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Abstract— The seabed characterization from sonar images is
a very hard task because of the produced data and the unknown
environment, even for an human expert. In this work we propose
an original approach in order to combine binary classifiers
arising from different kinds of strategies such as one-versus-
one or one-versus-rest, usually used in the SVM-classification.
The decision functions coming from these binary classifiersare
interpreted in terms of belief functions in order to combine
these functions with one of the numerous operators of the belief
functions theory. Moreover, this interpretation of the decision
function allows us to propose a process of decisions by taking
into account the rejected observations too far removed fromthe
learning data, and the imprecise decisions given in unions of
classes. This new approach is illustrated and evaluated with a
SVM in order to classify the different kinds of sediment on image
sonar.
Keywords: belief functions theory, decision support, SVM,
sonar image.

I. I NTRODUCTION

Sonar images are obtained from temporal measurements
made by a lateral, or frontal sonar trailed by the back of a boat.
Each emitted signal is reflected on the bottom then received on
the antenna of the sonar with an adjustable delayed intensity.
Received data are very noisy. There are some interferences
due to the signal travelling on multiple paths (reflection onthe
bottom or surface), due to speckle, and due to fauna and flora.
Therefore, sonar images are chraracterized by imprecision
and uncertainty; thus sonar image classification is a difficult
problem [1]. Figure 1 shows the differences between the
interpretation and the certainty of two sonar experts trying
to differentiate types of sediment (rock, cobbles, sand, ripple,
silt) or shadow when the information is invisible (each color
corresponds to a kind of sediment and the associated certainty
of the expert is expressed in terms of sure, moderately sure
and not sure) [2].

The automatic classification approaches, for sonar images,
are based on texture analysis and a classifier such as a SVM
[3]. The support vector machines (SVM) is based on an
optimization approach in order to separate two classes by
an hyperplane. For pattern recognition with several classes,
this optimization approach is possible (see [4]) but time con-
suming. Hence a preferable solution is to combine the binary
classifiers according to a classical strategy such as one-versus-
one or one-versus-rest. The combination of these classifiers

Fig. 1. Segmentation given by two experts.

is generally formed with very simple approaches such as a
voting rule or a maximization of decision function coming
from the classifiers. However, many combination operators can
be used, especially in the belief functions framework (cf. [5]).
Belief functions theory has been already employed in order to
combine the binary classifier originally from SVM (see [6],
[7]). The operators in the belief functions theory deal withthe
conflict arising from the binary classifiers. Another interest
of this theory is that we can obtain a belief degree on the
unions of classes and not only on exclusive classes. Indeed
the decisions of the binary classifiers can be difficult to take
when data overlap. From the decision function, we can define
probabilities in order to combine them (cf. [8]). However, a
probability measure is an additive measure and so probabilities
cannot easily provide a decision on unions of classes unlike
belief functions.

Hence, once the binary classifiers have been combined, we
propose belief functions in order to take the decision for one



class only if this class is credible enough, for the union of
two or more classes otherwise. Moreover, according to the
application it could be interesting to not take the decisionon
one of the learning classes, and reject data too far from the
learning classes. Many classical approaches are possible in
pattern recognition for outliers rejection (see [9], [10]). We
propose here to integrate outliers rejection in our decision
process based on belief functions.

In addition to this new decision process, the originality of
the paper concerns the modelization that we propose,i.e. how
to define the belief functions, on the basis of decision functions
coming from the binary classifiers.

This paper is organized as follows: in section II we recall
the principle of the support vector machines for classification.
Next, we present the belief functions theory in section III in
order to propose in section IV our belief approach to com-
bine the binary classifiers and to provide a decision process
allowing the outliers rejection and the indecision expressed as
possible decisions on unions. This approach is evaluated for
seabed characterization on sonar images in section V.

II. SVM FOR CLASSIFICATION

Support vector machines were introduced by [11] based on
the statistical learning theory. Hence, SVM can be used for
estimation, regression or pattern recognition like in thispaper.

A. Principle of the SVM

The support vector machine approach is a binary classi-
fication method. It classifies positive and negative patterns
by searching the optimal hyperplane that separates the two
classes, while guaranteeing a maximum distance between the
nearest positive and negative patterns. The hyperplane that
maximizes this distance calledmargin is determined by par-
ticular patterns called support vectors situated at the bounds of
the margin. These only few support vector numbers are used to
classify a new pattern, which makes SVM very fast. The power
of SVM is also due to their simplicity of implementation and
to solid theoretical bases.

If the patterns are linearly separable, we search the hyper-
planey = w.x + b which maximizes the margin between the
two classes wherew.x is the dot product ofw and x, andb
the bias. Thusw is the solution of the convex optimization
problem:

Min ‖w‖2/2 (1)

subject to:

yt(w.xt + b) − 1 ≥ 0 ∀t = 1, . . . , l, (2)

where xt ∈ IRd stands for one of thel learning data, and
yt ∈ {−1, +1} the associated class. We can solve this
optimization problem with the following Lagrangian:

L =
‖w‖2

2

l
∑

t=1

Λt (yt(w.xt − b) − 1) , (3)

where theΛt ≥ 0 are the Lagrange multipliers, satisfying
l

∑

t=1

Λtyt = 0.

If the data are not linearly separable, the constraints (2) are
relaxed with the introduction of positive termsξt. In this case
we search to minimize:

1

2
‖ w ‖2 +C

l
∑

t=1

ξt, (4)

with the constraints given for allt:
{

yt(w.xt + b) ≥ 1 − ξt

ξt ≥ 0
(5)

whereC is a constant given by the user in order to weight the
error. This problem is solved in the same way as the linear
separable case with Lagrange multipliers0 ≤ Λt ≤ C.

To classify a new patternx we simply need to study the
sign of the decision function given by:

f(x) =
∑

t∈SV

ytΛtxt.x − b, (6)

where SV = {t ; Λt > 0} for the separable case and
SV = {t ; 0 < Λt < C} for the non-separable case, is the
set of indices of the support vectors, andΛt are the Lagrange
multipliers.

In the nonlinear cases, the common idea of the kernel
approaches is to map the data in a high dimension. To do
that we use a kernel function that must be bilinear, symmetric
and positive and corresponds to a dot product in the new space.
The classification of a new patternx is given by the sign of
the decision function:

f(x) =
∑

t∈SV

ytΛtK(x, xt) − b (7)

whereK is the kernel function. The most used kernels are the
polynomial K(x, xt) = (x.xt + 1)δ, δ ∈ IN, and the radial
basis functionsK(x, xt) = e−γ‖x−xt‖

2

, γ ∈ IR+. The choice
of the kernel is not always easy and generally left to the user.

B. Multi-class classification with SVM

We can distinguish two kinds of approaches in order to
use SVM for classification withn classes,n > 2. The first
one consists in fusing several binary classifiers given by the
SVM - the obtained results by each classifier are combined to
produce a final result following strategies such as one-versus-
one or one-versus-rest. The second one consists in considering
the optimization problem.

• Direct approach: in [4], the notion of margin is extended
to the multi-class problem. However, this approach be-
comes very time consuming, especially in the nonlinear
case.

• one-versus-rest: This approach consists in learningn de-
cision functionsfi, i = 1, ..., n given by the equations (6)
or (7) according to the cases, allowing the discrimination
of each class from then − 1 others. The affection of
a classwk to a new patternx is generally given by



the relation:k = argmax
i=1,...,n

fi(x). In the nonlinear case,

we have to be careful of the parameters of the kernel
functions that could have some different orders following
the learning binary classifiers. So, it could be better
to decide on normalized functions calculated from the
decision functions (see [12], [13]).

• one-versus-one: Instead of learningn decision functions,
we try here to discriminate each class from each other.
Hence we have to learnn(n − 1)/2 decision functions,
still given by equations (6) or (7) according to the
different cases. Each decision function is considered as a
vote in order to classify a new patternx. The class ofx
is given by the majority voting rule.

Some other methods have been proposed based on previous
ones:

• Error-Correcting Output Codes (ECOC): let wi,
i = 1, ..., n, be the classes,Sj , j = 1, ..., s, the different
classifiers (s = n in the case one-versus-rest and
s = n(n − 1)/2 in the case one-versus-one),(Mij),
the matrix of the codes with the classes in row and the
classifiers in column, stands for the contribution of each
classifier to the final result of the classification (based
on the error of all the classifiers). The final decision is
given comparing the results of the classifiers with each
row of the matrix; the class of a new patternx is the
class giving the least error (see [14]).

• According to the decision functions, [8] defined a prob-
ability (19) in order to normalize the decision func-
tions. Hence, we can combine the binary classifiers (for
both one-versus-rest and one-versus-one cases) with a
Bayesian rule (see [15]) or with more simple rules (see
[7]).

• DAGSVM (Directed Acyclic Graph SVM) proposed by
[16]: In this approach, the learning is made as the one-
versus-one with the learning ofn(n−1)/2 binary decision
functions. In order to generalize, a binary decision tree is
considered where each node stands for a binary classifier
and each leaf stands for a class. Each binary classifier
eliminates a class and the class of a new pattern is the
class given by the last node.

III. B ELIEF FUNCTIONS THEORY

The belief functions theory, also called evidence theory or
Dempster-Shafer theory (see [17], [18]) is more and more
employed in order to take into account the uncertainties
and imprecisions in pattern recognition. The belief functions
framework is based on the use of functions defined on
the power set2Θ (the set of all the subsets ofΘ), where
Θ = {w1, . . . , wn} is the set of exclusive and exhaustive
classes. Thesebelief functionsor basic belief assignments, mj

are defined by the mapping of the power set2Θ onto[0, 1] with
generally:

mj(∅) = 0, (8)

and
∑

X∈2Θ

mj(X) = 1, (9)

wheremj(.) is the basic belief assignments for an expert (or a
binary classifier)Sj , j = 1, ..., s. Thus in the one-versus-rest
cases = n and in the one-versus-one cases = n(n − 1)/2.

The equation (8) makes the assumption of a closed world
(that means that all the classes are exhaustive) [18]. We can
define the belief functions only with:

mj(∅) ≥ 0, (10)

and the world is open (cf. [19]). But in order to change an
open world to a closed world, we can add one element in the
discriminating space and this element can be considered as the
garbage class. The difficulty, as we will see later, is the mass
that we have to allocate to this element.

We have two advantages with the belief functions theory
compared to the probabilities and Bayesian approaches. The
first one is the possibility for one expert (i.e.a binary classifier)
to decide that a new pattern belongs to the union of some
classes without needing to decide an unique class. The basic
belief functions are not additive that gives more freedom for
the modelization of some problems. The second one is the
modelization of some problems without anya priori by giving
the mass of belief on the ignorances (i.e. the unions of classes).

These simple conditions in equations (8) and (9), give
a large panel of definitions of the belief functions, which
is one of the difficulties of the theory. From these basic
belief assignments, other belief functions can be defined such
as credibility and plausibility. The credibility represents the
intensity that the information given by one expert supportsan
element of2Θ, this is a minimal belief function given for all
X ∈ 2Θ by:

bel(X) =
∑

Y ⊆X,Y 6=∅

mj(Y ). (11)

The plausibility represents the intensity with which thereis no
doubt on one element. This function is given for allX ∈ 2Θ

by:

pl(X) =
∑

Y ∈2Θ,Y ∩X 6=∅

mj(Y )

= bel(Θ) − bel(Xc)
= 1 − mj(∅) − bel(Xc),

(12)

whereXc is the complementary ofX in Θ.
To keep a maximum of information, it is preferable to

combine information given by the basic belief assignments
into a new basic belief assignment and take the decision on
one of the obtained belief functions. Many combination rules
have been proposed. The conjunctive rule proposed by [20]
allows us to stay in an open world. It is defined fors experts,
and forX ∈ 2Θ by:

mConj(X) =
∑

Y1∩...∩Ys=X

s
∏

j=1

mj(Yj), (13)



whereYj ∈ 2Θ is the response of the expertj, andmj(Yj)
the corresponding basic belief assignment.

Initially, [17] and [18] have proposed a conjunctive nor-
malized rule, in order to stay in a closed world. This rule is
defined fors classifiers, for allX ∈ 2Θ, X 6= ∅ by:

mDS(X) =
1

1 − mConj(∅)

∑

Y1∩...∩Ys=X

s
∏

j=1

mj(Yj)

=
mConj(X)

1 − mConj(∅)
,

(14)

whereYj ∈ 2Θ is the response of the expertj, andmj(Yj) the
corresponding basic belief assignment.mConj(∅) is generally
interpreted as a conflict measure or more exactly as the
inconsistence of the fusion - because of the nonidempotence
of the rule. This rule applied on basic belief assignments
where the only focal elements are the classeswj (i.e. some
probabilities) is equivalent to a Bayesian approach. A short
review of all the combination rules in the belief functions
framework and a number of new rules are given in [5].

If the credibility function provides a pessimistic decision,
the plausibility function is often too optimistic. The pignistic
probability [19] is generally considered as a compromise. It is
calculated from a basic belief assignmentm for all X ∈ 2Θ,
with X 6= ∅ by:

betP(X) =
∑

Y ∈2Θ,Y 6=∅

|X ∩ Y |

|Y |

m(Y )

1 − m(∅)
, (15)

where|X | is the cardinality ofX .
In this paper, we wish to reject part of the data that we

do not consider in the learning classes. Hence a pessimistic
decision as to the maximum of the credibility function is
preferable. Another criterion proposed by [21], consists in
attributing the classwk for a new patternx if:

{

bel(wk)(x) = max
1≤i≤n

bel(wi)(x),

bel(wk)(x) ≥ bel(wc
k)(x).

(16)

The addition of this second condition on the maximum of
credibility, allows a decision only if it is nonambiguous,i.e.
if we believe more in the classwk than in the subset of the
other classes (the complementary of the class).

Another approach proposed in [22] considers the plausibility
functions and gives the possibility to decide whichever element
of 2Θ and not only the singletons as previously. Thus the new
patternx belongs to the elementA of 2Θ if:

A = argmax
X∈2Θ

(mb(X)(x)pl(X)(x)) , (17)

wheremb is a basic belief assignment given by:

mb(X) = KbλX

(

1

|X |r

)

, (18)

r is a parameter in[0, 1] allowing a decision from a simple
class (r = 1) until the total indecisionΘ (r = 0). λX allows
the integration of the lack of knowledge on one of the elements
X in 2Θ. In this paper, we will choseλX = 1. The constant
Kb is the normalization factor giving by the condition of the
equation (9).

IV. B ELIEF FUNCTIONS THEORY FOR CLASSIFICATION

WITH SUPPORT VECTOR MACHINES

In the previous sections, we have described the two main
strategies in order to build a multi-class classifier from binary
classifiers: the one-versus-rest and one-versus-one approaches.
Most of the time the formalism to combine the binary classifier
results is different according to the strategy. [23] have pro-
posed a combination approach of the binary classifier decisions
based on the belief functions theory given an unique formalism
for both one-versus-one and one-versus-rest strategies. The
basic belief assignments are defined from confusion matrices
of the binary classifiers. Working directly on the classifier
decisions allows a loss of information contained first in the
decision functions. Thus it could be better to define the basic
belief assignments from the decision functions rather than
from the confusion matrices (i.e. form the classifier decisions).

However, the decision functions are not normalized, so
we can have problems in the combination of this function
especially with the one-versus-rest strategy. [8] has defined a
probability from these decision functionsf such as:

P (y = 1/f) =
1

1 + exp(Af + B)
, (19)

where A and B are calculated in order to get
P (y = 1/f = 0) = 0.5. Different approaches have
been proposed for the estimation of these parameters (see
[24]).

[7] uses a one class SVM, introduced by [25]. So the
combination can be done only with a one-versus-rest strategy.
The decision functions coming from this particular classifier
are employed to define some plausibility functions on the
singletonwi:

pl(wi)(x) =
fi(x) + ρ

ρ
, (20)

wherefi(x) is the decision function giving the distance be-
tweenx and the fronter of classwi andρ is a factor estimated
in the one-SVM algorithm that depends on the kernel (cf. [25]).

The first originality of this paper resides in the definition
of the basic belief assignments that we obtain directly from
the decision functionsf given by the equations (6) or (7).
The basic idea consists in considering the data dispersion in
one of the semi-spaces given by the hyperplane, following an
exponential distribution. This distribution gives a dispersion of
the data around the mean more or less near to the hyperplane,
with the opportunity to observe data very far away from
the hyperplane. Doing this we keep the basic idea of the
SVM. Hence, according to the sign of the decision function
(i.e. the semi-space defined by the hyperplane), the belief
can be obtained by the cumulative density function of the
exponential distribution (see figure 2). We define the basic



belief assignment by:






















































mi(wi)(x) =αi

(

(1 − 1
2 exp(− 1

λi,p
fi(x)))1l[0,+∞[(fi(x))

exp(− 1
λi,n

fi(x))1l]−∞,0[(fi(x))
)

mi(w
c
i )(x) =αi

(

exp(− 1
λi,p

fi(x))1l[0,+∞[(fi(x))

(1 − 1
2 exp(− 1

λi,n
fi(x)))1l]−∞,0((fi(x))

)

mi(Θ)(x) =1 − αi

whereαi is a discounting factor of the basic belief assignment,
λi,p andλi,n are some parameters depending on the decision
functions of classwi that we define in equation (21). The ratio
1
2 is introduced to increase the belief to the class related to the
semi-space where the data are located (see figure 2). There are
many ways to choose or to calculate the discounting factor that
is generally close to one. [26] proposes a method to obtain the
discounting factor that optimizes the decision taking advantage
of the pignistic probability. We propose here to calculate this
discounting factor according to the good classification rate of
binary classifiers. The good classification rates are calculated
with the study of the sign of the decision functionfi on the
learning data used to determine the model of binary classifiers.

Fig. 2. Illustration of the basic belief assignment based onthe cumulative
density function of the exponential distribution.

We propose to estimate theλi parameters from the mean
of the decision functions on the learning data in order to be
coherent with the exponential distribution. Henceλi,p andλi,n

are given by:






















λi,p =
1

l

l
∑

t=1

fi(x)1l[0,+∞[(fi(x)),

λi,n =
1

l

l
∑

t=1

fi(x)1l]−∞,0[(fi(x)).

(21)

This proposed basic belief assignment model allows a good
modelization of the information given by the binary classifiers
in order to combine them by both one-versus-rest and one-
versus-one strategies. Thus for a one-versus-rest strategy,
wc

i represents the union of the other classes thanwi, i.e.
Θ r {wi}. In the one-versus-one case, the decision functions

fi, i = 1, ..., n(n − 1)/2 can be rewritten asfij with i < j
andi, j = 1, ..., n, wherei andj correspond to the considered
classeswi and wj . In this one-versus-one case,wc

i must be
seen aswj and the basic belief assignment are given by:






















































mij(wi)(x) =αij

(

(1 − exp(− 1
λij,p

fij(x)))1l[0,+∞[(fij(x))

+ exp(− 1
λij,n

fij(x))1l]−∞,0[(fij(x))
)

mij(wj)(x) =αij

(

exp(− 1
λij,p

fij(x)))1l[0,+∞[(fij(x))

(1 − exp(− 1
λij,n

fij(x)))1l]−∞,0[(fij(x))
)

mij(Θ)(x) =1 − αij

with






















λij,p =
1

l

l
∑

t=1

fij(x)1l[0,+∞[(fij(x)),

λij,n =
1

l

l
∑

t=1

fij(x)1l]−∞,0[(fij(x)).

(22)

We use here the conjunctive normalized rule (equation (14)).
Thus we can apply this rule in order to combine then
basic belief assignments in the one-versus-rest case and the
n(n − 1)/2 basic belief assignments in the one-versus-one
case. When the data overlap a lot, more complicated rules
such as proposed in [5] could be preferred.

For the decision step, we want to keep the possibility to
take the decision on a union of classes (i.e. when we can not
decide between two particular classes) and also to not take a
decision when our belief in one focal element is too weak.
Thus we propose the following decision rule in two steps:

1) The decision rule of the maximum of the credibility with
reject defined by the equation (16) is applied in order to
determine the patterns that do not belong to the learning
classes.

2) The decision rule given by the equation (17) is next
applied to the non-rejected patterns.

Another possible decision process could be first the appli-
cation of the decision rule given by the equation (17), and
next the decision rule of the maximum of the credibility with
reject on the imprecise patterns that first belong to the unions
of classes. On the illustrated data given in the next section,
we obtain similar results. We call this decision process (2-1)
and the previous one (1-2).

V. A PPLICATION

A. Sonar data

Our database contains 42 sonar images provided by the
GESMA (Groupe d’Etudes Sous-Marines de l’Atlantique).
These images were obtained with a Klein 5400 lateral sonar
with a resolution of 20 to 30 cm in azimuth and 3 cm in range.
The sea-bottom depth was between 15 m and 40 m.

Some experts have manually segmented these images giving
the kind of sediment (rock, cobble, sand, silt, ripple (vertical or
at 45 degrees)), shadow or other (typically shipwrecks) parts



on images. It is very difficult to discriminate the rock and the
the cobble and also the sand and silt. However, it is important
for the sedimentologists to discriminate the sand and the silt.
The type “ripple” can be some ripple of sand or ripple of
silt. Hence, with the point of view of the sedimentologists we
consider only the three classes of sediment:C1=rock-cobble,
C2=sand andC3=silt. And in order to evaluate our decision
process, we take the ripple as the fourth class (C4) that is
unlearned.

Each image is cut off in tiles of size 32×32 pixels (about
6.5 meter by 6.5 meter). With these tiles, we keep 3500 tiles of
each class with only one kind of sediment in the tile. Hence,
our database is made of 4×3500 tiles. We consider 2/3 of them
for the learning step (only for the three classes of sediment)
and 1/3 of them for the test step (i.e. 1167 tiles for each kind
of sediment).

In order to classify the tiles of size 32×32 pixels, we
first have to extract texture parameters from each tile. Here,
we choose the co-occurrence matrices approach [1]. The co-
occurrence matrices are calculated by numbering the occur-
rences of identical gray level of two pixels. Six parameters
given by Haralick are calculated: homogeneity, contrast esti-
mation, entropy estimation, the correlation, the directivity, and
the uniformity. Concerning these six parameters, we calculate
their mean on four directions: 0, 45, 90 and 135 degrees.
The problem for co-occurrence matrices is the non-invariance
in translation. Typically, this problem can appear in a ripple
texture characterization. More features extraction approaches
can be used such as the run-lengths matrix, the wavelet
transform and the Gabor filters [1].

We use thelibSVM [27], and after comparing several ker-
nels, we have retained the radial basis function (withγ = 1/6
where 6 is the dimension of the data) and we take weighting
of the errorC = 1 because of the data overlap.

B. Results

The table I shows the results for the SVM classifier with
the strategies one-versus-one and one-versus-rest. We note that
there are many errors between the sand (C2) and silt (C3),
that are two homogeneous sediments. The ripple (C4), the
unlearning class, is more heterogeneous than the sand and
silt, this why it is more classified as rock (C1). The table II

one-vs-one one-vs-rest
% C1 C2 C3 C1 C2 C3

C1 91.00 8.83 0.17 84.40 15.08 0.51
C2 7.11 80.72 12.17 2.57 61.27 36.16
C3 2.06 30.42 67.52 0.86 22.71 76.44
C4 65.13 33.16 1.71 52.36 45.41 2.21

TABLE I

RESULTS OF THESVM CLASSIFIER FOR THE BOTH STRATEGIES

ONE-VERSUS-ONE AND ONE-VERSUS-REST.

shows the same results, but with the proposed approach based
on the belief function theory (presented in section III) with
the decision based on the pignistic probability. This approach

provides some similar results than the basic versions of the
SVM (table I). Note that the strategy one-versus-rest provides
more errors between the sand and silt. This can be explained
because the data overlap. In the rest of the paper we consider
only the one-versus-one strategy.

one-vs-one one-vs-rest
% C1 C2 C3 C1 C2 C3

C1 88.00 11.91 0.09 91.51 6.18 2.31
C2 4.80 83.29 11.91 8.83 20.90 70.27
C3 1.20 32.05 66.75 2.06 5.23 92.71
C4 56.38 41.99 1.63 67.52 20.57 11.91

TABLE II

RESULTS OF THESVM CLASSIFIER WITH BELIEF FUNCTION THEORY FOR

THE BOTH STRATEGIES ONE-VERSUS-ONE AND ONE-VERSUS-REST.

The table III gives the results with possible decision on
unions with r = 0.6. We can see that this kind of cautious
decision provides less hard errors (i.e. say one kind of sedi-
ment instead of another). Of course these results depend on
the values ofr that provide a more or less cautious decision as
we can see on figure 3. If we add the possibility of rejection
to these results (table IV), we can see that the most of rejected
tiles come from the ripple (the unknown classC4). For a given
class, the rejected tiles come as a majority from the unions
(imprecise data). Of course this rejection does not depend on
ther value if we begin by the rejection in our decision process
(1-2) (presented in section III).

Figure 3 shows the results of the classification of class
of ripple (C4) according to the value ofr without possible
rejection. Of course when the value ofr is weak the data of
the three learning classes are classified on the unions. We can
distinguished three kinds of work intervals on these data:

• r ∈ [0; 0.3]: The classifier is too undecided,
• r ∈ [0.4; 0.6]: the ambiguity between the classes is

correctly considered,
• r ∈ [0.7; 1]: the decision is too hard.

Fig. 3. Classification of the class of ripple (C4) with possible decision on
union according tor.

According to the application, if we want to privilege the
hard decision at the expense of the rejection, we can try to



% C1 C2 C3 C1 ∪ C2 C1 ∪ C3 C2 ∪ C3 C1 ∪ C2 ∪ C3

C1 76.69 6.86 0 15.68 0 0.77 0
C2 0.86 50.04 4.97 11.83 0 32.30 0
C3 0.35 17.05 53.21 2.14 0 27.25 0
C4 38.99 22.62 1.12 33.16 0 4.11 0

TABLE III

RESULTS WITH A BELIEF COMBINATION WITH POSSIBLE DECISION ON UNIONS.

% C1 C2 C3 C1 ∪ C2 C1 ∪ C3 C2 ∪ C3 C1 ∪ C2 ∪ C3 C4

C1 76.69 6.26 0 6.34 0 0.34 0 10.37
C2 0.86 48.93 4.97 1.63 0 19.45 0 24.16
C3 0.34 15.42 53.22 0.34 0 12.77 0 17.91
C4 38.99 20.65 1.11 9.68 0 1.63 1.71 27.93

TABLE IV

RESULTS WITH A BELIEF COMBINATION WITH POSSIBLE DECISION ON UNIONS AND ON THE REJECTED CLASS.

decide first, possibly on the unions and next try to reject only
on the unions. In this case we can choose a higher value of
r. For example withr = 0.8, we propose a comparison of
the decision processes (1-2) with (2-1) given in the table V.
Of course the decision process (2-1) rejects less data, but it is
only with the rock (classC1) that we win, and we reject less
ripple (class unknownC4). Hence, it seems that the decision
process (1-2) is better for this application.

Now let’s consider the tiles containing more than two
kinds of sediment. We still learn the SVM classifier with
the same parameter and the one-versus-one strategy on the
homogeneous tiles of the three classes rock (C1), sand (C2)
and silt (C3) as previously. For the tests, we only take 299
tiles with the classes:S1=tiles with rock and sand,S2=sand
and silt,S3=silt and ripple andS4=sand and ripple.

Table VI presents the obtained results of the SVM classifier
with the classical voting combination and a belief combina-
tion with pignistic decision and with credibility with reject
decision. For the two classesS1 andS2, the tiles contain only
learning sediment (rock and sand forS1 and sand and silt for
S2). For S1 andS2 the classifiers without reject classify these
tiles more in sand. The rejection decreases the errors, but for
S2 the rejection is essentially on the sand. The two classesS3

andS4 contain ripple, the unknown class. Here also, we note
a confusion with the rock sediment that is an heterogeneous
texture like the ripple. The rejection for these two classes
works well, because a large part of the tiles classified in rock
are rejected and forS3 a large part of tiles classified in sand
are also rejected.

Table VII shows the results with possible decision on the
union with r = 0.6, with and without possible rejection. The
addition of the possible decision on the union reduces the
errors. The rejection is essentially on the tiles classifiedon
the unions, except forS2 (sand and silt) a lot of classified-
sand tiles are rejected, maybe because of the learning step.

Hence, for the tiles containing more than one kind of
sediments our decision support could help the human experts.
Of course, in this case, the evaluation is really difficult. In [2]
we have propose confusion matrices taking into account the

proportion of each sediment in a tile.

VI. CONCLUSIONS

We have proposed an original approach based on the belief
functions theory for the combination of binary classifiers
coming from the SVM with one-versus-one or one-versus-rest
strategies. The modelization of the basic belief assignments
is proposed directly from the decision functions given by the
SVM. These basic belief assignments allow to take correctly
into account the principle of the binary classification with
SVM by comparison with an hyperplane in linear or nonlinear
cases.

The belief functions theory provides a decision support
without necessary deciding an exclusive class. The decision
process that we have proposed with possible outliers rejection
and with possible decision on the union of classes, is very
interesting because it works like the intuitive classification
that a human could perform based on the position of support
vectors and considering the ambiguity of the classes. This deci-
sion support can really help experts for seabed characterization
from sonar images. We have seen with the point of view of the
sedimentologists that if we only consider the different kinds
of sediments (rock, sand and silt), the ambiguity between the
sand and the silt is well recognize and the ripple can be partly
rejected.

vote pignistic with reject
% C1 C2 C3 C1 C2 C3 C1 C2 C3 C4

S1 27.4 67.2 5.4 20.4 74.9 4.6 15.4 56.5 3.3 24.8

S2 1.3 40.5 58.2 0.3 44.8 55.9 0 14.4 47.8 37.8

S3 40.1 38.1 21.8 34.1 44.8 21.1 24.4 24.1 18.1 34.4

S4 40.8 58.2 1.0 31.8 67.2 1.0 22.7 51.2 1.0 26.1

TABLE VI

RESULTS OF THESVM CLASSIFIER WITH THE CLASSICAL VOTING

COMBINATION AND A BELIEF COMBINATION WITH PIGNISTIC DECISION

AND WITH CREDIBILITY WITH REJECT DECISION.



% C1 C2 C3 C1 ∪ C2 C1 ∪ C3 C2 ∪ C3 C1 ∪ C2 ∪ C3 C4

C1 82.86 6.77 0 0 0 0 0 10.37
C2 2.23 64.44 9.17 0 0 0 0 24.16
C3 0.69 20.48 60.92 0 0 0 0 17.91
C4 48.67 21.94 1.46 0 0 0 0 27.93

C1 87.75 4.20 0 0.43 0 0 0 5.06
C2 4.54 64.44 9.17 0.34 0 0 0 21.51
C3 1.20 20.48 60.93 0.08 0 0 0 17.31
C4 55.78 21.94 1.46 1.20 0 0 0 19.62

TABLE V

RESULTS WITH A BELIEF COMBINATION WITH POSSIBLE DECISION ON UNIONS AND ON THE REJECTED CLASS(1-2) AND WITH REJECTION ON THE

UNION ONLY (2-1).

% C1 C2 C3 C1 ∪ C2 C1 ∪ C3 C2 ∪ C3 C1 ∪ C2 ∪ C3 C4

S1 8.03 49.50 1.67 26.75 0 14.05 0 -
S2 0 23.08 37.46 3.34 0 36.12 0 -
S3 16.05 22.41 15.38 30.44 0 15.72 0 -
S4 15.72 47.49 0.33 31.44 0 5.02 0 -

S1 8.03 48.16 1.67 9.36 0 8.03 0 24.75
S2 0 12.71 37.46 0 0 12.04 0 37.79
S3 16.05 21.40 15.38 8.70 0 5.02 0 33.45
S4 15.72 47.16 0.33 7.02 0 3.68 0 26.09

TABLE VII

RESULTS WITH A BELIEF COMBINATION WITH POSSIBLE DECISION ON UNIONS WITH AND WITHOUT POSSIBLE REJECTION.
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