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Abstract— The seabed characterization from sonar images is
a very hard task because of the produced data and the unknown
environment, even for an human expert. In this work we propog
an original approach in order to combine binary classifiers
arising from different kinds of strategies such as one-venss-
one or one-versus-rest, usually used in the SVM-classifidah.
The decision functions coming from these binary classifiersre
interpreted in terms of belief functions in order to combine
these functions with one of the numerous operators of the biglf
functions theory. Moreover, this interpretation of the dedsion
function allows us to propose a process of decisions by takjn
into account the rejected observations too far removed fronthe
learning data, and the imprecise decisions given in unionsfo
classes. This new approach is illustrated and evaluated whita
SVM in order to classify the different kinds of sediment on image
sonar.

Keywords: belief functions theory, decision support, SVM,
sonar image.
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|I. INTRODUCTION

Sonar images are obtained from temporal measurements
made by a lateral, or frontal sonar trailed by the back of d.boa
Each emitted signal is reflected on the bottom then receiaed o
the antenna of the sonar with an adjustable delayed inyensit
Received data are very noisy. There are some interferences
due to the signal travelling on multiple paths (reflectiortiom Fig. 1.
bottom or surface), due to speckle, and due to fauna and flora.

Therefore, sonar images are chraracterized by imprecisisngenerally formed with very simple approaches such as a
and uncertainty; thus sonar image classification is a difficvoting rule or a maximization of decision function coming
problem [1]. Figure[]l shows the differences between ttieom the classifiers. However, many combination operatars c
interpretation and the certainty of two sonar experts gyirbe used, especially in the belief functions framewark [6]).

to differentiate types of sediment (rock, cobbles, samhle, Belief functions theory has been already employed in order t
silt) or shadow when the information is invisible (each colocombine the binary classifier originally from SVM (see [6],
corresponds to a kind of sediment and the associated dgrtai@]). The operators in the belief functions theory deal vtk

of the expert is expressed in terms of sure, moderately sa@flict arising from the binary classifiers. Another intgre
and not sure) [2]. of this theory is that we can obtain a belief degree on the

The automatic classification approaches, for sonar imagasjons of classes and not only on exclusive classes. Indeed
are based on texture analysis and a classifier such as a Sl decisions of the binary classifiers can be difficult teetak
[3]. The support vector machines (SVM) is based on amhen data overlap. From the decision function, we can define
optimization approach in order to separate two classes psobabilities in order to combine thencf([8]). However, a
an hyperplane. For pattern recognition with several cisserobability measure is an additive measure and so prohiabili
this optimization approach is possible (see [4]) but tima-cocannot easily provide a decision on unions of classes unlike
suming. Hence a preferable solution is to combine the bindpglief functions.
classifiers according to a classical strategy such as orseis®e  Hence, once the binary classifiers have been combined, we
one or one-versus-rest. The combination of these classifipropose belief functions in order to take the decision fog on
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Segmentation given by two experts.



class only if this class is credible enough, for the union afhere theA, > 0 are the Lagrange multipliers, satisfying

two or more classes otherwise. Moreover, according to t%

application it could be interesting to not take the decison tyr = 0.

one of the learning classes, and reject data too far from th?qlf the data are not linear

learning classes. Many classical approaches are possiblgdiaxed with the introducti

pattern recognition for outliers rejection (see [9], [10lYe |\ e search to minimize:

propose here to integrate outliers rejection in our dexisio .

process based on belief functions. 1 | w ||? +ngt (4)
In addition to this new decision process, the originality of 2 P ’

the paper concerns the modelization that we propicsejow

to define the belief functions, on the basis of decision fiomst

coming from the binary classifiers. { yr(wae +b) > 1—¢& )
This paper is organized as follows: in sectﬁh Il we recall §& >0

the principle of the support vector machines for classifitat \here is a constant given by the user in order to weight the
Next, we present the belief functions theory in secfoh il igrror. This problem is solved in the same way as the linear
order to propose in sectllv our belief approach to COM¥eparable case with Lagrange multipliers: A, < C.

bine the binary classifiers and to provide a decision processy, classify a new pattern we simply need to study the

allowing the Qgtliers rejec.tion and.the indecisio_n expeesas sign of the decision function given by:
possible decisions on unions. This approach is evaluated fo

y separable, the constraﬂts 1R) a
on of positive terms In this case

with the constraints given for ail

seabed characterization on sonar images in seffion V. f@) =" yhwi.w—b, (6)
teSV
Il. SVM FOR CLASSIFICATION where SV = {t ;A, > 0} for the separable case and

Support vector machines were introduced by [11] based g :f.{g.;o < fAth< C} for the non—:;parablﬁ cl?se, is the
the statistical learning theory. Hence, SVM can be used foft Of Indices of the support vectors, dare the Lagrange

estimation, regression or pattern recognition like in faper. multipliers. . .
g P 9 pap In the nonlinear cases, the common idea of the kernel
A. Principle of the SVM approaches is to map the data in a high dimension. To do

_ . . that we use a kernel function that must be bilinear, symmetri
The support vector machine approach is a binary clasahd positive and corresponds to a dot product in the new space

fication method. It classifies positive and negative pasterihe classification of a new patternis given by the sign of
by searching the optimal hyperplane that separates the tw@ decision function:

classes, while guaranteeing a maximum distance between the

nearest positive and negative patterns. The hyperplarte tha fz) = Z Yol K (2, 20) —b ()
maximizes this distance calladargin is determined by par- tesv

ticular patterns called support vectors situated at thedswf whereK is the kernel function. The most used kernels are the
the margin. These only few support vector numbers are usedp@ynomial K (z, ;) = (z.z; + 1)°, § € N, and the radial
classify a new pattern, which makes SVM very fast. The powbasis functionsk (z, z;) = e l#==:I*, 5 ¢ R*. The choice

of SVM is also due to their simplicity of implementation andf the kernel is not always easy and generally left to the.user

to solid theoretical ba.ses. B. Multi-class classification with SVM
If the patterns are linearly separable, we search the hyper-

planey = w.z + b which maximizes the margin between the We can distinguish two kinds of approaches in order to
two classes where.z is the dot product ofv andz, andb US€ SVM for classification witln classesp > 2. The first

the bias. Thusw is the solution of the convex optimization®"€ consists in fusing several binary classifiers given lay th
problem: SVM - the obtained results by each classifier are combined to
produce a final result following strategies such as oneugers

Min fle]|*/2 @ one or one-versus-rest. The second one consists in coimgjder
subject to: the optimization problem.
« Direct approach: in [4], the notion of margin is extended
yr(way +b)—1>0 Vi=1,...,1, (2) to the multi-class problem. However, this approach be-
comes very time consuming, especially in the nonlinear
wherez; € R? stands for one of thé learning data, and case.
y¢ € {—1,41} the associated class. We can solve this, one-versus-rest: This approach consists in learnirig-
optimization problem with the following Lagrangian: cision functionsf;, i = 1, ..., n given by the equation§](6)

e . or (]]) according to the cases, allowing the discrimination
w _ .
I — _§ :At (ye(w.zy —b) — 1), ©) of each class from the: — 1 others. The affe_ctlon of

2 o a classw; to a new patternz is generally given by



the relation:k = argmax f;(z). In the nonlinear case, and

1= n
we have to be careful of the parameters of the kernel E m;(X) =1, 9)
functions that could have some different orders following Xe2@
the learning binary classifiers. So, it could be better . . . :
. ) . Wwherem;(.) is the basic belief assignments for an expert (or a
to decide on normalized functions calculated from thge. TN ; .
g . inary classifier)S;, j = 1, ..., s. Thus in the one-versus-rest
decision functions (see [12], [13]). e
i . . . cases = n and in the one-versus-one case- n(n — 1)/2.
« one-versus-one: Instead of learninglecision functions, . .
The equat|0n|]8) makes the assumption of a closed world

we try here to discriminate each class_ from eac_h Oth?{hat means that all the classes are exhaustive) [18]. We can
Hence we have to learn(n — 1)/2 decision functions, define the belief functions only with:
S :

still given by equations [[6) or[|(7) according to th
different cases. Each decision function is considered as a m;(0) >0, (10)
vote in order to classify a new pattein The class of:

is given by the majority voting rule. and the world is openc{. [19]). But in order to change an

open world to a closed world, we can add one element in the
Some other methods have been proposed based on previgggriminating space and this element can be consideretkas t
ones: garbage class. The difficulty, as we will see later, is thesmas
« Error-Correcting Output Codes (ECOC): let w;, thatwe have to allocate to this element.
i=1,...,n, be the classess;, j = 1, ..., s, the different ~ We have two advantages with the belief functions theory
classifiers § = n in the case one-versus-rest angompared to the probabilities and Bayesian approaches. The
s = n(n — 1)/2 in the case one-versus-ond\/;), first one is the possibility for one expertd. a binary classifier)
the matrix of the codes with the classes in row and tHe decide that a new pattern belongs to the union of some
classifiers in column, stands for the contribution of eactlasses without needing to decide an unique class. The basic
classifier to the final result of the classification (baseeelief functions are not additive that gives more freedom fo
on the error of all the classifiers). The final decision i#1e¢ modelization of some problems. The second one is the
given comparing the results of the classifiers with eadRodelization of some problems without aayriori by giving
row of the matrix; the class of a new patternis the the mass of belief on the ignorances (the unions of classes).
class giving the least error (see [14]). These simple conditions in equationg (8) afdi (9), give
. According to the decision functions, [8] defined a proba Iarge panel of definitions of the belief functions, which
ability (E) in order to normalize the decision funciS one of the difficulties of the theory. From these basic
tions. Hence, we can combine the binary classifiers (fo€lief assignments, other belief functions can be definet su
both one-versus-rest and one-versus-one cases) wit@sacredibility and plausibility. The credibility repressrthe
Bayesian rule (see [15]) or with more simple rules (sdgtensity that the information given by one expert supparts
(7). element of2®, this is a minimal belief function given for all
« DAGSVM (Directed Acyclic Graph SVM) proposed by X € 29 by:
[16]: In this approach, the learning is made as the one-
versus-one with the learning efn—1)/2 binary decision
functions. In order to generalize, a binary decision tree is
considered where each node stands for a binary classifléle plausibility represents the intensity with which thir@o
and each leaf stands for a class. Each binary classiff&@ubt on one element. This function is given for &lle 2°
eliminates a class and the class of a new pattern is th¥

[ [ by the last node.
class given by the last node pl(X) = Z m;(Y)

Y €29, YNX#D l
bel(©) — bel(X°) (12)

= 1—m;(0) — bel(X*),
The belief functions theory, also called evidence theory Ohere X¢ is the complementary X in ©.

Dempster-Shafer theory (see [17], [18]) is more and MOrer, keep a maximum of information, it is preferable to

employed in order to take into account the uncertainti%%mbine information given by the basic belief assignments
and imprecisions in pattern recognition. The belief fumcs 9 y 9

; : . into a new basic belief assignment and take the decision on
framework is based on the use of functions defined Phe of the obtained belief functions. Many combination sule
the power se® (the set of all the subsets @), where i Y

© = {wr,....wn} is the set of exclusive and exhaustivehave been proposed. The conjunctive rule proposed by [20]

classes. Thedeelief functionsor basic belief assignments:; Z:C(;V\grl; tg ;éai; "_q an open world. Itis defined foexperts,
are defined by the mapping of the power2@tonto[0, 1] with y:

Iy: :
generally MConj (X) = Z H m; (}/J)v (13)

mj(@) =0, (8) Yin...nY,=X j=1

bel(X) = > my(Y). (11)

YCX,Y#£0

IIl. BELIEF FUNCTIONS THEORY



whereY; € 2° is the response of the expeit andm;(Y;) IV. BELIEF FUNCTIONS THEORY FOR CLASSIFICATION
the corresponding basic belief assignment. WITH SUPPORT VECTOR MACHINES

Initially, [17] and [18] have proposed a conjunctive nor-
malized rule, in order to stay in a closed world. This rule is

defined fors classifiers, for allX € 29, X % () by: In the previous sections, we have described the two main

strategies in order to build a multi-class classifier fromay

1 > classifiers: the one-versus-rest and one-versus-oneagEs.
mps(X) 1 — mconj(0) Z H m;(Y;) Most of the time the formalism to combine the binary classifie
I yvin.ny.=X j=1 (14) S .
Mconj(X) results is different according to the strategy. [23] have- pr

= T, posed a combination approach of the binary classifier dewsi

1-—- MConj (@) b . . . . .

ased on the belief functions theory given an unique fosmali
whereY; € 2€ is the response of the expgrtandm;(Y;) the  for hoth one-versus-one and one-versus-rest strategtes. T
corresponding basic belief assignmenicon;(0) is generally pasic belief assignments are defined from confusion matrice
interpreted as a conflict measure or more exactly as thethe binary classifiers. Working directly on the classifier
inconsistence of the fusion - because of the nonidempoterg&isions allows a loss of information contained first in the
of the rule. This rule applied on basic belief assignmengcision functions. Thus it could be better to define thedasi
where the only focal elements are the clasggs(i.e. some pelief assignments from the decision functions rather than

probabilities) is equivalent to a Bayesian approach. A 8hafom the confusion matrices é. form the classifier decisions).
review of all the combination rules in the belief functions However the decision functions are not normalized. so

framework and a number of new rules are given in [5].

If the credibility function provides a pessimistic decisjo
the plausibility function is often too optimistic. The pigtic
probability [19] is generally considered as a compromiseés |
calculated from a basic belief assignmentfor all X ¢ 2°,

we can have problems in the combination of this function
especially with the one-versus-rest strategy. [8] has ddfm
probability from these decision functiorfssuch as:

. 1
with X # 0 by: = =
# 0 by P(y=1/f) T oxp(Af 1 B)’ (19)
betp(x) = Y X0V m() (15)
T YT 1T-m()’ .
Y €29, Y#0 where A and B are calculated in order to get

where|X| is the cardinality ofX. Py = 1/f = 0) = 0.5. Different approaches have

In this paper, we wish to reject part of the data that wieeen proposed for the estimation of these parameters (see
do not consider in the learning classes. Hence a pessimisgd]).
decision as to the maximum of the credibility function is [7] uses a one class SVM, introduced by [25]. So the
preferable. Another criterion proposed by [21], consists combination can be done only with a one-versus-rest syateg

attributing the classv,. for a new patternc if: The decision functions coming from this particular classifi
bel(wy)(z) = max bel(w;)(z), are employed to define some plausibility functions on the
1<i<n (16) singletonw;:
bel(wy)(z) > bel(wg)(x).
The addition of this second condition on the maximum of .
. . . ) 7f1(17)—|—p
credibility, allows a decision only if it is nonambiguous. pl(w;)(z) = ———, (20)

if we believe more in the clasg;, than in the subset of the p

other classes (the complementary of the class). _ - . . .
Another approach proposed in [22] considers the plausibiliVN€re fi(z) is the decision function giving the distance be-
functions and gives the possibility to decide whichevemaiat Weenz and the fronter of class; andp is a factor estimated
of 2© and not only the singletons as previously. Thus the nefy the one-SVM algorithm that depends on the kero&[25)).
patternz belongs to the element of 2° if: The first originality of this paper resides in the definition
of the basic belief assignments that we obtain directly from
A= el (my (X)(2)pL(X) (), (A7) the decision functiong’ given by the equationd](6) of] (7).
wherem,, is a basic belief assignment given by: The basic idea consists in considering the data dispersion i
one of the semi-spaces given by the hyperplane, following an
my(X) = Kyhx (L) , (18) exponential distribution. This distribution gives a dispen of
| X the data around the mean more or less near to the hyperplane,
r is a parameter if0, 1] allowing a decision from a simple with the opportunity to observe data very far away from
class ¢ = 1) until the total indecisior® (r = 0). Ax allows the hyperplane. Doing this we keep the basic idea of the
the integration of the lack of knowledge on one of the elemerffVM. Hence, according to the sign of the decision function
X in 29. In this paper, we will chosex = 1. The constant (i.e. the semi-space defined by the hyperplane), the belief
K, is the normalization factor giving by the condition of thecan be obtained by the cumulative density function of the
equation |Q9). exponential distribution (see figu@ 2). We define the basic



belief assignment by: fi i =1,...,n(n —1)/2 can be rewritten ag,; with ¢ < j
) ) andi:,j = 1,...,n, wherei andj correspond to the considered

mi(w;)(z) = ((1 — 3 exp(—x.- fi(#)))Ajo 400 (fi(2)) classesw; andw;. In this one-versus-one case must be

eXp(—ﬁfi(z))ll]_oo,m(fi(x))) seen agv; and the basic belief assignment are given by:

| mij(wi)(z) =ou; ((1 — exp(— 5~ fi () Ao +00( (fis ()

i) (@) =et ({5 i) (i) +exp(— T () (i (2)))

(1= S exp(— 51 fi(@) A s (f:2)))
mij(w;)(x) =ai; (GXP(—%mfij (@))) X0, 400[ (fi5(2))
(1 = exp(— 5= fis (D)) oo 01(fis ()

m;(0)(x) =1 — o

whereq; is a discounting factor of the basic belief assignment,
Ai,p @and \; ,, are some parameters depending on the decisig n. (0)(z) =1 — o
functions of classy; that we define in equatiof (21). The ratio* *

1 is introduced to increase the belief to the class relateteo twith

semi-space where the data are located (see f[j;ure 2). Theere ar 1<

many ways to choose or to calculate the discounting factdr th Xijp = 7 Z Jii (@) o, 400 (fi5 (),
is generally close to one. [26] proposes a method to obta&in th t=1

discounting factor that optimizes the decision taking adage 1

of the pignistic probability. We propose here to calculdtis t Aijin = 1 Zfij (2)3)—c0,01(fi (2))-
discounting factor according to the good classificatioe Kt tzl_ ) ]
binary classifiers. The good classification rates are caledl _ Ve use here the conjunctive normalized rule (eqqa@n (14)
with the study of the sign of the decision functignon the Thus we can apply this rule in order to combine the

learning data used to determine the model of binary classifig?@SiC belief assignments in the one-versus-rest case @&nd th
n(n — 1)/2 basic belief assignments in the one-versus-one

case. When the data overlap a lot, more complicated rules
such as proposed in [5] could be preferred.

For the decision step, we want to keep the possibility to
take the decision on a union of classes.fihen we can not
decide between two particular classes) and also to not take a
decision when our belief in one focal element is too weak.
Thus we propose the following decision rule in two steps:

1) The decision rule of the maximum of the credibility with

reject defined by the equatioEle) is applied in order to
determine the patterns that do not belong to the learning

(22)

classes.
2) The decision rule given by the equatidn](17) is next
Fig. 2. lllustration of the basic belief assignment basedha cumulative apphed to the non're]eCted patterns.
density function of the exponential distribution. Another possible decision process could be first the appli-

cation of the decision rule given by the equati (17), and
We propose to estimate the parameters from the meannext the decision rule of the maximum of the credibility with
of the decision functions on the learning data in order to heject on the imprecise patterns that first belong to thensio
coherent with the exponential distribution. Herlgg, and\; . of classes. On the illustrated data given in the next section
are given by: we obtain similar results. We call this decision procesd)2-
and the previous one (1-2).

l
1
Aip =7 Zfi(x)]l[oﬂroo[(fi(x))’ V. APPLICATION
=1
1 7 (21)  A. Sonar data
Ain = YZfi(x)Jl]foo,o[(fi(x)). Our database contains 42 sonar images provided by the
t=1 GESMA (Groupe d’Etudes Sous-Marines de I'Atlantique).

This proposed basic belief assignment model allows a godtlese images were obtained with a Klein 5400 lateral sonar
modelization of the information given by the binary clagssi with a resolution of 20 to 30 cm in azimuth and 3 cm in range.
in order to combine them by both one-versus-rest and orEhe sea-bottom depth was between 15 m and 40 m.
versus-one strategies. Thus for a one-versus-rest sfrateg Some experts have manually segmented these images giving
wf represents the union of the other classes thani.e. the kind of sediment (rock, cobble, sand, silt, ripple (\aitor
O ~ {w;}. In the one-versus-one case, the decision functioas 45 degrees)), shadow or other (typically shipwrecksjspar



on images. It is very difficult to discriminate the rock an@ thprovides some similar results than the basic versions of the

the cobble and also the sand and silt. However, it is importé®VvVM (tableﬂ). Note that the strategy one-versus-rest glewi

for the sedimentologists to discriminate the sand and the smore errors between the sand and silt. This can be explained
The type “ripple” can be some ripple of sand or ripple obfecause the data overlap. In the rest of the paper we consider
silt. Hence, with the point of view of the sedimentologists wonly the one-versus-one strategy.

consider only the three classes of sedimé&nit=rock-cobble,

Cy=sand andCs=silt. And in order to evaluate our decision one-vs-one one-vs-rest
. ) % | C1 Cs Cs C; Cs Cs
process, we take the ripple as the fourth claSs) (that is ¢, [ 8800 1191 0.09 || 9151 6.8 | 2.31
unlearned. C, | 480 | 8329 1191 8.83 | 20.90 | 70.27
Each image is cut off in tiles of size 3382 pixels (about g:s 5162398 ii-gg 6166735 57-0;52 250-2537 ?igi
6.5 meter by 6.5 meter). With these tiles, we keep 3500 tiles o 4 : : : : : :

each class with only one kind of sediment in the tile. Hence, TABLE Il

our database |S made Okgsoo tlles_ We ConSIder 2/3 Of them RESULTS OF THESVM CLASSIFIER WITH BELIEF FUNCTION THEORY FOR
for the learning step (only for the three classes of sedijnent THE BOTH STRATEGIES ONEVERSUS ONE AND ONE-VERSUSREST.
and 1/3 of them for the test stepe( 1167 tiles for each kind

of sediment). The tablem gives the results with possible decision on

' In order to classify the tiles of size 332 plxels_, W€ Unions withr = 0.6. We can see that this kind of cautious
first have to extract texture parameters from each tile. He{]e - . . . .

i ecision provides less hard erroi(say one kind of sedi-
we choose the co-occurrence matrices approach [1]. The

! . f¥ent instead of another). Of course these results depend on
occurrence matrices are calculated by numbering the occyr

rences of identical aray level of two bixels. Six arametersé values of- that provide a more or less cautious decision as
ven by Haralick arge cyalc lated: hom% ené’t cgntraﬁt eswe can see on figurg 3. If we add the possibility of rejection
given by | u - geneity, [e]V), we can see that the most of eject

. o ; o to these results (tab
mation, entropy estimation, the correlation, the diregthand . . .
. . . : tiles come from the ripple (the unknown claSs). For a given

the uniformity. Concerning these six parameters, we cateul

. L2 class, the rejected tiles come as a majority from the unions
their mean on four directions: O, 4.5’ 99 and 135. deg_re '|5mprecise data). Of course this rejection does not depend o
The problem for co-occurrence matrices is the non-invagan

in translation. Typically, this problem can appear in a l&pp Erllz)V(?,lrueilefnvgl:dbiig;?i/d%i|r)e jection in our decision process

texture characterization. More features extraction am:ines FigureﬂS shows the results of the classification of class

can be used such as the run-lengths matrix, the Wave&?tripple (C.) according to the value of without possible

transform and the Gabor filters [1]. rejection. Of course when the value ofis weak the data of

\lNe userz] thdibStV.M [dZZr]1 an(;.alﬁs r gorfnparti_ng se@r?l IG(er'the three learning classes are classified on the unions. We ca
nels, we have retained e radial basis function (wi / .distinguished three kinds of work intervals on these data:
where 6 is the dimension of the data) and we take weighting ) e .

« 7 € [0;0.3]: The classifier is too undecided,

of the errorC’ = 1 because of the data overlap. e« r € [0.4;0.6]: the ambiguity between the classes is
B. Results correctly considered,

i e 0.7;1]: the decision is too hard.
The table]]l shows the results for the SVM classifier with rel ] elon

the strategies one-versus-one and one-versus-rest. \&¢haot

there are many errors between the sa6d)(and silt (s), 100 ‘

that are two homogeneous sediments. The ripglg),(the ool =;:g1
unlearning class, is more heterogeneous than the sand sl s
. . . . e r=0.
silt, this why it is more classified as rock(). The table[]I | 04
[ [r=0.5
I:I::O‘G
one-vs-one one-vs-rest 6or Clrfg-;
% | 0l [ G2 | G | 0 [ G2 | s < s — iy
C; | 91.00 | 8.83 | 0.17 || 84.40 | 15.08| 051 1oy

Cy | 711 | 80.72| 1217 || 2.57 | 61.27 | 36.16 “or

C3 | 2.06 | 3042 6752 | 0.86 | 22.71| 76.44 s0|

Cy | 65.13] 33.16| 1.71 || 52.36 | 4541 2.21 -

TABLE | ol

RESULTS OF THESVM CLASSIFIER FOR THE BOTH STRATEGIES ] !
ONE-VERSUSONE AND ONE-VERSUSREST. 0 Cc1 Cc2 63”“ C1UCl2 C1L‘JC3 C2U63C1UC2UC3

Fig. 3. Classification of the class of rippl€’{) with possible decision on
union according to-.
shows the same results, but with the proposed approach based

on the belief function theory (presented in sect@ I wit  According to the application, if we want to privilege the
the decision based on the pignistic probability. This appho hard decision at the expense of the rejection, we can try to



% Ch Co Cs C1UCs CiuUCs CaUC3 Ci1UCUCs
C1 76.69 | 6.86 0 15.68 0 0.77 0
Co 0.86 | 50.04 | 4.97 11.83 0 32.30 0
[F) 0.35 | 17.05| 53.21 2.14 0 27.25 0
Cy | 3899 | 2262 | 1.12 33.16 0 4.11 0

TABLE Il
RESULTS WITH A BELIEF COMBINATION WITH POSSIBLE DECISION ON BIIONS.

% [&5) Co Csy C1UCsy C1UCs CyUCs Ci1UC2UCsy Cy

Cy | 76.69 | 6.26 0 6.34 0 0.34 0 10.37

Co 0.86 | 48.93 | 4.97 1.63 0 19.45 0 24.16

Cs3 0.34 | 15.42 | 53.22 0.34 0 12.77 0 17.91

Cy | 3899 | 20.65| 1.11 9.68 0 1.63 1.71 27.93
TABLE IV

RESULTS WITH A BELIEF COMBINATION WITH POSSIBLE DECISION ON BIIONS AND ON THE REJECTED CLASS

decide first, possibly on the unions and next try to rejecy onproportion of each sediment in a tile.
on the unions. In this case we can choose a higher value of

r. For example withr = 0.8, we propose a comparison of

the decision processes (1-2) with (2-1) given in the tﬂ)le V. VI. CONCLUSIONS
Of course the decision process (2-1) rejects less datat tsut i

only with the rock (clasg,) that we win, and we reject less  \ye have proposed an original approach based on the belief
ripple (class unknowrt’s). Hence, it seems that the decisioRynctions theory for the combination of binary classifiers
process (1-2) is better for this application. coming from the SVM with one-versus-one or one-versus-rest
Now let's consider the tiles containing more than tw@trategies. The modelization of the basic belief assignsnen
kinds of sediment. We still learn the SVM classifier withs proposed directly from the decision functions given by th
the same parameter and the one-versus-one strategy ong®1. These basic belief assignments allow to take correctly
homogeneous tiles of the three classes rack)(sand () into account the principle of the binary classification with

and silt (s) as previously. For the tests, we only take 298\vM by comparison with an hyperplane in linear or nonlinear
tiles with the classesS;=tiles with rock and sandS;=sand (gses.

and silt, S3=silt and ripple and;=sand and ripple. The belief functions theory provides a decision support
Table[V) presents the obtained results of the SVM classifigfithout necessary deciding an exclusive class. The deisio
with the classical voting combination and a belief combinﬁlﬂOCeSS that we have proposed with possible outliers fefect
tion with pignistic decision and with credibility with reje angd with possible decision on the union of classes, is very
decision. For the two classeg andSs, the tiles contain only jnteresting because it works like the intuitive classifimat
learning sediment (rock and sand {8 and sand and silt for that 3 human could perform based on the position of support
Ss). For 51 and.S; the classifiers without reject classify thesgectors and considering the ambiguity of the classes. Tets d
tiles more in sand. The rejection decreases the errorsobut §jgn support can really help experts for seabed charaatienz
S» the rejection is essentially on the sand. The two clas§es from sonar images. We have seen with the point of view of the
and S, contain ripple, the unknown class. Here also, we notdimentologists that if we only consider the differentdsn
a confusion with the rock sediment that is an heterogenefSsediments (rock, sand and silt), the ambiguity between th

texture like the ripple. The rejection for these two class@gnd and the silt is well recognize and the ripple can beypartl
works well, because a large part of the tiles classified ifk roggjected.

are rejected and fafs a large part of tiles classified in sand

are also rejected.

Table shows the results with possible decision on the vote pignistic with reject
union with » = 0.6, with and without possible rejection. The ;4 2?4 6222 501 2314 7229 fg 1?4 5%5 3095’ 2248
addition of the_ p(_)53|k_JIe deC|S|_0n on the union redu_c_es th.S; T3 20515831 03 1428 550l 0 112412751378
errors. The rejection is essentially on the tiles classified Ss [40.1]38.1|21.8][34.1|44.8 |21.1]| 24.4|24.1|18.1]34.4
the unions, except fof, (sand and silt) a lot of classified- | S1 [40.8]58.2] 1.0 [[31.8]67.2] 1.0 [[22.7[51.2] 1.0 [26.1
sand tiles are rejected, maybe because of the learning step. TABLE VI

Hence, for the tiles containing more than one kind of REsuLTS OF THESVM CLASSIFIER WITH THE CLASSICAL VOTING
sediments our decision support could help the human expertsomsINATION AND A BELIEF COMBINATION WITH PIGNISTIC DECISION
Of course, in this case, the evaluation is really difficuit]2] AND WITH CREDIBILITY WITH REJECT DECISION,
we have propose confusion matrices taking into account the




% [oh Co Cs C1UCs CiuUCs Co UC3 Ci1uUC2UCs Cy

C1 82.86 | 6.77 0 0 0 0 0 10.37
Ca 2.23 | 64.44 | 9.17 0 0 0 0 24.16
Cs3 0.69 | 20.48 | 60.92 0 0 0 0 17.91
Cy | 48.67 | 21.94 | 1.46 0 0 0 0 27.93
C1 87.75 | 4.20 0 0.43 0 0 0 5.06
Ca 454 | 64.44 | 9.17 0.34 0 0 0 21.51
Cs 1.20 | 20.48 | 60.93 0.08 0 0 0 17.31
Cy | 55.78 | 21.94 | 1.46 1.20 0 0 0 19.62

TABLE V

RESULTS WITH A BELIEF COMBINATION WITH POSSIBLE DECISION ON BIIONS AND ON THE REJECTED CLASE1-2) AND WITH REJECTION ON THE
UNION ONLY (2-1).

% [oh Co Cs C1UCs CiuUCs CoUCs C1UCUCs Cy
S1 8.03 | 4950 | 1.67 26.75 0 14.05 0 -
Sa 0 23.08 | 37.46 3.34 0 36.12 0 -
S3 16.05 | 22.41 | 15.38 30.44 0 15.72 0 -
Sy | 15.72 | 47.49 | 0.33 31.44 0 5.02 0 -
S1 8.03 | 48.16 | 1.67 9.36 0 8.03 0 24.75
Sa2 0 12.71 | 37.46 0 0 12.04 0 37.79
S3 16.05| 21.40 | 15.38 8.70 0 5.02 0 33.45
Sy | 15.72 | 47.16 | 0.33 7.02 0 3.68 0 26.09
TABLE VII

RESULTS WITH A BELIEF COMBINATION WITH POSSIBLE DECISION ON MIONS WITH AND WITHOUT POSSIBLE REJECTION
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