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Boundary singularities of positive solutions of some nonlinear elliptic equations Singularités au bord de solutions positives d'équations elliptiques non-linéaires

We study the behavior near x0 of any positive solution of (E) -∆u = u q in Ω which vanishes on ∂Ω \ {x0}, where Ω ⊂ R N is a smooth domain, q ≥ (N + 1)/(N -1) and x0 ∈ ∂Ω. Our results are based upon a priori estimates of solutions of (E) and existence, non-existence and uniqueness results for solutions of some nonlinear elliptic equations on the upper-half unit sphere.

Nous distinguerons les trois valeurs critiques de q données par (4). Si 1 < q < q 1 , le comportement en 0 des solutions est décrit dans [START_REF] Bidaut-Véron | An elliptic semilinear equation with source term involving boundary measures: the subcritical case[END_REF] ; aussi supposerons-nous le plus souvent q ≥ q 1 . Si u est une solution de (3) dans R N + de la forme u(x) = u(r, σ) = r -2/(q-1) ω(σ), alors ω vérifie l'équation [START_REF] Doob | Classical potential theory and its probabilistic counterpart[END_REF]. Dans ce cas, nous avons le résultat suivant : Théorème 0.1 (i) Si 1 < q ≤ q 1 , le problème (3) n'admet aucune solution.

(ii) Si q 1 < q < q 3 , (3) admet une unique solution, notée ω 0 .

(iii) Si q ≥ q 3 , (3) n'admet aucune solution.

Le résultat d'unicité décrit en (ii) est en fait un cas particulier d'un résultat plus général :

Théorème 0.2 Pour tous q > 1 et λ ∈ R, il existe au plus une solution positive de [START_REF] Gidas | Global and local behavior of positive solutions of nonlinear elliptic equations[END_REF].

Ce résultat demeure si, dans [START_REF] Gidas | Global and local behavior of positive solutions of nonlinear elliptic equations[END_REF], S N -1 + est remplacé par une boule dans R N , et ∆ ′ par le laplacien ordinaire.

Par simplicité, nous pouvons supposer que ∂R N

+ est l'hyperplan tangent à Ω en 0. Le théorème ci-dessous donne une classification des singularités isolées du problème (3) : Théorème 0.3 Soit q ≥ q 1 , avec q = q 2 . Supposons que la solution u du problème (3) vérifie

0 ≤ u(x) ≤ C |x| -2/(q-1) ∀x ∈ Ω ∩ B a (0), (1) 
pour C, a > 0. Si q 1 ≤ q < q 3 , ou bien u est continue en 0, ou bien

u(r, σ) = r -(N -1) log (1/r) 1-N 2 k N σ 1 + o(1) si q = q 1 , r -2/(q-1) ω 0 (σ) + o(1) si q 1 < q < q 3 , (2) 
lorsque r → 0, uniformément par rapport à σ ∈ S N -1

+

; k N est une constante qui dépend seulement de N . Si q ≥ q 3 , u est continue en 0.

L'estimation a priori (1) est obtenue pour q 1 ≤ q < q 2 : Théorème 0.4 Si q 1 ≤ q < q 2 , toute solution u de (3) vérifie (1) pour C = C(N, q, Ω) > 0.

Les démonstrations détaillées sont présentées dans [2].

Introduction and main result

Let Ω be a smooth open subset of R N , N ≥ 2, such that 0 ∈ ∂Ω and let q > 1. Assume that

u ∈ C 2 (Ω) ∩ C(Ω \ {0}) is a solution of      -∆u = u q in Ω, u ≥ 0 in Ω, u = 0 on ∂Ω \ {0}. (3) 
Our goal in this paper is to describe the behavior of u in a neighborhood of 0. This problem has similar features with the case where x 0 ∈ Ω, which has been studied by Gidas-Spruck [START_REF] Gidas | Global and local behavior of positive solutions of nonlinear elliptic equations[END_REF]. In our case, we encounter three critical values of q in describing the local behavior of u:

q 1 := N + 1 N -1 , q 2 := N + 2 N -2 if N ≥ 3 and q 3 := N + 1 N -3 if N ≥ 4. (4) 
When 1 < q < q 1 , it is proved in [START_REF] Bidaut-Véron | An elliptic semilinear equation with source term involving boundary measures: the subcritical case[END_REF] that for every solution u of (3) there exists α ≥ 0 (depending on N and u) such that u(x) = α |x| -N ρ(x) 1 + o(1) as x → 0, (5) where ρ(x) = dist(x, ∂Ω), ∀x ∈ Ω. For this reason, we shall mainly restrict ourselves to q ≥ q 1 .

Let us first consider the case where Ω = R N + and we look for solutions of (3) of the form u(x) = u(r, σ) = r -2/(q-1) ω(σ), where r = |x| and σ ∈ S N -1

+

. An easy computation shows that ω must satisfy

     -∆ ′ ω = ℓ N,q ω + ω q in S N -1 + , ω ≥ 0 in S N -1 + , ω = 0 on ∂S N -1 + , (6) 
where ∆ ′ denotes the Laplacian in S N -1 and ℓ N,q = 2(N -q(N -2))

(q-1) 2

. Concerning equation ( 6), we prove

Theorem 1.1 (i) If 1 < q ≤ q 1 , then (6 
) admits no positive solution.

(ii) If q 1 < q < q 3 , then (6) admits a unique positive solution.

(iii) If q ≥ q 3 , then (6) admits no positive solution.

One of the main ingredients in the proof of Theorem 1.1 (ii) is the following Theorem 1.2 If q > 1 and λ ∈ R, then there exists at most one positive solution of

-∆ ′ v = λv + v q in S N -1 + , v = 0 on ∂S N -1 + . ( 7 
)
Remark 1 We emphasize that in Theorem 1.2 we do not assume that q is subcritical. The conclusion above remains valid if, in [START_REF] Gidas | Global and local behavior of positive solutions of nonlinear elliptic equations[END_REF], S N -1 + is replaced by B 1 ⊂ R N and ∆ ′ by the usual Laplacian in R N . Theorem 1.2 extends a previous result of Kwong-Li [START_REF] Kwong | Uniqueness of radial solutions of semilinear elliptic equations[END_REF].

We now return to the case where Ω ⊂ R N is an arbitrary smooth set such that 0 ∈ ∂Ω. For simplicity, we may assume that ∂R N

+ is the tangent hyperplane of Ω at 0. Using Theorem 1.2, we provide a classification of isolated singularities of solutions of (3): Theorem 1.3 Let q ≥ q 1 , q = q 2 , and let u be a solution of (3). Assume that u satisfies

0 ≤ u(x) ≤ C |x| -2/(q-1) ∀x ∈ Ω ∩ B a (0), (8) 
for some C, a > 0. If q 1 ≤ q < q 3 , then either u is continuous at 0 or

u(r, σ) = r -(N -1) log (1/r) 1-N 2 k N σ 1 + o(1) if q = q 1 , r -2/(q-1) ω 0 (σ) + o(1) if q 1 < q < q 3 , (9) 
as r → 0, uniformly with respect to σ ∈ S N -1

+

; k N denotes a constant depending only on N and ω 0 is the unique positive solution of (6). If q ≥ q 3 , then u is continuous at 0.

Remark 2

We do not know whether Theorem 1.3 is true when q = q 2 . In this case, the equation is conformally invariant and thus other techniques are required. If Ω = R N + , then it can be proved that any solution of (3) depends only on the variables r = |x| and θ = cos -1 (x 1 / |x|).

The next result establishes the existence of an a priori estimate for the solutions of (3). According to Theorem 1.4 below, assumption (8) is always fulfilled when q 1 ≤ q < q 2 : Theorem 1.4 Let q 1 ≤ q < q 2 and let u be a solution of (3). Then,

0 ≤ u(x) ≤ Cρ(x) |x| -2/(q-1)-1 ∀x ∈ Ω ∩ B 1 (0), ( 10 
)
where C depends on N , q and Ω.

Remark 3 According to the Doob Theorem [START_REF] Doob | Classical potential theory and its probabilistic counterpart[END_REF], any positive superharmonic function v in Ω satisfies Ω |∆v| ρ < ∞ and admits a boundary trace, which is a Radon measure on ∂Ω. If u is a solution of (3), then its trace must be of the form kδ x0 , for some k ≥ 0. We may have k > 0 if 1 < q < q 1 (see [START_REF] Bidaut-Véron | Asymptotics of solutions of some nonlinear elliptic systems[END_REF]), but k is necessarily equal to 0 if q ≥ q 1 . Indeed, by the maximum principle, u satisfies u ≥ kP Ω (x, 0), where P Ω denotes the Poisson potential of Ω. Since u q ∈ L 1 ρ (Ω) (by the Doob Theorem), we must have k = 0 if q ≥ q 1 . Detailed proofs will appear in [2].

Sketch of the proofs

Proof of Theorem 1.1. Assertion (i) is proved by multiplying (6) by φ(σ) = σ 1 . Note that φ is the first eigenfunction of -∆ ′ on S N -1 + , with eigenvalue λ 1 = N -1. Integrating the resulting expression over S N -1 + , and using the fact that 1 < q ≤ q 1 =⇒ ℓ N,q ≥ λ 1 , we obtain (i). The existence part in (ii) is obtained by using the Mountain Pass Theorem; the uniqueness is a consequence of Theorem 1.2. Assertion (iii) can be deduced from the following Pohožaev-type identity: Proposition 2.1 Assume N ≥ 4 and q > 1. Then, any solution of (7) satisfies

N -3 q + 1 (q -q 3 ) S N -1 + |∇ ′ v| 2 φ dσ - (N -1)(q -1) q + 1 λ + N -1 q -1 S N -1 + v 2 φ dσ = = - ∂S N -1 + |∇ ′ v| 2 dτ.
This identity is obtained by computing the divergence of the vector field

P = ∇ ′ φ, ∇ ′ v ∇ ′ v
, where ∇ ′ is the gradient on S N -1 , and then using the fact that the first eigenfunction satisfies D 2 φ + φg 0 = 0, where g 0 is the tensor of the standard metric on S N -1 . In order to establish (iii), it suffices to observe that ℓ N,q ≤ -N -1 q-1 ⇐⇒ q ≥ q 3 .

Proof of Theorem 1.2. We first notice that any positive solution of ( 7) depends only on the variable θ = cos -1 (x 1 / |x|) ∈ [0, π/2]; this follows from a straightforward adaptation of the Gidas-Ni-Nirenberg moving plane method to S N -1 + (see [START_REF] Padilla | Symmetry properties of positive solutions of elliptic equations on symmetric domains[END_REF]). Thus, v satisfies

   v ′′ + (N -2) cot θ v ′ + λv + v q = 0 in (0, π/2), v ′ (0) = 0, v(π/2) = 0. (11) 
Let w(θ) := sin α θ v(θ), where α > 0. By choosing α = 2(N -2)/(q + 3), then w satisfies

w ′ (π/2) 2 = π/2 0 G ′ (θ)w 2 (θ) dθ, (12) 
where G is a function of the form G(θ) = sin β ′ θ α 1 sin 2 θ + α 2 ; the parameters α 1 , α 2 , β ′ ∈ R can be explicitly computed in terms of λ, N and q. Assume, by contradiction, that v 1 and v 2 are two distinct solutions of [START_REF] Véron | Comportement asymptotique des solutions d'équations elliptiques semi-linéaires dans R N[END_REF]. Then,

π/2 0 v 1 v 2 v q-1 2 -v q-1 1 dθ = 0. (13) 
Therefore, their graphs must intersect at some θ 0 ∈ (0, π/2). We claim that v 1 and v 2 intersect at least twice in (0, π/2). If there is only one intersection point, then it can be shown that there exists γ ≥ 0 such that the function θ → G ′ (θ) w 2 2 (θ) -γw 2 1 (θ) never vanishes in (0, π/2). We then let L(t) := (t 2 -γ) -1 , ∀t ∈ R \ {γ}. By (12) and the Mean Value Theorem, there exists θ 1 ∈ (0, π/2) such that

L w ′ 2 (π/2) w ′ 1 (π/2) = π/2 0 G ′ (θ)w 2 1 (θ) dθ π/2 0 G ′ (θ) [w 2 2 (θ) -γw 2 1 (θ)] dθ = L w 2 (θ 1 ) w 1 (θ 1
) .

Since L is injective in R + , this implies

w ′ 2 (π/2) w ′ 1 (π/2) = w 2 (θ 1 ) w 1 (θ 1 ) . ( 14 
)
On the other hand, by the Sturm-Liouville Theory, the function θ → w 2 (θ)/w 1 (θ) is (strictly) monotone. L'Hôpital's Rule yields a contradiction as we let θ → π/2. Therefore, v 1 and v 2 must intersect at least twice. This fact leads to another contradiction by using the Shooting Method (see [START_REF] Kwong | Uniqueness of radial solutions of semilinear elliptic equations[END_REF]). Thus, v 1 = v 2 in (0, π/2).

Remark 4

The method above follows the lines of the proof of Kwong-Li [START_REF] Kwong | Uniqueness of radial solutions of semilinear elliptic equations[END_REF]. The main difference is that we use an alternative argument based on the Mean Value Theorem in order to deduce (14). In [START_REF] Kwong | Uniqueness of radial solutions of semilinear elliptic equations[END_REF], they have to assume that the exponent q is subcritical.

Proof of Theorem 1.3. It follows from methods developed in [START_REF] Gidas | Global and local behavior of positive solutions of nonlinear elliptic equations[END_REF] and [START_REF] Bidaut-Véron | Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations[END_REF]. For simplicity, we shall assume that a = 1 and

∂Ω ∩ B 1 = ∂R N + ∩ B 1 . We set w(t, σ) = r 2/(q-1) u(r, σ), t = log (1/r) ∈ (0, ∞) × S N -1 + := Q. Then, w satisfies w tt -N -2 q + 1 q -1 w t + ∆ ′ w + ℓ N,q w + w q = 0 in Q (15) 
and w vanishes on (0, ∞) × ∂S N -1

+

. Since w is uniformly bounded on Q, standard a priori estimates for elliptic problems yield

∂ k t ∇ ′j w ≤ M k,j in (1, ∞) × S N -1 +
for any integers k, j ≥ 0, where ∇ ′j stands for the covariant derivative on S N -1 . Thus, the trajectory T w = w(t, •) : t ≥ 1} is relatively compact in C 2 S N -1

+

. Multiplying (15) by w t and integrating over S N -1 + , we obtain d dt H(t) = N -2 q + 1 q -1

S N -1 + w 2 t dσ, (16) 
where H(t) := 1 2 S N -1 + w 2 t -|∇ ′ v| 2 -ℓ N,q w 2 + 2 q + 1 w q+1 dσ.

Since q = q 2 , we know that N -2(q + 1)/(q -1) = 0. Thus, iterated energy estimates imply that w t (t, •), w tt (t, •) → 0 in L 2 (S N -1

+

) as t → ∞. Therefore, the limit set Γ w of T is a connected subset of the set of solutions of [START_REF] Doob | Classical potential theory and its probabilistic counterpart[END_REF]. By Theorem 1.1, we deduce that Γ w = {0} if q = q 1 or q ≥ q 3 , {0} or {ω 0 } if q 1 < q < q 3 . Then, a linearization argument as in [START_REF] Bidaut-Véron | Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations[END_REF] leads to the conclusion if q > q 1 . We now consider the case q = q 1 ; we borrow some ideas from [START_REF] Bidaut-Véron | Asymptotics of solutions of some nonlinear elliptic systems[END_REF] and [START_REF] Véron | Comportement asymptotique des solutions d'équations elliptiques semi-linéaires dans R N[END_REF]. We first prove, by ODE techniques, that X(t) := (17)

S N - 1 +

 1 w(t, •)φ dσ ≤ Ct -(N -1)/2 .

Using [START_REF] Kwong | Uniqueness of radial solutions of semilinear elliptic equations[END_REF] and the boundary Harnack inequality (see [START_REF] Cafarelli | Boundary behavior of nonnegative solutions of elliptic operators in divergence form[END_REF]), we derive 0 ≤ w(t, σ) ≤ Ct -(N -1)/2 in (1, ∞) × S N -1 + .

(18)

Set η(t, σ) := t (N -1)/2 w(t, σ). We verify as above that the limit set Γ η in C 2 S N -1

+

of the trajectory T η of η is an interval of the form κφ : 0 ≤ κ 0 ≤ κ ≤ κ 1 . In order to show that T η is reduced to a single point, we prove that r(t, •) L 2 ≤ Ct -1 , where

Writing the equation satisfied by z as a non-homogeneous second order linear ODE, we prove that either z(t) → 0, which implies that u is continuous at 0, or z(t) → kN as t → ∞, for some constant depending only on N .

Proof of Theorem 1.4. It is an application of the Doubling Lemma Method introduced in [START_REF] Poláčik | Singularity and decay estimates in superlinear problems via Liouville type theorems[END_REF], from which we derive the following local estimate: Lemma 2.1 Let 1 < q < q 2 and let u be a solution of (3). Then, for every

) for some constant C > 0 depending only on Ω.

Apply this lemma with x 0 ∈ ∂Ω \ {0} and R = |x 0 |/2. Using elliptic regularity theory, we obtain

If ρ(x) ≥ |x|/2, then we use Gidas-Spruck's internal estimates (see [START_REF] Gidas | Global and local behavior of positive solutions of nonlinear elliptic equations[END_REF]). We thus obtain [START_REF] Poláčik | Singularity and decay estimates in superlinear problems via Liouville type theorems[END_REF].