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BIRATIONAL GEOMETRY AND LOCALISATION OF
CATEGORIES

BRUNO KAHN AND R. SUJATHA

Abstract. The basic theme of this paper is to explore connec-
tions between places of function fields over a base field F of charac-
teristic zero and birational morphisms between smooth F -varieties.
This is done by considering various localised categories involving
function fields or varieties as objects, and constructing functors
between these categories. The main result is that in the localised
category S−1

b
Sm(F ), where Sm(F ) denotes the usual category of

smooth varieties over F and Sb is the set of birational morphisms,
the set of morphisms between two objects X and Y with Y proper
is the set of R-equivalence classes Y (F (X))/R. We also explore the
relation between smooth proper varieties isomorphic to Spec F in
S−1

b
Sm(F ) and special varieties like rationally connected varieties

and retract rational varieties.

With appendices by Jean-Louis Colliot-Thélène and Ofer Gabber
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Introduction

Birational geometry over a field F is the study of function fields over
F , viewed as generic points of algebraic varieties1, or alternately the
study of algebraic F -varieties “up to proper closed subsets”. In this
context, two ideas seem related:

• places between function fields;
• rational maps.

The main motivation of this paper has been to understand the precise
relationship between them. We have done this by defining two rather
different “birational categories” and comparing them, at least when F
is of characteristic 0.

The first idea gives the category place(F ) (objects: function fields;
morphisms: F -places), that we like to call the coarse birational cat-
egory. For the second idea, one has to be a little careful: the näıve
attempt at taking as objects smooth varieties and as morphisms ratio-
nal maps does not work because, as was pointed out to us by Hélène
Esnault, one cannot compose rational maps in general. On the other
hand, one can certainly start from the category Sm(F ) of smooth
F -varieties and localise it (in the sense of Gabriel-Zisman [13]) with
respect to the set Sb of birational morphisms. We like to call the re-
sulting category S−1

b Sm(F ) the fine birational category. By hindsight,
the problem mentioned by Esnault can be understood as a problem of
calculus of fractions of Sb in Sm(F ).

In spite of the lack of calculus of fractions, the category S−1
b Sm(F )

was studied in [26] and we were able to show that, under resolution
of singularities, the natural functor S−1

b Smproj(F )→ S−1
b Sm(F ) is an

equivalence of categories, where Smproj(F ) denotes the full subcategory
of smooth projective varieties (loc. cit. , Prop. 8.5).

What was not done in [26] was the computation of Hom sets in
S−1
b Sm(F ). This is the first main result of this paper:

Theorem 1 (cf. Th. 5.4.14). Assume F of characteristic 0. Let X, Y
be two smooth F -varieties, with Y proper. Then, in S−1

b Sm(F ), we
have an isomorphism

Hom(X, Y ) ≃ Y (F (X))/R

where the right hand side is the set of R-equivalence classes in the sense
of Manin.

1By convention all varieties are irreducible here, although not necessarily geo-
metrically irreducible.
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Since S−1
b Sm(F ) is by definition the universal target category for

functors on smooth varieties that invert birational morphisms, Theo-
rem 1 says that R-equivalence is in some sense the universal such func-
tor. It also implies that one can define a composition law on classes
of R-equivalence (for smooth proper varieties, say), a fact which is not
obvious a priori.

The second main task of this paper is to relate the coarse and fine bi-
rational categories, as there is no obvious comparison functor between
them. In order to solve this issue, we introduce in Definition 3.1.1 an
“incidence category” SmP(F ), whose objects are smooth F -varieties
and morphisms from X to Y are given by pairs (f, v), where f is a
morphism X → Y , v is a place F (Y )  F (X) and f, v are compati-
ble in an obvious sense. This category maps to both place(F )op and
Sm(F ) by obvious forgetful functors. Note that the set Sb lifts natu-
rally to SmP(F ), so that S−1

b SmP(F ) maps both to S−1
b Sm(F ) and

to place(F )op.
Replacing Sm(F ) by SmP(F ) turns out to have a strong rigidifying

effect. In order to describe our results, let us denote by Spb the subset
of Sb consisting of proper birational maps and by So the subset of Sb
consisting of open immersions. Note that, to localise with respect to Sb,
we may first localise with respect to Spb and then localise with respect
to So. We have:

Theorem 2. Assume F of characteristic 0. Then:

(1) (cf. Prop. 4.2.1) The category SmP(F ) admits a calculus of
right fractions with respect to Spb .

(2) (cf. Prop. 4.2.3) The category (Spb )
−1 SmP(F ) admits a calcu-

lus of left fractions with respect to So.
(3) (cf. Theorem 4.2.5) The functor S−1

b SmP(F ) → place(F )op

is an equivalence of categories.

To go further, we introduce the set Sr of stable birational morphisms:
by definition, a morphism s : X → Y is in Sr if it is dominant and the
function field extension F (X)/F (Y ) is purely transcendental. Analo-
gously, a morphism of function fields in place(F ) is in Sr if it is an
inclusion and if the corresponding extension is purely transcendental.
We then get an obvious diagram of categories

(0.1) S−1
r SmP(F ) //

≀

��

S−1
r Sm(F )

S−1
r place(F )op.
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We wondered about the nature of the localisation functor S−1
b Sm(F )

→ S−1
r Sm(F ) for a long time, until the answer was given us by Colliot-

Thélène through a wonderfully simple geometric argument (see Appen-
dix A). This is the first part of

Theorem 3. Assume F of characteristic 0. Then:

(1) (cf. Theorem 1.7.7) The functor S−1
b Sm(F ) → S−1

r Sm(F ) is
an equivalence of categories.

(2) Hom sets in S−1
r place(F ) may be described as quotients of the

Hom sets in place(F ) by the relation of “homotopy of places”
(see Def. 5.1.1 and Prop. 5.1.3).

(3) In (0.1), the horizontal functor is full (surjective on morphisms)
and essentially surjective (surjective on isomorphism classes of
objects); the “fibres” of this functor on Hom sets may be de-
scribed to some extent (see Lemma 6.2.1 and Theorem 6.2.3).

Part 2 of Theorem 3 may be seen as an easier analogue of Theorem
1: in fact, we first found Theorem 3 (2) and then guessed Theorem 1
by analogy.

In particular, we obtain a functor place(F )op → S−1
b Sm(F ) which

is full and essentially surjective, justifying the terminology of “coarse”
and “fine” birational categories.

In order to simplify the exposition, we have restricted ourselves in
this introduction to smooth varieties over a field of characteristic 0.
This is because our main theorems rely on Hironaka’s resolution of
singularities. In reality, just as in [26], we work in a slightly greater
generality, considering a subcategory C of the category Var(F ) of all
F -varieties, where C is supposed to have good permanence properties
with respect to the set Sb or Spb . This allows us to obtain at least some
results which are independent of resolution of singularities. One should
be aware, however, that the natural functor S−1

b Sm(F )→ S−1
b Var(F )

is not an equivalence of categories, even in characteristic 0: this was
already observed in [26, Rk. 8.11].

Let us now describe the contents of this paper in more detail. Most
of our arguments are categorical in nature, hence the geometrical prop-
erties used here are mostly basic and formal (basic does not mean ele-
mentary, as resolution of singularities plays an essential rôle!). We start
by setting up our notation in Section 1, which ends with a nontrivial
result (Theorem 1.7.7). In Section 2, we put on the Zariski-Samuel “ab-
stract Riemann surface of a field” a structure of locally ringed space,
and prove that it is a cofiltered inverse limit of proper models viewed
as schemes (we could not find this done in the literature). For a pre-
cise statement, see Theorem 2.1.8. This provides a first relationship



BIRATIONAL GEOMETRY AND LOCALISATION OF CATEGORIES 5

between places and morphisms of varieties (Proposition 2.2.3). In Sec-
tion 3, we introduce the incidence category SmP(F ) sitting in the
larger category VarP(F ), the forgetful functors VarP(F ) → Var(F )
and VarP(F ) → place(F )op, and prove elementary results on these
functors (see Lemmas 3.2.2 and 3.2.4). In Section 4 we prove the re-
sults of Theorem 2, in a greater generality: the main result is Theorem
4.2.5.

In Section 5, we first define the relation of homotopy of places (Def.
5.1.2) and prove easily part 2 of Theorem 3. We then set up in Sub-
section 5.4 a categorical machine which allows us eventually to prove
Theorem 1. Before Colliot-Thélène’s result leading to Theorem 3 (1),
we were proving Theorem 1 with Sb replaced by Sr. In Section 6,
we give a somewhat more concrete description of the composition of
R-equivalence classes stemming from Theorem 1 (in a slightly more
general form, see Proposition 6.1.2) and prove part 3 of Theorem 3.

Section 7 is probably the most geometrical and concrete of the whole
paper: we give there some applications of our results. One of them is
that, if X is a smooth proper variety over a field of characteristic 0,
then the set X(F (X))/R has a natural structure of a monoid (for the
composition of R-equivalence classes given by Theorem 1). This seems
especially striking when X is a smooth compactification of a linear
algebraic group G: in this case, there are two composition laws on this
set, the second one being induced by the product of G (unfortunately,
the former is only distributive on the left with respect to the latter, see
comment after Lemma 7.2.2). We also relate, albeit weakly, our theory
with Kollár’s notion of rationally connected varieties in Theorem 7.3.1,
and with Saltman’s notion of retract-rational varieties in Proposition
7.4.2. In Subsection 7.6, we define the “function field of BG” for G a
linear algebraic group, as an easy application of the “no name lemma”,
and put forth some questions about it. Finally we list a few open
questions/problems in Subsection 7.7.

We have tried our best to avoid using resolution of singularities to
prove at least some significant results, but unfortunately we have not
been very successful (see however Corollary 4.4.3). Nevertheless, the
reader should definitely have a look at Subsection 5.3, where a collec-
tion of nontrivial theorems avoiding resolution of singularities is pre-
sented, the latest being recent results of Gabber. We hope that these
theorems can be used to improve the scope of our main results (see
already Corollary 5.3.5 and Remark 6.1.3).

This paper grew out of the preprint [25], where some of its results
were initially proven. Indeed [25] contained a mix of results on bira-
tional categories, pure birational motives and triangulated birational
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motives; after a long period of gestation, we decided that the best was
to separate the present results, which have little to do with motives,
from the rest of the work. Meanwhile, a better understanding of the
localisation techniques that had been used in [25] led to [26] on abstract
localisation theorems.

Meanwhile again, results of [25] have started to be used, notably in
[21, 24, 23, 22]. We now plan to provide a final version of [25] soon.
However, the localisation of the Morel-Voevodsky A1-homotopy cate-
gory of schemes H(F ) [34] with respect to Sr should also be studied,
as well as that of Morel-Voevodsky’s effective stable A1-homotopy cat-
egory of schemes.

For the latter, this is very likely any “chunk” of the slice filtration of
[44]; this analogy was pointed out to us early on by Chunck Weibel. Ac-
tually, recent results of Voevodsky, Levine and Østvær-Röndigs prob-
ably imply that the functor

S−1
r SH

S1

(F )→ S−1
r DM eff(F )

induced by the “Suslin complex” functor C∗ : SHS1

(F ) → DM eff(F )
from the Morel-Voevodsky homotopy category of S1-spectra to Vo-
evodsky’s triangulated category of effective motivic complexes is an
equivalence of categories if F is of characteristic 0 (the above-mentioned
results imply at the very least that this functor is essentially surjective,
see [37, Th. 3.5.15]).

On the other hand, the study of the natural functor S−1
r Sm(F ) →

S−1
r H(F ) promises to be intriguing, if one compares Theorem 1 with

the following conjecture of F. Morel:

Conjecture 1 ([33, p. 386]). If X is a smooth variety, the natural
map

X(F )→ HomH(F )(SpecF,X)

is surjective and identifies the right hand side with the quotient of the
set X(F ) by the equivalence relation generated by

(x ∼ y) ⇐⇒ ∃h : A1 → X | h(0) = x and h(1) = y.

Note that this “A1-equivalence” coincides with R-equivalence if X
is proper.
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1. Preliminaries and notation

In this section, we collect some basic material that will be used in
the paper. This allows us to fix our notation. We start with:

Notation. F is the base field. All varieties are (irreducible) F -varieties
and all morphisms are F -morphisms. If X is a variety, ηX denotes its
generic point.

1.1. Localisation of categories and calculus of fractions. We re-
fer to Gabriel-Zisman [13, Chapter I] for the necessary background.
Recall [13, I.1] that if C is a small category and S is a collection of
morphisms in C, there is a category C[S−1] and a functor C → C[S−1]
which is universal among functors from C which invert the elements of
S. When S satisfies calculus of fractions [13, I.2] the category C[S−1]
is equivalent to another one, denoted S−1C by Gabriel and Zisman, in
which the Hom sets are more explicit.

This definition raises set-theoretic problems: we have chosen to ig-
nore them in this paper, and hence to be rather informal with sets,
classes or collections of morphisms.

In this paper, we shall encounter situations where calculus of frac-
tions is satisfied, as well as others where it is not. We shall take the
practice to abuse notation and write S−1C rather than C[S−1] even
when calculus of fractions is not verified.

We shall occasionally use the following notion:

1.1.1. Definition. Let C be a category and S a family of morphisms
of C. An object X ∈ C is local relatively to S or S-local (left closed in
the terminology of [13, Ch. 1, Def. 4.1 p. 19]) if, for any s : Y → Z in
S, the map

C(Z,X)
s∗

→ C(Y,X)

is bijective.
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1.2. Equivalence relations.

1.2.1. Definition. Let C be a category. An equivalence relation on
C consists, for all X, Y ∈ C, of an equivalence relation ∼X,Y =∼ on
C(X, Y ) such that f ∼ g ⇒ fh ∼ gh and kf ∼ kg whenever it makes
sense.

In [30, p. 52], the above notion is called a ‘congruence’. Given an
equivalence relation ∼ on C, we may form the factor category C/ ∼,
with the same objects as C and such that C/ ∼ (X, Y ) = C(X, Y )/ ∼.
This category and the projection functor C → C/ ∼ are universal for
functors from C which equalise equivalent morphisms.

1.2.2. Example. Let A be an Ab-category (sets of morphisms are
abelian groups and composition is bilinear). An ideal I in A is given
by a subgroup I(X, Y ) ⊆ A(X, Y ) for all X, Y ∈ A such that IA ⊆ I
and AI ⊆ I. Then the ideal I defines an equivalence relation on A,
compatible with the additive structure.

Let ∼ be an equivalence relation on the category C. We have the
collection S∼ = {f ∈ C | f is invertible in C/ ∼}. The functor C →
C/ ∼ factors as a functor S−1

∼ C → C/ ∼. Conversely, let S ⊂ C be a
set of morphisms. We have the equivalence relation ∼S on C such that
f ∼S g if f = g in S−1C, and the localisation functor C → S−1C factors
as C/ ∼S→ S−1C. Neither of these two factorisations is an equivalence
of categories in general; however, [17, Prop. 1.3.3] remarks that if
f ∼ g implies f = g in S−1

∼ C, then S−1
∼ C → C/ ∼ is an isomorphism of

categories.

1.2.3. Exercise. Let A be a commutative ring and I ⊆ A an ideal.
a) Assume that the set of minimal primes of A that do not contain

I is finite (e.g. that A is noetherian). Show that the following two
conditions are equivalent:

(i) There exists a multiplicative subset S of A such that A/I ≃
S−1A (compatibly with the maps A→ A/I and A→ S−1A).

(ii) I is generated by an idempotent.

(Hint: show first that, without any hypothesis, (i) is equivalent to

(iii) For any a ∈ I, there exists b ∈ I such that ab = a.)

b) Give a counterexample to (i)⇒ (ii) in the general case (hint: take
A = kN, where k is a field).

1.3. Places, valuations and centres [45, Ch. VI], [3, Ch. 6]. Recall
[3, Ch. 6, §2, Def. 3] that a place from a field K to a field L is a map
λ : K ∪ {∞} → L ∪ {∞} such that λ(1) = 1 and λ preserves sum and
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product whenever they are defined. We shall usually denote places by
screwdriver arrows:

λ : K  L.

Then Oλ = λ−1(L) is a valuation ring of K and λ|Oλ
factors as

Oλ →→ κ(λ) →֒ L

where κ(λ) is the residue field ofOλ. Conversely, the data of a valuation
ring O of K with residue field κ and of a field homomorphism κ → L
uniquely defines a place from K to L (loc. cit. , Prop. 2). It is easily
checked that the composition of two places is a place.

If K and L are extensions of a field F , we say that λ is an F -place
if λ|F = Id and then write F (λ) rather than κ(λ).

In this situation, let X be an integral F -scheme of finite type with
function field K. A point x ∈ X is a centre of a valuation ring O ⊂ K if
O dominates the local ring OX,x. If O has a centre on X, we sometimes
say that O is finite on X. As a special case of the valuative criterion
of separatedness (resp. of the valuative criterion of properness), x is
unique (resp. exists) for all O if and only if X is separated (resp.
proper) [19, Ch. 2, Th. 4.3 and 4.7].

On the other hand, if λ : K  L is an F -place, then a point x ∈ X(L)
is a centre of λ if there is a map ϕ : SpecOλ → X letting the diagram

SpecOλ
ϕ

%%LLLLLLLLLLL
SpecKoo

��
SpecL

λ∗

OO

x // X

commute. Note that the image of the closed point by ϕ is then a centre
of the valuation ring Oλ and that ϕ uniquely determines x.

In this paper, when X is separated we shall denote by c(O) ∈ X the
centre of a valuation ring O and by c(λ) ∈ X(L) the centre of a place λ,
and carefully distinguish the two notions (one being a scheme-theoretic
point and the other a rational point).

1.4. Rational maps. LetX, Y be two F -schemes of finite type. Recall
that a rational map from X to Y is a pair (U, f) where U is a dense
open subset of X and f : U → Y is a morphism. Two rational maps
(U, f) and (U ′, f ′) are equivalent if there exists a dense open subset U ′′

contained in U and U ′ such that f|U ′′ = f ′
|U ′′. We denote by Rat(X, Y )

the set of equivalence classes of rational maps, so that

Rat(X, Y ) = lim−→MapF (U, Y )

where the limit is taken over the open dense subsets of X.
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Suppose X integral for simplicity. Then there is a largest open subset
U of X on which a given rational map f : X 99K Y is defined [19, Ch.
I, Ex. 4.2]. The (reduced) closed complement X − U is called the
fundamental set of f (notation: Fund(f)). We say that f is dominant
if f(U) is dense in Y .

Similarly, let f : X → Y be a birational morphism. The complement
of the largest open subset of X on which f is an isomorphism is called
the exceptional locus of f and is denoted by Exc(f).

Note that the sets Rat(X, Y ) only define a precategory (or diagram,
or diagram scheme, or quiver) Rat(F ), because rational maps cannot
be composed in general. To clarify this, let f : X 99K Y and g : Y 99K
Z be two rational maps, where X, Y, Z are varieties. We say that f and
g are composable if f(ηX) /∈ Fund(g), where ηX is the generic point of
X. Then there exists an open subset U ⊆ X such that f is defined on
U and f(U) ∩ Fund(g) = ∅, and g ◦ f makes sense as a rational map.
This happens in two important cases:

• f is dominant;
• g is a morphism.

This composition law is associative wherever it makes sense. In par-
ticular, we do have the category Ratdom(F ) with objects F -varieties
and morphisms dominant rational maps. Similarly, the category Var(F )
of 1.7 acts on Rat(F ) on the left.

1.5. The graph trick. We shall often use this well-known and basic
device, which allows us to replace a rational map by a morphism.

Let U, Y be two F -varieties. Let j : U → X be an open immersion (X
a variety) and g : U → Y a morphism. Consider the graph Γg ⊂ U×Y .

By the first projection, Γg
∼
−−→ U . Let Γ̄g be the closure of Γg in X×Y ,

viewed as a reduced scheme. Then the rational map g : X 99K Y
has been replaced by g′ : Γ̄g → Y (second projection) through the
birational map p : Γ̄g → X (first projection). Clearly, if Y is proper
then p is proper.

1.6. Structure theorems on varieties. Here we collect some well-
known results, for future reference.

1.6.1. Theorem (Nagata [36]). Any variety X can be embedded into
a proper variety X̄. We shall sometimes call X̄ a compactification of
X.

1.6.2. Theorem (Relative Chow lemma, [EGA 2, Th. 5.6.1]). For any
morphism f : Y → X, there exists a projective birational morphism

p : Ỹ → Y such that f ◦ p is quasi-projective.
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1.6.3. Theorem (Hironaka [20]). If charF = 0,
a) For any variety X there exists a projective birational morphism

f : X̃ → X with X̃ smooth. (Such a morphism is sometimes called
a modification.) Moreover, f may be chosen such that it is an iso-
morphism away from the inverse image of the singular locus of X. In
particular, any smooth variety X may be embedded as an open subset
of a smooth proper variety (projective if X is quasi-projective).
b) For any proper birational morphism p : Y → X between smooth

varieties, there exists a proper birational morphism p̃ : Ỹ → X which
factors through p and is a composition of blow-ups with smooth centres.

In several places we shall assume characteristic 0 in order to use
resolution of singularities. We shall specify this by putting an asterisk
to the statement of the corresponding result (so, the asterisk will mean
that the characteristic 0 assumption is due to the use of Theorem 1.6.3).

1.7. A zoo of categories and multiplicative systems. In this pa-
per, we shall mainly work within the category of F -varieties Var(F ) =
Var: objects are F -varieties (i.e. integral separated F -schemes of fi-
nite type) and morphisms are all F -morphisms. We shall also consider
subcategories of Var as in [26, §8], e.g. smooth, quasi-projective, etc.
We retain the notation used in loc. cit. Moreover, for any subcategory
C of Var, we shall write Cdom for the subcategory of C with the same
objects, and morphisms the dominant morphisms of C.

As in [26], we shall use various collections of morphisms of Var(F )
that are to be inverted. The main ones are

• Birational morphisms Sb: s ∈ Sb if s is dominant and induces
an isomorphism of function fields
• Strict birational morphisms:

Sb = {s ∈ Sb | s induces an equality of function fields}

• Stably birational morphisms Sr: s ∈ Sr if s is dominant and
induces a purely transcendental extension of function fields

In fact, the difference between Sb and Sb is immaterial in view of the
following

1.7.1. Lemma. Any birational morphism of separated varieties is the
composition of a strict birational morphism and an isomorphism.

Proof. Let s : X → Y be a birational morphism. First assume X and
Y affine, with X = SpecA and Y = SpecB. Let K = F (X) and
L = F (Y ), so that K is the quotient field of A and L is the quotient

field of B. Let s∗ : K
∼
−−→ L be the isomorphism induced by s. Then
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A
∼
−−→ A′ = s∗(A), hence s may be factored as X

s′

−→ X ′ u
−→ Y with

X ′ = SpecA′, where s′ is strict birational and u is an isomorphism.
In the general case, we may patch the above construction (which is
canonical) over an affine open cover (Ui) of Y and an affine open cover
of X refining (s−1(Ui)). 2

In addition, we shall occasionally encounter the following subsets of
Sb:

• So: open immersions
• Spb : proper birational morphisms, Spb = Spb ∩ Sb
• Swb : the multiplicative subset of Spb generated by blow-ups with

smooth centres (the exponent w is meant to recall “weak fac-
torisation”)

and of Sr:

• Spr : proper stably birational morphisms
• Sh: the multiplicative subset of Spr generated by morphisms of

the form pr2 : X ×P1 → X.
• Swr : the multiplicative subset of Spr generated by Swb and Sh.

Recall the following well-known lemma:

1.7.2. Lemma ([26, Lemma 8.2]). Let f, g : X → Y be two morphisms,
with X integral and Y separated. Then f = g if and only if f(ηX) =
g(ηX) =: y and f, g induce the same map F (y)→ F (X) on the residue
fields. 2

1.7.3. Remark. In view of this lemma, let us reinterpret Theorems
1.6.2 and 1.6.3 in categorical language: this is basically the only way in
which we shall use these theorems. Consider the subcategory Varb of
Var with the same objects, but with morphisms restricted to Spb . The
graph trick (§1.5) shows that for an object X in Varb, the category
Varb /X (cf. [26, 1.1]) is cofiltering (the opposite of filtering, in the
sense of [SGA4-I, Exp. 1, Def. 2.7]). For a full subcategory C ⊆ Var,
let Cb = C ∩ Varb. Then Chow’s lemma (resp. Hironaka’s theorem)
implies that Cb is final (the opposite of cofinal, in the sense of [1, p.
149] or [SGA4-I, Exp. 1, Prop. 8.1.3]) in Varb for C = Varqp (resp.
C = Sm in characteristic 0). Here we use the fact that, thanks to
Lemma 1.7.2, Varb is an ordered category, i.e. there is at most one
morphism between two given objects. Also note that the notion of
‘final’ in [30] is the opposite of that in [SGA4-I]. This was pointed out
to us by Maltsiniotis; in [26], we use the convention of [30] whilst here
we use that of [SGA4-I]!
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In practice, we shall not use the categories Cb but will prefer the
following working definition in the sequel:

1.7.4. Definition. Let C be a full subcategory of Var, and S ⊂ Var
be a multiplicative class of dominant morphisms.
a) We say that C is S-final in Var if, given X ∈ Var, there exists

Y
s
−→ X with Y ∈ C and s ∈ S.

b) We say that C is properly final in Var if it is Spb -final in Var and if,
moreover, any X ∈ C is an open subset of an X̄ ∈ C which is proper.

1.7.5. Examples. a) S-final: For S = Spb , we may take C = Var,Varqp

and, *in characteristic 0, C = Sm,Smqp. Recall that the superscript
qp denotes quasi-projective varieties. For S = Sb or So, we may take
the same examples, with F only perfect in the case of Sm and Smqp.
b) Properly final: the same examples as in a) for S = Spb .
We leave it to the reader to consider other interesting examples (normal
varieties. . . ).

We have the following elementary lemma.

1.7.6. Lemma. Let C be a strictly full subcategory of Var(F ).
a) If C is So-final, then the sets Sb, Sb and So have the same saturation
in Cdom(F ) := C∩Vardom(F ) (hence they give isomorphic localisations).
b) If C is Spb -final (resp. Spb -final and So-final) and stable under product
with P1, the sets Spr and Spb ∪ Sh (resp. Sr and Sb ∪ Sh) have the same
saturation in C.
c) *(Weak weak factorisation.) If charF = 0, the sets Spb and Swb have
the same saturation in Sm(F ).

Proof. a) It suffices to observe that, by definition, a birational mor-
phism s : X → Y for X, Y ∈ C sits in a commutative diagram

U
j

−−−→ X

≀

y s

y

V
j′

−−−→ Y

where j, j′ ∈ So ⊂ Sb. By hypothesis, we may choose U, V ∈ C.
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b) For a morphism s : Y → X in Spr with X, Y ∈ C, it suffices to
consider a commutative diagram

(1.1) Ỹ
t

����
��

��
��

u

$$I
II

II
III

II
I

Y

s
��?

??
??

??
? X × (P1)n

π
yyttttt

ttttt

X

obtained by the graph trick, with t, u ∈ Spb ; by Spb -finality, we may

dominate Ỹ by an object of C.
For a morphism s : Y → X in Sr, use the graph trick to produce a

commutative diagram

Y
j′

−−−→ Ȳ

s

y s̄

y

X
j

−−−→ X̄
with j, j′ two open immersions and X̄, Ȳ proper (Theorem 1.6.1). Note
that, then, s̄ ∈ Spr . Pulling back s̄ via j, we find s̄′ : Y ′ → X with
s̄′ ∈ Spr and Y open in Y ′. By Spb -finality, we may find t : Y ′′ → Y ′

with t ∈ Spb and Y ′′ ∈ C. Then we have a rational map Y 99K Y ′′. By
So-finality, this rational map is defined on some common open subset
U ∈ C.

c) (cf. [16, p. 47, (iii)]). Let p : Y → X be in Spb . By Theorem

1.6.3 b), there exists q : Ỹ → Y in Spb such that pq ∈ Swb . Applying

the theorem a second time, there exists r : Z → Ỹ in Spb such that
qr ∈ Swb . So q is invertible in (Swb )−1 Sm(F ) and therefore p is invertible
in (Swb )−1 Sm(F ). 2

Here is now the main result of this section.

1.7.7. Theorem. In Var, the sets Spb and Spr (resp. Sb and Sr) have
the same saturation. This is also true in a strictly full subcategory
C ⊆ Var provided it is Spb -final in Var (resp. Spb and So-final) (cf. the
examples 1.7.5), and stable under product by the varieties appearing in
the proof of the lemma in Appendix A. *In particular, it is true for
C = Sm in characteristic 0.

Proof. By Lemma 1.7.6 b), it suffices to prove that Sh is contained in
the saturation of Spb . Let f : Y ×P1 → Y be the first projection for a
Y ∈ Var. We have to show that f becomes invertible in (Spb )

−1 Var.
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By Yoneda’s lemma, it suffices to show that F (f) is invertible for any
(representable) functor F : (Spb )

−1 Varop → Sets. This follows by
taking the proof of Appendix A and “multiplying” it by Y . 2

2. Places, valuations and the Riemann varieties

In this section, we give a first categorical relationship between the
idea of places and that of algebraic varieties. This leads us to consider
Zariski’s “abstract Riemann surface of a field” as a locally ringed space.
As we could not find this elaborated in the literature (except for a terse
allusion in [20, 0.6, p. 146]: we thank Bernard Teissier for pointing out
this reference), we start by giving the details.

2.1. The Riemann-Zariski variety as a locally ringed space.

2.1.1. Definition. We denote by R(F ) = R the full subcategory of the
category of locally ringed spaces such that (X,OX) ∈ R if and only if
OX is a sheaf of local F -algebras.

(Here, we understand by “local ring” a commutative ring whose non-
invertible elements form an ideal but we don’t require it to be Noether-
ian.)

2.1.2. Lemma. Cofiltering inverse limits exist in R. More precisely, if
(Xi,OXi

)i∈I is a cofiltering inverse system of objects of R, its inverse
limit is represented by (X,OX) with X = lim←−Xi and OX = lim−→ p∗iOXi

,
where pi : X → Xi is the natural projection.

Sketch. Since a filtering direct limit of local rings for local homomor-
phisms is local, the object of the lemma belongs to R and we are left
to show that it satisfies the universal property of inverse limits in R.
This is clear on the space level, while on the sheaf level it follows from
the fact that inverse images of sheaves commute with direct limits. 2

Recall from Zariski-Samuel [45, Ch. VI, §17] the abstract Riemann
surface SK of a function field K/F : as a set, it consists of all nontrivial
valuations on K which are trivial on F . It is topologised by the follow-
ing basis E of open sets: if R is a subring of K, finitely generated over
F , E(R) ∈ E consists of all valuations v such that Ov ⊇ R.

As has become common practice, we shall slightly modify this defi-
nition:

2.1.3. Definition. The Riemann variety ΣK of K is the following
ringed space:
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• As a topological space, ΣK = SK ∪{ηK} where ηK is the trivial
valuation of K. (The topology is defined as for SK .)
• The sections over E(R) of the structural sheaf of ΣK are the

intersection
⋂

v∈E(R)

Ov, i.e. the integral closure of R.

2.1.4. Lemma. The stalk at v ∈ ΣK of the structure sheaf is Ov. In
particular, ΣK ∈ R.

Proof. Let x ∈ Ov. The ring R = F [x] is finitely generated and con-
tained in Ov, thus Ov is the filtering direct limit of the R such that
v ∈ E(R). 2

Let R be a finitely generated F -subalgebra ofK. We have a canonical
morphism of locally ringed spaces cR : E(R) → SpecR defined as
follows: on points we map v ∈ E(R) to its centre cR(v) on SpecR. On
the sheaf level, the map is defined by the inclusions OX,cX(v) ⊂ Ov.

We now reformulate [45, p. 115 ff] in scheme-theoretic language.
Let X ∈ Var (separated) be provided with a dominant morphism
SpecK → X such that the corresponding field homomorphism F (X)→
K is an inclusion (as opposed to a monomorphism). We call such an X
a Zariski-Samuel model of K; X is a model of K if, moreover, F (X) =
K. Note that Zariski-Samuel models ofK form a cofiltering ordered set.
Generalising E(R), we may define E(X) = {v ∈ ΣK | v is finite on X}
for a Zariski-Samuel model of K; this is still an open subset of ΣK , as
the union of the E(Ui), where (Ui) is some finite affine open cover of
X. We still have a morphism of locally ringed spaces cX : E(X)→ X
defined by glueing the affine ones. If X is proper, E(X) = ΣX by the
valuative criterion of properness. Then:

2.1.5. Theorem (Zariski-Samuel). a) The induced morphism of ringed
spaces

ΣK → lim←−X

where X runs through the proper Zariski-Samuel models of K, is an
isomorphism in R. The generic point ηK is dense in ΣK .
b) This statement remains true if we replace proper Zariski models by
proper models or by models in C where C ⊆ Varprop is Sb-final.

Proof. a) Zariski and Samuel’s theorem [45, th. VI.41 p. 122] says that
the underlying morphism of topological spaces is a homeomorphism;
thus, by Lemma 2.1.2, we only need to check that the structure sheaf
of ΣK is the direct limit of the pull-backs of those of the X. This
amounts to showing that, for v ∈ ΣK , Ov is the direct limit of the
OX,cX(v).
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We argue essentially as in [45, pp. 122–123] (or as in the proof of
Lemma 2.1.4). Let x ∈ Ov, and let X be the projective Zariski-Samuel
model determined by {1, x} as in loc. cit. , bottom p. 119, so that
either X ≃ P1

F or X = SpecF ′ where F ′ is a finite extension of F
contained in K. In both cases, c = cX(v) actually belongs to SpecF [x]
and x ∈ OX,c ⊂ Ov.

Finally, ηK is contained in every basic open set, therefore is dense in
ΣK .

b) This is obvious. 2

2.1.6. Definition. Let C be a full subcategory of Var. We denote by
Ĉ the full subcategory of R whose objects are cofiltered inverse limits
of objects of C under morphisms of Sb (cf. §1.7).

Note that C ⊂ Ĉ and, for any function field K/F , ΣK ∈ V̂ar
prop

by Theorem 2.1.5. Also, for any X ∈ V̂ar, the function field F (X) is
well-defined.

2.1.7. Lemma. Let X ∈ V̂ar and K = F (X).
a) For a finitely generated F -algebra R ⊂ K, the set

EX(R) = {x ∈ X | R ⊂ OX,x}

is an open subset of X. These open subsets form a basis for the topology
of X.
b) The generic point ηK ∈ X is dense in X, and X is quasi-compact.

Proof. a) If X is a variety, then EX(R) is open, being the set of defini-
tion of the rational map X 99K SpecR induced by the inclusion R ⊂ K.
In general, let (X,OX) = lim←−α(Xα,OXα

) with the Xα varieties and let
pα : X → Xα be the projection. Since R is finitely generated, we have

EX(R) =
⋃

α

p−1
α (EXα

(R))

which is open in X.
Let x ∈ X: using Lemma 2.1.2, we can find an α and an affine open

U ⊂ Xα such that x ∈ p−1
α (U). Writing U = SpecR, we see that

x ∈ EX(R), thus the EX(R) form a basis of the topology of X.
In b), the density follows from a) since clearly ηK ∈ EX(R) for every

R, andX is quasi-compact, being the inverse limit of the quasi-compact
spaces Xα. 2
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2.1.8. Theorem. Let X = lim
←−

Xα, Y = lim
←−

Yβ be two objects of V̂ar.
Then we have a canonical isomorphism

V̂ar(X, Y ) ≃ lim←−
β

lim−→
α

Var(Xα, Yβ).

Proof. Suppose first that Y is constant. We then have an obvious map

lim−→
α

Var(Xα, Y )→ V̂ar(X, Y ).

Injectivity follows from Lemma 1.7.2. For surjectivity, let f : X → Y
be a morphism. Let y = f(ηK). Since ηK is dense in X by Lemma

2.1.7 b), f(X) ⊆ {y}. This reduces us to the case where f is dominant.
Let x ∈ X and y = f(x). Pick an affine open neighbourhood SpecR

of y in Y . Then R ⊂ OX,x, hence R ⊂ OXα,xα
for some α, where

xα = pα(x), pα : X → Xα being the canonical projection. This shows
that the rational map fα : Xα 99K Y induced by restricting f to the
generic point is defined at xα for α large enough.

Let Uα be the set of definition of fα. We have just shown that X
is the increasing union of the open sets p−1

α (Uα). Since X is quasi-
compact, this implies that X = p−1

α (Uα) for some α, i.e. that f factors
through Xα for this value of α.

In general we have

V̂ar(X, Y )
∼
−−→ lim←−

β

V̂ar(X, Yβ)

by the universal property of inverse limits, which completes the proof.
2

2.1.9. Remark. Let proS
b
–Var be the full subcategory of the category

of pro-objects of Var consisting of the (Xα) in which the transition
maps Xα → Xβ are strict birational morphisms. Then Theorem 2.1.8
may be reinterpreted as saying that the functor

lim←− : proS
b
–Var→ V̂ar

is an equivalence of categories.

2.2. Riemann varieties and places.

2.2.1. Definition. We denote by place(F ) = place the category with
objects finitely generated extensions of F and morphisms F -places. We
denote by field(F ) = field the subcategory of place(F ) with the same
objects, but in which morphisms are F -homomorphisms of fields. We
shall sometimes call the latter trivial places.
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2.2.2. Remark. If λ : K  L is a morphism in place(F ), then its
residue field F (λ) is finitely generated over F , as a subfield of the
finitely generated field L. On the other hand, given a finitely gener-
ated extension K/F , there exist valuation rings of K/F with infinitely
generated residue fields as soon as trdeg(K/F ) > 1, cf. [45, Ch. VI,
§15, Ex. 4].

We are going to study two functors

Spec : fieldop → V̂ar

Σ : placeop → V̂ar

and a natural transformation η : Spec⇒ Σ.
The first functor is simply K 7→ SpecK. The second one maps K

to the Riemann variety ΣK . Let λ : K  L be an F -place. We define
λ∗ : ΣL → ΣK as follows: if w ∈ ΣL, we may consider the associated
place w̃ : L F (w); then λ∗w is the valuation underlying w̃ ◦ λ.

Let E(R) be a basic open subset of ΣK . Then

(λ∗)−1(E(R)) =

{
∅ if R * Oλ
E(λ(R)) if R ⊆ Oλ.

Moreover, if R ⊆ Oλ, then λ maps Oλ∗w to Ow for any valuation w ∈
(λ∗)−1E(R). This shows that λ∗ is continuous and defines a morphism
of locally ringed spaces. We leave it to the reader to check that (µ ◦
λ)∗ = λ∗ ◦ µ∗.

Note that we have for any K a morphism of ringed spaces

ηK : SpecK → ΣK

with image the trivial valuation of ΣK (which is its generic point). This
defines the natural transformation η we alluded to.

2.2.3. Proposition. The functors Spec and Σ are fully faithful; more-
over, for any K,L, the map

V̂ar(ΣL,ΣK)
η∗

L−→ V̂ar(SpecL,ΣK)

is bijective.

Proof. The case of Spec is obvious. For the rest, let K,L ∈ place(F )
and consider the composition

place(K,L)
Σ
−→ V̂ar(ΣL,ΣK)

η∗
L−→ V̂ar(SpecL,ΣK).

It suffices to show that η∗L is injective and η∗L ◦ Σ is surjective.

Let ψ1, ψ2 ∈ V̂ar(ΣL,ΣK) be such that η∗Lψ1 = η∗Lψ2. Pick a proper
model X of K; by Theorem 2.1.8, cX ◦ ψ1 and cX ◦ ψ2 factor through
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morphisms f1, f2 : Y → X for some model Y of L. By Lemma 1.7.2,
f1 = f2, hence cX ◦ψ1 = cX ◦ψ2 and finally ψ1 = ψ2 by Theorem 2.1.5.
Thus η∗L is injective.

On the other hand, let ϕ ∈ V̂ar(SpecL,ΣK) and v = ϕ(SpecL):
then ϕ induces a homomorphism Ov → L, hence a place λ : K  L
and clearly ϕ = η∗L ◦ Σ(λ). This shows that the composition η∗L ◦ Σ is
surjective, which concludes the proof. 2

3. Places and morphisms

In this section, we give a second relationship between the categories
place and Var. We start with the main tool, which is the notion of
compatibility between a place and a morphism.

3.1. A compatibility condition.

3.1.1. Definition. Let X, Y be two integral F -schemes of finite type,
with Y separated, f : X 99K Y a rational map and v : F (Y )  F (X)
a place. We say that f and v are compatible if

• v is finite on Y (i.e. has a centre in Y ).
• The corresponding diagram

ηX
v∗

−−−→ SpecOvy
y

U
f

−−−→ Y

commutes, where U is an open subset ofX on which f is defined.

3.1.2. Proposition. Let X, Y, v be as in Definition 3.1.1. Suppose
that v is finite on Y , and let y ∈ Y be its centre. Then a rational map
f : X 99K Y is compatible with v if and only if

• y = f(ηX) and
• the diagram of fields

F (v)
v

##G
GG

GG
GG

GG

F (y)

OO

f∗ // F (X)

commutes.

In particular, there is at most one such f .
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Proof. Suppose v and f compatible. Then y = f(ηX) because v∗(ηX)
is the closed point of SpecOv. The commutativity of the diagram then
follows from the one in Definition 3.1.1. Conversely, if f verifies the two
conditions, then it is obviously compatible with v. The last assertion
follows from Lemma 1.7.2. 2

3.1.3. Corollary. a) Let Y be an integral F -scheme of finite type, and
let O be a valuation ring of F (Y )/F with residue field K and centre

y ∈ Y . Assume that F (y)
∼
−−→ K. Then, for any rational map f :

X 99K Y with X integral, such that f(ηX) = y, there exists a unique
place v : F (Y ) F (X) with valuation ring O which is compatible with
f .
b) If f is an immersion, the condition F (y)

∼
−−→ K is also necessary

for the existence of v.
c) In particular, let f : X 99K Y be a dominant rational map. Then
f is compatible with the trivial place F (Y ) →֒ F (X), and this place is
the only one with which f is compatible.

Proof. This follows immediately from Proposition 3.1.2. 2

3.1.4. Proposition. Let f : X → Y , g : Y → Z be two morphisms of
varieties. Let v : F (Y ) F (X) and w : F (Z) F (Y ) be two places.
Suppose that f and v are compatible and that g and w are compatible.
Then g ◦ f and v ◦ w are compatible.

Proof. We first show that v◦w is finite on Z. By definition, the diagram

ηY
w∗

−−−→ SpecOwy
y

SpecOv −−−→ SpecOv◦w
is cocartesian. Since the two compositions

ηY
w∗

−→ SpecOw → Z

and
ηY → SpecOv → Y

g
−→ Z

coincide (by the compatibility of g and w), there is a unique induced
(dominant) map SpecOv◦w → Z. In the diagram

ηX
v∗

−−−→ SpecOv −−−→ SpecOv◦wy
y

y

X
f

−−−→ Y
g

−−−→ Z
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the left square commutes by compatibility of f and v, and the right
square commutes by construction. Therefore the big rectangle com-
mutes, which means that g ◦ f and v ◦ w are compatible. 2

3.2. The category VarP(F ).

3.2.1. Definition. We denote by VarP(F ) the following category:

• Objects are integral separated F -schemes of finite type, i.e. F -
varieties.
• Let X, Y ∈ VarP(F ). A morphism ϕ ∈ VarP(X, Y ) is a pair

(v, f) with f : X → Y a morphism, v : F (Y )  F (X) a place
and v, f compatible.
• The composition of morphisms is given by Proposition 3.1.4.

If C is one of the categories introduced in Subsection 1.7, we shall
denote by CP(F ) the subcategory of VarP(F ) whose objects are the
objects of C and whose morphisms are the pairs (v, f) where f ∈ C.

We now want to do an elementary study of the two forgetful functors
appearing in the diagram below:

(3.1)

VarP(F )
Φ1−−−→ Var(F )

Φ2

y
place(F )op.

Clearly, Φ1 and Φ2 are essentially surjective. Concerning Φ1, we have
the following partial result on its fullness:

3.2.2. Lemma. Let f : X 99K Y be a rational map, with X integral and
Y separated. Assume that y = f(ηX) is a regular point (i.e. A = OY,y
is regular). Then there is a place v : F (Y ) F (X) compatible with f .

Proof. By Corollary 3.1.3 a), it is sufficient to produce a valuation ring
O containing A and with the same residue field as A.

The following construction is certainly classical. Let m be the maxi-
mal ideal of A and let (a1, . . . , ad) be a regular sequence generating m,
with d = dimA = codimY y. For 0 ≤ i < j ≤ d+ 1, let

Ai,j = (A/(aj , . . . , ad))p

where p = (ai+1, . . . , aj−1) (for i = 0 we invert no ak, and for j = d+ 1
we mod out no ak). Then, for any (i, j), Ai,j is a regular local ring of
dimension j− i−1. In particular, Fi = Ai,i+1 is the residue field of Ai,j
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for any j ≥ i+ 1. We have A0,d+1 = A and there are obvious maps

Ai,j → Ai+1,j (injective)

Ai,j → Ai,j−1 (surjective).

Consider the discrete valuation vi associated to the discrete valuation
ring Ai,i+2: it defines a place, still denoted by vi, from Fi+1 to Fi. The
composition of these places is a place v from Fd = F (Y ) to F0 = F (y),
whose valuation ring dominates A and whose residue field is clearly
F (y). 2

3.2.3. Remark. In Lemma 3.2.2, the assumption that y is a regular
point is necessary. Indeed, take for f a closed immersion. By [3, Ch.
6, §1, Th. 2], there exists a valuation ring O of F (Y ) which dominates
OY,y and whose residue field κ is an algebraic extension of F (y) =
F (X). However we cannot choose O such that κ = F (y) in general.
The same counterexamples as in [26, Remark 8.11] apply (singular
curves, the point (0, 0, . . . , 0) on the affine cone x2

1 + x2
2 + · · ·+ x2

n = 0
over R for n ≥ 3).

Now concerning Φ2, we have:

3.2.4. Lemma. Let X, Y be two varieties and λ : F (Y )  F (X) a
place. Assume that λ is finite on Y . Then there exists a unique rational
map f : X 99K Y compatible with λ.

Proof. Let y be the centre of Oλ on Y and V = SpecR an affine
neighbourhood of y, so that R ⊂ Oλ, and let S be the image of R in
F (λ). Choose a finitely generated F -subalgebra T of F (X) containing
S, with quotient field F (X). Then X ′ = SpecT is an affine model of
F (X)/F . The composition X ′ → SpecS → V → Y is then compatible
with v. Its restriction to a common open subset U of X and X ′ defines
the desired map f . The uniqueness of f follows from Proposition 3.1.2.
2

3.2.5. Remark. Let Z be a third variety and µ : F (Z) F (Y ) be an-
other place, finite on Z; let g : Y 99K Z be the rational map compatible
with µ. If f and g are composable, then g ◦ f is compatible with λ ◦µ:
this follows easily from Proposition 3.1.4. However it may well happen
that f and g are not composable. For example, assume Y smooth.
Given µ, hence g (that we suppose not to be a morphism), choose
y ∈ Fund(g) and find a λ with centre y, for example by the method in
the proof of Lemma 3.2.2. Then the rational map f corresponding to
λ has image contained in Fund(g).
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We conclude this section with a useful lemma which shows that places
rigidify the situation very much.

3.2.6. Lemma. a) Let Z,Z ′ be two models of a function field L, with
Z ′ separated, and v a valuation of L with centres z, z′ respectively on Z
and Z ′. Assume that there is a birational morphism g : Z → Z ′. Then
g(z) = z′.
b) Consider a diagram

Z

g

��

X

f
>>}}}}}}}}

f ′   A
AA

AA
AA

A

Z ′

with g a birational morphism. Let K = F (X), L = F (Z) = F (Z ′) and
suppose given a place v : L K compatible both with f and f ′. Then
f ′ = g ◦ f .

Proof. a) Let f : SpecOv → Z be the dominant map determined by z.
Then f ′ = g ◦ f is a dominant map SpecOv → Z ′. By the valuative
criterion of separatedness, it must correspond to z′. b) This follows
from a) and Proposition 3.1.2. 2

4. Equivalences of categories

In this section we prove that, given a full subcategory C of Var satis-
fying certain hypotheses and the multiplicative system Sb of birational
morphisms as in Subsection 1.7, the functor

S−1
b Φ2 : CP(F )→ place(F )op

induced by the functor Φ2 of Diagram (3.1) is an equivalence of cat-
egories, except in the case of dominant morphisms where place(F ) is
replaced by field(F ).

These results are of a similar nature to the localisation theorems
proven in [26, §8], although the proofs are completely different; we
draw the link with them in the last subsection.

As a warm-up, we start with the easier case of dominant maps. Here,
resolution of singularities only comes in to prove this fact in the case
of smooth proper varieties. (Clearly we need resolution of singularities
to know that every function field has a smooth proper model.)
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4.1. Dominant maps. Let X, Y be two F -schemes of finite type, with
X irreducible. Recall from Subsection 1.4 the set Rat(X, Y ) of rational
maps from X to Y . There is a well-defined map

Rat(X, Y )→ Y (F (X))(4.1)

(U, f) 7→ f|ηX

where ηX is the generic point of X.

4.1.1. Lemma. If X is integral, the map (4.1) is surjective. If moreover
Y is separated, it is bijective.

Proof. The first statement is clear, and the second one follows from
Lemma 1.7.2. 2

On the other hand, let field(F ) be the category defined in Definition
2.2.1 (finitely generated fields and inclusions of fields). Recall [19, Ch.
I, Th. 4.4] that there is an anti-equivalence of categories

Ratdom(F )
∼
−−→ field(F )op(4.2)

X 7→ F (X).

Actually this follows easily from Lemma 4.1.1. We want to revisit
this theorem from the point of view of the previous section. Re-
call from Subsection 1.4 the precategory Rat(F ) and its subcategory
Ratdom(F ), and from Subsection 1.7 the category Vardom(F ). We
have the corresponding categories Ratdom P(F ) and Vardom P(F ) (cf.
Definition 3.2.1). We have an obvious faithful functor

(4.3) ρ : Vardom(F )→ Ratdom(F )

which is the identity on objects. It is clear that ρ sends a birational
morphism to an isomorphism. Hence ρ factors into a functor

(4.4) ρ̄ : S−1
b Vardom(F )→ Ratdom(F ).

and the same is true of the functor Vardom P(F )→ Ratdom P(F ).

4.1.2. Theorem. Let C be a full subcategory of Var and S = So, Sb
or Spb . We assume that C is S-final in Var in the sense of Definition
1.7.4. Let Cdom = C ∩Vardom.
a) The forgetful functors CdomP(F ) → Cdom(F ) and Ratdom P(F ) →
Ratdom(F ) are isomorphisms of categories.
b) S admits a calculus of right fractions within Cdom(F ) and CdomP(F ).
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c) In the commutative diagram

S−1CdomP(F ) //

ρ̄

��

S−1Cdom(F )

ρ̄

��
Ratdom P(F ) //

��

Ratdom(F )

field(F )op

all functors are equivalences of categories, except possibly the two func-
tors ρ̄ which are fully faithful. These functors are equivalences if and
only if any K ∈ field(F ) has a model in C. (Note that this is much
weaker than the condition in Definition 4.2.4.)

Proof. a) This follows immediately from Corollary 3.1.3 c).
b) In view of a) it suffices to deal with Cdom(F ). For any pair (u, s)

of morphisms as in the diagram

(4.5)

Y ′

s

y
X

u
−−−→ Y

with s ∈ S and u dominant, the pull-back of s by u exists and is in
S. Using S-finality, we may then replace this pull-back by one starting
from an object of C. Moreover, if sf = sg with f and g dominant and
s ∈ S, then f = g.

c) In view of a) and (4.2), it remains to see that the composite functor
S−1CdomP(F ) → field(F )op is fully faithful. The graph trick and the
S-finality of C show that it is full. It remains to show faithfulness. Let
ϕ, ψ ∈ Hom(X, Y ) inducing the same map F (Y ) →֒ F (X). By calculus
of right fractions, we may write

ϕ = fs−1, ψ = gs−1

where s : X ′ → X is in Sb. Since f and g are dominant, we have f = g
by Lemma 1.7.2, hence ϕ = ψ. 2

4.1.3. Remarks. 1) By calculus of right fractions, we have

Hom(X, Y ) = lim
−→

Hom(U, Y )

in S−1
o Vardom(F ), where U → X runs through the members of So [13,

I.2.3]. Thus we recover the formula for morphisms in Ratdom(F ).
2) The functor (Spb )

−1 Vardom P(F ) → field(F )op is not full (hence
is not an equivalence of categories). For example, let X be a proper
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variety and Y an affine open subset of X, and let K be their common
function field. Then the identity map K → K is not in the image of the
above functor. Indeed, if it were, then by calculus of fractions it would
be represented by a map of the form fs−1 where s : X ′ → X is proper
birational. But then X ′ would be proper and f : X ′ → Y should be
constant, a contradiction. It can be shown that the localisation functor

(Spb )
−1 Vardom P(F )→ S−1

b Vardom P(F )

has a right adjoint-right inverse given by

(Spb )
−1 Varprop

dom P(F )→ (Spb )
−1 Vardom P(F )

via the equivalence (Spb )
−1 Varprop

dom P(F )
∼
−−→ S−1

b Vardom P(F ) given by
Theorem 4.1.2. The proof is similar to that of Theorem 4.2.5 (ii) below.

4.2. Localising VarP(F ) and some subcategories. We now fix in
this subsection a full subcategory C of Var which is Spb -final in Var (cf.
Definition 1.7.4). We set Cprop = C ∩ Varprop and recall the notation
CP , CpropP from Definition 3.2.1.

4.2.1. Proposition. The category CP (F ) admits a calculus of right
fractions with respect to Spb . In particular, in (Spb )

−1CP (F ), any mor-
phism may be written in the form fp−1 with p ∈ Spb .

Proof. Consider a diagram (4.5) in CP (F ), with s ∈ Spb . Let λ :
F (Y )  F (X) be the place compatible with u which is implicit in
the statement. By Proposition 3.1.2, λ has centre z = u(ηX) on Y .
Since s is proper, λ therefore has also a centre z′ on Y ′. By Lemma
3.2.6 a), s(z′) = z. By Lemma 3.2.4, there exists a unique rational map
ϕ : X 99K Y ′ compatible with λ, and s ◦ϕ = u by Lemma 3.2.6 b). By
the graph trick, we get a commutative diagram

(4.6)

X ′ u′

−−−→ Y ′

s′

y s

y
X

u
−−−→ Y

in which X ′ ⊂ X ×Y Y
′ is the closure of the graph of ϕ, s′ ∈ Sb and

u′ is compatible with λ. Moreover, since s is proper, the projection
X ×Y Y

′ → Y ′ is proper and s′ is proper. Since C is Spb -final in Var,

we may find some X ′′ t
−→ X ′ with t ∈ Spb and X ′′ ∈ C.

Let now

X
f
⇉
g
Y

s
−→ Y ′

be a diagram in CP with s ∈ Spb , such that sf = sg. By Corollary
3.1.3 c), the place underlying s is the identity. Hence the two places
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underlying f and g must be equal. But then f = g by Proposition
3.1.2. 2

4.2.2. Proposition. Consider a diagram in CP (F )

Z
f

~~}}
}}

}}
}} p

  A
AA

AA
AA

A

X Y

Z ′
f ′

``AAAAAAAA p′

>>}}}}}}}

where p, p′ ∈ Spb . Let K = F (Z) = F (Z ′) = F (Y ), L = F (X) and
suppose given a place v : L K compatible both with f and f ′. Then
(v, fp−1) = (v, f ′p′−1) in (Spb )

−1CP (F ).

Proof. By the graph trick and finality, complete the diagram as follows:

Z
f

~~||
||

||
|| p

  A
AA

AA
AA

A

X Z ′′

p1

OO

p′1
��

Y

Z ′
f ′

``BBBBBBBB p′

>>}}}}}}}}

with p1, p
′
1 ∈ S

p
b and Z ′′ ∈ C. Then we have

pp1 = p′p′1, fp1 = f ′p′1

(the latter by Lemma 3.2.6 b)), hence the claim. 2

4.2.3. Proposition. Suppose C properly final in Var (Definitiion 1.7.4
b)). Then, in (Spb )

−1CP (F ), So admits a calculus of left fractions. In
particular (cf. Proposition 4.2.1), any morphism in S−1

b CP (F ) can be
written as j−1fq−1, with j ∈ So and q ∈ Spb .

Proof. a) Consider a diagram in (Spb )
−1CP (F )

X
j //

ϕ

��

X ′

Y

with j ∈ So. By Proposition 4.2.1, we may write ϕ = fp−1 with
p ∈ Spb and f a morphism of CP . Since C is properly final in Var,
we may embed Y as an open subset of a proper Ȳ , with Ȳ ∈ C. All
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this gives us a rational map X ′
99K Ȳ . Using the graph trick and

Spb -finality, we may “resolve” ϕ into a morphism g : X̃ ′ → Ȳ , with

X̃ ′ ∈ C provided with a proper birational morphism q : X̃ ′ → X. Let
ψ = gq−1 ∈ (Spb )

−1CP . Then the diagram of (Spb )
−1CP

X
j //

ϕ

��

X ′

ψ
��

Y
j1 // Ȳ

commutes because the following bigger diagram commutes in CP :

X̃
p

��?
??

??
??

?

f

��/
//

//
//

//
//

//
//

/ X̃ ′′roo r′ // X̃ ′

q

~~}}
}}

}}
}}

g

����
��
��
��
��
��
��
�

X
j //

ϕ

��

X ′

ψ
��

Y
j1 // Ȳ

thanks to Lemma 1.7.2, where X̃ ′′ ∈ C and r, r′ ∈ Spb (X̃ ′′, r, r′ exist by
Spb -finality of C in Var).

b) Consider a diagram

X ′ j
→ X

f
⇉
g
Y

in (Spb )
−1CP , where j ∈ So and fj = gj. By Proposition 4.2.1 and

Spb -finality, we may write f = f̃p−1 and g = g̃p−1, where f̃ , g̃ are

morphisms in CP and p : X̃ → X is in Spb . Let U be a common

open subset to X ′ and X̃: then the equality fj = gj implies that the

restrictions of f̃ and g̃ to U coincide as morphisms of (Spb )
−1CP . Hence

the places underlying f̃ and g̃ are equal, which implies that f̃ = g̃
(Proposition 3.1.2), and thus f = g. 2

We shall also need the following definition, which will allow us to
state some unconditional results:

4.2.4. Definition. Let C be a full subcategory of Var and Cprop =
C ∩Varprop. We denote by placeC(F ) = placeC the full subcategory
of place(F ) whose objects are function fields K/F which admit a final
system of models in Cprop.

(The condition “final” means that any proper model of K can be
dominated by a model in Cprop.)

Note that placeC = place in all the examples 1.7.5.
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4.2.5. Theorem. Let C be properly final in Var (Definition 1.7.4 b)).
Consider the string of functors induced by the functor Φ2 of Diagram
(3.1)

(Spb )
−1CpropP(F )

S
→ (Spb )

−1CP (F )
T
→ S−1

b CP (F )
U
→ place(F )op

and let V = TS. Then

(i) S is fully faithful and T is faithful.
(ii) Through V , T is left adjoint/left inverse to S: for objects X ∈

(Spb )
−1CP (F ) and Y ∈ (Spb )

−1CpropP(F ), the map

T : Hom(X,S(Y ))→ Hom(T (X), V (Y ))

is an isomorphism, and V is an equivalence of categories.
(iii) Suppose that open immersions are final in C in the sense that

any X ∈ C has a final collection of (nonempty) open subsets
belonging to C. Then U is fully faithful, with placeC(F )op as
its essential image.

(iv) Let X, Y ∈ (Spb )
−1CP (F ). Then the image of Hom(X, Y ) in

Hom(UT (Y ), UT (X)) via UT is contained in the set of places
which are finite on Y . In particular, T is not full.

Proof. In 6 steps:
A) Thanks to Propositions 4.2.1 and 4.2.2, UT and UTS are faith-

ful, hence S and T are faithful. Let X, Y ∈ (Spb )
−1CpropP(F ) and

ϕ : S(X) → S(Y ). By Proposition 4.2.1 we may write ϕ = fp−1

with p ∈ Spb . But then the source of p is proper and ϕ comes from
(Spb )

−1CpropP(F ). So S is full, which proves (i).
B) In (ii), we already know that T is injective. Let ϕ ∈ Hom(T (X), V (Y )).

By Proposition 4.2.3, ϕ = j−1fp−1 with j ∈ So and p ∈ Spb . Since Y is
proper, j is necessarily an isomorphism, which proves surjectivity.

C) It follows from A) and B) that V is fully faithful. Essential
surjectivity follows from Theorem 1.6.1 and the Spb -finality hypothesis
on C. This completes the proof of (ii).

D) We come to the proof of (iii). Since UTS is faithful and TS is an
equivalence, U is faithful. To show that it is full, let X, Y ∈ VarP(F )
and λ : F (Y ) F (X) a place. Let Y → Ȳ be a compactification of Y

(Theorem 1.6.1). By Sb-finality of C, choose Ȳ ′ s
−→ Ȳ with Ȳ ′ ∈ C and

s ∈ Spb : then Ȳ ′ ∈ Cprop and λ is finite over Ȳ ′. By Lemma 3.2.4, there
is a rational map f : X 99K Ȳ ′ compatible with λ. By the additional
hypothesis, Y and Ȳ ′ have a common open subset V ∈ C and X has
an open subset U ∈ C on which f is defined. This gives us ϕ : X → Y
in S−1

b CP such that U(ϕ) = λ.
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E) Since V = TS is an equivalence of categories, the essential image
of U is the same as that of UTS, which is placeop

C by definition.
F) (iv) is obvious. 2

4.2.6. Definition. Let Sr ⊂ place(F ) denote the multiplicative system
of maps of the form K →֒ L, where L/K is purely transcendental.

4.2.7. Corollary. We have equivalences of categories

(Spr )
−1CpropP(F )

TS
→ S−1

r CP (F )
U
→ S−1

r placeC(F )op

induced by the functors of Theorem 4.2.5. 2

Let C be as in Example 1.7.5. As a byproduct of Theorem 4.2.5, the
functors

(Spb )
−1CpropP → (Spb )

−1 Varprop P, (Sb)
−1CP → (Sb)

−1 VarP

are equivalences of categories. This does not formally follow for the
functor (Spb )

−1CP → (Spb )
−1 VarP ; nevertheless, we do have:

4.2.8. Proposition. The functor

(Spb )
−1CP(F )→ (Spb )

−1 VarP(F )

is an equivalence of categories.

Proof. The functor is faithful by the faithfulness of T and U in Theorem
4.2.5 ((i) for U and (iii) for T ). Its essential surjectivity follows from
Spb -finality, while its fullness follows from this finality and Proposition
4.2.1: if X, Y ∈ (Spb )

−1CP(F ) and ϕ : X → Y is a morphism in

(Spb )
−1 VarP(F ), then by 4.2.1 we may write ϕ = fp−1, with p : X̃ →

X proper birational. But by Spb -finality, we may find p′ : X̃ ′ → X̃

proper birational with X̃ ′ ∈ C, and replace fp−1 by fp′(pp′)−1. 2

4.2.9. Remarks. 1) Even in (Spb )
−1 VarP(F ), So does not admit a cal-

culus of right fractions. Indeed, consider a diagram in (Spb )
−1 VarP(F )

Y ′

j

��
X

f // Y

where j ∈ So and, for simplicity, f comes from VarP(F ). Suppose
that we can complete this diagram into a commutative diagram in
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(Spb )
−1 VarP(F )

X̃ ′

p

��

g

  A
AA

AA
AA

A

X ′
ϕ //

j′

��

Y ′

j

��
X

f // Y

with p ∈ Spb and g comes from VarP(F ). By Proposition 3.1.2 the
localisation functor VarP(F ) → (Spb )

−1 VarP(F ) is faithful, so the
diagram (without ϕ) must already commute in VarP(F ). If f(X) ∩
Y ′ = ∅, this is impossible.

2) The category (Spb )
−1 VarP(F ) is equivalent to a nonfull subcate-

gory of place(F )op via the localisation functor UT of Theorem 4.2.5,
but it seems difficult to describe exactly the image of UT . For example,
if X and Y are proper, then the image is all of Hom(UT (Y ), UT (X)).
On the other hand, if X is proper and Y is affine, then for any map
ϕ = fp−1 : X → Y , the source X ′ of p is proper hence f(X ′) is a
closed point of Y , so that Hom(UT (Y ), UT (X)) is contained in the
set of places from F (Y ) to F (X) whose centre on Y is a closed point
(and one sees easily that this inclusion is an equality). In general, the
description seems to depend heavily on the nature of X and Y .

Let us summarise what we have done so far. We have realised
place(F )op as the localisation of VarP(F ) with respect to Sb in two
steps: first localising VarP(F ) with respect to Spb and then localising
the resulting category with respect to So. The first step enjoys cal-
culus of right fractions but the second one does not by Remark 4.2.9.
However, the localisation functor

(Spb )
−1 VarP(F )→ S−1

b VarP(F )
∼
−−→ place(F )op

has a right adjoint-right inverse. The corresponding local objects of
(Spb )

−1 VarP(F ) (cf. Definition 1.1.1) are proper varieties. We get
the same localisations when restricting to quasi-projective varieties,
and also to smooth or smooth quasi-projective varieties but only in
characteristic 0 (using resolution of singularities).

4.3. Localising Sm(F ). We now recall some of the results of [26, §8]:
*in characteristic 0, we have the following equivalences of categories:

S−1
b Smproj ≃ S−1

b Smprop ≃ S−1
b Smqp ≃ S−1

b Sm

induced by the obvious inclusion functors.
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The proofs are completely different from those of the previous sub-
section: in particular they do not use any calculus of fractions. In fact,
Spb does not admit any calculus of fractions within Var(F ), contrary
to the case of VarP(F ) (cf. Proposition 4.2.1). This is shown by the
same examples as in Remark 3.2.3.

If we restrict to Sm(F ), we can use Proposition 4.2.1 and Lemma
3.2.2 to prove part of calculus of fractions, but we have then to resolve
the singularities of the variety X ′ in the proof of Proposition 4.2.1. The
following lemma will yield a slightly different proof in Proposition 4.3.3
below. It does not require resolution of singularities, but the proof of
Proposition 4.3.3 will require it.

4.3.1. Lemma. Let s : Y → X be in Spr , with X smooth. Then s is
an envelope [11]: for any extension K/F , the map Y (K) → X(K) is
surjective.

Proof. It suffices to deal with K = F .
a) We first handle the case where s ∈ Spb . Let x ∈ X(F ). We propose

two proofs:
First proof. By lemma 3.2.2, there is a place λ of F (X) with centre
x and residue field F . The valuative criterion for properness implies
that λ has a centre y on Y ; then s(y) = x by Lemma 3.2.6 and F (y) ⊆
F (λ) = F .
Second proof (cf. Kollár-Szabó [29, Prop. 6]). Consider the blow-up
Blx(X) of X. By the graph trick we have a commutative diagram

Y ′ //

s′

��

Y

s

��
Blx(X)

p // X

with s′ ∈ Spb . Let E be the exceptional locus of s′ (see §1.4). Since
Blx(X) is smooth, s′(E) has codimension at least 2 (cf. [8, 1.40]),
hence it does not contain p−1(x). If F is infinite we stop here since
p−1(x) ≃ Pd−1, where d = dimX. Otherwise we conclude by induction
on d, applying the induction hypothesis to the restriction of s′ to a
suitable irreducible component of s′−1(p−1(x)).

b) Suppose now that s ∈ Spr . Then Y is birational to X × (P1)n for

some n. By a) applied to u in Diagram (1.1), we get that Ỹ (F )→ X(F )
is surjective and therefore that Y (F )→ X(F ) is surjective. 2

4.3.2. Remark. It follows from [40, Lemma 5.8] that an envelope in
the sense of Gillet is the same as a proper cdh covering in the sense
of Voevodsky. Lemma 4.3.1 also appears as Lemma 5.10 of [40] (for a
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proper birational map): the above proof shows that the resolution of
singularities assuption of loc. cit. is not necessary.

4.3.3. *Proposition. If charF = 0, the multiplicative set Spb verifies
the second axiom of calculus of right fractions within Sm(F ).

Proof. We consider a diagram (4.5) in Sm(F ), with s ∈ Spb . By Lemma
4.3.1, z = u(ηX) has a preimage z′ ∈ Y ′ with same residue field. Let

Z = {z} and Z ′ = {z′}: the map Z ′ → Z is birational. Since the
map ū : X → Z factoring u is dominant, we get by Theorem 4.1.2 b)
a commutative diagram like (4.6), with s′ proper birational. We then
need to resolve the singularities of X ′ to finish the proof. 2

4.3.4. *Corollary. If charF = 0, any morphism in S−1
b Sm(F ) may

be represented as j−1fp−1, where j ∈ So and p ∈ Spb .

Proof. As that of Proposition 4.2.3. 2

4.3.5. Remarks. 1) Even in characteristic 0, Spb is far from admitting
a calculus of right fractions within Sm(F ). Indeed, let s : Y → X
be a proper birational morphism that contracts some closed subvariety
i : Z ⊂ Y to a point. Then, given any two morphisms f, g : Y ′

⇉Z, we
have sif = sig. But if ift = igt for some t ∈ Spb , then if = ig (hence
f = g) since t is dominant.
2) Lemma 4.3.1, Proposition 4.3.3 and Corollary 4.3.4 extend to a
strictly full subcategory C of Var provided it is Spb and So-final and,
moreover, any object X ∈ C has the following equivalent properties:

• For any x ∈ X, there exists a valuation of F (X) with centre x
and with the same residue field as x.
• For any morphism f : Y → X with Y ∈ Var, there exists a

place compatible with f .

The only non-regular example we can think of is that of a variety with
isolated singularities over an algebraically closed field. In particular, it
is not clear to us whether minimal models in the sense of the minimal
model programme have this property in general (cf. the affine cone of
Remark 3.2.3).

4.4. Comparing place(F ) and Sm(F ) after localisation. Putting
together the results of the last two subsections, we get via the functor
Φ1 of Diagram (3.1), a functor

place(F )op → S−1
b Smproj(F )

∼
−−→ S−1

b Sm(F )

*in characteristic 0. Now, by Theorem 1.7.7, the functor S−1
b Smproj(F )

→ S−1
r Smproj(F ) is an equivalence of categories. Thus, finally, we get
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a canonical functor

(4.7) S−1
r place(F )op → S−1

b Smproj(F )

that we shall study in more detail in §6.2.
The drawback of this approach is that it rests on resolution of singu-

larities. We now give an alternative approach via the results of Section
2, which will yield unconditional results.

Let D be a full subcategory of Varprop. Recall the subcategory D̂ ⊂
R of Definition 2.1.6. We have a commutative diagram of categories

(4.8) DP

  A
AA

AA
AA

A

zzuuu
uu

uu
uu

u

placeop
D

Σ

##H
HHHHHHHH

D
J

~~~~
~~

~~
~~

~

D̂

where the two lower functors are fully faithful (by Proposition 2.2.3 for
Σ).

4.4.1. Definition (cf. Theorem 2.1.8). Let X, Y ∈ D̂, with X =
lim
←−

Xα, Y = lim
←−

Yβ. A morphism s : X → Y is birational if, for each

β, the projection X
s
−→ Y → Yβ factors through a birational map

sα,β : Xα → Yβ for some α (this does not depend on the choice of α).

We denote by Sb ∈ D̂ the collection of these morphisms.

4.4.2. Theorem. The functor J induces an equivalence of categories

J̄ : S−1
b D

∼
−−→ S−1

b D̂.

Proof. To lighten notation we drop the functor J . We apply Proposi-
tion 5.10 b) of [26]. We have to check Conditions (b1), (b2) and (b3),
namely:

(b1) Given two maps X
f
⇉
g
Y in D and a map s : Z = lim←−Zα → X in

Sb ⊂ D̂, fs = gs⇒ f = g. This is clear by Lemma 1.7.2, since
by Theorem 2.1.8 s factors through some Zα, with Zα → X
birational.

(b2) For any X = lim←−Xα ∈ D̂, there exists a birational morphism
s : X → X ′ with X ′ ∈ D. It suffices to take X ′ = Xα for some
α.
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(b3) Given a diagram

X1

s1

x

X = lim←−Xα
f

−−−→ Y

with X ∈ D̂, X ′, Y ∈ D and s1 ∈ Sb, there exists s2 : X → X2

in Sb, with X2 ∈ D, covering both s1 and f . Again, it suffices
to take X2 = Xα for α large enough (use Theorem 2.1.8).

2

To summarize, localising Diagram (4.8) with respect to Sb yields a
new diagram

S−1
b DP

$$I
III

III
IIΦD

2

yytttttttttt

placeop
D

Σ̄

%%JJJJJJJJJ
S−1
b D

J̄

zzvvv
vv

vv
vv

S−1
b D̂.

In this diagram, ΦD
2 is induced by the functor Φ2 of (3.1); J̄ is an

equivalence of categories without any hypothesis on D. If D is of the
form Cprop with Cb final in Varb and open immersions final in C, then
ΦD

2 is also an equivalence of categories.
In particular, we get

4.4.3. Corollary. For any F , there are canonical functors

place
Sm

prop(F )op → S−1
b Smprop(F )

place
Sm

proj(F )op → S−1
b Smproj(F )

S−1
r placeSm

prop(F )op → S−1
r Smprop(F )

S−1
r place

Sm
proj(F )op → S−1

r Smproj(F ).

5. Stable birationality and R-equivalence

In this section, we give alternate descriptions of S−1
r place(F ) and (in

characteristic 0) S−1
b Smproj(F ) = S−1

r Smproj(F ), involving Manin’s
R-equivalence and an analogous notion of “homotopy” between places.
In particular, we explicitly compute the Hom sets in both categories.
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5.1. Homotopy of places.

5.1.1. Definition. Let K,L ∈ place(F ). Two places λ0, λ1 : K  L
are elementarily homotopic if there exists a place µ : K  L(t) such
that si ◦ µ = λi, i = 0, 1, where si : L(t)  L denotes the place
corresponding to specialisation at i.

The property of two places being elementarily homotopic is preserved
under composition on the right. Indeed if λ0 and λ1 are elementarily
homotopic and if µ : M  K is another place, then obviously so are
λ0 ◦ µ and λ1 ◦ µ. If on the other hand τ : L  M is another place,
then τ ◦λ0 and τ ◦λ1 are not in general elementarily homotopic (we are
indebted to Gabber for pointing this out), as one can see for example
from the uniqueness of factorisation of places.

Consider the equivalence relation h generated by elementary homo-
topy (cf. Definition 1.2.1). So h is the coarsest equivalence relation on
morphisms in place(F ) which is compatible with left and right compo-
sition and such that two elementarily homotopic places are equivalent
with respect to h.

5.1.2. Definition (cf. Def. 1.2.1). We denote by place(F )/h the
factor category of place(F ) by the homotopy relation h.

Thus the objects of place(F )/h are function fields, while the set of
morphisms consists of equivalence classes of homotopic places between
the function fields. There is an obvious full surjective functor

Π : place(F )→ place(F )/h.

The following lemma provides a first, more elementary, description
of S−1

r place(F ) and of the localisation functor. It is valid in all char-
acteristics.

5.1.3. Proposition. There is a unique isomorphism of categories

place(F )/h→ S−1
r place(F )

which makes the diagram of categories and functors

place(F )
Π

wwooooooooooo
S−1

r

''PPPPPPPPPPP

place(F )/h
∼ // S−1

r place(F )

commutative. In particular, the localisation functor S−1
r is full and its

fibres are the equivalence classes for h.
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Proof. 2 We first note that any two homotopic places become equal in
S−1
r place(F ). Clearly it suffices to prove this when they are elemen-

tarily homotopic. But then s0 and s1 are left inverses of the natural in-
clusion i : L→ L(t), which becomes an isomorphism in S−1

r place(F ).
Thus s0 and s1 become equal in S−1

r place(F ). So the localisation
functor place(F ) → S−1

r place(F ) canonically factors through Π into
a functor place(F )/h −→ S−1

r place(F ).
On the other hand we claim that, with the above notation, i ◦ s0 :

L(t) L(t) is homotopic to 1L(t) in place(F ). Indeed they are elemen-
tarily homotopic via the place L(t) L(t, s) (in this case an inclusion)
that is the identity on L and maps t to st. Hence the projection func-
tor Π factors as S−1

r place(F )→ place(F )/h, and it is plain that this
functor is inverse to the previous one. 2

5.2. Review of R-equivalence. We have the following definitions:

5.2.1. Definition. a) (Manin) Two rational points x0, x1 of an F -
scheme X of finite type are directly R-equivalent if there is a ratio-
nal map f : P1

99K X defined at 0 and 1 and such that f(0) = x0,
f(1) = x1.
b) (Manin) R-equivalence on X(F ) is the equivalence relation gener-
ated by direct R-equivalence.
c) (Chow) X is linearly connected if any two points of X may be joined
(over a universal domain) by a chain of rational curves.
d) X is strongly linearly connected (or R-trivial) if X(K)/R is reduced
to a point for any extension K/F (in particular, X(F ) 6= ∅).

5.2.2. Remark. Thus, “linearly connected” is closely related to the
notion of “rationally chain-connected” of Kollár et al. More precisely,
according to [8, p. 99, Def. 4.21], a rationally chain connected F -
scheme is a proper variety by definition. Then, if X is a proper F -
variety, X is linearly connected if and only if it is rationally chain-
connected. Indeed, this is true if F is uncountable by ibid., p. 100,
Remark 4.22 (2), and on the other hand the property of rational chain-
connectedness is invariant under algebraically closed extension by ibid.,
p. 100, Remark 4.22 (3).

We shall discuss the well-known relationship with rationally con-
nected varieties in §7.3.

Recall that, for any X, Y , we have an isomorphism

(5.1) (X × Y )(K)/R
∼
−−→ X(K)/R× Y (K)/R.

The proof is easy. We also have the certainly well-known
2See also [17, Remark 1.3.4] for a closely related statement.
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5.2.3. Lemma. Suppose that X is linearly connected. Then, for any
algebraically closed extension K/F , X(K)/R is reduced to a point.

Proof. Let x0, x1 ∈ X(K). Then x0 and x1 are defined over some
finitely generated subextension E/F . By assumption, there exists a
universal domain Ω ⊃ E such that x0 and x1 are R-equivalent in X(Ω).
If the transcendence degree of K over F is larger than that of Ω, then
Ω embeds in K over E and we are done. Thus we may assume that K
has finite transcendence degree over F , hence can be embedded into Ω.

Let γ1, . . . , γn : P1
Ω 99K XΩ be a chain of rational curves linking x0

and x1 over Ω. Pick a finitely generated extension L of K over which
all the γi are defined.

We may write L = K(U) for some smooth K-variety U . Then the γi
define rational maps γ̃i : U×P1

99K X. For each i, let Wi ⊆ U×P1 be
the locus of definition of γi. By Chevalley’s constructibility theorem,
the projections of the Wi on U contain a common nonempty open
subset U ′. Pick a rational point u ∈ U ′(K): then the fibres of the γi
at u are rational curves defined over K that link x0 to x1. 2

The following theorem completes Lemma 4.3.1 under resolution of
singularities (but see also Corollary 5.3.5 below). Even though F is
supposed to be of characteristic 0, we write “regular variety” instead
of “smooth variety” in order to state Corollary 5.3.5 conveniently be-
low. (Gabber pointed out that a resolution of singularities of a general

scheme X, say of dimension 2, yields a regular scheme X̃, but that the

composite X̃ → X → Spec k may not be smooth if X is of finite type
over some [nonperfect] base field k.)

5.2.4. *Theorem. Assume charF = 0.
a) Let s : Y → X be in Spr , with X, Y regular. Then the induced map
Y (K)/R→ X(K)/R is bijective for any field extension K/F .
b) Let f : Y 99K Z be a rational map with Y regular and Z proper.
Then there is an induced map f∗ : Y (K)/R→ Z(K)/R, which depends
functorially on K/F .

Proof. For smooth proper varieties and s ∈ Sb in a), this is the content
of [5, Prop. 10]. The proofs in this more general case are exactly the
same as those of loc. cit. (in a), reduce to blow-ups with smooth centres
by using Lemma 1.7.6 c); in b), use the graph trick). It remains to pass
from the case s ∈ Spb to s ∈ Spr in a): this is done using Diagram (1.1),
just as in the proof of Lemma 4.3.1, but this time using resolution. 2
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5.3. Theorems of Murre, Chow, van der Waerden and Gabber.
This subsection is not seriously used in the rest of the paper and may be
skipped at first reading: we explain how the assumption of resolution of
singularities may be relaxed to some extent. We start with the following
not so well-known but nevertheless basic theorem of Murre [35], which
was later rediscovered by Chow and van der Waerden [4, 43].

5.3.1. Theorem (Murre, Chow, van der Waerden). Let f : X → Y
be a projective birational morphism of F -varieties and y ∈ Y be a
smooth rational point. Then the fibre f−1(y) is linearly connected. In
particular, by Lemma 5.2.3, f−1(y)(K)/R is reduced to a point for any
algebraically closed extension K/F .

For the sake of completeness, we give the general statement of Chow,
which does not require a base field:

5.3.2. Theorem (Chow). Let A be a regular local ring and f : X →
SpecA be a projective birational morphism. Let s be the closed point of
SpecA and F its residue field. Then the special fibre f−1(s) is linearly
connected (over F ).

Gabber has recently refined these theorems:

5.3.3. Theorem (Gabber). Let A,X, f, s, F be as in Theorem 5.3.2,
but assume only that f is proper. Let Xreg be the regular locus of X
and f−1(s)reg = f−1(s) ∩ Xreg, which is known to be open in f−1(s).
Then, for any extension K/F , any two points of f−1(s)reg(K) become
R-equivalent in f−1(s)(K).
In particular, if X is regular, then f−1(s) is strongly linearly connected.

See Appendix B for a proof of Theorem 5.3.3.

5.3.4. Theorem (Gabber [12]). If F is a field, X is a regular irreducible
F -scheme of finite type and K/F a field extension, then the map

lim
←−

X ′(K)/R→ X(K)/R

has a section, which is contravariant in X and covariant in K. The
limit is over the proper birational X ′ → X.

5.3.5. Corollary. In Theorem 5.2.4 the hypothesis of characteristic 0 is
not necessary (at least for s ∈ Spb in a)). Moreover, if K is algebraically
closed, the hypothesis that Y is regular in a) is not necessary.

Proof. 1) We first consider Theorem 5.2.4 a). As in the proof of Lemma
4.3.1, it suffices to deal with K = F . By this lemma, we have to show
injectivity.
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We assume that s ∈ Spb . Let y0, y1 ∈ Y (F ). Suppose that s(y0)
and s(y1) are R-equivalent. We want to show that y0 and y1 are then
R-equivalent. By definition, s(y0) and s(y1) are connected by a chain
of direct R-equivalences. Applying Lemma 4.3.1, the intermediate ra-
tional points lift to Y (F ). This reduces us to the case where s(y0) and
s(y1) are directly R-equivalent.

Let γ : P1
99K X be a rational map defined at 0 and 1 such that

γ(i) = s(yi). Applying Lemma 4.3.1 with K = F (t), we get that γ lifts
to a rational map γ̃ : P1

99K Y . Since s is proper, γ̃ is still defined
at 0 and 1. Let y′i = γ̃(i) ∈ Y (F ): then yi, y

′
i ∈ s−1(s(yi)). If F is

algebraically closed, they are R-equivalent by Theorem 5.3.1, thus y0

and y1 are R-equivalent. If F is arbitrary but Y is regular, then we
appeal to Theorem 5.3.3.

2) We now consider Theorem 5.2.4 b). By the usual graph trick, as
Z is proper, we can resolve f to get a morphism

Ỹ
p

����
��

��
�� f̃

��>
>>

>>
>>

>

Y Z

such that p is a proper birational morphism. By Theorem 5.3.4, the

map p∗ : Ỹ (K)/R → Y (K)/R has a section which is “natural” in p
(i.e. when we take a finer p, the two sections are compatible). The
statement follows. 2

5.3.6. Remark. Concerning Theorem 5.3.3, Fakhruddin pointed out
that f−1(s) is in general not strongly linearly connected, while Gabber
pointed out that f−1(s)reg(F ) may be empty even if X is normal, when
F is not algebraically closed. Here is Gabber’s example: in dimension
2, blow-up the maximal ideal of A and then a non-rational point of the
special fiber, then contract the proper transform of the special fiber.
Gabber also gave examples covering Fakhruddin’s remark: suppose
dimA = 2 and start from X0 = the blow-up of SpecA at s. Using
[10], one can “pinch” X0 so as to convert a non-rational closed point of
the special fibre into a rational point. The special fibre of the resulting
X → SpecA is then a singular quotient of P1

F , with two R-equivalence
classes. He also gave a normal example [12].

5.4. R-equivalence and R-equivalences. The main purpose of this
subsection is to compute the Hom sets in the category S−1

b Smproj(F ):
we achieve this if charF = 0 in Theorem 5.4.14. Our main tool is to
compare it with a rather natural category R−1 Sch(F ) that we intro-
duce in Definition 5.4.2.
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To put things in a general context, suppose we have a category C
together with a collection of covariant functors Φα : C → Set from C to
the category of sets. We may then introduce the collection R = R(Φα)
of those morphisms of C which are inverted by all Φα and consider the
localisation R−1C, so that the Φα induce a conservative collection of
functors Φα : R−1C → Set. One may then wonder whether these new
functors are co-representable. In the situation studied here, we shall
see that this is partly the case (Proposition 5.4.12).

5.4.1. Definition. Let f : X → Y be a morphism of F -schemes of
finite type. We say that f is an R-equivalence if, for any extension
K/F , the induced map

X(K)/R→ Y (K)/R

is bijective.

Clearly it is sufficient in this definition to let K run through all
finitely generated extensions of F .

5.4.2. Definition. Let Sch(F ) = Sch be the category of separated
F -schemes of finite type with all F -morphisms. We denote by R the
collection of R-equivalences in Sch and by R−1 Sch the corresponding
localised category.

For any K/F and any X ∈ Sch, let us write ΦK(X) for X(K)/R.
Clearly, ΦK defines a functor from Sch to the category of sets Set.
Since ΦK inverts the morphisms of R, we have

5.4.3. Lemma. The functor ΦK induces a functor R−1 Sch → Set,
still denoted by ΦK. 2

Let now X ∈ Sch be a variety, and let K = F (X). For any Y ∈ Sch,
we have an obvious map

Sch(X, Y )
α̃
−→ ΦK(Y )

α̃(f) = f(ηX)

which is clearly a natural transformation. Lemma 5.4.3 implies:

5.4.4. Lemma. The natural transformation α̃ induces a natural trans-
formation (in Y )

R−1 Sch(X, Y )
α
−→ ΦK(Y ).

Note that by the (covariant) Yoneda lemma, α is characterised by
its value ηX on 1X ∈ R

−1 Sch(X,X).
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Our aim is to prove that α is an isomorphism for proper Y when X is
regular and proper, using resolution of singularities.3 This is achieved
in Proposition 5.4.12. To do this, we need to develop a series of lemmas.

5.4.5. Lemma. α induces a map

R−1 Sch(ηX , Y ) := lim
−→
U⊂X

R−1 Sch(U, Y )
α
−→ ΦK(Y ).

Proof. It suffices to remark that α commutes with restriction to open
subsets of X, which is obvious from its definition. 2

5.4.6. Definition. Let S ⊂ Sch be the collection of the following
morphisms:

(i) Proper birational maps s : X → Y , with X and Y regular.
(ii) Projections U ×X → X, where U is an open subset of P1.

By definition, Spb ∩ Sm ⊂ S. Note that S ⊂ R: for the first type of
morphisms this follows from Theorem 5.2.4 a) and for the second type
it is obvious in view of (5.1). Hence the localisation functor

PR : Sch→ R−1 Sch

factors as a composition of two functors:

Sch
PS−→ S−1 Sch

P
−→ R−1 Sch .

We also get a canonical functor, that we display for future reference:

(5.2) (Sb ∪ Sh)
−1 Smprop → R−1 Sch

because S ∩ Smprop = Sb ∪ Sh.
For X, Y,K as above, we have a commutative diagram

(5.3) R−1 Sch(X, Y )
α // ΦK(Y ) = Y (K)/R

S−1 Sch(X, Y )

P

OO

Sch(X, Y )

PS

OO

// Rat(X, Y ) = Y (K)

λ

OO

where λ is surjective.

3The reader willing to use Theorem 5.3.3 rather than Theorem 5.2.4 will check
that we “only” need X to verify the following form of resolution of singularities: for
any proper birational morphism X ′ → X , there exists a proper birational morphism
X ′′ → X ′ with X ′′ regular (cf. Definition 4.2.4).
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5.4.7. *Lemma. Suppose Y proper and let

S−1 Sch(ηX , Y ) = lim−→
U⊂X

S−1 Sch(U, Y ).

Then the obvious map Rat(X, Y ) → S−1 Sch(ηX , Y ) factors through
λ into a map β0 : ΦK(Y )→ S−1 Sch(ηX , Y ), such that the diagram

R−1 Sch(X, Y )
α // ΦK(Y )

β0

��

S−1 Sch(X, Y )

P

OO

// S−1 Sch(ηX , Y )

commutes.

Proof. Let y0, y1 ∈ Y (K) be two directly R-equivalent points. Let
γ : P1

K 99K YK be a rational map linking them at 0 and 1. Since Y is
proper, γ is a morphism. Then there is an open subset U ⊂ X and a
map f : P1×U → Y such that f ◦ si = fi, where si corresponds to the
inclusion of the point i in P1 and fi : U → Y corresponds to yi. Since
s0 and s1 are sections of the projection P1 × U → U which belongs to
S, they become equal in S−1 Sch(U, Y ), hence the existence of β0. The
last assertion is obvious. 2

Suppose now X regular and Y proper, and let us still write K =
F (X). We are going to refine Lemma 5.4.7, under resolution of singu-
larities:

5.4.8. *Lemma. Suppose that charF = 0 or that dimX ≤ 2. Then
there is a map β1 : Rat(X, Y )→ S−1 Sch(X, Y ) such that the diagram

S−1 Sch(X, Y ) // S−1 Sch(ηX , Y )

Sch(X, Y )

PS

OO

// Rat(X, Y )

OO
β1

iiRRRRRRRRRRRRRR

commutes.

Proof. Let f : X 99K Y be a rational map. Since Y is proper, the

graph trick provides us with a proper birational morphism p : X̃ → X

and a map f̃ : X̃ → Y resolving f . By resolution, we may assume that

X̃ is regular. We set

β1(f) = f̃ ◦ p−1.

Let us show that this does not depend on the choice of X̃. If

(X̃ ′, p′, f̃ ′) is another choice, we may dominate it by a third one, which

reduces us to the case where there is a map q : X̃ ′ → X̃. Then
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pq = p′ and f̃ q = f̃ ′ by Lemma 1.7.2, hence f̃p−1 = f̃ ′p′−1. Thus β1 is
well-defined and clearly extends PS: in other words, the lower triangle
commutes. The commutativity of the upper one is obvious. 2

5.4.9. *Lemma. Under the assumptions of Lemma 5.4.8, the map β1

factors further through a map

β : ΦK(Y )→ S−1 Sch(X, Y )

which lifts the map β0 of Lemma 5.4.7.

Proof. Since λ is surjective, the lifting claim will follow from the exis-
tence of β: thus it suffices to show that two R-equivalent rational maps
f0, f1 have the same image under β1. We may clearly assume that f0

and f1 are directly R-equivalent.
Let U be an open subset of X on which f0 and f1 are defined, and

let p0 : X̃ → X be a proper birational morphism covering U and such

that f0 and f1 extend to f̃ 0 and f̃ 1 on X̃, with X̃ regular. To show

that β1(f0) = β1(f1), it is sufficient to show that PS(f̃ 0) = PS(f̃1).
Since f0 and f1 are directly R-equivalent, there is a rational map f :

P1
K → YK linking them. Since Y is proper, f is actually a morphism.

Hence, after possibly shrinking U , we get a morphism

f : P1 × U → Y

such that f ◦ si = fi, where si : U → P1 × U is given by the inclusion

of i in P1 (i = 0, 1). We may resolve this rational map from P1 × X̃

via a proper birational morphism p : Z → P1 × X̃: let us denote by

f̃ : Z → Y the corresponding morphism.
Now let Zi be the graph of the rational map

X̃ ⊃ U
si−→ P1 × U → Z

and Z ′ be a regular resolution of the closure of U embedded diagonally
into Z0 × Z1: we get two diagrams (for i = 0, 1)

Z ′
qi //

p′
��

Z

p
��

f̃

��4
44

44
44

44
44

44
44

44

X̃
s̃i //

f̃ i ))SSSSSSSSSSSSSSSSSSSSS P1 × X̃

Y

which commute thanks to Lemma 1.7.2, with p′ proper birationnal.



46 BRUNO KAHN AND R. SUJATHA

Note that p0 ∈ S
p
b and p0p

′ ∈ Spb , hence PS(p
′) is invertible. Also, in

the images in S−1 Sch of the commutative diagrams

X̃
s̃i //

p0

��

P1 × X̃

1
P1×p0

��

X
si // P1 ×X

we have PS(s0) = PS(s1) as s0 and s1 are both right-inverse to the
projection P1 ×X → X which belongs to S. Since PS((1P1 × p0)p) is
invertible, it follows that PS(q0) = PS(q1) as well. Finally:

PS(f̃ 0p
′) = PS(f̃ q0) = PS(f̃ q1) = PS(f̃ 1p

′)

and PS(f̃ 0) = PS(f̃ 1), as required. 2

Summarising the above lemmas, we have refined the commutative
diagram (5.3) to a commutative diagram

(5.4) R−1 Sch(X, Y )
α // ΦK(Y )

βvvnnnnnnnnnnnn

S−1 Sch(X, Y )

P

OO

Sch(X, Y )

PS

OO

// Rat(X, Y )

λ

OO

when Y is proper and X is regular, and under a resolution assumption
on X.

5.4.10. *Lemma. β is a natural transformation on S−1 Sch and Pβ
is a natural transformation on R−1 Sch.

Proof. It suffices to show that the map β1 of Lemma 5.4.8 is a natural
transformation on Sch, which is obvious. 2

5.4.11. *Lemma. We have βαPR = PS and αPβ = 1.

Proof. The first identity is trivial. For the second it suffices to check

that αPβ1 = λ. Let f ∈ Rat(X, Y ) be a rational map and (X̃, p, f̃) be

as in the proof of Lemma 5.4.8, so that β1(f) = f̃p−1. We then have

αPβ1(f) = αP (f̃p−1) = f̃(ηX) = f(ηX) = λ(f).

2
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5.4.12. *Proposition. Suppose X regular and proper (and Y proper).
Then Pβα = 1 and βαP = 1. In particular, α, β and P are isomor-
phisms.

Proof. By Lemma 5.4.10 and Yoneda’s lemma, both equalities are tested
on 1X (which is possible because X is proper); then they follow from
the first identity of Lemma 5.4.11. 2

Summarising, we get:

5.4.13. *Theorem. If X is regular and Y is proper, the maps α and
Pα of Diagram (5.3) have canonical sections Pβ and β. If moreover
X is proper, then α, P and β are isomorphisms. In particular, the
restriction of P to the full subcategories consisting of regular proper
varieties is fully faithful and Hom sets are computed as R-equivalence
sets.

5.4.14. *Theorem. If charF = 0, the functors

S−1
b Smproj → S−1

b Smprop → S−1 Sch→ R−1 Sch

are all fully faithful, and the Hom sets in the first two categories are
given by R-equivalence sets.

Proof. Indeed, by Theorem 1.6.3, projective birational morphisms from
smooth varieties are cofinal among proper birational morphisms to a
fixed (smooth) variety. It follows that all varieties appearing in the
proofs of lemmas 5.4.8–5.4.11 may be replaced by smooth varieties. For
X, Y smooth and proper (resp. smooth and projective), these proofs
refine the map β into a map to (Sb ∪ Sh)

−1 Smprop(X, Y ) (resp. to
(Sb ∪ Sh)

−1 Smproj(X, Y )) via the functor (5.2), and the analogues of
Lemma 5.4.10 – Prop. 5.4.12 remain valid for this refinement, with the
same proofs. We get the conclusion by applying Theorem 1.7.7. 2

5.4.15. Remarks.

(1) In Subsection 6.1, we shall give a more concrete description of
the composition of R-equivalence classes.

(2) We don’t know an example where proposition 5.4.12 fails if we
relax the properness condition on Y .

(3) In view of the definition of rational chain connectedness and of
Lemma 5.2.3, it would be natural to study the localisation of
Sch(F ) with respect to those morphisms which are inverted by
all functors of the form ΦK , with K ⊇ F algebraically closed. In
particular, in characteristic 0, all rationally connected varieties
are equivalent to the point in this category. But we don’t know
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how to compute Hom sets, say, between two smooth projective
varieties. It is tempting to consider the sets, for two smooth
proper varieties X, Y

(Y (F (X))/R)G

where F (X) is an algebraic closure of F (X) andG is its absolute
Galois group. However, we don’t know how to compose such
Galois-invariant R-equivalence classes.

6. More on R-equivalence classes

In this section, we come back to the previous results for a less ab-
stract and more detailed viewpoint. In Subsection 6.1, we extend the
composition of R-equivalence classes from regular proper varieties to
somewhat more general situations. In Subsection 6.2, we study the
surjection place(F (X), F (Y ))/ h → Y (F (X))/R for two smooth pro-
jective varieties, and say as much as we can about its fibres.

6.1. Composing R-equivalence classes. As a by-product of Theo-
rem 5.4.13, one gets for three regular proper varieties X, Y, Z over a
field of characteristic 0 a composition law

Y (F (X))/R× Z(F (Y ))/R→ Z(F (X))/R

which is by no means obvious.
We are going to generalise this composition law a little bit. We still

assume charF = 0. To start with let X, Y be two varieties, with Y
regular, and Z a proper scheme. We then get a pairing

R−1 Sch(X, Y )× Z(F (Y ))/R→ Z(F (X))/R(6.1)

(f, z) 7→ f ∗z = α(Pβ(z) ◦ f).

This is easily seen to pass to R−1 Sch(ηX , Y ). In particular, any
rational map f : X 99K Y induces an action z 7→ f ∗z. The same kind
of arguments as before give:

6.1.1. *Lemma. a) Suppose moreover that Y is proper. Then f ∗ only
depends on the R-equivalence class of f . In particular, (6.1) factors
through a composition

Y (F (X))/R× Z(F (Y ))/R→ Z(F (X))/R.

b) Let X, Y, Z, T ∈ Sch with X a variety, Y, Z smooth and proper and
T proper. Then the composition law of a) is associative in an obvious
sense.
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(In b), the associativity follows from a straightforward calculation
using Proposition 5.4.12.)

We now relax the hypothesis “proper” on Y in the previous lemma.

6.1.2. *Proposition. Assume charF = 0.
a) Suppose X, Y, Z ∈ Sch are such that X is a variety, Y is a regular
variety and Z is proper. Then there is a composition map

Y (F (X))/R× Z(F (Y ))/R→ Z(F (X))/R,(6.2)

denoted by z ◦ y for z ∈ Z(F (Y ))/R and y ∈ Y (F (X))/R. This
composition law is the same as that in Lemma 6.1.1 a) when Y is
proper.
b) Let X, Y, Z, T ∈ Sch be such that X is a variety, Y is a regular
variety, Z is a regular proper variety and T is proper. Then the above
composition law is associative.

Proof. a) Let K = F (X) and L = F (Y ). Given z ∈ Z(L), defining
a rational map fz ∈ Rat(Y, Z), let β(z) : Y (K)/R → Z(K)/R be
the map induced by fz via Theorem 5.2.4 b). Let z′ ∈ Z(L) be R-
equivalent to z: we claim that β(z) = β(z′). For this, we may assume
that z and z′ are directly R-equivalent. Let ϕ : P1

L 99K ZL be a
rational map (actually a morphism) such that ϕ(0) = z, ϕ(1) = z′,
and let z̃ ∈ Z(M) be the image by ϕ of the generic point of P1

L, where
M = L(t). Then z̃ induces a map β(z̃) : (Y ×P1)(K)/R → Z(K)/R,
corresponding to the rational map Y ×P1

99K Z extending ϕ. Via the
isomorphisms Y (K)/R

∼
−−→ (Y ×P1)(K)/R induced by the inclusions

of 0 and 1 into P1, we have β(z̃) = β(z) = β(z′).
For y ∈ Y (K)/R and z ∈ Z(L)/R, we may now define

z ◦ y = β(z)(y).

When Y is proper, it clearly is the map defined in Lemma 6.1.1 a).
b) Given y ∈ Y (F (X)), z ∈ Z(F (Y )) and t ∈ T (F (Z)), we need to

show that t ◦ (z ◦ y) = (t ◦ z) ◦ y. We have

t ◦ (z ◦ y) = t ◦ (β(z)(y)) = β(t)β(z)(y)

and

(t ◦ z) ◦ y = β(t ◦ z)(y).

Choose a morphism Z ′ → T “resolving” t, with Z ′ → Z proper
birational. We may similarly “resolve” the rational map Y 99K Z ′

defined by z by a proper birational morphism Y ′ → Y . We may further
assume that Z ′, and then Y ′, is regular. This shows that β(t ◦ z) =
β(t)β(z), hence ◦ is associative. 2
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6.1.3. Remark. One can replace Theorem 5.2.4 by Corollary 5.3.5
in the proof of Proposition 6.1.2 a), thus removing the resolution of
singularities assumption. On the other hand, adapting the proof that
β(t ◦ z) = β(t)β(z) in b) seems to require more work.

6.2. Comparing morphisms in S−1
r place and S−1

b Smproj. Let X
and Y be two smooth projective varieties over F with function fields
K and L respectively. Consider the map

c : place(F )(K,L)→ X(L)

λ 7→ c(λ)

where c(λ) is the centre of the place λ considered as an element of X(L)
(see subsection 1.3).

6.2.1. *Lemma. a) The above map is surjective and induces a surjec-
tion

c̄ : place(F )(K,L)/h −→→ X(L)/R

where h denotes homotopy equivalence.
b) Let λ0, λ1 ∈ place(F )(K,L) be such that c(λ0) is directly R-equivalent
to c(λ1) in X(L). Then there exist µ0, µ1 ∈ place(F )(K,L) such that

(i) µ0 and µ1 are elementarily homotopic;
(ii) c(µ0) = c(λ0) and c(µ1) = c(λ1) in X(L).

6.2.2. Remark. Part b) of this lemma tries to elucidate the fibres of
the surjection in part a); see also Theorem 6.2.3 below.

Proof. a) As X is smooth, the surjectivity follows from Lemma 3.2.2
(given P ∈ X(L), spread it to an F -morphism θP : V → X where V is
open in Y ). For the second assertion, it clearly suffices to prove that
if λ0 and λ1 are elementarily homotopic, then their centres in X(L)
are R-equivalent. Let ν : K  L(t) be a place such that si ◦ ν = λi
for i = 0, 1. Let i0 and i1 be the morphisms from Y to Y ×F P1

which are respectively 0 and 1 on the second co-ordinate. Then i0
and i1 are compatible respectively with s0 and s1, whose centres are
clearly R-equivalent in Y ×F P1. By Lemma 3.2.4, the graph trick
and Theorem 1.6.3, there is a smooth projective variety Z over F with
a birational morphism to Y ×F P1 and an F -morphism g : Z → X
such that g is compatible with ν. But R-equivalence is invariant under
birational maps, and birational morphisms being compatible with the
identity place, we see that the centres c0 and c1 of s0 and s1 in Z are
R-equivalent. As g is compatible with ν and si ◦ ν = λi, it is clear that
the centres of λ0 and λ1 are g(c0) and g(c1), hence are R-equivalent in
X(L).
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b) The centres c(λ0) and c(λ1) induce F -morphisms

θ0 : V0 → X, θ1 : V1 → X,

where V0 and V1 are open sets in Y , such that θi maps the generic point
of Y to c(λi) for i = 1, 2 respectively. Further, by Corollary 3.1.3, θi is
compatible with λi for i = 0, 1 respectively. By R-equivalence, we have
an L-morphism g : P1

L → XL such that g(0) = c(λ0) and g(1) = c(λ1).
Spreading this morphism, we get an F -morphism g′ : V ′ ×F P1 →
V ′ ×F X where V ′ is open in Y . Further the images of the generic
point of V ′ × {i} under g′ for i = 0, 1 are respectively the centres of
λi. By Corollary 3.1.3 we get a place ν : K  L(t) compatible with
p2 ◦ g

′, where p2 : V ′ × X → X is the second projection. Shrinking
the open sets if necessary, we may assume that V0 = V1 = V ′. The
natural inclusions i0 : V ′ → V ′×FP1 and i1 : V ′ → V ′×FP1 which map
respectively to 0 and 1 in the second co-ordinate are clearly compatible
with the “specialising” places s0 and s1 respectively. Then µi = si ◦ ν
and λi have the same centre for i = 0, 1. 2

Let X be a smooth projective model of K and λ a place K  L. If
Y is a smooth projective model of L, then by Lemma 3.2.4, there is a
unique rational map Y 99K X compatible with λ. This rational map
is determined by the centre c(λ) ∈ X(L). Let µ : K  L be another
place. Write

λCX µ

if c(λ) = c(µ) ∈ X(L), or equivalently if λ and µ are compatible
with the same rational map to X. The relation CX has the following
permanence properties:

• CX is an equivalence relation.
• If λCX µ and p : X → X ′ is in Sb, then λCX′ µ.
• If λCX µ and ν : L M is another place, then (ν◦λ) CX(ν◦µ).

To see this, choose a model Y of L such that the common
rational map f : Y 99K X compatible to λ and µ is in fact a
morphism; if Z is a smooth model of M and g : Z 99K Y is a
rational map compatible with ν, then f ◦ g is defined and, by
Proposition 3.1.4, it is compatible with ν ◦ λ and ν ◦ µ.

On the other hand, if λCX µ and ν : M  K is another place, then
it is not true in general that (λ ◦ ν) CZ(µ ◦ ν) for a suitable model Z of
M . As a counterexample, take L = F , K = F (t1, t2), M = F (t), for λ
and µ the composite places

λ : (t1, t2)→ (0, t)→ (0, 0)

µ : (t1, t2)→ (t, 0)→ (0, 0)
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and for ν the place given by

ν(t) =
t1

t1 − t2
.

Under the functor

Φb : place(F )op U−1

−→ S−1
b Smproj P(F )→ S−1

b Smproj(F )

from Theorem 4.2.5, λCX µ implies Φb(λ) = Φb(µ): this is obvious.
Hence, if we denote by C the equivalence relation on place(F ) gener-
ated by all CX , Φb factors through a functor

Φ̄b : place(F )op/C→ S−1
b Smproj(F ).

We have the following diagram of categories and functors, in which
all functors are full and [essentially] surjective:

(6.3) place(F )op //

S−1
r

��

place(F )op/C

Φ̄b

��

S−1
r place(F )op Φr

//

≀

��

S−1
b Smproj(F )

≀
��

place(F )/h
c̄ // Smproj(F )/R

where the (unmarked) top left horizontal functor is the natural pro-
jection, the (unmarked) top right vertical functor is the composition
S−1
r ◦Φ

b, the two vertical isomorphisms of categories are those of Propo-
sitions 5.1.3 and Theorem 5.4.14 respectively, and c̄ is induced by the
maps of Lemma 6.2.1 a).

From Lemma 6.2.1 b), we get:

6.2.3. *Theorem. In (6.3), the top square is cocartesian, that is, the
functors induce cocartesian squares of sets on morphisms. 2

7. Examples, applications and open questions

In this section, we put together some concrete applications of the
above results and list some open questions.

7.1. Places, R-equivalence and birational functors. To start with,
here is a more concrete reformulation of part of Theorem 5.4.14:

7.1.1. *Corollary. Suppose F of characteristic 0. Let

P : Smproj(F )→ A
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be a functor to some category A. Suppose that P is a birational func-
tor. Then R-equivalence classes act on P : if X, Y are two smooth
projective varieties, any class x ∈ X(F (Y ))/R induces a morphism
x∗ : P (Y ) → P (X). This assignment is compatible with the composi-
tion of R-equivalence classes given by Theorem 5.4.14.
In particular, for two morphisms f, g : X → Y , P (f) = P (g) as soon
as f(ηX) and g(ηX) are R-equivalent.

In fact, Theorem 5.4.14 further says thatR-equivalence is “universal”
among birational functors.

As another application, we get:

7.1.2. *Corollary (cf. Madore [31, Prop. 3.1]). Suppose F of charac-
teristic 0. Let Y ∈ Sch(F ) be proper, and let λ : K  L be an F -place
between function fields. Then λ induces a map

λ∗ : Y (K)/R→ Y (L)/R.

Proof. Consider λ as a morphism in placeSm
prop(F ). Pick a smooth

proper model X of K and a smooth proper model Z of L. Composing
the first functor of Corollary 4.4.3 with (5.2), we get a morphism λ∗ :
Z → X in R−1 Sch, hence a map

λ∗ : R−1 Sch(X, Y )→ R−1 Sch(Z, Y ).

Now, by Theorem 5.4.13, these two Hom sets are isomorphic to the
corresponding sets of R-equivalence classes. (We leave it to the reader
to check that this map is indeed the one induced by the map λ∗ :
Y (K)→ Y (L) given by the valuative criterion of properness.) 2

Let us point out the difference between Madore’s result and proof
and ours. Madore’s theorem concerns a projective scheme Y over a
discrete valuation ring O with quotient field K and residue field L.
Denoting by Y the generic fibre of Y and Ȳ its special fibre, he proves
that the map Y(O) = Y (K) → Ȳ (L) factors through R-equivalence
by an explicit computation in the projective space. Thus his result
does not cover arbitrary proper schemes and places, but on the other
hand it does not require any resolution of singularities and is valid “in
families”, even in unequal characteristic.

7.2. Algebraic groups and R-equivalence. We have the follow-
ing obvious corollary of the existence of the composition law on R-
equivalence classes (§6.1):

7.2.1. *Corollary. Let X be a smooth proper variety with function field
K. Then X(K)/R has a structure of a monoid with ηX as the identity
element. 2
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As a special case of the above, we consider a connected algebraic
group G defined over F . Recall that for any extension K/F , the set
G(K)/R is in fact a group. Let Ḡ denote a smooth compactification
of G over F (we assume that there is one). It is known (P. Gille, [14])
that the natural map G(F )/R→ Ḡ(F )/R is an isomorphism if F has
characteristic zero and G is reductive.

LetK denote the function field F (G). By the above corollary, there is
a composition law ◦ on Ḡ(K)/R. On the other hand, the multiplication
morphism

m : G×G→ G

considered as a rational map on Ḡ×Ḡ induces a product map (Corollary
5.3.5)

Ḡ(K)/R× Ḡ(K)/R→ Ḡ(K)/R

which we denote by (g, h) 7→ g · h; this is clearly compatible with the
corresponding product map on G(K)/R obtained using the multipli-
cation homomorphism on G. Thus we have two composition laws on
Ḡ(K)/R.

The following lemma is a formal consequence of Yoneda’s lemma:

7.2.2. Lemma. Let g1, g2, h ∈ Ḡ(K)/R. Then we have (g1 · g2) ◦ h =
(g1 ◦ h) · (g2 ◦ h). 2

In particular, let us take G = SL1,A, where A is a central simple
algebra over F . It is then known that G(K)/R ≃ SK1(AK) for any
function field K. If charF = 0, we may use Gille’s theorem and find
that, for K = F (G), SK1(AK) admits a second composition law with
unit element the generic element, which is distributive on the right with
respect to the multiplication law. However, it is not distributive on the
left in general:

Note that the natural map Hom(SpecF, Ḡ) = Ḡ(F )/R→ Ḡ(K)/R =
Hom(Ḡ, Ḡ) is split injective, a retraction being induced by the unit
section SpecF → G → Ḡ. Now let g ∈ G(F ); for any ϕ ∈ G(K) =
Rat(G,G), we clearly have [g]◦[ϕ] = [g]. In particular, [g]◦([ϕ]·[ϕ′]) 6=
([g]◦ [ϕ]) ·([g]◦ [ϕ′]) unless [g] = 1. (This argument works for any group
object in a category with a final object.)

7.3. Strongly linearly connected smooth proper varieties. One
natural question that arises is the following: characterise morphisms
f : X → Y between smooth proper varieties which become invertible
in the category S−1

b Smprop. Here we shall study this question only in
the simplest case, where Y = SpecF .
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7.3.1. *Theorem. a) Let X be a smooth proper variety over F , which
is assumed to be of characteristic 0. Consider the following conditions:

(1) p : X → SpecF is an isomorphism in S−1
b Smprop.

(2) p is an isomorphism in S−1
r Smprop.

(3) For any extension E/F , X(E)/R has one element (i.e. X is
strongly linearly connected according to Definition 5.2.1 d)).

(4) Same, for E/F of finite type.
(5) X(F ) 6= ∅ and X(K)/R has one element for K = F (X).
(6) X(F ) 6= ∅ and, given x0 ∈ X(F ), there exists a chain of rational

curves (fi : P1
K → XK)ni=1 such that f1(0) = ηX , fi+1(0) = fi(1)

and fn(1) = x0. Here K = F (X) and ηX is the generic point
of X.

(7) Same as (6), but with n = 1.

Then (1) ⇐⇒ (2) ⇐⇒ (3) ⇐⇒ (4) ⇐⇒ (5) ⇐⇒ (6)⇐ (7).
b) If X satisfies Conditions (1)− (6) and is projective, it is rationally
connected.

Proof. a) (1) ⇒ (2) is trivial and the converse follows from Theorem
1.7.7. Thanks to Theorem 5.4.14, (2) ⇐⇒ (4) is an easy consequence
of the Yoneda lemma. The implications (3)⇒ (4)⇒ (5)⇒ (6)⇐ (7)
are trivial and (4) ⇒ (3) is easy by a direct limit argument. To see
(6)⇒ (1), note that by Theorem 5.4.14 (6) implies that 1X = x0 ◦ p in
S−1
b Smprop(X,X), hence p is an isomorphism.
b) This is well-known, since strongly linearly connected implies lin-

early connected, which is equivalent to rationally chain-connected (see
Remark 5.2.2), the latter being equivalent to rationally connected for
smooth projective varieties in characteristic 0 [27], [8, p. 107, Cor.
4.28]. 2

7.3.2. Remarks. a) The example of an anisotropic conic shows that,
in (5), the assumption X(F ) 6= ∅ does not follow from the next one.

b) J.-L. Colliot-Thélène pointed out that (6) ⇒ (3) actually holds
in any characteristic provided X is projective, thanks to Madore’s the-
orem explained after Corollary 7.1.2. Indeed, we may clearly assume
E = F . Let x ∈ X(F ), A its local ring and take the same notation as
in the proof of Lemma 3.2.2. For i ∈ [0, d− 1], let yi ∈ X be the point
image of SpecFi, so that yd−1 = ηX , y0 = x and yi−1 is a specialisation
of yi for each i. Applying Madore’s theorem, we find inductively that,
for all i, yi is R-equivalent to x0 over Fi, hence x is R-equivalent to x0

over F .
This suggests an alternative way to define the composition of R-

equivalence classes, at least for regular projective varieties. Here is
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how it should work (we place ourselves in the framework of Proposition
6.1.2): consider 3 F -varieties X, Y, Z with X integral, Y regular and
Z projective; let K = F (X), L = F (Y ) and finally y ∈ Y (K)/R,
z ∈ Z(L)/R. Then y lifts to a rational map f : X 99K Y . By Lemma
3.2.2, there exists a place λ : L K compatible with f , and moreover,
λ may be chosen as a composition of a trivial place and a sequence of
discrete valuations of rank 1. By Madore’s theorem, one may define
λ∗z ∈ Z(K)/R. One should then prove that λ∗z only depends on y.

c) Theorem 7.3.1 b) implies that if (6) is true, then (7) is true at
least over the algebraic closure of K [8, p. 107, cor. 4.28]. It is not
clear whether (6) ⇐⇒ (7) on the nose. What follows is a variation
on the ideas of Kollár.

7.3.3. Definition. Let X, Y be two F -varieties, E = F (Y ) and x ∈
X(E). Let x̃ : Y 99K X be the corresponding rational map. We set

dimF (x) = dim x̃(Y ).

We say that x is general if dimF (x) = dim(X) and the corresponding
extension E/F (X) is separably generated.

Recall [8, p. 90, Def. 4.5 ff] that a rational curve f : P1 → X on a
smooth variety is free (resp. very free) if f ∗TX (resp. f ∗TX⊗OP 1(−1))
is generated by its global sections.

7.3.4. Proposition. Let X be a smooth proper F -variety and f : P1
K →

XK a rational curve, where K = F (X).
a) There exists an open subset U ⊆ X such that f extends to a mor-
phism ϕ : U ×P1 → X.
b) Let F be the cokernel of the composition

(7.1) β : ϕ∗ΩX → ΩU×P1 ≃ p∗ΩU ⊕ q
∗ΩP1 → p∗ΩU

where p, q are the projections of U × P1 on U and P1. The following
conditions are equivalent:

(1) F is torsion.
(2) Supp(F) 6= U ×P1.
(3) There exists t ∈ P1(K) such that f(t) is general.
(4) There exists a proper closed subset B ⊂ P1

K such that f(t) is
general for any t /∈ B(K).

They imply that f is free.
c) Suppose that F is perfect and that (1) − (4) are verified. If r =
h0(P1

K , f
∗ΩXK

), then for any t ∈ P1(K), dimF f(t) ≥ r.
In particular, if there exists t ∈ P1(K) such that f(t) ∈ P1(F ) (note
that this is true in Condition (7) of Theorem 7.3.1), then f is very free.
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Proof. a) is clear. b) (1) ⇐⇒ (2) is obvious. Let t ∈ P1(K). Spread
t to t̃ : U ′ → P1 (U ′ open subset of U). Up to shrinking U , we may
assume U ′ = U . Pulling back (7.1), we get a composition

γ∗
t̃
ϕ∗ΩX → γ∗

t̃
(p∗ΩU ⊕ q

∗ΩP1)→ ΩU

where γ̃t : U → U × P1 is the graph map associated to t̃. Note that
pγ̃t = 1U , hence the second map can be identified with the projection
onto the first summand of the middle term. It follows that the cokernel
of the composition is γ∗

t̃
F . Its vanishing means that ϕ◦γ̃t is unramified,

i.e. that f(t) is general. Thus: f(t) is general ⇐⇒ γ̃t(U) 6⊂ Supp(F).

This shows that (3) ⇒ (2). Clearly, (4) ⇒ (3). Finally, assuming
(2), Supp(F) is a proper closed subset, hence can contain only finitely
many irreducible subvarieties of X × P1 of codimension 1, so that (2)
⇒ (4).

It remains to see that f is free under these conditions. Let j : P1
K →

P1 × U be the immersion corresponding to the generic point of U .
Pulling back (7.1) by j, we get an exact sequence

f ∗ΩXK

βK−→ j∗p∗ΩU → j∗F → 0.

The sheaf j∗F is torsion, and since f ∗ΩXK
and j∗p∗ΩU are locally free

of the same rank, the first map is injective. Note that j∗p∗ΩU ≃ O
d
P 1

K

,

where d = dimU . This implies that the twists of f ∗ΩXK
are all ≤ 0,

which by definition means that f is free.
c) Let t ∈ P1(K) and let Ft be the fibre of j∗F at t. Then dimK Ft ≤

d − r: indeed, if f ∗ΩXK
≃ Or

P1
K

⊕ G, the restriction of βK to Or
P1

K

is

given by an injective matrix with constant coefficients, hence remains
injective after taking the fibre. On the other hand, with the notation
of the proof of a), the map β of (7.1) factors through a pull-back of
ΩW where W the closure of the image of ϕ ◦ γ̃t : U ′ → X. Since F
is perfect, this sheaf is generically locally free of rank dimW . Thus
dimK Ft ≥ d− dimW , which gives c). 2

7.4. Retract-rational varieties. Recall that, following Saltman, X
(smooth but not necessarily proper) is retract-rational if it contains
an open subset U such that U is a retract of an open subset of An.
When F is infinite, this includes the case where there exists Y such
that X × Y is rational, as in [5, Ex. A. pp. 222/223].

We have a similar notion for function fields:
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7.4.1. Definition. A function field K/F is retract-rational if there
exists an integer n ≥ 0 and two places λ : K  F (t1, . . . , tn), µ :
F (t1, . . . , tn) K such that µλ = 1K .

Note that this forces λ to be a trivial place (i.e. an inclusion of
fields). Using Lemma 3.2.2, we easily see that X is retract-rational if
and only if F (X) is retract-rational.

7.4.2. Proposition. If X is a retract-rational smooth variety, then
F (X) ≃ F in S−1

r place(F )op. If moreover X is proper and F is
infinite, then X verifies Condition (7) of Theorem 7.3.1 for a Zariski
dense set of points x0.

Proof. The first statement is obvious by Yoneda’s lemma. Let us prove
the second: by hypothesis, there exist open subsets U ⊆ X and V ⊆ An

and morphisms f : U → V and g : V → U such that gf = 1U . This
already shows that U(F ) is Zariski-dense in X. Let now x0 ∈ U(F ),
and let K = F (X). Consider the straight line γ : A1

K → An
K such that

γ(0) = f(x0) and γ(1) = f(ηX). Then g ◦ γ links x0 to ηX , as desired.
2

To summarise this discussion, let us record:

7.4.3. Corollary. We have the following implications for a smooth pro-
jective variety X over an infinite F (proper is enough *in characteristic
0): X is retract-rational ⇒ X is strongly linearly connected ⇒ X is
separably rationally connected.

Proof. In characteristic 0, use Theorem 7.3.1 and Proposition 7.4.2 to
prove the first implication; if X is projective, replace Theorem 7.3.1 by
Remark 7.3.2 b). The second implication follows from Kollár’s work
[27]. 2

7.4.4. Remark. In characteristic 0, if X is a smooth compactification
of a torus, then it verifies Conditions (1) – (6) of Theorem 7.3.1 if and
only if it is retract-rational, by [6, Prop. 7.4] (i.e. the first implication
in the previous corollary is an equivalence for such X). This may also
be true by replacing “torus” by “connected reductive group”: at least
it is so in many special cases, see [15, Th. 7.2 and Cor. 5.10].

Nevertheless, Proposition 7.4.2 suggests that in Corollary 7.4.3 the
first implication may be strict, i.e. there are smooth proper varieties
which satisfy the equivalent conditions (1)–(6) of Theorem 7.3.1 but are
not retract-rational. To start with, do conditions (1)–(6) of Theorem
7.3.1 imply that F -rational points are dense in X? Here is another hint
in this direction.
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7.4.5. Lemma. Let F be infinite, and suppose that the smooth proper
variety X over F is retract rational. Then there exists a nonempty open
subset U ⊆ X such that, for every extension K/k and every nonempty
open subset V ⊆ UK , the set V (K)/R has 1 element. In particular,
any open subset of U is strongly linearly connected.

Proof. This is obvious by taking for U a retract of an open subset of
An. 2

7.4.6. Question. In Lemma 7.4.5, is it true that all open subsets of X
are strongly linearly connected?

7.4.7. Remark (Colliot-Thélène). If X is a separably rationally con-
nected smooth projective variety, then any open subset of X is linearly
connected, thanks to the analogue of property (7) of Theorem 7.3.1 (cf.
Remark 7.3.2 c)).

7.5. Sr-local objects. In this rather disappointing subsection, we show
that there are not enough of these objects. They are the exact opposite
of rationally connected varieties.

7.5.1. Definition. A proper F -variety X is nonrational if it does not
carry any nonconstant rational curve (over the algebraic closure of F ),
or equivalently if the map

X(F̄ )→ X(F̄ (t))

is bijective.

7.5.2. Lemma. a) Nonrationality is stable by product and by passing
to closed subvarieties.
b) Curves of genus > 0 and torsors under abelian varieties are nonra-
tional.
c) Nonrational smooth projective varieties are minimal in the sense
that their canonical bundle is nef.

Proof. a) and b) are obvious; c) follows from the Miyaoka-Mori theo-
rem ([32], see also [28, Th. 1.13] or [8, Th. 3.6]). 2

On the other hand, an anisotropic conic is not a nonrational variety.
Smooth nonrational varieties are the local objects of Smproj(F ) with

respect to Sr in the sense of Definition 1.1.1: the following lemma is
valid in all characteristics.

7.5.3. Lemma. a) A proper variety X is nonrational if and only if, for
any morphism f : Y → Z between smooth varieties such that f ∈ Sr,
the map

f ∗ : Map(Z,X)→Map(Y,X)



60 BRUNO KAHN AND R. SUJATHA

is bijective.
b) A smooth proper nonrational variety X is stably minimal in the
following sense: any morphism in Sr with source X is an isomorphism.

Proof. a) Necessity is clear (take f : P1 → SpecF ). For sufficiency, f ∗

is clearly injective since f is dominant, and we have to show surjectivity.
We may assume F algebraically closed. Let U be a common open subset
to Y and Z ×Pn for suitable n. Let ψ : Y → X. By [28, Cor. 1.5] or
[8, Cor. 1.44], ψ|U extends to a morphism ϕ on Z × Pn. But for any
closed point z ∈ Z, ϕ({z}×P1) is a point, where P1 is any line of Pn.
Therefore ϕ({z}×Pn) is a point, which implies that ϕ factors through
the first projection.

b) immediately follows from a). 2

7.5.4. Lemma. If X is nonrational, it remains nonrational over any
extension K/F .

Proof. It is a variant of the previous one: we may assume that F is
algebraically closed and that K/F is finitely generated. Let f : P1

K →

XK . Spread f to a U -morphism f̃ : U × P1 → U × X and compose
with the second projection. Any closed point u ∈ U defines a map

fu : P1 → X, which is constant, hence p2 ◦ f̃ factors through the first
projection, which implies that f is constant. 2

7.6. The function field of BG. Here F is any field. Let G be a
linear algebraic group over F . Morel and Voevodsky have introduced
in [34, §4.2] an object BetG ∈ H(F ), where H(F ) is the A1-homotopy
category of schemes defined in loc. cit. Here we associate to G an
object F (BG) ∈ S−1

r field(F ): this notion is informally denoted by
F (G) in Saltman’s paper [39]. It would take us too far to justify in
what sense F (BG) may be considered as the “function field” of BetG,
so we prefer to do like Totaro, who in [42] defined the Chow ring of
BG without defining BG. We shall follow his method to achieve this:

Let V a faithful linear representation of G; we assume that V con-
tains a proper closed subset S such that G acts freely on V − S, the
quotient (V −S)/G exists as a quasi-projective variety and the projec-
tion V − S → (V − S)/G is a G-torsor: this can be achieved as in [42,
Rk. 1.4]. In the special case where G is reductive, this assumption is
verified if the action of G is “almost free” in the sense of [7, Def. 2.13],
cf. loc. cit. , Cor. 2.19.

The following is a version of the “no name lemma” [7, Cor. 3.9]:
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7.6.1. Proposition. a) The function field F (BG) := F (V )G is well-
defined in S−1

r field(F ).
b) The assignment G 7→ F (BG) is contravariant in G.

Proof. a) Let V ′ be another faithful representation of G verifying the
same assumptions as V . We have inclusions of function fields

F (V ⊕ V ′)G

F (V )G

88qqqqqqqqqq

F (V ′)G

ffNNNNNNNNNNN

Arguing as in [42, Proof of Th. 1.1], we get that both extensions

are purely transcendental, hence an isomorphism ϕV,V ′ : F (V )G
∼
−−→

F (V ′)G in S−1
r field(F ). Taking a third faithful representation and a

larger diagram shows that the isomorphisms ϕV,V ′ are transitive. We
may then define F (BG) independently of V as the direct limit of the
F (V )G with respect to the transitive set of isomorphisms ϕV,V ′ .

b) Let f : G → H be a homomorphism. We want to define a
morphism f ∗ : F (BH) → F (BG). Pick two faithful representations,
VG of G and VH of H . We construct f ∗ from the diagram of extensions
(where G acts on VH via f):

F (BG)
∼
←−− F (VG)G

∼ // F (VH ⊕ VG)G

F (VH)G

OO

F (VH)H
∼
−−→ F (BH)oo

Taking other representatives F (V ′
G)G and F (V ′

H)H and chasing in a
bigger diagram shows that f ∗ commutes with the transitivity isomor-
phisms ϕVG,V

′

G
and ϕVH ,V

′

H
of a). Similarly, one shows that (g ◦ f)∗ =

f ∗ ◦ g∗ if g : H → K is another homomorphism. 2

Here is one easy computation:

7.6.2. Proposition. Let G be a split group of multiplicative type (by
which we mean a closed subgroup of a split torus). Then, for any H,
the map F (B(G×H))→ F (BH) is an isomorphism in S−1

r field(F ).
In particular, if F contains the m-th roots of unity, then F (BA) ≃ F
in S−1

r field(F ) for any abelian group A of exponent m.

Proof. For two linear groups G,H we have B(G×H) ≃ BG× BH in
the sense that if V (resp. W ) is a faithful linear representation of G
(resp. of H), then V ×W is a faithful representation of G × H . By
Cartier duality and the structure of finitely generated abelian groups,
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this reduces us to the cases G = µm or G = Gm. Then we may choose
the 1-dimensional faithful representation E = A1 of G given by the
action by homotheties; also, up to base-changing from F to F (BH)
(for a suitable choice of F (BH)), we may assume H = 1. In the first
case, the map x 7→ xm on A1 identifies the quotient (E−{0})/µm with
A1−{0}, hence F (E)µm ≃ F (t). (One could also conclude more crudely

by using Lüroth’s theorem.) In the second case, (E − {0})/Gm
∼
−−→

SpecF , hence F (E)Gm = F .
For the last statement, note that A(1) := A⊗ µm is a split group of

multiplicative type. 2

7.6.3. Remark. The proof shows more precisely that F (V )G is rational
over F for a suitable V , which goes back to Fischer [9] when G is finite
of exponent m and F contains a primitive m-th root of unity. On
the other hand, it is well-known that F (BA) is not stably rational in
general if A is abelian (constant) and F does not contain enough roots
of unity (Swan [41], F = Q, A = Z/47).

There is also the following important result of Saltman [39, Prop.
2.3]:

7.6.4. Proposition. Suppose F is algebraically closed of characteristic
zero and G is connected and reductive. Let T be a maximal torus of G
and N its normaliser. Then the restriction map F (BG) → F (BN) is
an isomorphism in S−1

r field(F ).

7.6.5. Question. Suppose G is connected. Is it true that F (BG) ≃
F (BGan), where Gan is the anisotropic kernel of G?

To understand the scope of this question, note that if F is alge-
braically closed, it asks whether F (BG) ≃ F for all (connected) G.
This is a weakening of the open problem mentioned at the beginning
of [7], which asks whether F (BG) is always purely transcendental over
F .

For a general field F of characteristic 0, a positive answer to Ques-
tion 7.6.5 in the special case where G = SLn/µp, p prime and n a
power of p, would be sufficient to imply at least surjectivity in the
Merkurjev-Suslin theorem4 by an extension of a well-known argument
(see Le Bruyn [18, p. 101]). Namely, for any K ∈ field(F ), let N(K)
(resp. C(K)) denote the kernel (resp. cokernel) of the norm residue ho-
momorphism K2(K)/p → H2(K,µ⊗2

p ): these are functors on field(F )
and by Bloch’s lemma [2, Th. 3.1] they invert elements of Sr, hence

4There exist arguments showing that surjectivity implies injectivity.
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induce functors on S−1
r field(F ) (we keep the same notation). Assume

now that F = Q(µp): then N(F ) = C(F ) = 0 by Tate’s theorem. Let
K = F (BSLn/µp) ∈ S−1

r field(F ). If K ≃ F , then C(K) = 0. But
by Saltman’s theorem [39, Cor. 3.3], (a representative of) K is the
centre of the generic division algebra A of degree n and exponent p:5

hence [A] ⊗ µp ∈ Im(K2(K)/p → H2(K,µ⊗2
p )) and, by specialisation

(Procesi [38]), the class of any algebra of degree n and exponent p over
any L ∈ field(F ) is in the image of the norm residue homomorphism.
Letting n vary, we get C(L) = 0 for all L ∈ field(F ), hence for all
L of characteristic 0, any finally for any L of characteristic 6= p by a
classical henselian argument.

To attack Question 7.6.5, we would presumably need to consider
G-torsors which do not necessarily arise from linear representations.
Suppose that E is the total space of a G-torsor, and that E is a rational
variety. Under what conditions is the function field F (E/G) isomorphic
to F (BG) in S−1

r field(F ), or even in S−1
r place(F )? The answer to

this question is far from clear, as the following example shows:

7.6.6. Example. Consider G = Z/2. By Proposition 7.6.2, F (BG) ≃
F in S−1

r field(F ). Now take an anisotropic conic C over F (we as-
sume there is one). A point of degree 2 on C defines a G-torsor with
base C and total space P1, but F (C) 6≃ F in S−1

r place(F ) (because
Ker(Br(F )→ Br(F (C))) is non trivial, for example).

The only thing we are able to prove in the direction of Question 7.6.5
is the following lemma, probably well-known to experts:

7.6.7. Lemma. Let G be a smooth F -algebraic group and let X, Y be
two F -varieties with flat G-actions. Let f : X → Y be a G-equivariant
morphism. Suppose that f is birational. Then the largest open subset
U ⊆ X such that f|U is an open immersion is G-stable.

Proof. Let µX : G ×X → X be the G-action on X and similarly µY .
If U is an open subset of X, then its G-saturation GU is open as the
image of G×U under the flat map µX . We want to show that if f|U is
an open immersion, then f|GU is an open immersion.

Suppose first that F is separably closed. Then G(F ) is Zariski-dense
in G, hence G(F )U =

⋃
g∈G(F ) gU is Zariski-dense in GU and therefore

equal to GU . Given a point x ∈ X, f is an open immersion at x if and
only if f ∗ : OY,f(x) → OX,x is an isomorphism; if this is true for x, it is
clearly also true for gx for any g ∈ G(F ).

5In his paper, Saltman assumes his ground field to be algebraically closed, but
he kindly pointed out that the result only needs the presence of a primitive p-th
root of unity.
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In general, given x ∈ GU , f induces an isomorphism f ∗ : OYFs
,f(x)

∼
−−→

OXFs
,x where Fs is a separable closure of F , OXFs

,x is the semi-local
ring of XFs

at the inverse image of x and similarly for OYFs
,f(x). As

OXFs
,x = OX,x ⊗F Fs and OYFs

,f(x) = OY,f(x) ⊗F Fs, we find that f is
an open immersion at x. 2

7.7. Open questions. We finish by listing a few problems that are
not answered in this paper.

(1) Compute Hom sets in S−1
r Var(F ). In [26, Rk. 8.11], it is shown

that the functor S−1
r Sm(F ) → S−1

r Var(F ) is neither full nor
faithful and that the Hom sets are in fact completely different.

(2) Give a categorical interpretation of rationally connected vari-
eties.

(3) Can one make Lemma 6.2.1 more explicit in the special case
trdeg(K/F ) = 2, L = F = F̄ , K not ruled, and understand
things in terms of the minimal model of K? cf. [19, Ch. II, Ex.
4.12].

(4) Finally one should develop additional functoriality: products
and internal Homs, change of base field.

Appendix A. Invariance birationnelle et invariance

homotopique

par Jean-Louis Colliot-Thélène

Soit k un corps. Soit F un foncteur contravariant de la catégorie des
k-schémas vers la catégorie des ensembles. Si sur les morphismes k-
birationnels de surfaces projectives, lisses et géométriquement connexes
ce foncteur induit des bijections, alors l’application F (k)→ F (P1

k) est
une bijection.

Démonstration. Toutes les variétés considérées sont des k-variétés. On
écrit F (k) pour F (Spec(k)). Soit W l’éclaté de P1×P1 en un k-point
M . Les transformés propres des deux génératrices L1 et L2 passant
par M sont deux courbes exceptionnelles de première espèce E1 ≃ P1

et E2 ≃ P1 qui ne se rencontrent pas. On peut donc les contracter
simultanément, la surface que l’on obtient est le plan projectif P2.
Notons M1 et M2 les k-points de P2 sur lesquels les courbes E1 et E2

se contractent.
On réalise facilement cette construction de manière concrète. Dans

P1×P1×P2 avec coordonnées multihomogènes (u, v;w, z;X, Y, T ) on
prend pour W la surface définie par l’idéal (uT − vX,wT − zY ), et on
considère les deux projections W → P1 ×P1 et W → P2.
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On a un diagramme commutatif de morphismes

E1 −−−→ W

≀

y
y

L1 −−−→ P1 ×P1.

Le composé de l’inclusion L1 →֒ P1 × P1 et d’une des deux projec-
tions P1 ×P1 → P1 est un isomorphisme. Par fonctorialité, la restric-
tion F (P1 × P1) → F (L1) est donc surjective. Par fonctorialité, le
diagramme ci-dessus implique alors que la restriction F (W )→ F (E1)
est surjective.

Considérons maintenant la projection W → P2. On a ici le dia-
gramme commutatif de morphismes

E1 −−−→ Wy
y

M1 −−−→ P2.

Par l’hypothèse d’invariance birationnelle, on a la bijection F (P2)
∼
−−→ F (W ). Donc la flèche composée F (P2) → F (W ) → F (E1) est
surjective. Mais par le diagramme commutatif ci-dessus la flèche com-
posée se factorise aussi comme F (P2) → F (M1) → F (E1). Ainsi
F (M1)→ F (E1), c’est-à-dire F (k)→ F (P1), est surjectif. L’injectivité
de F (k)→ F (P1) résulte de la fonctorialité et de la considération d’un
k-point sur P1.

Appendix B. A letter from O. Gabber

June 12, 2007

Dear Kahn,

I discuss a proof of

B.0.1. Theorem. Let A be a regular local ring with residue field k,
X ′ → X = Spec(A) a proper birational morphism, X ′

reg the regular
locus of X ′, X ′

s the special fiber of X ′, X ′
reg,s = X ′

s ∩ X
′
reg, which is

known to be open in X ′
s, F a field extension of k, then any two points

of X ′
reg,s(F ) are R-equivalent in X ′

s(F ).

The proof I tried to sketch by joining centers of divisorial valuations
has a gap in the imperfect residue field case. It is easier to adapt the
proof by deformation of local arcs.

(1) If Y ′ → Y is a proper map between k-schemes whose fibers are
projective spaces then for every F/k, Y ′(F )/R→ Y (F )/R is bijective.
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In particular the theorem holds if X ′ is obtained from X by a sequence
of blow-ups with regular centers.

(2) If A is a regular local ring of dimension > 1 with maximal ideal
m, U an open non empty in Spec(A), then there is f ∈ m −m2 s.t.
the generic point of V (f) is in U .

This is because U omits only a finite number of height 1 primes and
there are infinitely many possibilities for V (f), e.g. V (x − yi) where
x, y is a part of a regular system of parameters.

Inductively we get that there is P ∈ U s.t. A/P is regular 1-
dimensional.

(3) If A is a regular local ring and P, P ′ different prime ideals with
A/P and A/P ′ regular one dimensional, then there is a prime ideal
Q ⊂ P ∩ P ′ with A/Q regular 2-dimensional.

Indeed let x1, . . . , xn be a minimal system of generators of P ; their
images in A/P ′ generate a principal ideal; we may assume this ideal is
generated by the image of x1, and then we can substract some multiples
of x1 from x2, . . . , xn so that the images of x2, . . . , xn are 0; take Q =
(x2, . . . , xn).

To prove the theorem we may assume F is a finitely generated exten-
sion of k, so F is a finite extension of a purely transcendental extension
k′ of k. We replace A by the local ring at the generic point of the special
fiber of an affine space over A that has residue field k′. So we reduce
to F/k finite. Let x, y be F -points of X ′

s centered at closed points
a, b at which X ′ is regular. Let U be dense open of X above which
X ′ → X is an isomorphism. Let X ′(a), X ′(b) be the local schemes
(Spec of the local rings at a and b). There are regular one dimensional
closed subschemes

C ⊂ X ′(a), C ′ ⊂ X ′(b)

whose generic points map to U .
By EGA 0III 10.3 there are finite flat D → C, D′ → C ′ which

are Spec(F ) over the closed points of C,C ′. Then D,D′ are Spec’s
of DVRs essentially of finite type over A (localization of finite type
A-algebras). We form the pushout of D ← Spec(F ) → D′, which is
Spec of a fibered product ring, which by some algebraic exercise is still
an A-algebra essentially of finite type. The pushout can be embedded
as a closed subscheme in Spec of a local ring of an affine space over
A and then by (3) in some Y a 2-dimensional local regular A-scheme
essentially of finite type. Now D,D′ are subschemes of Y . We have
a rational map Y → X ′ defined on the inverse image of U and in
particular at the generic points of D and D′. By e.g. Theorem 26.1
in Lipman’s paper on rational singularities (Publ. IHES 36) there is



BIRATIONAL GEOMETRY AND LOCALISATION OF CATEGORIES 67

Y ′ → Y obtained as a succession of blow-ups at closed points s.t. the
rational map gives a morphism Y ′ → X ′. Then x, y are images of F -
points of Y ′ (closed points of the proper transforms of D,D′),and by
(1) any two F -points of the special fiber of Y ′ → Y are R-equivalent.

Sincerely,
Ofer Gabber
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