeomorphic to Yk for large k.

The paper is organized as follows. The construction and the properties of the natural
maps are given in section 2. In section 3, we construct the limit space Z and the limit
map F : Z→X. In section 4, we prove that F is an isometry and conclude.

1.1 Some a priori control on (Y, g)

Some a priori control on the metric g will be needed in section 2 and 3. We give here
some necessary results.

Let (X, g0) be an hyperbolic manifold and Y be a manifold satisfying the assumptions
of theorem 1.1. For any riemannian metric g on Y satisfying the curvature assumption
(1), one has the following inequality

volg(Y ) ≥ volg0(X) . (3)

It is a consequence of the Besson-Courtois-Gallot inequality [BCG]

h(g)n volg(Y ) ≥ h(g0)
n volg0(X) , (4)

where h(g) is the volume entropy, or the critical exponent, of the metric g, i.e.:

h(g) = lim
R→+∞

1

R
ln(volg̃(Bg̃(x,R))) ,

where g̃ is the lifted metric on Ỹ . Indeed, any metric g on Y which satisfies (1), verifies,
by Bishop’s theorem,

h(g) ≤ h(g0) = n− 1 . (5)

One can obtain a local control of the volume by Gromov’s isolation theorem (see [Gro2],
theorem 0.5). It shows that if the simplicial volume ||Y || - a topological invariant - of Y
is non-zero, then for any riemannian metric g on Y satisfying the curvature assumption
(1), there exists at least one point yg ∈ Y such that

volg(B(yg, 1)) ≥ vn > 0. (6)

Here B(yg, 1) is the geodesic ball of radius 1 for the metric g and vn is a universal
constant. This theorem applies in our situation since, by an elementary property of
the simplicial volume, ||Y || ≥ ||X|| if there is a degree one map from Y to X. On
the other hand, X has an hyperbolic metric and thus ||X|| > 0 by Gromov-Thurston’s
theorem (see [Gro2]).

Given this universal lower bound for the volume of a unit ball B(yg, 1), the volume
of any ball B(y, r) is bounded from bellow in terms of r and d(yg, y). Indeed, recall
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that under the curvature assumption (1), Bishop-Gromov’s theorem shows that for any
0 < r ≤ R, one has

volg(B(y, r))

volg(B(y, R))
≥ volHn(BHn(r))

volHn(BHnR))
, (7)

where BHn(r) is a r-ball in the hyperbolic space Hn. As B(yg, 1) ⊂ B(y, 1+d(yg, y)+r),
one deduces from (7) that

volg(B(y, r)) ≥ volg (B(y, 1 + d(yg, y) + r))
volHn(BHn(r))

volHn(BHn(1 + d(yg, y) + r))
(8)

≥ vn
volHn(BHn(r))

volHn(BHn(1 + d(yg, y) + r))
. (9)

The curvature assumption (1) and the volume estimates (7) or (9) are those required
to use the non-collapsing part of Cheeger-Colding’s theory, as we shall see in section 3.

2 The natural maps

2.1 Construction of the natural maps

In this section we recall the construction and the main properties of the natural maps
defined by Besson-Courtois-Gallot ([BCG],[BCG2]). Suppose that (Y, g) and (X, g0)
are compact riemannian manifolds and that

f : Y→X ,

is a continuous map of degree one. For the sake of simplicity, we assume that g0 is
hyperbolic (the construction holds in more general cases). Then, for any c > h(g) there
exists a C1 map

Fc : Y −→ X ,

homotopic to f , such that for all y ∈ Y ,

| JacFc(y)| ≤
(

c

h(g0)

)n

, (10)

with equality for some y ∈ Y if and only if dyFc is an homothety of ratio c
h(g0)

.

The inequality (4) is then easily obtained by integration of (10) and by taking a limit
when c goes to h(g). To obtain global rigidity properties, one has in general to care
about the limit of Fc as c goes to h(g).

We divide the construction of the maps in 4 steps. Let Ỹ and X̃ be the universal
coverings of Y and X respectively, and f̃ : Ỹ→X̃ a lift of f .

Step 1: for each y ∈ Ỹ and c > h(g), let νcy be the finite measure on Ỹ defined by

dνcy(z) = e−c.ρ(y,z)dvg̃(z)
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where z ∈ Ỹ , g̃ is the lifted metric on Ỹ and ρ(., .) is the distance function of (Ỹ , g̃).

Step 2: this measure is pushed forward and gives a finite measure f̃∗ν
c
y on X̃. Let us

recall that it is defined by
f̃∗ν

c
y(U) = νcy(f̃

−1(U)).

Step 3: one defines a finite measure µcy on ∂X̃ by convolution of f̃∗νy with all visual

probability measures Px of X̃. Recall that the visual probability measure Px at x ∈ X̃
is defined as follows: the unit tangent bundle UxX̃ is projected onto the boundary ∂X̃
by the map

v ∈ UxX̃
Ex−→ γv(∞) ∈ ∂X̃,

where γv(t) = expx(tv). The measure Px is then the push-forward by Ex of the canoni-
cal probability measure of UxX̃, i.e. Px(U) is the measure of the set of vectors v ∈ UxX̃
such that γv(+∞) ∈ U .

Then

µcy(U) =

∫

X̃

Px(U) df̃∗ν
c
y(x)

=

∫

Ỹ

Pf̃(z)(U) dνcy(z).

One can identifies ∂X̃ with the unit sphere in Rn, by choosing an origin o ∈ X̃ and
using E0. One can then show (REFERENCE) that the density of this measure is given
by

dµcy(θ) =

(
∫

Ỹ

e−h(g0)B(f̃(z),θ)e−cρ(y,z)dvg̃(z)

)

dθ,

where θ ∈ ∂X̃, dθ is the canonical probability measure on Sn−1 and B(x, θ) is a
Busemann function on X̃ normalised to vanish at x = o. We will use the notation

p(x, θ) = e−h(g0)B(x,θ)

It is a classical fact that p is the Poisson Kernel of (X̃, g̃0).

Step 4: the map
Fc : Ỹ−→X̃

associates to any y ∈ Ỹ the unique x ∈ X̃ which minimizes on X̃ the function

B(x) =

∫

∂X̃

B(x, θ) dµcy(θ).

(see Appendix A in [BCG]).

The maps Fc are shown to be C1 and equivariant. The quotient map, which is denoted
Fc : Y → X, is homotopic to f . Note that Fc depends heavily on the metric g.
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2.2 Some technical lemmas

Let us give some definitions.

Definition 2.1. We call σcy be the probability measure on ∂X̃ defined by

σcy =
µcy

µcy(∂X̃)
.

Then

||µcy|| = µcy(∂X̃) =

∫

Ỹ

e−cρ(y,z)dvg̃(z) = ||νcy||.

We consider two positive definite bilinear forms of trace 1 and the corresponding sym-
metric endomorphisms.

Definition 2.2. For any y ∈ X̃, u, v ∈ TFc(y)X̃,

hc
y(u, v) =

∫

∂X̃

dB(Fc(y),θ)(u)dB(Fc(y),θ)(v) dσ
c
y(θ) = g0(H

c
y(u), v).

And, for any y ∈ Ỹ , u, v ∈ TyỸ ,

h′
y

c
(u, v) =

∫

Ỹ
dρ(y,z)(u)dρ(y,z)(v) dν

c
y(z)

µcy(∂X̃)
= g(H′

y

c
(u), v).

Lemma 2.3. For any y ∈ Ỹ , u ∈ TyỸ , v ∈ TF (y)X̃, one has

∣

∣g0((I −Hc
y)dyFc(u), v)

∣

∣ ≤ c
(

g0(H
c
y(v), v)

)1/2 (
g(H ′

y
c
(u), u)

)1/2
. (11)

Proof. since Fc(y) is an extremum of the function B, one has

dFc(y)B(v) =

∫

∂X̃

dB(Fc(y),θ)(v) dµ
c
y(θ) = 0 (12)

for each v ∈ TFc(y)X̃. Let V be a parallel vector field on TX̃, then dFc(y)B(Vy) = 0 for

each y ∈ Ỹ . One differentiates this equation in a direction u ∈ TyỸ thus, using the
formula (12) with v = Vy, one obtains

∫

∂X̃

DdB(Fc(y),θ)(dyFc(u), v)dµ
c
y(θ)+

∫

∂X̃

dB(Fc(y),θ)(v)

(
∫

Ỹ

p(f̃(z), θ)(−cdρ(y,z)(u))dν
c
y(z)

)

dθ = 0

Using Cauchy-Schwarz inequality in the second term, one gets

∣

∣

∣

∣

∫

∂X̃

DdB(Fc(y),θ)(dyFc(u), v)dµ
c
y(θ)

∣

∣

∣

∣

≤
∫

∂X̃

|dB(Fc(y),θ)(v)|
(
∫

Ỹ

p(f̃(z), θ)dνcy(z)

)1/2(∫

Ỹ

p(f̃(z), θ)|cdρ(y,z)(u)|2dνcy(z)
)1/2

dθ
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which is, using Cauchy-Schwarz inequality again

≤ c

(
∫

∂X̃

|dB(Fc(y),θ)(v)|2
∫

Ỹ

p(f̃(z), θ)dνcy(z)dθ

)1/2(∫

∂X̃

∫

Ỹ

p(f̃(z), θ)|dρ(y,z)(u)|2dνcy(z)dθ
)1/2

= c

(
∫

∂X̃

|dB(Fc(y),θ)(v)|2dµcy(θ)
)1/2(∫

Ỹ

|dρ(y,z)(u)|2 dνcy(z)
)1/2

= cµcy(∂X̃)
(

g0(H
c
y(v), v)

)1/2 (
g(H ′

y
c
(u), u)

)1/2

It is shown in [BCG] chapter 5 that DdB = g0 − dB ⊗ dB for an hyperbolic metric.
The left term of the inequality is thus µcy(∂X̃)g0((I −Hc

y)dyFc(u), v). This proves the
lemma.

Definition 2.4. Let 0 < λc1(y) ≤ ... ≤ λcn(y) < 1 be the eigenvalues of Hc
y.

Proposition 2.5. There exists a constant A(n) > 0 such that, for any y ∈ Y ,

|JacFc(y)| ≤
(

c

h(g0)

)n
(

1 − A

n
∑

i=1

(λci(y) −
1

n
)2

)

(13)

Proof. The proof is based on the two following lemmas.

Lemma 2.6. At each y ∈ Ỹ ,

| JacFc(y)| ≤
(

c√
n

)n
det(Hy

c)1/2

det(I −Hy
c)

Proof of lemma 2.6. Let (ui) an orthonormal basis of TFc(y)X̃ which diagonalizes H ′
y
c.

We can suppose that dyFc is invertible thus let v′i = [(I −Hy
c) ◦ dyFc]−1 (ui). Schmidt

orthonormalisation process applied to (v′i) gives an orthonormal basis (vi) at TyỸ . The
matrix of (I −Hy

c) ◦ dyFc in the base (vi) and (ui) is upper triangular, then

det(I −Hy
c) JacFc(y) =

n
∏

i=1

g0((I −Hy
c) ◦ dyFc(vi), ui)

which gives, with (11),

det(I −Hy
c)| JacFc(y)| ≤ cn

(

n
∏

i=1

g0(Hy
c(vi), vi)

)1/2( n
∏

i=1

g(H ′
y
c
(ui), ui)

)1/2

≤ cn det(Hy
c)1/2

[

1

n

n
∑

i=1

g(H ′
y
c
(ui), ui)

]n/2

and we have the desired inequality with tr(H ′
y
c) = 1.
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Lemma 2.7. Let H a symmetric positive definite n×n matrix whose trace is equal to
one then, if n ≥ 3,

det(H1/2)

det(I −H)
≤
(

n

h(g0)2

)n/2
(

1 −A

n
∑

i=1

(λi −
1

n
)2

)

for a constant A(n) > 0.

Proof of lemma 2.7. see Appendix B5 in [BCG]. This is the point where the rigidity of
the natural maps fails in dimension 2. This completes the proof of the lemma 2.5.

2.3 Some nice properties

We now show that the natural maps Fc are ”nice”. In this section, we shall consider Fc
as a map from (Y, g) to (X, g0). We suppose that the metric g satisfies the curvature
assumption (1) and the assumption on its volume (2) for some ε > 0. Let us introduce
some terminology.

Definition 2.8. Let 0 < α < 1. We say that a property holds α− ae (α-almost
everywhere) on a set A if the set A+ of points of A where the property holds has

relative volume bigger than 1 − α, i. e. vol(A+)
vol(A)

≥ 1 − α.

We show that dFc is α-close to be isometric α− ae on Y for some α(ε, c) > 0. Moreover
α(ε, c) → 0 as ε → 0 and δ → h(g). On the other hand, given any radius R > 0, one
shows that ||dFc|| is uniformly bounded on balls B(yg, R), provided c is close enough to
h(g). Recall that we have uniform bounds for the volume of g but not for the diameter.
The key point is to show that Hc

y is α-close to Id
n

on a set of large volume, and to bound
it on a ball of fixed radius, with respect to the parameters ε, c.

To control c − h(g) we introduce a parameter δ > 0. We suppose that the volume
entropy of g satisfies the inequality

h(g) < c ≤ h(g) + δ. (14)

Observe that (5), (13) and (14) implies that

| JacFc(y)| ≤
(

h(g) + δ

h(g0)

)n

≤
(

1 +
δ

n− 1

)n−1

(15)

for all y ∈ Y . The map Fc is thus almost volume decreasing. As volg(Y ) is close to
volg0(X), the set in Y where Fc is decreases the volume a lot must be small. Equiva-
lently, | JacFc| must be close to 1 in L1 norm. Now we give a precise statement of this
fact.
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Lemma 2.9. There exists α1 = α1(ε, δ) > 0 such that α− ae on Y on has,

1 − α1 ≤ | JacFc(y)|, (16)

and for all y ∈ Y one has
| JacFc(y)| ≤ 1 + α1. (17)

Moreover, α1(ε, δ)→0 as ε and δ→0.

Proof. Let

α = max





√

(

1 +
δ

n− 1

)n−1

− 1,
√
ε



 .

Thus
(

1 + δ
n−1

)n−1 ≤ 1 + α2 and ε ≤ α2. In particular, | JacFc(y)| ≤ 1 + α2 ≤ 1 + α
for all y ∈ Y .

As Fc has degree one, we have

volg0(X) =

∫

Y

F ∗
c (dvg0) =

∫

Y

JacFc(y)dvg(y)

Denote by Yα1 the set of points y ∈ Y such that

| JacFc(y)| ≥ 1 − α.

We have

volg0(X) ≤
∫

Y

| JacFc(y)|dvg(y) (18)

=

∫

Yα1

| JacFc(y)|dvg(y) +

∫

Y−Yα1

| JacFc(y)|dvg(y) (19)

≤ (1 + α2) volg(Yα1) + (1 − α) volg(Y − Yα1) (20)

= volg(Y ) + α2 volg(Yα1) − α volg(Y − Yα1) (21)

Then, using the assumption (2) and the inequality (3) on the volume, we get

volg(Y − Yα1) ≤ volg(Y ) − volg0(X)

α
+ α volg(Yα1) (22)

≤
( ε

α
+ α

)

volg(Y ) (23)

≤ 2α volg(Y ). (24)

Clearly, 1 − 2α ≤ | JacFc(y)| on Yα1 and | JacFc(y)| ≤ 1 + 2α on Y which proves the
lemma with α1(ε, δ) = 2α.

From this lemma, we deduce that Fc is almost injective. Let x ∈ X, one defines
N(Fc, x) ∈ N∪ {∞} to be the number of preimages of x by Fc. As Fc has degree one,
one has N(Fc, x) ≥ 1 for all x ∈ X. We then define X1 := {x ∈ X,N(Fc|x) = 1}.
Observe that N(Fc, x) ≥ 2 on X −X1.
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Lemma 2.10. There exists α2 = α2(ε, δ) > 0 such that

volg0(X1) ≥ (1 − α2) volg0(X) (25)

and
∫

X−X1

N(Fc|x) dVg0(x) ≤ α2(ε, δ) volg0(X) . (26)

Moreover, α2(ε, δ)→0 as ε and δ→0.

In particular, N(Fc, x) = 1 α′-ae on X.

Proof. one defines

α2(ε, δ) = 2

((

1 +
δ

n− 1

)n

(1 + ε) − 1

)

.

From (13) and the area formula (see [Mor] 3.7), we have
(

c

h(g0)

)n

volg(Y ) ≥
∫

Y

| JacFc(y)| dvg(y) (27)

=

∫

X

N(Fc|x) dvg0(x) (28)

=

∫

X1

N(Fc|x) dvg0(x) +

∫

X−X1

N(Fc|x) − 1 + 1 dvg0(x)(29)

= volg0(X) +

∫

X−X1

N(Fc|x) − 1 dvg0(x). (30)

And

volg0(X −X1) ≤
∫

X−X1

N(Fc|x) − 1 dvg0(x) (31)

≤
(

c

h(g0)

)n

volg(Y ) − volg0(X) (32)

≤
((

c

h(g0)

)n

(1 + ε) − 1

)

volg0(X) (33)

≤ α2(ε, δ)

2
volg0(X). (34)

Thus

volg0(X −X1) ≤
∫

X−X1

N(Fc|x) dvg0(x) ≤ α2(ε, δ) volg0(X),

and this proves the lemma.

Lemma 2.11. There exists α3 = α3(ε, δ) > 0 such that the following holds. Let y ∈ Yα1

and u ∈ TyY then

(1 − α3)‖u‖g ≤ ‖dyFc(u)‖g0 ≤ (1 + α3)‖u‖g . (35)

Moreover, α3(ε, δ)→0 as ε,δ→0.

9



Proof. The inequality (13) implies that for all y ∈ Y

‖ Hc
y −

Id

n
‖2 ≤ 1

A

(

1 − | JacFc(y)|
(

1 + δ
n−1

)n

)

.

Let us define

β1 = β1(ε, δ) =
1

A1/2

(

1 − 1 − α1(ε, δ)
(

1 + δ
n−1

)n

)1/2

.

where α1(ε, δ) is the constant from lemma 2.9. Clearly, β1(ε, δ) → 0 as ε and δ→0.
Let Yα1 be the set of points where (16) holds. On Yα1 , one has

‖ Hc
y −

Id

n
‖2 ≤ β1

2. (36)

Let (ui)i=1,...,n be an orthonormal basis of TyY and vi = dyF (ui). Writing Id − Hc
y =

n−1
n

Id + Id
n
−Hc

y , the left side of (16) gives

∣

∣g0

(

(Id −Hc
y)dyFc(ui), dyFc(ui)

)∣

∣ ≥
∣

∣

∣

∣

g0

(

(
n− 1

n
Id)dyFc(ui), dyFc(ui)

)∣

∣

∣

∣

−
∣

∣

∣

∣

g0

(

(
Id

n
−Hc

y)dyFc(ui), dyFc(ui)

)∣

∣

∣

∣

(37)

≥ n− 1

n
||dyFc(ui)||2g0− ‖ Id

n
−Hc

y||.||dyFc(ui)||2g0
(38)

≥
(

n− 1

n
− β

)

||dyFc(ui)||2g0 . (39)

Writing Hc
y = Id

n
+Hc

y − Id
n
, one has

g0

(

Hc
ydyFc(ui), dyFc(ui)

)1/2 ≤ g0

(

Id

n
dyFc(ui), dyFc(ui)

)1/2

+ g0

(

(Hc
y −

Id

n
)dyFc(ui), dyFc(ui)

)1/2
(40)

≤
(

1√
n

+ β1/2

)

||dyFc(ui)||g0 . (41)

Taking the trace of the right hand side of (11) and using the Cauchy-Schwarz inequality,
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one has

n
∑

i=1

g0

(

Hc
ydyFc(ui), dyFc(ui)

)1/2
g(H ′

y
c
(ui), ui)

1/2 ≤
(

1√
n

+ β1/2

)

(

n
∑

i=1

||dyFc(ui)||2g0

)1/2

×
(

n
∑

i=1

g(H ′
y
c
(ui), ui)

)1/2

(42)

=

(

1√
n

+ β1/2

)

(

n
∑

i=1

||dyFc(ui)||2g0

)1/2

(43)

By (11), the trace of (39) is not greater than the right hand side of (43) multiply by c,
hence

(

n− 1

n
− β

) n
∑

i=1

||dyFc(ui)||2g0 ≤ c

(

1√
n

+ β1/2

)

(

n
∑

i=1

||dyFc(ui)||2g0

)1/2

,

thus
(

n
∑

i=1

||dyFc(ui)||2g0

)1/2

≤ c

1√
n

+ β1/1

n−1
n

− β
≤

√
n(1 +

δ

n− 1
)
1 +

√
nβ1/1

1 − n
n−1

β
.

Let us define

β2(ε, δ) = (1 +
δ

n− 1
)2

(

1 +
√
nβ1/2

1 − n
n−1

β

)2

− 1.

Clearly, β2(ε, δ)→0 as ε and δ→0. One has

n
∑

i=1

||dyFc(ui)||2g0 ≤ n(1 + β2).

Let L be the endomorphism of TyY defined by L = (dyFc)
∗ ◦ dyFc. We have

trace(L) =

n
∑

i=

g(L(ui), ui) =

n
∑

i=

g(dyFc(ui), dyFc(ui)) ≤ n(1 + β2). (44)

On the other hand

|1 − α|2 ≤ | JacFc(y)|2 = det(L) ≤
(

trace(L)

n

)n

≤ (1 + β2)
n,

which shows that there is almost equality in the arithmetic-geometric inequality. We
get that there exists some α3(ε, δ) > 0, with α3(ε, δ)→0 as ε, δ→0, such that

||L− Id|| ≤ α3(ε, δ).
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Thus for any y ∈ Yα1 and u ∈ TyY

(1 − α3)‖u‖ ≤ ‖dyFc(u)‖g0 ≤ (1 + α3)‖u‖ (45)

and dyFc is almost isometric.

We now prove that given a fixed radius R > 0, the natural maps Fc are uniformly
bounded on B(yg, R) if the parameters ε,δ are sufficiently small.

Lemma 2.12. Let R > 0, then there exists ε(R) > 0 and δ(R) > 0 such that for any
0 < ε < ε(R) and 0 < δ < δ(R), and for any y ∈ B(yg, R),

‖dyFc‖ ≤ 2
√
n (46)

Proof. We first prove that for all y ∈ Y , ‖dyFc‖ is controlled from above by λcn(y), the
maximal eigenvalue of Hc

y (see definition 2.4 ). Recall that 0 < λcn < 1. Let u be a unit

vector in TyỸ and v = dyFc(u). The equation(11) gives

(1 − λcn(y)) |g0(dyFc(u), dyFc(u))| ≤ cλcn(y)
1/2g0 (dyFc(u), dyFc(u))

1/2 (47)

thus

‖dyFc(u)‖g0 ≤
c
√

λcn(y)

1 − λcn(y)
. (48)

Hence we have to show that λcn(y) is not close to 1. More precisely, let β > 0 such that
1
n

+ β < 1, one then defines

γ(δ, β) =

(

n− 1 + δ

n− 1 − nβ

)

√

1 + nβ − 1 > 0.

One can check that if λcn(y) ≤ 1
n
+β, then ‖dyFc(u)‖g0 ≤

√
n(1+γ). Clearly, γ(β, δ)→0

as δ, β→0. For our purposes, it is sufficient to suppose that γ ≤ 1. Let δn > 0 and
βn > 0 be such that if 0 < δ ≤ 10δn and 0 < β ≤ 10βn then γ(δ, β) ≤ 1. One defines
moreover εn > 0 such that if 0 < ε < εn then with the notations of lemma 2.11,
β1(ε, δ) ≤ βn. In what follows, we suppose ε and δ sufficiently small.

By (36) we have that |λcn(y)− 1
n
| ≤ β1(ε, δ) on Yα1. Recall that Yα1 has a large relative

volume in Y . The idea is first to estimate λcn on a neighborhood of Yα1 and then to
show that this neighbourhood contains B(yg, R) if the parameters ε, δ are sufficiently
small relatively to R.

We begin by estimating the variation of λcn. Recall that Hc
y is defined by

g0(H
c
y(u), v) =

∫

∂X̃

dB(Fc(y),θ)(u)dB(Fc(y),θ)(v) dσ
c
y(θ).

Let U , V be parallel vector fields near Fc(y) extending unit vectors u, v. We compute
the derivative of g0(H

c
y(U), V ) in a direction w ∈ TyY :

w.g0(H
c
y(U), V ) =

∫

∂X̃

DdB(F (y),θ)(dyF (w), U)dB(Fc(y),θ)(V )dσcy(θ)+
∫

∂X̃

dB(Fc(y),θ)(U)DdB(F (y),θ)(dyF (w), V )dσcy(θ) +

∫

∂X̃

dB(Fc(y),θ)(U)dB(Fc(y),θ)(V )w.dσcy(θ)

12



Recall that ‖DdB‖ ≤ 1 and ‖dB‖ ≤ 1 thus

|w.g0(H
c
y(U), V )| ≤ 2‖dyFc(w)‖g0 +

∣

∣

∣

∣

∫

∂X̃

w.dσcy(θ)

∣

∣

∣

∣

.

Recall now that

dσcy(θ) =
dµcy(θ)

µcy(∂X̃)
=

∫

Ỹ
p(f̃(z), θ)e−cρ(y,z)dvg̃(z)
∫

Ỹ
e−cρ(y,z)dvg̃(z)

dθ .

Then

w.dσcy(θ) =

∫

Ỹ
p(f̃(z), θ)(−c.dρ(y,z)(w))e−cρ(y,z)dvg̃(z)

µcy(∂X̃)
dθ − (49)

dµcy(θ)

µcy(∂X̃)2
.

∫

Ỹ

(−c.dρ(y,z)(w))e−cρ(y,z)dvg̃(z) . (50)

As |dρ(y,z)(w)| ≤ ‖w‖g, we have

∣

∣

∣

∣

∫

∂X̃

w.dσcy(θ)

∣

∣

∣

∣

≤
∫

∂X̃

2c‖w‖gdσcy(θ) = 2c‖w‖g , (51)

we get that,
∣

∣w.g0(H
c
y(U), V )

∣

∣ ≤ 2‖dyFc(w)‖g0 + 2c‖w‖g. We now suppose that w is a
unit vector and we use (48), then

∣

∣w.g0(H
c
y(U), V )

∣

∣ ≤ 2c

(

√

λcn(y)

1 − λcn(y)
+ 1

)

. (52)

Let us now consider small constants η > β > 0. One defines

r(δ, β, η) =
η − β

2(n− 1 + δ)

( √
1
n

+η

1−( 1
n

+η)
+ 1

) > 0.

Our goal is to prove that

inf{d(y0, y1) |y0, y1 ∈ Y, λcn(y0)} ≤ 1

n
+ β, λcn(y1) ≥

1

n
+ η ≥ r(δ, β, η).

Let y0 ∈ Y so that λcn(y0) ≤ 1
n

+ β. Assume that there exists y ∈ Y such that
λcn(y) ≥ 1

n
+ η. One defines

r = inf{d(y0, y) |y ∈ Y, λcn(y)} ≥ 1

n
+ η.

Clearly, there exist y1 ∈ Y such that λcn(y1) = 1
n
+η and d(y0, y1) = r. Let γ : [0, r] −→

Y be a minimising geodesic from y0 to y1. We easily see that λcn(γ(t)) <
1
n

+ η for any
0 ≤ t < r. Let U(t) be a parallel vector field in X along Fc(γ) such that U(r) is a unit

13



eigenvector of Hc
y1 . Then using (52) with γ̇.g0(H

c
γ(t)U(t), U(t)) = d

dt
g0(H

c
γ(t)U(t), U(t)),

one has

|λcn(y1) − λcn(y0)| ≤
∣

∣g0(H
c
γ(r)U(r), U(r)) − g0(H

c
γ(0)U(0), U(0))

∣

∣ (53)

=

∣

∣

∣

∣

∫ r

0

d

dt
g0(H

c
γ(t)U(t), U(t))dt

∣

∣

∣

∣

(54)

≤ 2c.

∫ r

0

√

λcn(γ(t))

1 − λcn(γ(t))
+ 1 dt (55)

≤ 2cr.





√

1
n

+ η

1 − ( 1
n

+ η)
+ 1



 . (56)

Thus

r ≥ η − β

2(n− 1 + δ)

( √
1
n

+η

1−( 1
n

+η)
+ 1

) = r(δ, β, η).

Now we fix η = 2βn so that γ(δ, η) ≤ 1 for any δ ≤ δn . One defines rn = r(δn, βn, 2βn).
Recall that for ε ≤ εn and δ ≤ δn, we have β1(ε, δ) ≤ βn. On Yα1 , one has λcn(y) ≤
1
n

+ β1(ε, δ) ≤ 1
n

+ βn. Thus if λcn(y1) ≥ 1
n

+ 2βn, one has

d(y1, Yα1) ≥ r(δ, β1(ε, δ), 2βn) ≥ r(δn, βn, 2βn) = rn.

We have proved that in the rn-neighborhood of Yα1 , one has λcn(y) ≤ 1
n
+2βn. It implies

that
||dyFc|| ≤ (1 + γ(δ, 2βn))

√
n ≤ 2

√
n.

Let us denote by Vr0(Yα1) the r0-neighborhood of Yα1. Il remains to show thatB(yg, R) ⊂
Vr0(Yα1) if ε ≤ ε(R) and δ ≤ δ(R). Recall that

volg(Yα1 )

volg(Y )
≥ 1 − α, thus

volg(Y − Yα1) ≤ α1 volg(Y ) ≤ α1(1 + ε) volg0(X) = v(ε, δ).

Clearly, v(ε, δ)→0 when ε,δ→0. On the other hand, by (9) for any y ∈ B(yg, R) we
have

volg(Bg(y, r0)) ≥ vn
volHn(BHn(r0))

volHn(BHn(1 + R + r0))
:= v0(R) > 0. (57)

If v0(R) > v(ε, δ), then for any y ∈ B(yg, R) one has Bg(y, r0) 6⊂ Y −Yα1 , which means
that Bg(y, r0) intersects Yα1. Thus d(y, Yα1) < r0 and y ∈ Vr0(Yα1).

So if we define ε(R) > 0, δ(R) > 0 to be sufficiently small constants such that v(ε, δ) <
v0(R), the lemma is proved.

We now prove that Fc is almost 1-lipschitz.
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Lemma 2.13. For any R > 0, there exists ε2(R) > 0 and δ2(R) > 0 such that for
every 0 < ε < ε2(R) and 0 < δ < δ2(R), there exists κ = κ(ε, δ, R) > 0 such that on
Bg(yg, R):

dg0(Fc(y1), Fc(y2)) ≤ (1 + κ)dg(y1, y2) + κ . (58)

Moreover, κ(ε, δ, R)→0 as ε,δ→0.

Proof. The idea is the following. We have proved that on Yα1 dyFc is almost isometric.
On the other hand, dyFc is uniformly bounded in B(yr, R) if the parameters ε and δ
are sufficiently small. To prove the lemma one computes the lengths of Fc(γ) where γ
is a minimising geodesic in B(yg, R) whose intersection with Yα1 is large.

Fix some R > 0. We define the following constants :

If d > 0,

c1(n, d) = sup
0<s/2<r<s<d

volHn(∂BHn(s))

volHn(∂BHn(r))
.

If τ > 0, R > 0,
c2(n, τ, R) = c1(n, 2R)(2τvolHn(BHn(τ)).

If ε > 0, δ > 0,

θ(ε, δ) = 2α2
3(ε, δ) volg0(X) + 2(4n+ 2

√
n+ 1)α1(ε, δ)volg0(X).

Clearly, θ(ε, δ)→0 as ε, δ→0.

Let τ(ε, δ, R) > 0 be the function defined by

volHn(τ)τ = θ(ε, δ)
2c1(n, 2R) volHn(1 +R + 1)2

v2
n

.

Again we easily see that, τ(ε, δ, R)→0 as ε,δ→0. One defines ε2(R) > 0 and δ2(R) > 0
such that ε2(R) ≤ ε(2R), δ2(R) < δ(2R) and if 0 < ε ≤ ε(R) and 0 < δ < δ(R) then
τ(ε, δ, R) << 1.

Finally, one defines κ(ε, δ, R) = max(2
√
n
√
τ , 8

√
τ).

There are two cases.

Case i) let y1, y2 in Bg(yg, R) such that d(y1, y2) ≤
√
τ . Using (46), if 0 < ε < ε(2R),

0 < δ < δ(2R) one has

d(Fc(y1), Fc(y2)) ≤ 2
√
n
√
τ ≤ κ. (59)

Case ii) : let y1, y2 in Bg(yg, R) such that d(y1, y2) ≥
√
τ . We use [Col] proposition

2.11 with the function
e(y) = sup

u∈UyY
(‖dyFc.u‖ − ‖u‖)2 .

Let us define A1 = Bg(y1, τ), A2 = Bg(y2, τ) and W = Bg(yg, 2R). For any z1 ∈ A1

and any unit vector v1 ∈ Tz1Y , the measure |I(z1, v1)| of

I(z1, v1) = {t | γ(t) ∈ A2, γ|[0,t] is minimal , γ′(0) = v1}
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is bounded by 2τ . Thus

D(A1, A2) := sup
z1,v1

|I(z1, v1)| ≤ 2τ.

Similarly, D(A2, A1) ≤ 2τ . For any z1 ∈ A1 and z2 ∈ A2, let γz1z2 be a minimizing
geodesic from z1 to z2. Clearly, γ ⊂ B(yg, 2R). Then by [Col] proposition 2.11 we have

∫

A1×A2

∫ d(z1,z2)

0

e(γz1,z2)(s) ds ≤ c1(n, 2R) (D(A1, A2) vol(A1) +D(A2, A1) vol(A2))

×
∫

W

e(y) dvg(y).

By Bishop’s theorem, for i = 1,2 we have

volg(Ai) ≤ volHn(BHn(τ)),

and thus

c1(n, 2R) (D(A1, A2) vol(A1) +D(A2, A1) vol(A2)) ≤ c2(n, τ, R).

We then have, using (35) on W ∩ Yα1 and (46) on W − Yα1 ,

∫

A1×A2

∫ d(z1,z2)

0

e(γz1,z2)(s) ds ≤ c2(n, τ, R)

(

∫

W∩Yα1

e(y) dvg(y) +

∫

W−Yα1

e(y) dvg(y)

)

≤ c2(n, τ, R)
(

α2
3. volg(Y ) + (4n+ 2

√
n+ 1) volg(Y − Yα1)

)

≤ c2(n, τ, R)θ(ε, δ). (60)

Now, if we denote γ = γz1z2 , we have

|ℓ(Fc ◦ γ) − ℓ(γ)| =

∣

∣

∣

∣

∣

∫ d(z1,z2)

0

‖dγ(s)Fc(γ̇)‖ − ‖γ̇‖ ds
∣

∣

∣

∣

∣

≤
∫ d(z1,z2)

0

sup
u∈TyY

∣

∣‖dγ(s)Fc(u)‖ − ‖u‖
∣

∣ ds.

Using Cauchy-Schwarz inequality we have

|ℓ(Fc ◦ γ) − ℓ(γ)|2
d(z1, z2)

≤

(

∫ d(z1,z2)

0
supu

∣

∣‖dγ(s)Fc(u)‖ − ‖u‖
∣

∣ ds
)2

d(z1, z2)

≤
∫ d(z1,z2)

0

e(γ(s)) ds.

Integrating on A1 ×A2, we deduce from (60) that

∫

A1×A2

|ℓ(Fc ◦ γz1z2) − ℓ(γz1z2)|2
d(z1, z2)

dvg(z1)dvg(z2) ≤ c2(n, τ, R)θ(ε, δ) . (61)
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By (9), for i = 1,2 one has

volg(Ai) ≥ vn
volHn(BHn(τ))

volHn(BHn(1 + R + τ))
:= v0(τ, R) > 0.

Thus

c2(n, τ, R)θ(ε, δ) ≤ 1

v0(τ, R)2

∫

A1×A2

c2(n, τ, R)θ(ε, δ) dvg(z1)dvg(z2).

We then have
∫

A1×A2

|ℓ(Fc ◦ γz1z2) − ℓ(γz1z2)|2
d(z1, z2)

≤
∫

A1×A2

c2(n, τ, R)θ(ε, δ)

v0(τ, R)2
. (62)

Hence there exists z1 ∈ A1, z2 ∈ A2 such that

|ℓ(Fc ◦ γz1z2) − ℓ(γz1z2)|2 ≤ d(z1, z2)
c2(n, τ, R)θ(ε, δ)

v0(τ, R)2
.

One can check that

c2(n, τ, R)θ(ε, δ)

v0(τ, R)2
≤ θ(ε, δ)

2c1(n, 2R) volHn(1 +R + 1)2

v2
n volHn(τ)

τ ≤ τ 2.

Now one has
|ℓ(Fc ◦ γz1z2) − ℓ(γz1z2)|2 ≤ d(z1, z2)τ

2,

thus
d(Fc(z1), Fc(z2)) ≤ ℓ(Fc ◦ γz1z2) ≤ d(z1z2) + τd(z1, z2)

1/2.

As d(yi, zi) < τ and d(y1, y2) ≥
√
τ , we have

d(z1, z2) ≤ d(y1, y2) + 2τ ≤ d(y1, y2)(1 + 2
√
τ).

On the other hand, as τ << 1 we have

d(z1, z2) ≥ d(y1, y2) − 2τ ≥
√
τ

2
.

We then have

d(Fc(y1), Fc(y2)) ≤ d(Fc(y1), Fc(z1)) + d(Fc(z1), Fc(z2)) + d(Fc(z2), Fc(y2)) (63)

≤ 2
√
nτ + d(z1, z2) + τ.d(z1, z2)

1/2 + 2
√
nτ (64)

≤ 4
√
nτ + d(y1, y2)

d(z1, z2)

d(y1, y2)
(1 + τ.d(z1, z2)

−1/2) (65)

≤ 4
√
nτ + d(y1, y2)(1 + 2

√
τ )(1 +

√
2τ 3/4) (66)

≤ 4
√
nτ + d(y1, y2)(1 + 8

√
τ ) . (67)

Finally, we get
d(Fc(y1), Fc(y2)) ≤ κ+ (1 + κ)d(y1, y2) , (68)

in case ii).
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3 A limit map on the limit space

In this section, we consider a sequence (Yk, gk)k∈N of Riemannian compact n-manifolds
satisfying the curvature assumption (1) and the following condition: we suppose that
there exists an hyperbolic compact n-manifold (X, g0), degree one maps fk : Yk → X
and a sequence εK→0 such that

volgk(Yk)→ volg0(X) , (69)

as k → +∞. Moreover, for every k ∈ N, there exists ygk ∈ Yk satisfying the local
volume property (6).

We prove that (Yk, gk, ygk) sub-converges in the pointed Gromov-Haudorff topology
to a limit space (Y∞, d∞, z∞). Moreover, there exists a sequence of natural maps
Fck : (Yk, gk) → (X, g0), with suitably chosed parameters, which sub-converges to a
”natural map” F : Y∞ −→ X.

Let us define the Gromov-Hausdorff topology. Recall that for two subsets A,B of a
metric space Z the Hausdorff distance between A and B is

dH
Z(A,B) = inf{ε > 0 | B ⊂ Vε(A) and A ⊂ Vε(B)} ∈ R ∪ {∞}.

It is a distance on compact subsets of Z.

Definition 3.1. Let X1, X2 be two metric spaces, then the Gromov-Hausdorff distance
dGH(X1, X2) ∈ R ∪∞ is the infimum of the numbers

dH
Z(f1(X1), f2(X2)))

for all metric spaces Z and all isometric imbeddings fi : Xi → Z.

It is a distance on the space of isometry classes of compact metric spaces. One says
that a sequence (Xi)i∈N of metric spaces converges in the Gromov-Hausdorff topology
to a metric space X∞ if dGH(Xi, X∞)) → 0 as i→ ∞. Let xi ∈ Xi, x∞ ∈ X∞, one says
that the sequence (Xi, xi)i∈N converges to (X∞, x∞) in the pointed Gromov-Hausdorff
topology if for any R > 0, dGH(BXi(xi, R), BX∞

(x∞, R)) → 0 as i → +∞ for some
sequence (εi) tending to 0 (In fact this definition holds only for length spaces, which
will be sufficient in our situation).

To deal with the Gromov-Hausdorff distance between X1 and X2, it is convenient to
avoid the third space Z by using ε-approximations between X1 and X2 .

Definition 3.2. Given two metric spaces X1,X2 and ε > 0, an ε-approximation (or
ε-isometry) from X1 to X2 is a map f : X1 → X2 such that

1. for any x, x′ ∈ X1, |dX2(f(x), f(x′) − dX1(x, x
′)| < ε.

2. the ε-neighbourhood of f(X1) is equal to X2.
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Then one can show (see [BBI] corollary 7.3.28) that dGH(X1, X2) < ε if and only if
there exists a 2ε-approximation from X1 to X2.

Our goal is to prove the :

Proposition 3.3. Up to extraction and renumbering, the sequence (Yk, gk, yk) satisfies
the following.

1. There exists a complete pointed length space (Y∞, d∞, y∞) such that (Yk, gk, yk)
converges in the pointed Gromov-Hausdorff topology to (Y∞, d∞, y∞). Moreover,
(Y∞, d∞) has Hausdorff dimension equal to n.

2. there exists sequences of positive numbers (εk), (δk) tending to 0, (ck) such that
h(gk) < ck < h(gk) + δk, (Rk) tending to +∞ such that εk ≤ ε(Rk) and
δk ≤ δ(Rk), and αk-approximations ψk : Bd∞(y∞, Rk)→Bgk(ygk, Rk) such that
the following holds. Let

Fck : (Yk, gk)→(X, g0)

be the natural map as defined in section 2. Then Fck ◦ψk converges uniformly on
compact sets to a map

F : Y∞ −→ X,

which is 1-lipschitz.

Proof of (1) and some properties of the limit

Under the curvature assumption (1) and the local volume assumption (9), the point (1)
is a straightforward application of Gromov & Cheeger-Colding compactness theorem.
See ([Ch-Co]). Let us make precise some features of the convergence and of the limit
space.

The continuity of the volume under the (pointed) Gromov-Hausdorff convergence is
crucial for our purposes. For ℓ > 0, note Hℓ the ℓ-dimensional Hausdorff measure of a
metric space (see [BBI] definition 1.7.7).

Theorem 3.4 ([Ch-Co] 5.9). Let pi ∈ Yi and p∞ ∈ Y∞ their limit, and let R > 0.
Then

lim
i→+∞

volgi(B(pi, R)) = Hn(B(p∞, R)) . (70)

In particular, Y∞ satisfies the Bishop-Gromov inequalities (7) and the Bishop inequal-
ity. By definition, a tangent cone at p ∈ Y∞ is a complete pointed Gromov-Hausdorff
limit, {Y∞,p, d∞, p∞} of a sequence of rescaled space, {(Y∞, r−1

i d, p)}, where {ri} is a
positive sequence such that ri→0. By [GLP] theorem 5.2, every such sequence has a
convergent subsequence, but the limit might depend on the choice of the subsequence.
The limit is called a tangent cone because (Y∞,p, λd∞) is isometric to (Y∞,p, d∞) for
any λ > 0.
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Definition 3.5. The regular set R consists of those points, p ∈ Y∞, such that every
tangent cone at y is isometric to Rn. The complementary S = Y∞−R is the singular

set.

Let Bn
0 (1) ⊂ Rn be the unit ball.

Definition 3.6. The ε-regular set Rε consists of those points, p ∈ Y∞, such that every
tangent cone, (Y∞,p, p∞), satisfies dGH(B(p∞, 1), Bn

0 (1)) < ε. A point in Y∞−Rε = Sε
is called ε-singular,

Theorem 3.7 ([Ch-Co] 5.14). There exists εn > 0 such that for ε ≤ εn,
◦
Rε has a

natural smooth manifold structure. Moreover, for this parametrization, the metric on
◦
Rε is bi-hölder equivalent to a smooth Riemannian metric. The exponent α(ε) in this
bi-hölder equivalence satisfies α(ε)→1 as ε→0.

Theorem 3.8 ([Ch-Co]6.1).
Hn−2(S) = 0 (71)

Remark 3.9. Clearly, R = ∩ε>0Rε. The sets Rε, R are not necessarily open. How-

ever, for any ε > 0, there is some ε > δ > 0 such that Rδ ⊂
◦
Rε (see Appendix A.1.5 in

[Ch-Co]). In [Ch-Co2] section 3, it is proved that
◦
Rε is path connected. This important

fact will be used in the last part of this text.

Let us study the density of this hausdorff measure. A consequence of Bishop’s inequal-
ity is that

lim sup
r→0

Hn(B(p, r)

volRn(r)
≤ 1.

Definition 3.10. the density at p of Y∞ is

θ(p) := lim inf
r→0

Hn(B(p, r))

volRn(r)
. (72)

A consequence of [Ch-Co]A.1.5 is the existence of some positive function τ(ε), with
τ(ε)→0 as ε→0, such that for every p ∈ Rε,

θ(p) > 1 − τ(ε). (73)

Conversely, there exists a positive function ε(τ), such that ε(τ)→0 as τ→0 and such
that

θ(p) ≥ 1 − τ =⇒ p ∈ Rε(τ) . (74)

Remark 3.11. A point p is called regular if and only if θ(p) = 1. From now on, we
consider ε ≤ ε0, where ε0 ≤ εn is sufficiently small so that τ(ε0) ≤ 1/2, the density is
thus > 1/2 on Rε.
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Existence of the natural map at the limit

For every k ∈ N and h(gk) < c, there exists a natural map Fc : (Yk, gk) → (X, g0), as
seen in section 2. To define a good sequence one argues as follows. Given m ∈ N∗,
one chooses positive numbers εm ≤ ε2(m) and δm ≤ δ2(m) sufficiently small such that
κ(εm, δm, m) ≤ 1

m
. One defines

αm = max(α1(εm, δm), α2(εm, δm), α3(εm, δm)κ(εm, δm, m)).

We check that αm→0 as m→ + ∞. By the hypothesis (69), there exists k1(m) ∈ N
such that for any k ≥ k1(m), volgk(Yk) ≤ (1 + εm)volg0(X). As Bgk(ygk, m) tends to
B∞(y∞, m), there exists k2(m) ∈ N such that for any k ≥ k2(m), there exists αm-
approximations from B∞(y∞, m) to Bgk(ygk , m). Define k(m) = max(k1(m), k2(m))
and let ψm : B∞(y∞, m)−→Bgk(yk(m), m) be an αm-approximation. One can suppose
that ψm(y∞) = ygk(m)

. Fix cm ∈]h(gk), h(gk) + δm[ and consider

Fcm ◦ ψm : B∞(y∞, m)−→X.

The lemma (2.13) applies to Fcm on Bgk(m)
(ygk(m)

, m). Thus for any p, q ∈ B∞(y∞, m),

dg0(Fcm ◦ ψm(p), Fcm ◦ ψm(q)) ≤ (1 + αm)dgk(ψm(p), ψm(q)) + αm

≤ (1 + αm)d∞(p, q) + (1 + αm)αm + αm.

Applying the same reasoning as in Ascoli’s theorem, one can show that for any compact
K ⊂ Y∞, there exists a convergent sub-sequence of Fcm towards a map FK : K → X.
If one uses an exhaustion of Y∞ by compacts sets and a standard diagonal process, one
can extract a sub-sequence of Fcψ(m)

◦ ψφm which converges uniformly on any compact
set to a map F : Y∞→X. It is easy to see that the map h is 1-lipschitz.

Then one renumbers the sub-sequences Yk(φ(m)), ψφ(m) and Fcφ(m)
such that for any

m ∈ N∗, volgm(Ym) ≤ (1 + εm) volg0(X), h(gm) < cm < cm + δm, and the inequalities
of the lemmas (2.5), (2.11) hold with α1, α2, α3 replaced by αm and those of lemmas
(2.12), (2.13) hold on B(ym, m) ⊂ Ym with κ replaced by αm. For simplicity, the map
Fcm will be denoted Fm.

4 The limit map F : Y∞−→X is isometric

We prove first that F preserves the volume.

Lemma 4.1. Let A ⊂ Y∞ a measurable subset. Then,

volg0(F (A)) = Hn(A) . (75)

Proof. As F is 1-lipschitz, it decreases the Hausdorff measure (see [Mor]3.5). Thus,
it suffices to prove that for every B∞(p, r) ⊂ Y∞, volg0(F (B∞(p, r))) ≥ Hn(B∞(p, r)).

By construction, F (B∞(p, r)) is the Hausdorff limit of Fk ◦ ψk(B∞(p, r)).
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We first show that this is the Hausdorff limit of Fk(Bgk(ψk(p), r)). Let x ∈ F (B∞(p, r)).
There exists xk ∈ F (B∞(p, r)) such that xk→x. Let pk ∈ B∞(p, r) such that F (pk) =
xk. By definition of the αk-approximation, one has dgk(ψk(pk), ψk(p)) < r+ αk. There
exists zk ∈ Bgk(ψk(p), r) such that dgk(ψk(pk), zk) < αk (for example zk may be on the
segment [ψk(pk), ψk(p)]). Note that d∞(pk, y∞) ≤ r + d∞(p, y∞) and remember that
ψk(y∞) = ygk. Thus ψk(pk) remains at bounded distance from ygk . Then, applying the
inequality of lemma (2.13) we have

dg0(Fk(zk), Fk(ψk(pk)) ≤ (1 + αk)dgk(zk, ψk(pk)) + αk

≤ (1 + αk)αk + αk

−→
k→+∞

0.

On the other hand, as Fk converges uniformly to F on compact sets, Fk(ψk(pk) has the
same limit as F (pk) = xk, thus Fk(ψk(pk)→x. From the inequality above one deduces
that Fk(zk)→x thus x ∈ limk→∞ Fk(Bgk(ψk(p), r)). One has proved that F (B∞(p, r)) ⊂
limk→∞ Fk(Bgk(ψk(p), r)). To prove the other inclusion one argues in the same way.

Given x ∈ limk→∞ Fk(Bgk(ψk(p), r)), there exists xk ∈ Fk(Bgk(ψk(p), r)) such that
xk→x, thus one can write xk = Fk(zk) where zk ∈ Bgk(ψk(p), r). As ψk is an αk-
approximation from B∞(y∞, k) to B(ygk, k), one has Bgk(ψk(p), r) ⊂ Uαkψk(B∞(p, r +
αk)) for large k. Thus there exists qk ∈ B∞(p, r+αk) such that dgk(zk, ψk(qk)) < r+αk.
As Y∞ is a length space, there exists q′k ∈ B∞(p, r) such that d∞(q′k, qk) < αk. Then
dgk(ψk(q

′
k), zk) ≤ dgk(ψk(q

′
k), ψk(qk)) + dgk(ψk(qk), zk)) < 3αk. Thus

dg0(Fk ◦ ψk(q′k), xk) = dg0(Fk ◦ ψk(q′k), Fk(zk)) ≤ (1 + αk)dgk(ψk(q
′
k), zk) + αk

≤ (1 + αk)3αk + αk→0.

Hence dg0(Fk ◦ ψk(q′k), x)→0. As Fk ◦ ψk converges uniformly to F on compact sets,

one has dg0(F (q′k), x)→0 thus x ∈ F (B∞(p, r)).

It then suffices to prove that limk→+∞ volg0(Fk(Bgk(ψk(p), r)) ≥ Hn(B∞(p, r)). Re-
member that N(Fk|x) is the number of preimages of x by Fk. We denote by Xk,1 the
set of x ∈ X such that N(Fk|x) = 1. The construction of the sequence (Fk) and the
lemma 2.10 implies that volg0(Xk,1) ≥ (1 − αk) volg0(X). Moreover,

∫

X−Xk,1
N(Fk|x)dvg0(x) ≤ αk volg0(X) . (76)

We denote by Yk,αk the set of y ∈ Yk such that

1 − αk ≤ | JacFk(y)| ≤ 1 + αk. (77)
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Then lemma 2.9 implies that volgk(Yk,1) ≥ (1 − αk) volgk(Yk). We then have

vol(Fk(Bgk(ψk(p), r)) =

∫

Fk(Bgk (ψk(p),r))

dvg0

=

∫

Fk(Bgk (ψk(p),r))∩Xk,1
N(Fk|x)dvg0(x) + volg0(Fk(Bgk(ψk(p), r)) −Xk,1)

≥
∫

Bgk (ψk(p),r)∩F−1
k

(Xk,1)∩Yk,αk
| JacFk(y)|dvg(y)

≥ (1 − αk) volgk
(

Bgk(ψk(p), r) ∩ F−1
k (Xk,1) ∩ Yk,αk

)

. (78)

On the other hand, using (77) and (76) we have

vol(F−1
k (X −Xk,1) ∩ Yk,αk) ≤

∫

F−1
k

(X−Xk,1)∩Yk,αk

| JacFk|
1 − αk

dvg

≤ 1

1 − αk

∫

X−Xk,1
N(Fk|x)dvg0(x)

≤ αk
1 − αk

volg0(X),

thus

volgk(Bgk(ψk(p), r) ∩ F−1
k (Xk,1) ∩ Yk,αk) = volgk(Bgk(ψk(p), r) ∩ Yk,αk)

− volgk(Bgk(ψk(p), r) ∩ F−1
k (X −Xk,1) ∩ Yk,αk)

≥ volgk(Bgk(ψk(p), r)) − αk volgk(Yk) −
αk

1 − αk
volg0(X).

By putting this inequality in (78) one gets

volg0(Fk(Bgk(ψk(p), r)) ≥ (1−αk) volgk(Bgk(ψk(p), r))−(1−αk)αk volgk(Yk)−αk volg0(X).

As Bgk(ψk(p), r) tends to B∞(p, r) in the Gromov-Hausdorff topology, theorem 3.4
implies that limk→∞ volgk(Bgk(ψk(p), r)) = Hn(B∞(p, r)), hence

lim
k→∞

volg0(Fk(Bgk(ψk(p), r)) ≥ Hn(B∞(p, r)),

which proves the lemma.

We now prove that F is injective on the set of points where the density is larger than
1/2.

Lemma 4.2. The map F is injective on Rε.

Proof. Suppose there are p1,p2 ∈ Rε such that F (p1) = F (p2). As F is 1-lipschitz, we
have for every r > 0,

F (B∞(p1, r) ∪B∞(p2, r)) ⊂ Bg0(F (p1), r) .
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By the previous lemma,

Hn (B∞(p1, r) ∪ B∞(p2, r)) = volg0 (F (B∞(p1, r) ∪B∞(p2, r))) ≤ volg0 (B∞(F (p1), r)) .
(79)

For r < d(p1,p2)
2

the balls B∞(p1, r) and B∞(p2, r) are disjoint. Hence, dividing (79) by
volRn(r), we get

Hn(B∞(p1, r))

volRn(r)
+

Hn(B∞(p2, r))

volRn(r)
≤ volg0 (Bg0(F (p1), r))

volRn(r)
.

By taking the liminf as r→0, we have

θ(p1) + θ(p2) ≤ θ(F (p1)) = 1,

which is a contradiction, since θ ≥ 1/2 on Rε if ε < ε0 (see remark 3.11).

Lemma 4.3. The map F is open on
◦
Rε.

Proof. Let p ∈
◦
Rε. We have to prove that there exists η > 0 such that Bg0(F (p), η) ⊂

F (
◦
Rε). There exists r > 0 such that B∞(p, 2r) ⊂

◦
Rε. Note that B := B∞(p, r). By

the previous lemma, F (p) /∈ F (∂B). Thus, by compactness of ∂B and continuity of F ,
there exists η > 0 such that dg0(F (p), F (∂B)) > η. One could used the theory of local
degree but unfortunately, we do not know if (Y∞, y∞) is locally lipschitz equivalent to
Rn. Let R > 2d(z, z0) be a fixed radius such that ψk(B∞(p, 2r)) ⊂ Bgk(ygk, R) for
all large k. Let zk = ψk(p) and Bk = B(zk, r) ⊂ B(yk, R). Consider all integer k
large enough such that dH(Fk(∂Bk), F (∂B)) ≤ η

10
. Let C (resp. Ck) be the connected

component of X−F (∂B) (resp. X−Fk(∂Bk)), which contains F (p), (resp Fk(zk)). By
the corollary 4.1.26 of [Fed], deg(Fk|Bk) is constant on Ck, where, for a subset A ⊂ Yk,

deg(Fk|A)(x) =
∑

y∈F−1
k

(x)∩A

sign JacFk(y).

One sees that deg(Fk|Bk) = 1 on Ck as follows. Denote again by Xk,1 ⊂ X the set of
x ∈ X such that N(Fk|x) = 1, that is x has one preimage by Fk. By the lemma 2.10,
volg0(Xk,1) ≥ (1−αk) volg0(X). Clearly, the intersection of Xk,1 with Ck has a positive
measure for k large enough; indeed, the volume of B(Fk(zk),

η
10

) ⊂ Ck is bounded below
by (9) and vol(B(Fk(zk),

η
10

) − Xk,1)−→0 as k→ + ∞. Now, by lemma 2.12 one has
Fk(B(zk,

η
20

√
n
)) ⊂ B(Fk(zk),

η
10

) for large k, and the proof of lemma 4.1 shows that
the volume of the image is bounded below. It thus intersects Xk,1 on a set of positive
measure for k large enough. This proves that deg(Fk|Bk) = 1 on Ck. In particular, any
point in B(F (p), η

10
) has a preimage by Fk in Bk. By taking the limit k→+∞, it gives

B(F (p), η
10

) ⊂ F (B(p, r)) ⊂ F (B(p, 2r)) ⊂ F (
◦
Rε).

Lemma 4.4. There exists c(ε) > 0 such that F :
◦
Rε−→F (

◦
Rε) ⊂ X is locally (1+c(ε))-

bilipschitz. Moreover, c(ε)→0 as ε→0.
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Proof. The idea is the following: we already know that F is 1-lipschitz and volume
preserving. In particular, a ball B∞(p, r) ⊂ Y∞ is sent into a ball Bg0(F (p), r) ⊂ X. If
the ball in Y∞ is in the almost regular part and has a small radius, its volume is close
to the Euclidean one, as is the volume of the hyperbolic ball. One can then estimate
how much the image of B∞(p, r) is close to fill g0(F (p), r). If one considers the images
of two disjoint balls, one can estimate how the hyperbolic balls overlapp, and thus the
distance between their centers.

Let p ∈
◦
Rε. Let r(p, ε) > 0 be a radius such that for every 0 < r ≤ r(p, ε),

Hn(B∞(p, r))

volRn(r)
≥ 1 − τ(ε),

and let rε = min(ε, r(z, ε)). One can suppose that rε is smaller than the injectivity
radius of X. Let 0 < r < r2

ε be such that B∞(p, r) ⊂ Rε. For every q ∈ B∞(p, r),
B(p, rε − r2

ε) ⊂ B∞(q, rε). Thus,

Hn(B∞(q, rε)) ≥ Hn(B∞(p, rε − r2
ε)) (80)

≥ (1 − τ(ε)) volRn(rε − r2
ε) (81)

≥ (1 − τ(ε))(1 − rε)
n volRn(rε) . (82)

Suppose that there exists p1,p2 ∈ B(p, r), p1 6= p2 and a number 0 < ρ < 1 such that

dg0(F (p1), F (p2)) ≤ ρd∞(p1, p2).

Define r′ = d(p1,p2)
2

> 0. By (70) and the Bishop-Gromov inequality (7), for i = 1, 2
one has

Hn(B∞(pi, r
′) ≥ Hn(B(pi, rε))

volHn(r′)

volHn(rε)
.

Thus, with lemma 4.1 and (82) we have

volg0 (F (B(p1, r
′) ∪ B(p2, r

′))) = Hn(B(p1, r
′)) + Hn(B(p2, r

′)) (83)

≥ 2(1 − τ(ε))(1 − rε)
n volHn(r′)

volHn(rε)
volRn(rε) (84)

≥ 2(1 − τ(ε))(1 − rε)
nvolRn(ε)

volHn(ε)
volRn(r′) (85)

≤ 2ϑ(ε) volRn(r′) (86)

where ϑ(ε) = (1 − τ(ε))(1 − ε)n volRn (ε)
volHn (ε)

→1 as ε→0.

On the other hand,

F (B(p1, r
′) ∪ B(p2, r

′)) ⊂ B(F (p1), r
′) ∪B(F (p2), r

′),

Hence

volg0 (F (B(p1, r
′) ∪B(p2, r

′))) ≤ volg0(B(F (p1), r
′)) + volg0(B(F (p2), r

′))

− volg0(B(F (p1), r
′) ∩B(F (p2), r

′)).
(87)

25



For any x ∈ X and any s > 0 lower than the injectivity radius of X one has
volg0(B(x, s)) = volHn(s). Let x be the middle point of the segment [F (p1)F (p2)].
Then

B(x, r′(1 − ρ)) ⊂ B(F (p1), r
′) ∩ B(F (p2), r

′).

Indeed, if x′ ∈ B(x, r′(1−ρ)) then d(x′, F (pi)) ≤ d(x′, x)+d(x, F (pi)) < r′(1−ρ)+ρr′ =
r′ for i = 1, 2. Thus (87) gives

volg0 (F (B(p1, r
′) ∪B(p2, r

′))) ≤ 2 volHn(r′) − volHn(r′(1 − ρ)) (88)

= 2 volRn(r′)
volHn(r′)

volRn(r′)
− (1 − ρ)n volRn(r′) (89)

≤ 2 volRn(r′)
volHn(ε)

volRn(ε)
− (1 − ρ)n volRn(r′) (90)

=

(

2
volHn(ε)

volRn(ε)
− (1 − ρ)n

)

volRn(r′). (91)

From (86) and (91), we find

(1 − ρ)n ≤ 2

(

volHn(ε)

volRn(ε)
− ϑ(ε)

)

→0,

therefore

ρ ≥ 1 − 21/n

(

volHn(ε)

volRn(ε)
− ϑ(ε)

)1/n

:= 1 − c(ε)→1,

as ε→0. One has proved that inside the ball B(p, r),

dg0(F (p1), F (p2)) ≥ (1 − c(ε))d∞(p1, p2),

and the proof of the lemma follows.

Remark 4.5. On the connected (see remark 3.9) open set F (
◦
Rε) ⊂ X, the metric

g0 induces a distance ρε. The above lemma shows that F : (
◦
Rε, d∞)−→(F (

◦
Rε), ρε) is

a (1 + c(ε))-bilipschitz homeomorphism. If one can prove that ρε = dg0, one deduces
that Rε has bounded diameter. One then concludes that dGH(Yk, Y∞)→0 and that F :
Y∞→X is isometric.

More precisely, we prove the

Proposition 4.6. 1. for any x1, x2 ∈ F (
◦
Rε), one has dg0(x1, x2) = ρε(x1, x2).

2. One has F (
◦
Rε) = X.

3. F : (Y∞, d∞)−→(X, dg0) is isometric.
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Proof. let x1,x2 ∈ F (
◦
Rε). Without loss of generality, one can suppose that x2 is not in

the image of the cut-locus of x1. Clearly, ρε(x1, x2) ≥ dg0(x1, x2). Let γ : [0, 1]−→X be

a g0-minimal geodesic from x1 to x2. It is not clear that γ is in F (
◦
Rε) we then prove

that there exist paths in F (
◦
Rε) arbitrarily close to γ. Let r > 0 be a radius such that

Bg0(x1, r) ⊂ F (
◦
Rε) and Bg0(x2, r) ⊂ F (

◦
Rε). We consider geodesics with the origin x1

and the extremity in B(x2, δ), for a small δ > 0. More precisely, let u = γ̇(0), then
for any v ∈ Ux1X such that and u ⊥ v, one defines γs,v(t) = expx1(t(u+ s.v)d(x1, x2)).
Clearly there exists r(δ) > 0 such that γs,v(1) ∈ B(x2, δ) if |s| ≤ r(δ) and one can
suppose that r(δ)→0 as δ→0.

We claim that for every δ > 0, there exists such γs,v which is imbedded in F (
◦
Rε).

We begin to find such γs,v disjoint from F (S), where S is the singular set of Y∞ defined
in 3.5. The idea is that if any γs,v hits F (S) at least in one point, then the Hausdorff
dimension of F (S) will be larger than n − 1, which is not possible. One considers a
truncated cone Ur,δ defined as follows. Let

Γ :]0, r(δ)] × (Ux1X ∩ u⊥) × [0, 1] → X

be defined by Γ(s, v, t) = γs,v(t). If δ is sufficiently small, Γ is an embedding. one defines
Ur,δ = Γ(]0, r(δ)]) × (Ux1X ∩ u⊥) × [0, 1]). One denotes by Ur,δ(1/2) the hypersurface
in Ur,δ defined as Γ(]0, r(δ)]) × (Ux1X ∩ u⊥) × {1/2}).

r

δ

Ur,δ

x1

x2Ur,δ(1/2)
γs,v

Let P : Ur,δ→Ur,δ(1/2) be the projection along geodesics defined by P (γs,v(t)) =
γs,v(1/2). Clearly, there exists a constant C > 0 such that P is C-lipschitz from
Ur,δ to X. In particular, P decreases the Hausdorff dimension, thus

dimH(P (Ur,δ ∩ F (S))) ≤ dimH(Uδ ∩ F (S))

≤ dimH(S)

≤ n− 2

< dimUr,δ(1/2) = n− 1.

Hence there exists x ∈ Ur,δ(1/2) such that x /∈ Π(F (S)). It implies that the geodesic
γs,v such that x = γs,v(1/2) does not intersect F (S).

Now we prove that γs,v is imbedded in F (
◦
Rε). Let t0 ∈ [0, 1] be maximal such that

γs,v([0, t0[) ⊂ F (
◦
Rε). By lemma 4.4, the path β = F−1◦γs,v is well-defined on [0, t0[ and
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has a length bounded by (1+c(ε))d(x1, x2). Thus there exists a limit p = limt→t0 β(t) ∈
Y∞. As γs,v(t0) /∈ F (S), p /∈ S then p ∈ R = ∩εRε = ∩ε>0

◦
Rε and t0 = 1.

Hence

ρε(x1, x2) ≤ ℓ(γs,v) + d0(γs,v(1), x2)

≤
√

1 + r2(δ)d0(x1, x2) + δ

As δ was arbitrary, this gives ρε(x1, x2) ≤ d0(x1, x2).

The second assertion is proved in a similar way. Suppose there is a ball B(x, r) ⊂
X − F (

◦
Rε) and consider a geodesic γ from a point x1 inside F (

◦
Rε) to x. Then we

find another geodesic from x1, close to γ, disjoint from F (S) and with extremity in

X − F (
◦
Rε). Arguing as above, we find a contradiction.

Now 3) is straightforward. Using the density of
◦
Rε in Y∞ and F (

◦
Rε) in X, we find that

F : (Y∞, d∞)−→(X, d0) is a (1 + c(ε))-bilipschitz homeomorphism for any 0 < ε < ε0

thus is isometric.

End of Proof of theorem 1.1. Proposition 4.6 implies that the diameter of (Y, gk) re-
mains bounded. Thus, dGH((Y, gk), (Y∞, d∞))→0. As (Y∞, d∞) is isometric to (X; g0),
one deduces that dGH((Y, gk), (X, g0))→0 as k→∞. By theorem A.1.12 of [Ch-Co], Y
is diffeomorphic to X. The fact that f is homotopic to a diffeomorphism is classic for
hyperbolic manifolds.
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