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L.S.P. Université Paul Sabatier, 118 Route de Narbonne, Toulouse, France

email: dupuis@math.ups-tlse.fr

Summary. We consider the problem of estimating the number of species of a biological

community located in a regionR divided in J quadrats. Recently, two approaches have been

developed which both take into account in a same modeling framework the detectability

and the occurence of species in the quadrats. One assumes that a list of species liable to be

present in this community is available. The other, developed by Dorazio and Royle (2005,

J.A.S.A. 100, 389-398) ignores the unsampled part of R (and thus also J), and models the

occurence of species in the sampled quadrats by independent Bernoulli outcomes. We show

that this independence assumption is not correct, and we propose a new approach which

models the occurence of species in the J quadrats and does not require the above list. We

develop our approach within a simple model which assumes that the species population is

homogeneous. We prove that this model is identifiable and a specific missing data structure

is exhibited. The Bayesian estimates of the species richness and related quantities, such

as the number of species located in some subregion of R, are obtained by implementing a

MCMC algorithm which uses a suitable partitioning of the missing data. We show that

the approach of Dorazio and Royle is valid only asymptotically (with respect to J), and

generates an error for finite J . A simulation study shows that this can be important when

species are spatially rare or hard to detect.

Keywords. Bayesian estimate; Biodiversity, Identifiability, Jeffreys prior, Missing data;

Quadrat sampling; Species richness.
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1. Introduction

The species richness of a community of animal or plants - that is the number of species

present within this community - is a basic and fundamental measure of its bio-diversity

(Huston, 1994). Estimating the species richness of a biological community located in some

specified region, called afterwards R, often relies on a quadrat sampling. The region R is

first divided into J quadrats and, then a random sample of T quadrats from J is taken.

Non parametric methods have been proposed for estimating the species richness (denoted

by S) when quadrat sampling is used, including the Jacknife and the boostrap estimates;

for a complete review see Bunge and Fitzpatrick (1993), and Chao (2005).

As far as parametric approaches are concerned, the use of closed capture-recapture

models was the most popular approach (eg Williams et al., 2001), until the paper of

Dorazio and Royle (2005) which has pointed out that these models were relevant only for

communities composed of species which are present (with probability one) in the quadrats.

Since this assumption is not tenable in most of biological communities, these authors have

thus proposed a new approach of which the main feature is to model the occurence and the

detection of species in the T sampled quadrats. However we consider that the modelling

developed in Dorazio and Royle (2005), as well as in the book of MacKenzie et al. (2006)

and in subsequent papers (eg Royle, Dorazio and Link, 2007), is debatable on three points.

First, the number of quadrats in which R has been divided - namely J in our notation -

plays no part in their approach, while it is expected that the estimation of S depend both

on T and J (eg Mingoti and Meeden, 1992). Second, Dorazio and Royle (2005) model the

occurence of species in the sampled quadrats, by T independent Bernoulli outcomes. We

show in this paper that this assumption of independence is not consistent with the fact

that their approach is conditional, which means that they model the occurence of species

effectively present in R. Third, their approach is not fully Bayesian but rather ad hoc:
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indeed, credible posterior intervals are provided for S, but no prior distribution is actually

put on S. Dupuis and Joachim (2003, 2006) have developed a Bayesian model with takes

into account both the detection of species in the T sampled quadrats and the occurence

of species in the J quadrats (not only in the T quadrats). Contrary to Dorazio and Royle

(2005), their approach is unconditional, in that it models the occurence of species liable

to be present in the region R. Moreover, it does not exhibit the limitation of the capture-

recapture approach (above mentioned); but it only applies to situations where a list L of

species liable to be present in the region R can be drawn up, and requires prior information

on the probabilities of presence of each species of L not detected, which consequently limits

the use of this approach.

In this paper, we build a statistical model which does not require the above list L,

while providing answers to the reservations formulated regarding the approach adopted

by Dorazio and Royle (2005). Furthermore, our modelling allows us to obtain easily the

Bayesian estimates of some quantities closely related to the species richness, such as the

number Sa of species present in any subregion Ra of R; see eg Chao (2000) for biological

motivation. We observe that Dorazio and Royle (2005) have tackled this question; but,

ignoring the unsampled part of R, theses authors have to limit themselves to subregions Ra

composed of sampled quadrats. Besides, we pay particular attention to the prior adopted

for the parameter of main interest, namely S. In particular, we provide a theoretical

argument for adopting the Jeffreys prior, which is usually adopted in the absence of prior

information - eg George and Robert (1992) or King and Brooks (2001) - but for which,

there is no theoretical motivation (at our knowledge), as already pointed out by Kass and

Wasserman (1996).

We focus on a simple model, called M0, which assumes that the species population is

homogeneous; it can be viewed as the correct version of the Dorazio and Royle’s model (in

3



its homogeneous version). We emphasize that the methodology developed in this paper

also applies to heterogeneous populations. (However, the heteregeneous case which requires

some specific and rather lengthy developments, is beyond the scope of this paper.) The

model M0, which includes a small number of parameters, is actually the suitable framework

to understand the extent to which the error entailed by the use of the Dorazio and Royle’s

model (instead of M0) is liable to affect the Bayesian estimation of S. However, the model

M0 exhibits some statistical difficulties which have to be overcome before undertaking this

analysis. They are due to the presence of randomly missing data: indeed, a species can

be both present in R and, for practical reasons, not have been detected (eg MacKenzie

et al., 2002). There are two types of statistical difficulties. First, obtaining the Bayesian

estimates of S and Sa involves computational difficulties. Second, some parameters can

be non identifiable (as it is often the case in missing data models). In our context, this is

effectively the case, if each sampled quadrat is visited only once; but we prove that all the

parameters are identifiable if repeated observations are made in sampled quadrats.

The paper is organized as follows. The protocol experimental and the missing data

structure are described in Section 2. Section 3 is devoted to the model M0. The modelling

of Dorazio and Royle is discussed in Section 4. We conclude in Section 5.

2. The experimental protocol and the missing data structure

2.1 The experimental protocol

The experimental protocol is standard (eg, Krebs, 1989; Dorazio et al., 2006). The

region R under investigation is divided into J quadrats of equal area, though these spatial

units may have different shapes. Note that they are also called sites in the literature. A

sample of T quadrats is then taken, and the sampled quadrats are numbered from 1 to

T . The draw is usually performed at random so as to have a sample representative of the

whole region R, but other alternatives are possible (eg MacKenzie et al., 2006). Finally,
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an experimenter visits K times each sampled quadrat and records the species detected in

each. As in Dorazio and Royle (2005), we assume that K ≥ 2. Detections are typically

based on visual or aural recognitions; we assume that species are correctly identified.

When K = 4 and T = 6, a possible record (or history) for a species s present in R

is: ys = (3 0 0 0 4 0). Such a record means that species s has been detected in quadrat

1 during three visits, and detected in quadrat 5 during each visit. Moreover, its presence

has not been detected in quadrat 2, 3, 4, 6.

The problem is to estimate the number S of species present in R, from the data formed

by the records of species whose the presence has been detected at least once. Sometimes,

all the J quadrats are explored (thus T = J). Although the methodology developed in

this paper focuses on the case J < T , we emphazise that it also applies to the case T = J ,

with straightforward changes.

In some studies, an experimental protocol which slightly differs from the one above

described is adopted. T quadrats of equal area, say A, are placed at random in the region

R; then, they are explored as above indicated (eg Mingoti and Meeden, 1992). Contrary

to the previous protocol, the region R is not beforehand divided in quadrats. The model

M0 also applies to this procotcol, provided the unsampled part of R can be divided (even

virtually) in quadrats of area A, which is generally the case, in practice.

2.2 A specific missing data structure.

To specify the missing data structure inherent in quadrat sampling data, we view the

record ys = (ysj; j = 1, . . . , T ) as the result of two processes: one is related to the presence-

absence process, and the other is related to the detection process. Such a formalism also

allows us to formulate rigorously the biological assumptions made and to introduce, in a

natural way, the parameters of biological interest.

- For s = 1, . . . , S and j = 1, . . . , J , we denote by zsj the indicator of presence of species
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s in quadrat j. The vector (zsj; j = 1, . . . , J) is denoted by zs.

- For a species s present in a sampled quadrat j, we denote by xsj the number of times

that species s has been detected in quadrat j during the K visits. Note that xsj is thus

defined only conditionally on zsj = 1; the vector formed by the xsj’s is denoted by xs. Note

also that xsj = 0 and ysj = 0 do not have the same meaning (see below).

Missing data can occur in different circumstances. First, when a species s has not been

detected in quadrat j, it is clear that zsj is missing; this event covers in fact two exclusive

situations: either species s is present in quadrat j but has not been detected, or it is not

present in quadrat j (and cannot have been detected). Formally, one has the equivalence

(ysj = 0) ⇐⇒ (zsj = 1 and xsj = 0) or (zsj = 0). Conversely, when 1 ≤ k ≤ K, one has

(ysj = k) ⇐⇒ (zsj = 1 and xsj = k). Secondly, zsj is missing, when quadrat j is not a part

of the sampled quadrats. Thirdly, a species s present in R and undetected is such that the

whole vector zs is missing.

The set of the missing zsj’s is denoted by zm. The above observations lead to parti-

tioning zm into four blocks, according to the status of quadrat j (sampled or not) and the

status of species s (detected or not); these blocks are denoted by z
[i]
m; i = 1, .., 4 and defined

as follows. The blocks z
[1]
m and z

[2]
m are formed by the missing zsj’s where s designates any

detected species, and j denotes either a sampled quadrat (i = 1) or an unsampled quadrat

(i = 2). The blocks z
[3]
m and z

[4]
m are formed by the missing zsj’s where s designates any un-

detected species, and j denotes either a sampled quadrat (i = 3) or an unsampled quadrat

(i = 4).

Let us clarify that the missing data structure above described differs from the one

associated with the model considered in Dupuis and Joachim (2006). Indeed, if we denote

by ξs the indicator of presence of a species s ∈ L, ξs is missing if ys = (0, . . . , 0); for a

description of this missing data structure, see Dupuis and Joachim (2003).
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3. The homogeneous model: M0

3.1 Notation, assumptions and parameters.

Notation is basically the one adopted in Dupuis and Joachim (2003, 2006). p(.) denotes

a probability mass function, and π(.) the density of any prior distribution. The null

vector is denoted by ~0, and the vector which has all its components equal to 1, by ~1. We

denote by Z the set EJ where E={0, 1}, and by Z∗ the set Z\{~0}. We denote by zsj

the vector zs from which the j-th component has been removed. Let v be a vector; we

denote by |v| the sum of all its components. 1I(C) denotes an indicator function that takes

the value 1 when the condition C is true and zero otherwise. We denote by z∗s the vector

(zsj; j = 1, . . . , T ), by z◦s , the vector (zsj; j = T+1, . . . , J), and we set x = (xs; s = 1, . . . , S)

and z = (xs; s = 1, . . . , S). The Bayesian estimate of S is denoted by Ŝ0.

We assume that the species population is closed, in that the number of species present

in R is constant throughout the quadrat sampling experiment. Biological assumptions

related to the occurence of species in the J quadrats are supported by the zs’s, and those

related to the detections in the T quadrats by the xs’s.

Assumption A1. We assume that:

p(z) =
S∏

s=1

p(zs) and p(x|z) =
S∏

s=1

p(xs|zs).

Assumption A2. We assume that the probability of detecting species s in quadrat j

does not depend on its (possible) detections in the other quadrats.

Assumption A3. We assume that xsj|zsj = 1 ∼ Binomial(K, q).

Assumptions A1, A2 and A3 are standard. A1 means that the species present in R do

not interact relative to their detectability and their presence (in the quadrats). We thus

exclude predator-prey relationships between species. A3 means that, s and j being fixed,

the detections of species s during the K visits in quadrat j are independent. Note that q
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represents the probability of detecting species s in quadrat j during any visit, given that

it is present in quadrat j.

Assumption A4. For any species s present in R, we assume that:

p(zs|ϕ) =
ϕ|zs|(1− ϕ)J−|zs|

1− (1− ϕ)J
(3.1)

where ϕ ∈]0, 1[, and |zs| represents the number of quadrats in which species s is present.

Note that zs takes its values in Z∗ since zs cannot take the value ~0 (recall that s designates

a species present in R) and that p(.) given by (3.1) effectively defines a probability mass

function on Z∗. We now provide two results concerning the distribution of zs, subsequently

useful to establish the distribution of the missing data conditionally on the (observed) data.

Proposition 3.1. Let zs(a) be a vector extracted from zs of length Ja. We have:

p
(
zs(a)|ϕ

)
=
ϕ|zs(a)|(1− ϕ)Ja−|zs(a)|

1− (1− ϕ)J

if zs(a) 6= ~0, and p
(
zs(a)

)
= [(1 − ϕs)

Ja − (1 − ϕ)J ] / [1− (1 − ϕ)J ] otherwise. Let zs(a),

zs(b), zs(c) denote three vectors extracted from zs and pairwise disjoint. If zs(c) 6= ~0, thus

zs(a) and zs(b) are independent, conditionally on zs(c).

Proof. See Appendix A1.

By using the proposition (3.1) above, it is easy to verify that Pr(zsj = 1|zsj 6= ~0) = ϕ;

therefore, ϕ represents the probability that species s is present in quadrat j, given that it

is present in at least one other quadrat. Note that the zsj’s are not independent, although

a certain form of conditional independence between the zsj’s holds. Indeed, from the

Proposition (3.1), one deduces that if i, j, l denote three distinct quadrats, zs,i and zs,j

are independent, conditionally on zs,l = 1. In other words, the presence of species s in

quadrat i does not affect its presence in quadrat j (on condition that it is present in a

third quadrat). This biological assumption is standard; it has been discussed in Dupuis

and Joachim (2006, 2003).
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Note that we do not make the parameters q and ϕ depend on s and j, which constitutes

the characteristics of the homogeneous model M0. We stress that the model M0 deals

only with species s present in R; the approach adopted in this paper is thus conditional,

in contrast to the one adopted in Dupuis and Joachim (2003, 2006). To avoid needless

discussions, we assume that at least one species has been detected by the quadrat sampling,

so that the data set is not empty. Concerning S, this implies that we assume that S ≥ 1.

3.2 Likelihood under the model M0.

Recall that each record (or history) is described by a vector of length T and having

all its components in {0, 1, . . . , K} (cf Section 2.1). Histories are numbered from h = 0 to

H = KT − 1; the history numbered 0 being associated with the record ~0. For convenience,

the history numbered h is afterwards refered as the history h. For h = 0 to H = KT − 1,

we denote by nh the number of species having the history h. Moreover we denote by d the

number of detected species; note that n0 = S − d. Data are denoted by y and formed by

the H counts {n1, . . . , nH} which clearly constitutes a sufficient statistic. The probability

Pr(ys = h) is denoted by λh. Let s be any species having h 6= 0 as its history, we denote

by vh the number of quadrats in which species s is detected, and by wh the total number

of visits during which it is detected. Let h ∈ {1, . . . , H} and (b1, . . . , bj, . . . , bT ) be the

history h, thus we set

ρh =

T∏

j=1

C
bj

K.

Due to the presence of missing data, writing down the likelihood in a closed form is not

immediate, but performing this task is greatly facilitated by the formalism introduced in

Section 2.2.

Proposition 3.2. The likelihood of the data y under the model M0 is:

L0(θ;y) =
S!

(S − d)!
∏H

h=1 nh!
λS−d

0

H∏

h=1

λnh

h (3.2)
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where

λh =
ϕvh ρh q

wh(1− q)Kvh−wh

[
(1− q)Kϕ+ 1− ϕ

]T−vh

1− (1− ϕ)J
(3.3)

if h 6= 0, and

λ0 =

[
(1− q)Kϕ+ 1− ϕ

]T
− (1− ϕ)J

1− (1− ϕ)J
. (3.4)

Proof. See Appendix A2.

We set V =
∑H

h=1 vh and W =
∑H

h=1 vh. From the above proposition, we deduce that:

L0(θ;y) ∝
S!

(S − d)!

ϕV qW (1− q)KV−W F (ϕ, q)dT−V
[
F (ϕ, q)T − (1− ϕ)J

]S−d

[
1− (1− ϕ)J

]d

where F (ϕ, q) = (1 − q)Kϕ + 1 − ϕ and the constant of proportionality depends only on

y. It is thus clear that Y = (d, V,W ) is a sufficient statistic. This remark is used later, in

Section 4.3. Moreover, we emphasize that the expressions (3.3) and (3.4) also hold when

T = J (for brevity, details are omitted ).

3.3 The prior distributions.

We assume that S, ϕ, q are a priori independent; thus, π(θ) = π(S)π(ϕ)π(q). Uniform

distributions are placed on q and ϕ. Of course, beta distribution can be used if some prior

information is available. The negative binomial distribution is usually the distribution

adopted in practice for incorporating some prior information on an integer parameter;

see, eg King and Brooks (2001), in a capture-recapture set-up where the parameter of

interest is the size of the animal population. When no prior information on an integer

parameter is available, the improper Jeffreys prior distribution, is usually adopted: that is

π(S) ∝ 1
S

in our context. Now, to our knowledge, no theoretical motivation exists in the

literature concerning the Jeffreys prior, as already pointed out by Kass and Wasserman

(1996); these authors simply note that its extends the standard non informative prior put

for a real parameter β > 0 (namely, π(β) ∝ 1/β) to the case of an integer parameter. Our
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motivation for the use of the Jeffreys prior as a non informative prior is provided by the

following proposition.

Proposition 3.3. The Jeffreys prior coincides with the limiting case of a negative bino-

mial distribution in which the prior variance tends to ∞ (the prior mean being fixed).

Proof. See Appendix A3.

The main alternative to the Jeffreys prior is to take π(S) ∝ 1 (eg Casteldine, 1981). In

the next Section, we explain why these two non informative priors should give, in practice,

very similar estimations of S. Note finally, that the formula (2) appearing in the proof of

the Proposition 3.3 allows us to incorporate (via a negative binomial distribution) some

prior information on S consisting of E(S) and Var(S), when Var(S) >E(S).

3.4 Identifiability issues.

As mentioned in the introduction, the parameter θ of the model M0 is not identifiable

if each sampled quadrat is visited only once (that is when K = 1); for brevity, the proof

is omitted. When K ≥ 2, we have established an identifiability result which holds under a

very slight restriction.

Theorem 3.4. We assume that S ≥ 2. The parameters S, ϕ and q are all identifiable.

Proof. See Appendix A4.

3.5 MCMC algorithms for estimating S and related quantities

This Section is organized as follows. At first, we consider the problem of estimating S

alone. To obtain E[S|y], two MCMC algorithms are considered: one uses the missing data

structure exhibited in Section 2.2, the other uses only the likelihood of the observed data

(3.2). The first algorithm is called Alg01, and the second one Algo2. Both are described in

the next Section. Next, we show how to obtain the Bayesian estimates of some quantities

related to S; only Alg01 is able to do this (with slight modifications according to which

quantity we aim to estimate).
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3.5.1 Estimating S alone.

We first describe the MCMC algorithm Algo1. It is implemented on (θ, zm); such a

strategy is actually standard in missing data models (see eg Robert and Casella, 2004).

Algo1 is a Metropolized Gibbs sampling algorithm. The parameter ϕ is up-dated via a

Hastings-Metropolis step. We up-date q and ξ = (S, zm) via Gibbs steps, as follows:

q ∼ π(q|ξ, ϕ,y) and ξ ∼ p(ξ|ϕ, q,y),

where ξ = (S, zm) is simulated as follows:

S ∼ π(S|ϕ, q,y) and zm ∼ p(zm|S, ϕ, q,y).

Before indicating how to implement each step, we provide the expression of the complete

data likelihood denoted by L0(θ;y, zm). By using assumptions A1, A2, A3 and A4, and

by observing that (y, zm) and (x, z) provide the same information on θ, it is easy to check

that:

L0(θ;y, zm) ∝
ϕV ′

(1− ϕ)JS−V ′

[1− (1− ϕ)J ]S
qW (1− q)K(V

[1]
m +V

[3]
m ) (3.7)

where V ′ = V + Vm, Vm = V
[1]
m + V

[2]
m + V

[3]
m + V

[4]
m , and V

[i]
m denotes the sum of the zsj’s

belonging to z
[i]
m.

Updating S. S is simulated according to the distribution of S|q, ϕ,y. Let π(θ|y) denote

the density of the posterior distribution. We have π(θ|y) ∝ L0(θ;y)π(θ). Taking into

account the expression of L0(θ;y), we have:

π(S|q, ϕ,y) ∝
S!

(S − d)!
λS−d

0 π(S) 1I(S≥d) (3.8)

where λ0 is given by (3.4). The indicator 1I(S≥d) expresses the fact that, conditionnally

on y, S is necessarily greater than d. From (3.8), it is straightforward to deduce that,

S−d|q, ϕ,y follows a NegBin(d, 1−λ0) distribution if π(S) ∝ 1/S, a NegBin(d+1, 1−λ0)
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distribution if π(S) = 1. Therefore, these two non informative priors should give very close

estimates of S, as long as 1 is small compared with d (which is the case in most studies).

Finally, S − d|q, ϕ,y follows a NegBin(d+ r, 1− (1− α)λ0) if S ∼ NegBin(r, α).

Updating zm. Due to the form of the complete data likelihood we simply have to simulate

the V
[i]
m ’s. Simulating V

[1]
m and V

[2]
m directly uses the proposition 3.5

Proposition 3.5. Conditionally on (θ,y), the two blocks z
[1]
m and z

[2]
m are indepen-

dent. V
[1]
m |y, ϕ, q ∼ Binomial(dT − V, γ) where γ = [ϕ(1− q)K]/[ϕ(1− q)K + (1− ϕ)],

and V
[2]
m |y, ϕ, q ∼ Binomial((J − T )d, ϕ). For any undetected species s we have:

p(zs|ys = ~0, ϕ, q) =
(1− q)K|z∗s | ϕ|zs| (1− ϕ)J−|zs|

[
(1− q)Kϕ+ 1− ϕ

]T
− (1− ϕ)J

(3.9)

Proof. See Appendix A5.

Simulating V
[3]
m and V

[4]
m needs special attention, because these two blocks are not,

conditionally on (θ,y), independent, due to the constraint zs 6= ~0. Recall also that the

species s involved in the simulation of V
[3]
m and V

[4]
m are those which have not been detected

(that is such that ys = ~0), and for which the whole vector zs is missing and has to be

simulated according to (3.9). Simulating V
[3]
m and V

[4]
m proceeds as follows. Set V

[3]
m = 0

and V
[4]
m = 0, and repeat S − d times the two following steps:

1. Simulate zs according to (3.9).

2. Set V
[3]
m = V

[3]
m + |z∗s | and V

[4]
m = V

[4]
m + |z◦s |.

Updating q. Simulate q according to a Beta
(
1 +W, 1 +K(V

[1]
m + V

[3]
m )

)
.

Updating ϕ. This is done via a Hastings-Metropolis step, as follows. The proposal ϕ′ is

accepted with probability:

min

{
1,
π(ϕ′|S, q, zm,y)

π(ϕ|S, q, zm,y)
×
g(ϕ|ϕ′)

g(ϕ′|ϕ)

}
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where ϕ, q, S, zm represent the current values, and g(.|.) denotes the density of the in-

strumental distribution (typically an uniform distribution). Note that π(ϕ|S, q, zm,y) ∝

L0(θ;y, zm) which is given by (3.7).

The other algorithm Algo2 does not use the missing data structure of quadrat sampling

data; it only uses the observed data likelihood given by (3.2). Parameter S is updated

exactly as in Algo1. ϕ and q are updated via Hastings-Metropolis steps. Details are

omitted since this is straightforward.

3.5.1 Estimating some quantities related to S.

We denote by Nj the number of species present in the sampled quadrat j, and by N

the total number of species present in the sampled part of R. More generally, we consider

the quantity Sa, which represents the number of species present in some subregion Ra

composed both of sampled and unsampled quadrats. Only the quantities Nj and N have

been considered by Dorazio and Royle (2005). We consider that their ad hoc estimates of

Nj and N are not correct, for two distinct reasons. First, they are based on an erroneous

modelling of the problem (cf Section 4). The second reason is indicated at the end of the

paragraph devoted to the estimation of Nj.

Estimating N , Nj and Sa, uses the fact that each of these quantities is a (simple)

function of S and z. For example, Sa =
∑S

s=1 1I(|zs(a)|≥1) where zs(a) denotes the vector

(zsj; j ∈ Ra). Now, recall that, once the data y are available, only a part of z is known,

the other part being missing. Thus, conditionally on y, estimating any of these quantities

comes down to estimating its missing part. It is the reason why the missing data approach

is particularly well suited to estimating Nj, N and Sa.

• For obtaining N̂ , we use Algo1 without any modification. The Bayesian estimate of
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N is obtained by applying the ergodic theorem, as follows:

d+
1

L

L∑

l=1

h(S(l), z(l)
m ) −→ E[N |y] = N̂ (L −→ +∞)

where (l) indicates the step of the algorithm, and h(S, zm) =
∑S

s=d+1 1I(|z∗s |≥1).

• For obtaining N̂j, in addition to simulating V
[1]
m as indicated in the previous Section,

we simulate separately each missing zsj ∈ z
[1]
m (j being fixed); it is done according to the

distribution of zsj|ys, that is according to a Bernoulli(γ) distribution, where γ is given by

Proposition 3.5. The simulation of V [2], V [3] and V [4] are without change. The Bayesian

estimate of Sj is then obtained by applying the ergodic theorem:

dj +
1

L

L∑

l=1

h(S(l), z(l)
m ) −→ E[Nj|y] = N̂j (L −→ +∞)

where dj denotes the number of species detected in the sampled quadrat j, and

h(S, zm) =

d∑

s=1

1I(zsj=1, ysj=0) +

S∑

s=d+1

1I(zsj=1).

To estimate Nj, where j designates a sampled quadrat, Dorazio and Royle (2005)

consider first E[zsj|y], where s represents a species s not detected in quadrat j; therefore,

zsj ∈ z
[1]
m

⋃
z

[3]
m . Then, they estimate E[zsj|y] by ϕ̂ (ψ̂ with their notation), where designates

ϕ̂ represents their estimate of ϕ (cf Section 3.4, page 393, line 1 of their paper). When j

designates an unsampled quadrat, and s a detected species, that is when zsj ∈ z
[2]
m , this

ad hoc way of proceeding is conceivable, since, in such a case, zsj|ϕ,y follows effectively

a Bernoulli(ϕ) distribution; otherwise, it is not correct (see the Proposition 3.5). For the

same reasons, their estimate of N is not correct; details are omitted.

• We denote by Ja the number of quadrats (among the J quadrats) located in Ra, and

by Ta the number of sampled quadrats (among the Ja). We denote by ya the part of the

data collected in these Ta quadrats, and by da the number of species detected in Ra. Note
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that it will not be correct to perform inference on Sa, only on the basis of ya, because

ya and yb (where yb = y\ya) are not marginally independent (they are independent only

conditionally on θ). For obtaining the species richness Ŝa of Ra, we complete the simulation

of (V
[1]
m , V

[2]
m ) and (V

[3]
m , V

[4]
m ), as follows.

- Concerning (V
[1]
m , V

[2]
m ), set Ea = 0 and repeat d− da times the two following steps:

1. Simulate |z∗s(a)| ∼ Binomial(Ta, γ) and |z◦s(a)| ∼ Binomial(Ja − Ta, ϕ).

2. Set Ea = Ea + 1I(|zs(a)|≥1).

- Concerning (V
[3]
m , V

[4]
m ), set Fa = 0 and add to the steps 1 and 2 of the paragraph

untitled Updating zm of the Section 3.5.1, the following step: Fa = Fa + 1I(|zs(a)|≥1).

Note that Ea represents the number of species present in Ra, not detected in Ra, but

detected in Rb, where Rb = R\Ra. Fa represents the number of species present in Ra but

undetected. Ŝa is obtained by applying the ergodic theorem:

da +
1

L

L∑

l=1

[E(l)
a + F (l)

a ] −→ E[Sa|y] = Ŝa (L −→ +∞)

4. Discussion of the model of Dorazio and Royle.

This Section is organized as follows. In Section 4.1, we explain why the modelling adopted

by Dorazio and Royle (2005) is not mathematically correct. In Section 4.2, we first provide

the likelihood of the Dorazio and Royle’s model (called afterwards the DR model), and we

explain why their model and ours cannot be parametrized by a same set of parameters.

We then show that the DR approach is valid only asymptotically (with respect to J). In

Section 4.3, a simulation study is performed to quantify the error resulting from the use

of the DR model instead of M0.

We stress that, in Dorazio and Royle (2005), J denotes the number of sampled quadrats,

while this quantity is denoted by T in this paper, as in Dupuis and Joachim (2003, 2006).
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4.1 The model of Dorazio and Royle and the constraint zs 6= ~0

First recall that the approach of Dorazio and Royle (2005) is conditional; consequently,

the constraint zs 6= ~0 applies to their approach. It is of interest to point out that this

constraint does not exist when the unconditional approach of Dupuis and Joachim (2003,

2006) is adopted, since it models the occurence of species liable to be present in R, and it

is quite possible that zs = ~0, for some s.

Recall also that Dorazio and Royle (2005) do not model the occurence of species s

in the J quadrats, but only its occurence in the T sampled quadrats, by assuming that

zs,1, . . . , zs,T are independent outcomes of a Bernoulli random variable of parameter ψ (cf

line 6 of the right part of the page 391 of their paper). The J − T remaining quadrats are

thus ignored in their modelling, as well as the constraint zs 6= ~0. From the independence

assumption of Dorazio and Royle, called afterwards the DR assumption, it follows that:

p(z∗s) = ψ|z∗s |(1− ψ)T−|z∗s |, (4.1)

where |z∗s | represents the number of sampled quadrats in which species s is present. The

dependence of ψ on s, adopted by these authors, is without importance in this discussion,

and has been removed for convenience. The dependence of ψ on j, equally adopted by these

authors, is considered later. The expression of p(z∗s) given by (4.1) has to be compared

with the one calculated under the model M0, and deduced from the proposition (3.1):

p(z∗s) = [ϕ|z∗s |(1− ϕ)T−|z∗s |] / [1− (1− ϕ)J ] if z∗s 6= ~0 (4.2)

and [(1− ϕ)T − (1− ϕ)J ] / [1− (1− ϕ)J ] if z∗s = ~0. Note that p(z∗s) in (4.2) depends on

J and T . We suggest that the modelling adopted by Dorazio and Royle (2005) is not

correct: the problem comes from the fact that the DR assumption is not consistent with

the constraint zs 6= ~0. We support this assertion by means of two arguments.
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Argument 1. This concerns the case T = J (that is when the whole region R has been

sampled). Assuming that zs,1, . . . , zs,T are independent implies that Pr(zs = ~0) = (1− ψ)J ,

which is > 0 when ψ ∈]0, 1[, hence the contradiction. In fact, Pr(zs = ~0) = 0 implies ψ = 1,

that is zs = ~1 with probability one, which means that species s is present in all the quadrats

of R (with probability one). Now, this situation has been discarded by Dorazio and Royle

(2005) as being not tenable from a biological point of view; recall that it is precisely this

latter point which motivated their paper (cf the introduction).

Argument 2. The distribution of zs should (of course) not depend on the number T

of sampled quadrats. Now, this is not the case when the DR assumption is adopted, as

illustrated by a simple example. We assume that J = 5. When all the quadrats have

been sampled (that is when T = J = 5), we have Pr(zs = 00001) = (1 − ψ)4ψ, by using

(4.1). We now asssume that 80% of the quadrats have been sampled (thus T = 4), and

that the sampled quadrats are the quadrats numbered from 1 to 4. We can write Pr(zs =

00001) =Pr(zs5 = 1|zs1 = zs2 = zs3 = zs4 = 0)×Pr(zs1 = zs2 = zs3 = zs4 = 0). Due to

the constraint zs 6= ~0 we have Pr(zs5 = 1|zs1 = zs2 = zs3 = zs4 = 0) = 1; moreover due to

(4.1) we have Pr(zs1 = zs2 = zs3 = zs4 = 0) = (1− ψ)4; hence Pr(zs = 00001) = (1 − ψ)4

which differs from the value obtained when T = 5. Therefore, when one adopts the DR

assumption, the distribution of zs depends on T , which is not acceptable. Note that the

two values of Pr(zs = 00001) are in fact equal if and only if ψ = 1.

If we now make ψ depend on j, that does not modify the conclusions. First, the

Argument 1 still holds, due to the following remark which is parameter-free. Assume that

a species s is absent from J−1 quadrats; due to the constraint zs 6= ~0, it is thus necessarily

present in the remaining quadrat (formally one has Pr(zsj = 1|zs,j = ~0) = 1 if j designates

the remaining quadrat), and the J r.v. zsj’s cannot be independent. This remark shows

that when the whole region R has been sampled (ie T = J), the DR assumption is not
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consistent with the constraint zs 6= ~0. Concerning the Argument 2, see Appendix A6.

4.2 The likelihood under the Dorazio and Royle’s model

The model considered by Dorazio and Royle meets the Assumptions A1, A2, and

A3. The model M0 and the DR model actually differ only from the way of modelling

the occurence of species in the quadrats. In its homogeneous version, the DR model is

parametrized by ω = (S, ψ, q), where ψ denotes the probability that zsj = 1. Establishing

the expression of the likelihood under the DR model, denoted afterwards by LDR(ω;y), is

straigthforward, contrary to L0(θ;y). If we let µh=Pr(ys = h|q, ψ)

LDR(ω;y) =
S!

(S − d)!
∏H

h=1 nh!
µS−d

0

H∏

h=1

µnh

h

where

µh = ψvh ρh q
wh(1− q)Kvh−wh

[
(1− q)Kψ + 1− ψ

]T−vh if h 6= 0,

where ρh has been defined in Section 3.2 and µ0 =
[
(1 − q)Kψ + 1 − ψ

]T
(Dorazio and

Royle, 2005).

Let ν denote the probability that zsj = 1 under the model M0; from the first part

of Proposition (3.1), we deduce that ν = ϕ/[1 − (1 − ϕ)J ]. The parameter ν of the

model M0, and the parameter ψ of the DR model, do not represent the same, unique

parameter (which will be common to both models, as is the case for q and S). Indeed the

parameter ψ takes values in ]0, 1[, while ν takes its values in ]1/J, 1[ when ϕ ∈]0, 1[ (the

function ϕ 7−→ ϕ/[1− (1− ϕ)J ] being a strictly increasing one-to-one function from ]0, 1[

to ]1/J, 1[). Therefore, the DR model and ours cannot be parametrized by the same set

of parameters. Note that the inequality ν ≥ 1/J ensures that the constraint E[|zs|] > 1 is

satisfied. Indeed, it is immediate to check that zs 6= ~0 =⇒ |zs| ≥ 1 =⇒ E[|zs|] > 1 (hence

the constraint), and that E[|zs|] = Jν; the value E[|zs|] = 1 being reached by the limiting

case ϕ = 0.
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If we make J −→ +∞ (ϕ, q, T and K being fixed) and we set ϕ = ψ in the expressions

of λh given by (3.3) and (3.4), we observe that the likelihood of the DR model and ours

coincide, since (1− ψ)J −→ 0. Furthermore, when J tends to +∞, the three parameters

ϕ, ν, ψ are, in a way, confounded in the same unique parameter, since, on the one hand,

ν = ϕ/[1 − (1 − ϕ)J ] −→ ϕ when J −→ +∞, and, on the other hand, ν and ψ take

now their values in the same set [0, 1]. The approach of Dorazio and Royle is thus valid

asymptotically with respect to J , and it is therefore expected that, for large J , the Bayesian

estimation of S under M0 and MDR should be close. The question is to know from which

value of J , it is effectively the case. This issue is examined in the next Section, using a wide

sample of data sets. We now propose another reading of the fact that the DR likelihood

and ours coincide when J −→ +∞. Using the DR model, and thus ignoring the number of

quadrats - called J∗ for this remark - in which R has been divided, comes down actually to

using the model M0 as if J = ∞, while in fact J = J∗; that clearly entails an error which

is quantified in the next Section.

4.3 A simulation study.

It is expected that, for some given data y, more or less important differences appear

between E[S|y,M0] and E[S|y,MDR], as well as between σ[S|y,M0] and σ[S|y,MDR],

where σ[S|y,M ] =
√

Var[S|y,M ]. These quantities are afterwards respectively denoted

by Ŝ0, ŜDR, σ0 and σDR (dropping y in this notation, for convenience). The differences

|ŜDR − Ŝ0| and |σ0 − σDR| are respectively denoted by e1 and e2. Our objective is to

exhibit some examples for which some significant differences exist, and to examine when

they occur (with regard to J , T , K, ϕ and q). The differences e1 and e2, both together,

may be globally interpreted as the error (in a statistical sense) one makes concerning S,

when one uses the incorrect DR model, instead of the correct model M0 (since the latter is

in fact the correct version of the DR model). Of course, other alternatives could be taken
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to appreciate the proximity between the posterior distributions of S under M0 and MDR.

We have chosen to examine the values taken by e1 and e2 from average data sets.

To clarify what we mean by average data set, recall that the statistic Y = (d, V,W ) is

sufficient. J , T , K and θ being fixed, we call an average data set, any data set y having

Y = (a, b, c) as sufficient statistic, where a is the integer closest to E[d|θ], b the integer

closest to E[V |θ], and c the integer closest to E[W |θ], the expectation being taken with

respect to the distribution of y given θ, and under M0. Choosing average data sets is, in

a way, neutral, compared with arbitrary (or simulated) data sets. Finally, when one uses

average data sets, it makes sense to compare the errors to each other (when q, ϕ, J , T , K

vary).

Throughout this study S is fixed: S = 100. For different values of J , T , K, ϕ and

q, we have calculated the corresponding sufficient statistics Y by classical Monte Carlo

methods (by simulating 1000 data sets similar to y). The resulting average data sets have

been numbered from n = 1 to 18. Then, for each average data set, we have calculated

Ŝ0 by implementing the MCMC algorithm Algo2 (based on the observed likelihood L0).

Concerning ŜDR, we have used the same algorithm (except that L0 has been replaced by

LDR). The convergence of the Markov chain has been diagnosed by using standard tech-

niques. Independent replications of the simulation run for five million iterations (with the

first 10% discarded as burn-in) and from different starting points (ϕ(0), q(0)) in ]0, 1[×]0, 1[

produced identical results to one unit place.

We mainly focus on small values for ϕ, namely in [0.05, 0.1], that is on populations

composed of spatially rare species. It is, in fact, for this type of population that we expect

to observe significant differences between Ŝ0 and ŜDR, since the term (1 − ϕ)J is as less

negligible as ϕ is small (J being fixed). For q, we consider values in [0.1, 0.3], which

correspond to species that are relatively hard to detect during a visit. Nevertheless, we
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emphasize that q∗ = 1− (1− q)K (which represents the probability of detecting a species

s during the quadrat sampling experiment, given that it is present in a quadrat j) can be

high even if q is small. For example, q∗ = 0.19 if q = 0.1 and K = 2, but q∗ = 0.65 if

q = 0.1 and K = 10. These ranges for ϕ and q are not unusual in some animal populations,

such as birds (see eg Dorazio and Royle, 2005; Dupuis and Joachim, 2006).

For each fixed value of J , T , K, ϕ and q, we provide in Table 1 below q∗, Y, Ŝ0, ŜR,

σ0, σDR, e1 and e2; non informative prior distributions having been adopted (the Jeffreys

prior for S, and the uniform distribution for q, ϕ and ψ).

[Table 1 about here.]

• We make two general comments concerning the results. First, we observe that Ŝ0 is

close to 100 (for most values of K, J , T , ϕ and q); that is explained by the fact that, for

these values of K, J , T , ϕ and q, the bias of Ŝ0 is close to 0; this observation comes from

an additional simulation study, not presented in this paper, for brevity. Secondly, we note

that ŜDR is systematically greater than Ŝ0. That is simply explained by the fact that using

the DR model comes down to using the model M0 as if J = +∞.

• Let us briefly comment qualitatively on the different values of the posterior standard

deviation σ0 appearing in Table 1. J being fixed, we note that, not surprisingly, σ0 decreases

with T , K, ϕ and q (the other factors remaining each time fixed). When T , K, ϕ and q

are fixed, it of interest to observe that σ0 increases with J , which is not surprising (though

that is - maybe - less intuitive than the previous observations); indeed, as J increases -

while T remains fixed - the fraction of the unsampled part increases, which creates more

and more uncertainty. See the cases: 3 and 7; 9 and 12; 11, 15, 16 and 17.

• We now comment on the magnitude of the errors e1 and e2, with respect to J , T , K,

ϕ and q by distinguishing two cases, according to J ≤ 20 or J ≥ 40.
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Case 1: J ≤ 20. We observe that, when q = ϕ = 0.1, the error e1 is important if J = 10

(whatever T and K) and smaller if J = 20. We also note that, T , K, q and ϕ being fixed,

σDR is markedly larger than σ0. Moreover, we observe that the estimation of S produced

by the DR model may exhibit surprising behaviors. So, e1 is not modified (even increases)

when K increases (cf the cases 3 and 4, as well as the cases 7 and 8); e1 increases when

q increases (cf the cases 1 and 3, as well as the cases 5 and 7); and e1 increases when T

increases (cf the cases 7 and 9). Finally, when ϕ = 0.3, we note that the errors e1 and e2

are relatively small, even null (see the cases 2 and 6).

Case 2: J ≥ 40. We note that, when ϕ = 0.1 and K = 4, the errors e1 and e2 are now

small, even very small: see the cases 10 and 11. But, if we now consider for ϕ values

smaller than 0.1, as 0.05, the errors may be particular high: see the case 14 (which has

to be compared with the case 10). Keeping the value 0.05 for ϕ and increasing J (cf the

cases 15,16,17, 18), we observe that Ŝ0 and ŜDR, as well as σDR and σ0, practically coincide

from about J = 200 (cf the case 18). If we now consider species both relatively spatially

rare (ϕ = 0.1) and hard to detect (q = 0.1 and K = 2), the values e1 = 6 and e2 = 7 (cf

the case 12) are not negligible; the case 12 has to be compared with the case 10 where

e1 = e2 = 2. When J = 40, we have not observed the undesirable behaviors of SDR above

mentioned (that is when J = 10, 20).

• To sum up, two striking facts emerge from this simulation study. Firstly, the errors e1

and e2 due to the use of the DR model (instead of M0) globally decrease when J increases

(as forecasted in Section 4.2); but, the value of J , beyond which ŜDR and Ŝ0, as well as σ0

and σDR, will practically coincide (T , K, φ and q being fixed) may be large. Furthermore,

this value strongly depends on T , K, ϕ, and q, which prevents from indicating a threshold

beyond which the DR approach will yield numerically acceptable results (although Table 1

gives some orders of magnitude). Secondly, we observe that, for small or moderate values
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of J (≤ 20), the estimations yielded by the DR model may exhibit undesirable behaviors,

with respect to K, T and q.

• Our study is limited to homogeneous species populations, but it can reasonably be

expected that similar observations will be made in practically homogeneous populations

(in the sense that the variability within the ϕs’s and the qs’s is small); for heterogeneous

populations, the situation is difficult to apprehend intuitively, and additional simulation

studies - out of the scope of our paper - will be considered in the future.

5. Conclusion

In this paper, we have developed a new conditional approach to estimate the species rich-

ness S of a biological community located in a specified region R divided in J quadrats.

Our model M0 takes into account both the occurence and the detectability of species in the

quadrats, as the current approach mainly expounded in the paper of Dorazio and Royle

(2005). But contrary to the latter, we model the occurence of species in the J quadrats

(not only in the sampled quadrats), and we do not assume that the sampled quadrats are

independent, which is mathematically incorrect, as shown in this paper.

The model M0 can actually be viewed as the correct version of the Dorazio and Royle

model (in its homogeneous version). We show that using the DR model to estimate S, and

therefore ignoring the number of quadrats in which R has been divided, comes down to use

the model M0 as if J = +∞. Even for relative large values of J , the error resulting from the

use of the DR’s model (instead of M0) may be important; it is the case if the population is

composed of spatially rare species and hard to detect. We note that our conclusions agree,

in a way, with those of Mingoti and Meeden (1992) who observed that approaches which

ignore J , as the Jacknife and the bootstrap estimators, can perform poorly. Finally, we

are of the same opinion as these authors when they claim that any reasonable statistical

analysis should a priori include J in the model.
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Compared now with the unconditional approach of Dupuis and Joachim (2006), the one

developed here has the advantage to apply, as well as to informative as to non informative

set-ups, while the first one requires some prior information on not detected species, which

is not always available in practice.

Being able to model the occurence of species in the whole region R allows us to estimate

quantities of biological interest which were out of reach before, such as the number of species

present in any subregion of R. In fact, the MCMC algorithm implemented in this paper,

which takes advantage of the missing data structure of quadrat sampling data, will allow

us to tackle more complex problems, as estimating the number of species shared by two

(or more) distinct subregions of R; this problem, said to be difficult, has been solved by

Chao et al. (2000), but only when data consist of a sample of individuals (not of a sample

of quadrats) and when the region R has been divided into two subregions.

We consider that our model can be taken as a starting point for more complex models.

We have focused on a simple model, but the methodology developed in this paper, extends

to models including heterogeneity at a species and/or spatial level. This extension is the

subject of a work in progress. Other extensions of biological interest are equally possible.

For example, a challenging problem would be to develop a model for estimating the species

richness of an animal population within which predator-prey relationships exist.
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Appendix A1

Let zs(a) be a vector extracted from zs of length Ja. We partition zs in zs(a) and zs(b);

hence p(zs(a)) =
∑

zs(b)
p
(
zs(a), zs(b)

)
. By observing that this sum is over all the possible

values of zs(b) when zs(a) 6= ~0, and over all the possible values of zs(b), apart from ~0, when

zs(a) = ~0 (due to the constraint zs 6= ~0), it is easy, by using (3.1), to establish that:

p(zs(a)|ϕ) =
ϕ|zs(a)|(1− ϕ)Ja−|zs(a)|

1− (1− ϕ)J

if zs(a) 6= ~0, and [(1−ϕs)
Ja−(1−ϕ)J ] / [1−(1−ϕ)J ] otherwise. Afterwards, the conditioning

on ϕ is omitted, for convenience.

Let zs(c) be a vector extracted from zs of length Jc and different from ~0. Starting from

p[zs(a)|zs(c)] =
p(zs(a), zs(c))

p(zs(c))
,

and by applying the above result to the vectors (zs(a), zs(c)) and zs(c), we have:

p[zs(a), zs(c)] =
ϕ|zs(a)|+|zs(c)|(1− ϕ)Ja−|zs(a)|+Jc−|zs(c)|

1− (1− ϕ)J

and p[zs(c)] = [ϕ|zs(c)|(1− ϕ)Jc−|zs(c)|] / [1− (1− ϕ)J ] from which we deduce that:

p[zs(a)|zs(c) 6= ~0] = ϕ|zs(a)|(1− ϕ)Ja−|zs(a)|.

Similarly, one has p[zs(b)|zs(c) 6= ~0] = ϕ|zs(b)|(1− ϕ)Jb−|zs(b)| and

p[zs(a), zs(b)|zs(c) 6= ~0] = ϕ|zs(a)|+|zs(b)|(1− ϕ)Ja−|zs(a)|+Jb−|zs(b)| ,

from which we deduce the result.

Appendix A2

• Due to the assumption A1, the random variables y1, . . . , yS are independent (condi-

tionally on θ). They are also identically distributed, since q and ϕ do not depend on s.
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Consequently,

(n1, . . . , nh, . . . , nH)|S, λ ∼ Multinomial(S, λ)

where λ = (λ1, . . . , λh, . . . , λH) and λh =Pr(ys = h|ϕ, q); hence (3.2). Afterwards, the

conditioning on (ϕ, q) is omitted, for convenience.

• We first calculate p(ys), as a function of q and ϕ, for any ys 6= ~0. We set:

ρs =
T∏

j=1

C
ysj

K .

Given ys, we partition the vector zs in zobs
s = {zsj|ysj 6= 0} and zmis

s = {zsj|ysj = 0}; so,

we can write:

p(ys) =
∑

zmis
s

p(ys, z
mis
s ) =

∑

zmis
s

p(xs|z
obs
s , zmis

s )p(zobs
s , zmis

s ).

zmis
s can itself be partitioned into zmis

1 (s) and zmis
2 (s); zmis

1 (s) including the missing zsj’s

where j is a sampled quadrat, and zmis
2 (s) including those where j is an unsampled quadrat.

Hence, dropping afterwards the index s (for simplicity of notation), we have:

p(y) =
∑

zmis
1 , zmis

2

p(x|zobs, zmis
1 ) p(zobs, zmis

1 , zmis
2 ) (1)

where zmis
2 ∈ EJ−T and zmis

1 ∈ ET−|zobs|. The normalizing constant which appears in the

expression of p(z), namely [1−(1−ϕ)J ]−1, is afterwards, denoted by c. Taking into account

that:

p(zobs, zmis
1 , zmis

2 ) = c ϕ|zobs|+|zmis
1 |(1− ϕ)T−|zobs|−|zmis

1 | × ϕ|zmis
2 |(1− ϕ)J−T−|zmis

2 |

and that

p(x|zobs, zmis
1 ) = ρ q|x|(1− q)K |zobs|−|x| × (1− q)K |zmis

1 |
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|x| represents the total number of times that the presence of species s has been detected

during the experiment, we deduce that:

p(y) = c ρ
∑

zmis
1

ϕ|zobs|+|zmis
1 |(1− ϕ)T−|zobs|−|zmis

1 |q|x|(1− q)K [|zobs|+|zmis
1 |]−|x|

by noting that the double sum (1) over (zmis
1 , zmis

2 ) can be written as the product of two

simple sums, one over zmis
1 and the other over zmis

2 , and that:

∑

zmis
2

ϕ|zmis
2 |(1− ϕ)J−T−|zmis

2 | = 1.

Hence,

p(y) = c ρ ϕ|zobs|q|x|(1− q)K|zobs|−|x|
∑

zmis
1

[ϕ(1− q)K]|z
mis
1 | (1− ϕ)T−|zobs|−|zmis

1 |

from which we deduce the expression (3.3), by observing that

∑

zmis
1

[ϕ(1− q)K]|z
mis
1 | (1− ϕ)T−|zobs|−|zmis

1 | = [ϕ(1− q)K + (1− ϕ)]T−|z
obs|

since |zmis
1 | varies from 0 to T − |zobs|.

• We now calculate p(ys) for a not detected species s, that is λ0. We again start from

p(ys) =
∑

zmis
s

p(ys, z
mis
s ). Note that now zobs

s = ∅ and that zmis
s = zs . We partition the

set zmis
s into two parts defined, as before. It is easy to check that:

p(y) = c
∑

zmis
1 , zmis

2

(1− q)K|zmis
1 |ϕ|zmis

1 |(1− ϕ)T−|zmis
1 |ϕ|zmis

2 |(1− ϕ)J−T−|zmis
2 | (2)

where index s has been dropped. The previous technique used to calculate p(y) leads here

to rather tedious calculations because the spaces in which zmis
1 and zmis

2 takes their values

are no longer independent (since zmis
1 and zmis

2 cannot take together the value ~0). To get
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around that computational difficulty, we calculate the double sum appearing in (2) over

ET × EJ−T , from which we remove the value of the term

(1− q)K|zmis
1 |ϕ|zmis

1 |(1− ϕ)T−|zmis
1 |ϕ|zmis

2 |(1− ϕ)J−T−|zmis
2 |

evaluated at z = ~0. Since z = ~0 ⇐⇒ |z| = 0 ⇐⇒ |zmis
1 | = |zmis

2 | = 0, this value is equal to

(1 − ϕ)J . The sum over ET × EJ−T now decomposes as the product of two independent

sums:
∑

zmis
2 ∈EJ−T

ϕ|zmis
2 |(1− ϕ)J−T−|zmis

2 |

which is equal to 1, and

∑

zmis
1 ∈ET

(1− q)K|zmis
1 |ϕ|zmis

1 |(1− ϕ)T−|zmis
1 |

which is equal to [ϕ(1− q)K + (1− ϕ)]T . Finally, we obtain:

λ0 =
[ϕ(1− q)K + (1− ϕ)]T − (1− ϕ)J

1− (1− ϕ)J
.

Appendix A3

If S ∼ NegBin (r, α), where r ∈]0,+∞[ and α ∈]0, 1[, let us first recall that its proba-

bility mass function is such that:

π(S|r, α) ∝
Γ(r + S)

S!
(1− α)S. (1)

We now express r and α in terms of E(S) and Var(S). This is easily done by using the

well known formulae E(S) = r 1−α
α

and Var(S) = r 1−α
α2 , from which we deduce that:

r =
[E(S)]2

Var(S)− E(S)
and α =

E(S)

Var(S)
. (2)
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If we let Var(S) −→ +∞ in (2) it is clear that, for any fixed E(S), α −→ 0 and r −→ 0.

If we now let α and r −→ 0 in the right member of (1), it is easy to verify that it tends to

1/S, since Γ(r + S) −→ Γ(S) = (S − 1)! and (1− α)S −→ 1.

Appendix A4

Let IN2 = IN \{0, 1}. Let θ1 = (S1, ϕ1, q1) and θ2 = (S2, ϕ2, q2) denote any two values

of θ ∈ Θ = IN2×]0, 1[×]0, 1[. We have to prove the following implication:

p(.|θ1) = p(.|θ2) =⇒ θ1 = θ2,

where the hyptohesis p(.|θ1) = p(.|θ2) means that: p(y|θ1) = p(y|θ2) whatever the data set

y. We can thus choose any data set y (see nevertheless the restriction below); the difficulty

being to find suitable and, as far as possible, simple data sets which us allow to prove that

θ1 = θ2. Let us notice, that conditionally on θ1 and θ2, a data set y, in which d species

have been detected, has to satisfied d ≤ inf(S1, S2). This remark concerns only the fourth

data set denoted by y
′′

(see later).

•We first prove that the parameter q is identifiable. For that, we consider two particular

data sets. In the first one, called y∗, only one species has been detected, and it has been

detected at each visit (therefore |y∗| = KT ). In the second one, called y∗∗, again only one

species has been detected, and it has been detected at each visit apart from once (therefore

|y∗∗| = KT − 1). Using the proposition 3.2, it is easy to check that:

p(y∗|θ1) = S1
(ϕ1q

K
1 )T [(ϕ1(1− q1)

K + (1− ϕ1))
T − (1− ϕ1)

J ]S1−1

[1− (1− ϕ1)J ]S1

and that:

p(y∗∗|θ1) = S1

C1
K ϕT

1 (1− q1)q
KT−1
1

[
[ϕ1(1− q1)

K + 1− ϕ1]
T − [1− ϕ1]

J
]S1−1

[1− (1− ϕ1)J ]S1
.
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Now, by hypothesis, p(y∗|θ1) = p(y∗|θ2) and p(y∗∗|θ1) = p(y∗∗|θ2) ; hence

p(y∗|θ1)

p(y∗∗|θ1)
=

p(y∗|θ2)

p(y∗∗|θ2)
.

After simplification, we obtain:
q1

1− q1
=

q2
1− q2

which implies q1 = q2.

• We now prove that ϕ is identifiable. We introduce a third data set, called y′, in which

only one species s has been detected and ysj = K for all the quadrats j, except for one

quadrat in which species s has not been detected; otherwise |y′| = K(T − 1). Now, using

the proposition 3.2, we have:

p(y′|θ1) = S1

[ϕ1q
K
1 ]T−1[ϕ1(1− q1)

K + 1− ϕ1]
[
[ϕ1(1− q1)

K + 1− ϕ1]
T − [1− ϕ1]

J
]S1−1

[1− (1− ϕ1)J ]S1
.

After simplification, we obtain:

p(y∗|θ1)

p(y′|θ1)
=

ϕ1

ϕ1(1− q1)K + 1− ϕ1

.

Using now the hypothesis that p(y∗|θ1) = p(y∗|θ2) and p(y′|θ1) = p(y′|θ2) yields

ϕ1

ϕ1(1− q1)K + 1− ϕ1
=

ϕ1

ϕ2(1− q2)K + 1− ϕ2
,

from which we deduce that ϕ1 = ϕ2 (since q1 = q2).

• To prove that S is identifiable, we use a proof by contradiction. We assume that

S2 6= S1; for example, S2 > S1. We introduce a new data set, called y′′, in which d = S1

species have been detected, and all these species have been detected during each visit. We

have:

p(y′′|θ1) =
[ϕ1 q

K
1 ]TS1

[1− (1− ϕ1)J ]S1
.
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and

p(y′′|θ2) = CS1
S2

[ϕ2q
K
2 ]TS1

[
[ϕ2(1− q2)

K + 1− ϕ2]
T − [1− ϕ2]

J
]S2−S1

[1− (1− ϕ2)J ]S2

where the presence of the terms [[ϕ2(1−q2)
K +1−ϕ2]

T −[1−ϕ2]
J ]S2−S1 and CS1

S2
in p(y′′|θ2)

is an immediate consequence of our assumption S2 > S1.

Considering that q1 = q2 and ϕ1 = ϕ2, it is easy to verify that p(y′′|θ1) = p(y′′|θ2)

implies that

CS1
S2

=

[
1

λ0

]S2−S1

(1)

where

λ0 =

[
ϕ(1− q)K + 1− ϕ)

]T
− (1− ϕ)J

1− (1− ϕ)J

in which q = q1 = q2 and ϕ = ϕ1 = ϕ2.

Moreover, it is straightforward to check that p(y∗|θ1) = p(y∗|θ2) implies that

S2

S1

=

[
1

λ0

]S2−S1

. (2)

From (1) and (2), we deduce that:

CS1
S2

=
S2

S1

(3)

We set n1 = S1 − 1 and n2 = S2 − 1; note that n1 and n2 are such that n2 > n1 ≥ 1 since

S2 > S1 ≥ 2. It is clear that (3) is equivalent to Cn1
n2

= 1. Now, Cn1
n2

is always > 1 whatever

n2 > n1 ≥ 1 (the verification is immediate); hence the contradiction. (Note that Cn1
n2

is

not > 1 when n1 = 0, hence the condition S ≥ 2 in the terms of our proposition.) It is

clear that starting with S2 < S1 leads to the same contradiction. Therefore, we conclude

that our starting assumption (namely S2 6= S1) is false, and that S1 = S2 is thus true.
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Appendix A5

• Let s be a detected species; first note that zobs
s is not empty and is necessarily different

from ~0. Moreover, given ys, we can partition zs into three parts: zobs
s , zmis

s (1) = {zmis
sj |j ∈

T } and zmis
s (2) = {zmis

sj |j /∈ T } where T = {1, . . . , T}. Due to Proposition 3.1, zmis
s (1)

and zmis
s (2) are independent conditionally on (ys, θ) (since zobs

s 6= ~0). By using now the

first part of Assumption A1, we deduce that the two blocks z
[1]
m and z

[2]
m are independent

conditionally on (y, θ).

• Using the same arguments, we deduce that the zsj’s of z
[2]
m are independent condition-

ally on (y, θ). Thus V
[2]
m |y, ϕ, q ∼ Bin((J − T )d, ϕ) as the sum of (J − T )d independent

Bernoulli (ϕ) r.v.s.

Using again the same arguments, we deduce that the missing zsj’s of z
[1]
m are independent

conditionally on (y, θ). We now calculate the probability γ = Pr(zsj = 1|ys, ϕ, q), where

ys is such that ys 6= ~0 and ysj = 0 since s represents a species which has not been detected

in quadrat j. By appling the Bayes formula, we have:

Pr(zsj = 1|ys) =
p(ys|zsj = 1) Pr(zsj = 1)

p(ys|zsj = 1) Pr(zsj = 1) + p(ys|zsj = 0) Pr(zsj = 0)

where ϕ and q have been omitted in the conditionings (for convenience). Now, as mentioned

at the end of Section 3.3, we have: Pr(zsj = 1) = ϕ/[1− (1− ϕ]J ]. Moreover, it is easy to

verify that: p(ys|zsj = 1) = (1−q)Tp(ys|zsj = 0) (recall that ys 6= ~0). Hence, the expression

of γ given in Proposition 3.5. Moreover, V
[1]
m |y, ϕ, q ∼ Bin(dT −V, γ) as the sum of dT −V

independent Bernoulli (γ) r.v.s.

• Let s be a species that is not detected. We start from:

p(zs|ys = ~0) =
Pr(ys = ~0|zs)p(zs)

Pr(ys = ~0).

where ϕ and q have been omitted in the conditionings (for convenience). If zs = ~0 then

Pr(ys = ~0|zs = ~0) = 1 else Pr(ys = ~0|zs) = (1− q)K|z∗s |. Note that this formula holds when
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zs = ~0. By replacing p(zs) by its expression (cf 3.1), and Pr(ys = ~0) = λ0 by its own (cf

3.4), we obtain the result.

Appendix A6

Let us examine the Argument 2, when ψ depends on j; thus Pr(zsj = 1) = ψj. For any

i ∈ {1, . . . , J} we introduce the vector z
[i]
s = (z

[i]
sj ; j = 1, , J) where z

[i]
sj = 1 if j = i and zero

otherwise. i being fixed, we assume that one wishes to infer on S from the sample Ei which

includes all the quadrats, except the quadrat i; therefore, Ei includes T = J − 1 quadrats.

Omitting, for convenience, the conditionings on the ψj’s, we can write:

p(z[i]
s ) = Pr(zsi = 1|Ai)× Pr(Ai)

where Ai denotes the event: zsj = 0 for all j 6= i. Moreover, due to the constraint

zs 6= ~0, we have Pr(zsi = 1|Ai) = 1; due to the DR assumption of independence, we have

Pr(Ai) =
∏

j 6=i(1−ψj), from which we deduce that: p(z
[i]
s ) =

∏
j 6=i(1−ψj). We now assume

that T = J ; due to DR assumption of independence, we have p(z
[i]
s ) = ψi

∏
j 6=i(1 − ψj)

which differs from the value obtained when T = J−1 (in fact, one has equality if and only

if ψi = 1).
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Table 1

q∗, (d, V,W ), Ŝ0, σ0, ŜDR, σDR, e1, e2 for different values of J, T,K, q, ϕ (S = 100)

n J T K ϕ q q∗ d V W Ŝ0 σ0 ŜDR σDR e1 e2

1 10 10 4 0.1 0.3 0.76 84 117 184 101 6 154 20 53 14

2 10 10 4 0.3 0.1 0.34 69 107 124 101 10 105 12 4 2

3 10 10 4 0.1 0.1 0.34 45 53 61 101 22 145 48 47 26

4 10 10 10 0.1 0.1 0.65 75 100 154 99 7 152 24 53 17

5 20 10 4 0.1 0.3 0.76 62 86 136 100 11 115 18 15 7

6 20 10 4 0.3 0.1 0.34 66 103 120 99 11 99 11 0 0

7 20 10 4 0.1 0.1 0.34 33 39 45 92 26 105 41 13 15

8 20 10 10 0.1 0.1 0.65 56 74 114 101 13 117 22 16 9

9 20 20 4 0.1 0.1 0.34 57 78 91 98 13 113 20 15 7

10 40 20 4 0.1 0.1 0.34 51 70 81 99 17 101 19 2 2

11 40 40 4 0.1 0.1 0.34 76 139 161 99 7 101 8 2 1

12 40 20 2 0.1 0.1 0.19 32 38 40 104 36 110 43 6 7

13 40 40 4 0.05 0.1 0.34 57 78 91 99 14 116 21 17 7

14 40 20 4 0.05 0.1 0.34 33 39 46 104 29 134 61 30 32

15 80 20 4 0.05 0.1 0.34 30 35 41 101 37 107 48 6 11

16 120 20 4 0.05 0.1 0.34 29 34 40 98 39 101 45 3 6

17 160 20 4 0.05 0.1 0.34 29 34 40 100 41 101 45 1 4

18 200 20 4 0.05 0.1 0.34 29 34 40 100 43 100 44 0 1
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