Ricci curvature and rigidity - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2008

Ricci curvature and rigidity

Laurent Bessières
  • Fonction : Auteur
  • PersonId : 849281
Gérard Besson
Sylvain Gallot
  • Fonction : Auteur

Résumé

One proves the following gap theorem, involving the volume and the Ricci curvature : For any integer $n ≥ 3$ and $d > 0$, there exists $\epsilon(n, d) > 0 such that the following holds. Let $(X, g_0 )$ be a $n$-dimensional hyperbolic compact manifold with diameter $≤ d$ and let $Y$ be a compact manifold which admits a continuous map $f : Y \rightarrow X$ of degree one. Then Y has a metric $g$ such that $Ric_g \geq −(n − 1)g$ and $vol_g (Y ) \leq (1 + \epsilon) vol_{g_0} (X )$ if and only if $f$ is homotopic to a diffeomorphism.
Fichier principal
Vignette du fichier
BBCG.pdf (296.5 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00281855 , version 1 (25-05-2008)
hal-00281855 , version 2 (12-03-2010)
hal-00281855 , version 3 (13-02-2020)

Identifiants

Citer

Laurent Bessières, Gérard Besson, Gilles Courtois, Sylvain Gallot. Ricci curvature and rigidity. 2008. ⟨hal-00281855v1⟩
250 Consultations
204 Téléchargements

Altmetric

Partager

More