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Abstract:  
This article is devoted first to anisotropic distributions of stored electric charges in isotropic 
materials, second to charge trapping and induced electrostatic potential in anisotropic 
dielectrics. 
On the one hand, we examine the case of anisotropic trapped charge distributions in linear 
homogeneous isotropic (LHI) insulators, obtained after an electron irradiation in a scanning 
electron microscope. This injection leads to the formation of a mirror image. We first establish 
the characteristics of the mirror image obtained from such anisotropic distribution by linking 
the mirror diameter to the curvature tensor of the equipotentials thanks to the geometric optics 
ansatz (GOA). Second, the equipotentials induced by the presence of an anisotropic charge 
distribution in such isotropic dielectrics have been determined in the case of homeoidal 
(ellipsoidal) distributions that generalize the classical spherical distributions. Then, for these 
homeoidal distributions in isotropic dielectrics, the features of the mirror image have been 
deduced from the previous GOA estimation. Elliptic mirrors can be obtained and calculated in 
the limit cases of such homeoidal distributions. 
On the other hand, we consider the non-trivial case of a point charge lying at the interface 
between the vacuum and a linear homogeneous orthotropic anisotropic (LHOA) dielectric and 
the determination of its corresponding potential seen from the vacuum. This problem has soon 
been solved in the case of transversal isotropic (TI) dielectric (εx = εy = εr, ε r ≠ εz), but we 
extend in this paper the classical dielectric image problem to the more general case where εx ≠  
εy ≠ εz. The equivalent charge and the induced electrostatic potential are evaluated. For these 
anisotropic insulators, the equipotentials created by a point charge at the interface are found to 
be ellipsoids and this leads to an elliptic mirror image. The ratio between the two main axis 
values of the elliptic mirror is proportional to the square root of the ratio of the permittivities 
values in the plane of the interface. Finally these calculations are used to explain the 
experimental results obtained by the mirror method on TiO2 sample that is known to be an 
anisotropic dielectric. 

   
 
 
1. Introduction 
 
Technology relevant materials exhibit very often anisotropic dielectric permittivity. Among these 
materials we find intrinsically anisotropic crystals such as the wide used rutile (TiO2) or quartz. Some 
materials become also anisotropic because of their deposition or elaboration process, for example 
strained layers obtained after epitaxial growth [1] or other deposition process [2], or films obtained by 
anisotropic elaboration process such as polymer film stretching. Moreover the present interest in 
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nanomaterials has also lead to the emergence of new anisotropic dielectrics such as filled polymers or 
block copolymers [3]. Some of these anisotropic materials are supposed to be good candidates in some 
applications where the charge storage has to be controlled, for example in thin film insulating 
spacecraft materials subjected to space radiations. 
It is thus interesting to be able to characterize properly the ability of these anisotropic materials to trap 
electrical charges, and to know the electrostatic potential induced by the charge storage. 
Among the various methods available to characterize this charge storage or transport ability [4], the 
scanning electron microscope mirror effect (SEMME) can be used to determine charge trapping under 
electron beam irradiation [5, 6]. The SEMME method is composed of two steps: (i) electrons of high 
energy (some tens of keV) are punctually injected in an insulator. The trapped electrons create an 
electrostatic field outside the sample. (ii) When this sample is observed at low voltage (some hundreds 
of eV) with a lecture scanning e-beam, the previous field can be sufficiently high to deflect the low 
energy electrons as a convex mirror with the light. The obtained mirror image displays a distorted 
view of the SEM chamber (cf. figure 1). Generally the mirror image is circular. By using the 
geometric optics ansatz (GOA), it is possible to link the apparent radius of the mirror image to the 
total trapped charge in the case of a linear homogeneous isotropic  dielectric (LHI where εx = εy = εz). 
This GOA has been initially applied to determine the relation between the mirror plot and the 
curvature of the equipotentials induced by the trapped charges in the case of a point charge distribution  
[5]. However some elliptic mirror images have been also experimentally observed on anisotropic 
insulators or on samples that have been submitted to various tests such as friction test or bending test 
[7]. One interpretation of these elliptic mirrors could be the anisotropy of the charge distribution or the 
anisotropy of the dielectric. 
 

 
 

Figure 1. Mirror effect after an electron injection in an insulator: (a) SEM image of the injected area. 
The black disk (diameter d) at the center of the image corresponds to the last output diaphragm image 
(b) Representation of the reflection by the stored charges Qt of the low voltage accelerated electrons of 
the lecture e-beam: H working distance, R curvature radius of the equipotential, Φ real diameter of the 

last output diaphragm. 
 

In the first part of this paper (§ 2), we use this geometric optics ansatz to determine the mirror image 
features, for any shape of the equipotentials and so for any trapped charge distribution. 
Second (§ 3), we consider the problem of the anisotropy of the trapped charge distribution. The 
problem of elliptical (more precisely homeoidal) charges distributions is initially considered and 
solved in the case of linear homogeneous isotropic materials. In this case, the potential created by the 
anisotropic charge distribution is determined in the two limit cases of a charged disk perpendicular to 
the vacuum/dielectric interface and a charged segment in the injection plane. Then the geometrical 
features of the corresponding mirror images are calculated. 
In a third part (§ 4), the case of anisotropic material is considered. We construct an approximate 
evaluation of the equivalent charge and potential seen from the vacuum when a charge is placed at the 
vacuum/dielectric interface for a linear homogeneous orthotropic anisotropic dielectric (LHOA, where 
εx ≠ εy ≠ εz). Finally, starting from the already resolved case of a point charge internal to a linear 
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homogeneous isotropic-transverse dielectric (LHIT, where εx = εy ≠ εz), solutions of equivalent charges 
and electrostatic potential are deduced for homeoidal distributions in the both cases of isotropic-
transverse (LHIT) and orthotropic anisotropic dielectrics (LHOA). Comparisons of the results 
obtained by the analytical calculations with finite element simulations are provided. 
In the last part of the article (§ 5), thanks to the previous calculations, the experimental evolution of 
the mirror curve obtained on TiO2 samples are explained. The trapped charges are evaluated and the 
shapes of the trapped charges distributions are determined in the case of this anisotropic material, 
whose mirror images can sometimes be elliptic. 
 
 
2. Backscattering phenomena due to trapped charges: generalization of the geometric optics 
ansatz (GOA) 
 
2.1. Recalls on the mirror effect in LHI dielectric  
After a punctually irradiation with an electron beam of high energy (some tens of keV), electrical 
charges are created and/or trapped in the insulator. These charges produce an electric field in the 
vacuum chamber of the Scanning Electron Microscope (SEM). If the sample is then observed with an 
electron beam of low acceleration lecture potential Vl (corresponding to an energy of some hundreds 
of eV), the field can backscatter the incident electrons as a convex mirror with the light. As a 
consequence, a mirror image appears on the SEM screen that is a distorted view of the SEM chamber 
and more particularly of the last output diaphragm (figure 1(a)).  
 Let us consider first that the trapped charge is a point charge Qt trapped in O as seen in figure 
1(b). The primary electrons of the e-beam are emitted with a small angle α (α .OO' = d/2) with respect 
to the optical axis OO' from a point source S that coincides with the center O' of the last output 
diaphragm of the optical column of the SEM. Moreover if the minimum distance between the beam 
and the point charge located in O is rm« OO' then the beam fulfilled the Gaussian approximation. 
Under this approximation it has been previously demonstrated by Vallayer & al that the diameter d of 
the black spot of the mirror image is given by the equation (1) [5]: 

 l
t

r0 V
Q

)1(2H4
d
1 +επε

φ
=      (1) 

where φ  is the diameter of the last output diaphragm of the SEM, H=OO' is the working distance, εr is 

the dielectric permittivity of the LHI, and Vl the lecture potential. The term 
r

t
1

Q2
ε+

 is the equivalent 

charge seen from the vacuum. One can note that this equation has been only established when the 
equipotentials are spherical like in the point charge approximation and for a linear homogeneous 
isotropic dielectric. Under these hypotheses of a LHI dielectric and of a point charge distribution, the 
mirror image is circular. If the stored charge distribution is no more punctual but still axisymetric 
compared to the e-injection direction, the mirror image stays circular, and some calculations have been 
provided by Attard & al to link the mirror image to the trapped charge distribution[8] 
 
2.2. Geometric optics ansatz for a charge distribution of any shape 
For a charge distribution of any shape and the resulting equipotentials, the hypothesis (ansatz) will be 
assumed that the backscattering of an electron with a kinetic energy Ec is equivalent to the optical 
reflection of the electron trajectory on the equipotential V = 2Ec/e = 2Vl of local curvature 1/R (figure 
2). This hypothesis is fully justified in the case of a point charge. Indeed, in this case the exact 
calculation is possible and leads to the same result as the GOA. This ansatz could be extended to any 
distribution charge system, but the relation between the apparent diameter d of the mirror image and 
the local curvature of the equipotential has to be determined. 
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Figure 2. (a) Geometrical representation of the electron diffusion phenomenon in a mirror experiment, 

R curvature radius of the equipotential (b) Notations in the tangential plane of the equipotential. 
 
2.3. Mirror characteristic in the case of an equipotential of any curvature 
On figures 2(a) and 2(b), the geometric features and notations used in the following are detailed. We 
note )x(M 00

r
 the impact point of the incident electron beam on an equipotential surface of any shape 

characterized by its curvature tensor ΣC
rr

. The tensor of curvature ΣC
rr

 of the equipotential is defined 
thanks to his principal curvature radii R1 and R2 that depend on the potential value V = 2Vl: 
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The curvature tensor gives the deviation of the surface normal vector n
r

 versus the distance xrδ  in the 
tangential plane Σ . So, for the incident e-beam corresponding to a reflected beam that reaches the 
limit of the output diaphragm (figure. 2(a)) 
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where d = 2Rmirror corresponds, as previously defined, to the apparent diameter of the black spot on the 
mirror image. The direction of the incident e-beam corresponds to - 0nr  and, with the small angle 
approximation, the direction of the reflected e-beam is given by 

 u.Cdnn2nn 00r
rrrrrrr

Σ+=δ+=      (4) 
With the approximation that HCΣ»1, we can write now that the impact point of the reflected beam on 
the plane of the last diaphragm is equal to the radius of the last diaphragm Φ/2: 
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This leads to the equation: 
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that is equivalent to the equation: 
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 belongs to the image of the last diaphragm. 

The equation (7) defines the apparent image of the last diaphragm on the mirror image. It is the 

equation of an ellipse, with the same axis as the curvature tensor ΣC
rr

 and with its semi-major (minor) 
axis respectively proportional to R1 and R2.  

 
H2

RR 1mirror
1

Φ
=      (8) 

and 

 
H2

RR 2mirror
2

Φ
=      (9) 

 
In the case of a point charge, it has been demonstrated by another way by Vallayer & al that the radius 
R of the equipotential corresponding to the electron trajectory that impacts the edge of the output 
diaphragm is linked to the geometric features of the experiment by the relation [5] 

 HdR mirror
Φ

=       (10) 

In that case, the mirror image is a circle and not an ellipse. The equation (10) is completely coherent 
with the equations (7), (8) and (9) for a point charge with R1=R2=R.  
 
As a partial conclusion, when considering an equipotential of any shape, the last diaphragm mirror 
image obtained by the reflection of a lecture electron beam is an ellipse whose features are directly 
linked to the curvature tensor of the equipotential (equation 7). This curvature tensor depends on the 
potential lecture, ie on the kinetic energy of the electron. But this link has to be determined for each 
trapped charge distribution and for isotropic or anisotropic material. 
 
2.4 Mirror characteristic in the axisymetric case 
For any axisymetric charge distribution, the potential field near the impact point M0 can be written 
(figure. 2b): 

 ...)z(Vx
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The potential has to follow the Laplace equation 0V =Δ that leads to 
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Moreover, locally i.e. near the point z = z0 on the axis, one can write  
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This corresponds to the local equation of a circle  
 axisym
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0axisym

2 R))z-(z -(Rx =+       (14) 
with radius  
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So, in the case of an axisymetric distribution of trapped charges, the curvature tensor radii of the 
equipotentials are equal to Raxisym. By replacing this value in the general equation (7), one obtains the 
corresponding mirror image radius in the axisymetric case: 
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This expression obtained from the general equation (7), in the case of axisymetric charge distribution, 
is the same as the one obtained by other authors [9]. 
 
 
 
3. Anisotropic distribution of charges in a linear homogeneous isotropic dielectric (LHI where 
 εx = εy = εz= εr) 
 
Usually, trapped charge distributions are considered as isotropic and the classical distribution shape 
used in the models is the sphere. However it is interesting to determine the potential and the 
corresponding mirror formula in the case of anisotropic distribution. In this case, in the vacuum or in a 
LHI, the homeoidal distribution generalizes the spherical distribution to the anisotropic case. The 
homeoidal distribution corresponds to a uniform distribution of charge between two infinitely 
neighbouring homothetic ellipsoids. It has been demonstrated for example by Durand, that this 
homeoidal distribution is the solution in the case of a conductive ellipsoid [10]. The equipotentials 
V(ξ) are then confocal ellipsoids which can be defined by the following equations: 
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and the associated matrices M are : 
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The potential V(ξ) created by the homeoidal distribution can be found in Durand's book and is given 
by  

 ∫
∞

ξ λ

λ
+επε

=ξ
R
d

)1(4
Q)(V

r0
 with )c)(b)(a(R 222 +λ+λ+λ=λ    (19) 

Thanks to the equation (19), it will be possible to determine the relation between the features of the 
ellipsoid (a, b, c) versus the potential V(ξ) and so versus the kinetic energy of the incident electrons. 
Moreover as demonstrated in Appendix A equation (A.6), at a point M0 on the z axis, the curvature 
tensor is directly linked to the matrix M: 
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By combining the equations (7), (19) and (20) the mirror image equation can be established for 
different limit cases. 
 
 
3.1. Trapped charge distributed on a segment [-a, a] oriented along the x axis. 
One considers a segment [-a, a] of trapped charges (figure 3(a)) oriented along the x axis in the (Oxy) 
plane of electron injection.  

 
Figure 3. Two limit cases of the homeoidal charge distribution (a) uniformly charge segment [-a, a] 

oriented along the x axis (b) homeoidal charge distributed on a disk of radius a in the Oxz plane. 
Electron injection direction is along the z-axis. 

 
 
The matrix Msegment of the equipotential V(ξ) corresponding to this homeoidal distribution on a 
segment is the limit case of the homeoidal distribution with b and c tending towards zero: 

 

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

ξ

ξ

ξ+

=

100

010

00
a

1

M

2

segment      (21) 

 Note that, since ξ= /1x.M 0
r

 for M0(0,0,z) belonging to Σ (so that ξ=z ), the corresponding 
curvature tensor is then 
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or, more precisely: 
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From equation (19), the corresponding potential is then given by: 
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Assume we have a change of variable )y(sha 22=λ , one obtains [11]: 
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with )(sha 22 η=ξ . From equation (26), one deduces )
Q

a)(V)1(2coth()(ch r0 ξ+επε
=η . 

 
Finally, by replacing ξ in equations (23), (24) by its value, and by taking into account the equations (8) 
and (9), the image of the last output diaphragm is given by: 
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In the case of a charge Q homogeneously distributed on a linear segment [-a, a] along the Ox axis, the 
mirror image is elliptic, with Rx

mirror and Ry
mirror the main-major (respectively minor) axis defined just 

above. 
Note also that in the case of a segment perpendicular to the electron injection plane (along Oz), the 

mirror image is circular, and )
Q

aV2)1(2(sh
a
H

R
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R
1 lr0
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y
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x

+επε
Φ

== . We find for 

this isotropic case the same results as Ghorbel et al [9]. 
 
 
3.2. Trapped charge distributed on a disk of radius a included in the plane Oxz . 
Another interesting limit case of the anisotropic homeoidal distribution of trapped charges is a disk of 
radius a (figure 3(b)). Note that for such homeoidal charge on a disk, the charge density is proportional 
to (a2-r2)-1/2 at the distance r of the disk center [10]. This disk is for example included in the Oxz plane, 
parallel to the electron injection direction and perpendicular to the y axis. The matrix M of the 
equipotential V(ξ) corresponding to this homeoidal distribution on a disk is the limit case of the 
homeoidal distribution with a=c and b tending towards zero: 
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 and, since ξ+= 2
0 a/1x.M r

 for M0(0,0,z) belonging to Σ (so that ξ+= 2az ), the 
corresponding curvature tensor is  
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From equation (19), for the disk, the corresponding potential is: 
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Assume we have the same change of variable )y(sha 22=λ , one obtains (Gradshteyn, 1965 #1055):  
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with )(sha 22 η=ξ . From equation (32), one deduces )
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Then, by using equations (7), (8) and (9) as previously, one obtains the curvature radii Rx and Ry of the 
equipotential and the ellipse main-axis Rx

mirror and Ry
mirror of the last output diaphragm mirror image. 
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In the case of a homeoidal charge Q distributed on a disk perpendicular to the plane of the electron 
injection, the mirror image is elliptic, with Rx

mirror and Ry
mirror the main-major (respectively minor) axis 

defined just above.  
 
 
4. Screening of a charge lying at the interface between an anisotropic orthotropic dielectric and 
vacuum 
 
In the previous paragraphs, the case of LHI dielectrics has been considered and the characteristics of 
the equipotentials induced by the presence of an anisotropic charge distribution in such materials have 
been demonstrated. Furthermore, the features of the mirror image obtained after an electron injection 
of such anisotropic distribution in an isotropic material have been also evaluated. This paragraph is 
devoted to the case of linear homogeneous orthotropic anisotropic dielectrics (LHOA). Indeed these 
materials are numerous such as titanium dioxide TiO2, quartz, etc, but also such as new synthetic 
nanomaterials, whose dielectric properties can also be anisotropic such as copolymers, filled 
materials... 
In all the following, the considered dielectrics are orthotropic materials with possibly different 
dielectric properties in all three different orthogonal directions (x,y,z) and with an interface compatible 
with the plane of electron injection (defined as z = 0). That means that the interface between the two 
dielectrics corresponds to the plane of electron injection and that one of the principal axes of the 
permittivity tensor is orthogonal to the injection plane and the two others are in that plane. 
Prior to solve the problem of a charge lying at the interface between the vacuum and a LHOA 
dielectric, the transformation of various solutions of the electrostatic equations by different simple 
geometrical transformations will be first considered. 
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4.1. Modification of the electrostatic solutions after an affine transformation 
Consider a linear transformation A that transforms the initial coordinates system (ICS) (x,y,z) in the 
transformed coordinates system (TCS), (X,Y,Z) = A (x,y,z) where A is a 3x3 matrix. One notes the 

gradient (nabla) operator in the TCS system: ∇=
∂
∂
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=∇ −− r
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~ 1
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1 . 

Let ϕ(x,y,z) = Cte be the equipotential surfaces network in the ICS where the dielectric permittivity is 
[ε], and that corresponds to a charge density ρ(x,y,z) related to ϕ by the Maxwell-Poisson law. Two 
cases can be considered concerning the transformation of the charge density and the permittivity. 

Indeed the Maxwell-Poisson law in the TCS can be written [ ] ))Z,Y,X(~~
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that the network of equipotential ϕ(x,y,z) = Cte can be transformed in the corresponding network of 
equipotential ),,(~ ZYXϕ = ϕ(x,y,z)  for a new charge distribution else (a) by transforming the 
dielectric constant and keeping the density of charges constant, or (b) by changing the density of 
charges and keeping the permittivity constant.  
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material becomes [ ] [ ]A..A~ t ε=ε , the density of charges is unchanged )x()X(~ ρ=ρ  but the charges in 
a transformed volume are modified because of the non-conservative volume dqAdetdQ = .  

In the second case (b), one considers an homothetic transformation 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

k00
0k0
00k

H  with a dilatation 

factor k, in this transformation the permittivity is kept constant [ ] [ ]ε=ε~ , but the volume charge is 

changed according to the Maxwell-Poisson law )x(
k
1)X(~
2 ρ=ρ and kdqdQ = . 

 
 
4.2. Example of application to the case of a point charge in an isotropic dielectric 
This method of linear transformations can be applied to find the classical formula of electrostatic 
image charge in the case of a point charge Q leading at the interface between two isotropic materials 
with respective permittivity ε1 and ε2. This simple case is useful to understand how this method works, 
and is summarized in the figure 4. We start from a configuration which potential solution is known: a 
point charge q in an LHI (permittivity ε1). To solve the singularity, the point charge is assimilated to a 
spherically spread charge q, composed of a charge q/2 in the upper half-space and also of a q/2 charge 
in the lower half-space. This configuration is locally equivalent to the point charge distribution and 
fulfils the potential continuity at the interface. The external potential is then given by: 

 
r4

q)r(V
10επε

=      (35) 

In the first step, an affine transformation corresponding to the previous case (a), which matrix A is 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

k00
0k0
00k

A  with 
1

2k
ε
ε

= is applied to the lower half-space.  
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Figure 4. Successive linear transformations used to find the potential value induced by a charge 

located at the interface between two isotropic dielectrics, starting from the known problem of a charge 
embedded in an isotropic insulator. 

 
After this first transformation, the ICS (x,y,z) is transformed in the TCS(1) (X1,Y1,Z1) and a new 
equipotential network is obtained )z,y,x()Z,Y,X(~

111 ϕ=ϕ with the right permittivities ε1 and ε2 in 
the two half-spaces but the condition of the continuity of the potential is not fulfilled at the interface. 
So, in a second step, a homothety H is applied with the dilatation factor 1/k. After this second 

transformation, the wanted problem of a point charge )k1(
2
q

2
"Q

2
qQ 2+=+= at the interface 

between two different LHI with respective permittivities ε1 and ε2 is obtained and the corresponding 
potential is given by 

 
)(

Q2
r4

1
r)k1(4

Q2
r4

q)r(V
210

2
1010 ε+επε

=
+επε

=
επε

=    (36) 

With this simple method of applying successive linear transformations compatible with the Maxwell-
Poisson law, the classical potential of a charge lying at the interface of two different LHI dielectrics is 
found again [10], [12]. 
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We will now use this method in the case of a point charge lying at the interface between the vacuum 
and an orthotropic anisotropic dielectrics (LHOA, where εx ≠ εy ≠ εz). This case has been soon solved 
by Mele by another way in the case of a linear homogeneous isotropic-transverse dielectric (LHIT, 
where εx = εy ≠ εz) but not in the more general case of the LHOA [12]. By transforming the reference 
solution of the previously solved problem (of a charge lying at the interface of two different LHI), one 
can generate solutions corresponding to other couple of dielectrics thanks to successive linear 
transformations. However one condition is needed: the restriction of the different linear 
transformations Ai to the interface plane Σ, (AiΣ ) must differed by simple homotheties, so that charges 
and equipotentials can be changed to recover the continuity of the potential at the interface Σ.  
 
 
4.3. Determination of the equivalent charge and potential for a charge at a vacuum/dielectric 
interface in the case of an orthotropic anisotropic dielectric 
4.3.1. Reference electrostatic problem. Let first consider the case of a point charge q at the interface 
between two LHOA dielectrics with permittivities ε1ref and ε2ref defined as follow: 

 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

β
α

α
=ε

00
010
00

ref1 and 
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

β
α

α
=ε

00
00
001

ref2  with ⎟
⎠
⎞

⎜
⎝
⎛

α
+α=β

1
2
1

 

The equipotentials for such a problem can be approximated in a first time by spheres (that imposed the 
value of β versus α), and then the potential can be written: 

 
r4

Cq)r(V
0πε

=       (37) 

where C=1/β is a constant, that is determined by solving the Maxwell-Poisson equation and by 
fulfilling the potential continuity equation. This evaluation and the choice of β are detailed in 
Appendix B. One obtains from equation (B.4) : 

 
βπε

=
1

r4
q)r(V

0
     (38) 

 
4.3.2. General case of anisotropic (LHOA) dielectrics 
To obtain the approximate expression of the field created by a point charge located at the interface 
between the vacuum and a dielectric which permittivity is anisotropic, the following method is used 
and summing up in figure 5. 
 (i) We start from a reference problem that has been previously solved (§ 3.3.1) of a point 
charge lying at the interface between two LHOA dielectrics with permittivities ε1ref and ε2ref, as defined 
previously. The approximate solution is supposed to be given by an expression with spherical 
symmetry (cf. Appendix B). 
 (ii) We apply the right affinities A1 and A2 at constant ρ (as defined in case (a) of § 4-1) to 

each half-space so that the permittivities take the expected values respectively 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

100
010
001

 for the 

vacuum in the upper half-space, and 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

ε
ε

ε

z

y

x

00
00
00

 for the LHOA dielectric in the lower half-space. 
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One obtains 111
t

1 A..A' ε=ε , αε= x1a , 
α

ε
= y

1b  and 
β
ε

= z
1c  for the lower half space and for 

the upper half-space 222
t

2 A..A' ε=ε , i.e. 
β

=α=
α

=
1c;b;1a 222 . 

 

 
Figure 5. Successive linear transformations used to find the potential value and the equivalent charge 
induced by a charge located at the interface between vacuum and an anisotropic dielectric (LHOA), 

starting from the known problem of a charge at the interface between two related dielectrics. 
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 (iii) A homothety H1 at constant permittivity (as defined in case (b) of § 4.1) with a dilatation 
factor k is applied to the lower half-space so that the equipotentials of the two media correspond. Note 
that these equipotentials are ellipsoids different in each half-space, and the homothety is used to 
recover the potential continuity. This imposes that α and k can not be chosen but that their values are 

fixed and one obtains 4
x

y

ε

ε
=α , 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

ε
ε

+
ε

ε
=β 4

y

x4
x

y

2
1

and 4
yx

1k
εε

= . 

Finally, the approximate solution of the potential created by a point charge located at the interface 
between the vacuum and a LHOA dielectric is obtained and the charge Q that creates the field can also 
be deduced from the charge q of the reference problem: 

 12 Adet
2
qkAdet

2
qQ +=      (39) 

and by replacing the different terms by their values in function of εx , εy , εz, one obtains the equivalent 
charge seen from the vacuum: 

 
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

ε
ε

+
ε

ε
=β⎟

⎠
⎞⎜

⎝
⎛ εεε+

β
= 4

y

x4
x

y
yxz 2

1with11
2
qQ     (40) 

Also, seen from the vacuum and taking into account the change of the coordinate system (X,Y,Z) = A2 

(x,y,z) with ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
β+

α
+α=++= 2

2
2222 ZYXzyxr  and 4

x

y

ε

ε
=α , the potential created by 

the charge Q, which follows the equation (39), is given by 
βπε

=ϕ=ϕ
1

r4
q)z,y,x()Z,Y,X(~

0
. By 

replacing q and β by their respective values, one obtains: 

 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
β+

α
+αα

+α⎟
⎠
⎞⎜

⎝
⎛ εεε+πε

=ϕ
2

2
2yxz0

ZYX

1
1

2

1

Q2
4

1)Z,Y,X(~  (41) 

with 4
x

y

ε

ε
=α and 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

ε
ε

+
ε

ε
=β 4

y

x4
x

y

2
1

. 

The equation (41) gives the potential in the vacuum, created by a charge Q located at the interface 
between the vacuum and a linear homogeneous orthotropic anisotropic material. 
If this material is a isotropic-transverse dielectric (LHIT) i.e. such that ITyx ε=ε=ε  then α=β=1 and 
equation (41) becomes 

 ( ) ( )222ITz0
IT

ZYX

1
1

Q2
4

1)Z,Y,X(
++εε+πε

=ϕ    (42) 

The same result as the one published by Mele are obtained for this particular case of transversal 
isotropic dielectrics (eq (32) in [12] with s=0). 
Note that for a transversal isotropic material, when the charge is lying at the interface or inside the 
material, the equipotentials in the upper half-space are circular. The same method of linear 
transformation can also be applied for charges inside the dielectric but the corresponding calculations 
will not be presented here (to not increase too much the length of this article). The obtained result is 
that, for a charge located inside the dielectric at a distance s, the anisotropy will induce an apparent 
displacement of the charge at the position s' for an observer situated in the vacuum, and the charge has 
to be renormalized. 
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 d's
z

IT
ε
ε

=       (43) 

  
 
4.4. Comparison with the equipotentials obtained by finite element simulation 
The previous analytical calculations (equation (41)) of the equipotential network created by a point 
charge lying at the interface between the vacuum and a LHOA dielectric give the following equation 
of the equipotentials: 

 CZYX 2
2

2 =⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
β+

α
+α     (44) 

The obtained equipotential are then ellipsoids with the three respective values for the main-axes: 

β
∝α∝

α
∝

1c;b;1a  with 4
x

y

ε

ε
=α and 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

ε
ε

+
ε

ε
=β 4

y

x4
x

y

2
1

. The intersections of these 

ellipsoids with the Z=0 plane, are ellipses whose ratios of the corresponding main-axis values a/b is 
equal to 1/α. 
By using the finite element simulation program COMSOL Multiphysics™, we can simulate the 
presence of a quasi-point charge (100 pC located in a hemi-sphere of radius 5µm) at the interface 
between the vacuum and a LHOA dielectric. Figure 6 gives the obtained equipotentials in the case of a 
LHOA material with 1/α≈1.19 i.e. with the same dielectric properties as TiO2 rutile. The direction of 
electron injection and the values of the permittivities are given on the figure 6. The calculated 
equipotentials far away from the charge (to keep the approximation of a point charge) are effectively 
ellipsoids. The ratios of their respective main axes value in the potential range 300V <Vξ= 2Vl <600V, 
that corresponds approximately to the experimental conditions where the point charge approximation 
is valid, vary in the range [1.1, 1.3] and are approximately equal to the expected value 1/α≈1.2 for a 
low lecture potential but this ratio increases for higher potential (near the stored charge). 
 

 
Figure 6. Projection of the equipotential ellipsoids onto the OX2Y2 plane obtained by COMSOLTM 
finite element simulation in the case of a hemispherical charge located at the interface between the 

vacuum and TiO2, for low potential values. The interface plane is the (110) plane, the permittivities in 
the OXY plane are respectively εX=86 εY=170. 

 
 
4.5. Consequence of the elliptic equipotentials on the mirror image 
Returning to the general case of LHOA dielectrics, one can determine from equation (41), the 
equipotentials created by a point charge located at the interface between the vacuum and a LHOA 
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dielectric. They are given by CZYX 2
2

2 =⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
β+

α
+α , with C a constant. Their associated matrices 

are then 

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

β
α

α

=

C
00

0
C
10

00
C

M , by applying the results obtained in Appendix A, the corresponding 

curvature tensor is given by 
0x.M

MC rΣΣ =  , in M0(0,0,Z), belonging to the equipotential CZ2 =β  and  

C
Z

C
x.M 0

β
=

β
=

r
, so the curvature radii of the equipotential on the e-beam axis are equal to:  

 
β

α
=

CR
1

x
 and 

βα
=

C
R
1

y
     (42) 

 
From equations (8), (9) and (42), one can deduce (i) that if yx ε≠ε , then the mirror image created by 
a point charge stored at the interface between the vacuum and an anisotropic material is elliptic and 
not circular like in the case of a point charge in a isotropic dielectric, (ii) that the ratio between the two 
main axes values of the elliptic mirror image is given by 

 
y

x
2

y

x 1
R
R

ε
ε

=
α

=        (43) 

This equation demonstrates that for a point charge at the interface between vacuum and an anisotropic 
material (not LHIT), the major axis of the induced elliptic mirror image is along the direction of higher 
permittivity. 
Note also that the variation of the two main axes values Rx and Ry of the elliptic mirror versus the 
lecture potential Vl is such that their ratio is kept constant as far as the point charge approximation is 
valid, and equal to the value given in equation (43). 
 
 
 5. Example of experimental mirror curves on TiO2 
 
5.1. Material and associated coordinate systems 
Titanium dioxide presents three principal crystallographic structures: rutile, anatase and brookite. 
Rutile is the common and most stable form. In this study, oriented (110) and (001) samples of pure 
single-crystal rutile were used. Rutile crystallizes in a tetragonal system whose lattice parameters are a 
= 0.495 nm and c = 0.259 nm. As shown in our previous publication, rutile traps electric charges only 
at low temperature, due to strong leakage current and too weak traps [7]. 
If one takes a first coordinate system (X1 ,Y1 , Z1) = (CS1) wherein axes are respectively along the 
[110], [ 011 ], and  [001] directions of the crystallographic coordinate system, the permittivity tensor 
is diagonalized. This CS1 is used for the electron injection performed in the [001] direction, for which 
the interface is the plane (001), so that the rutile can be considered as a linear homogeneous 
transverse-isotropic material in this configuration. Indeed, in this coordinate system (CS1), the 
anisotropy of the relative dielectric constant of rutile is characterized at 300K by the following 
dielectric tensor [13] and εX=εY: 

 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=ε

17000
0860
0086

)1CS/(rutile      (45) 
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For the electron injection in the direction [110], a second coordinate system (CS2) has been chosen, 
wherein axes are respectively along the [001], [ 011 ], and [110] directions. In that particular 
orientation of the crystal compared to the electron injection, the dielectric permittivity is not 
axisymetric versus the electron injection direction, indeed εX=170 and εY=86. In the CS2, the dielectric 
tensor is written: 

 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=ε

8600
0860
00170

)2CS/(rutile      (46) 

 
5.2. Comparison between experiment and calculation. 
Figure 7 shows the mirror images obtained for the two directions of injection, at relatively high lecture 
potential. The mirror shape is circular in the case of (001) plane (figure 7(a)) and elliptic in the case of 
(110) plane (figure 7(b)). This anisotropy of the mirror image can be due to two simultaneous effects: 
(i) to the anisotropy of the trapped charge distribution itself, possibly due to the anisotropy of the 
material (ii) to the anisotropy of the dielectric permittivity even if the stored charge distribution is 
isotropic. 
 
5.2.1. Electron injection in the [001] direction. The fact that the mirror is circular, in the case of [001] 
injection direction, is consistent with the above analytical calculations (eq.(43), (44)). Indeed, we 
showed that for this direction of injection, rutile can be considered as tranverse-isotropic, and α is 
equal to 1. Thus, the radii Rx and Ry of the curvature tensor, and thus of the mirror image, are equals 
when the point charge approximation is verified. At higher lecture potential, the mirror image remains 
circular. From our calculations in part III, we showed that if the charge distribution is not axisymetric 
compared to the injection direction the image mirror becomes elliptic. We can then conclude, from the 
fact that the mirror image stays circular, that the trapped charge distribution is axisymetric.  
 
5.2.2. Electron injection in the [110] direction. Experimentally an elliptic mirror image is obtained in 
this direction of injection as seen in figure 7 (b). When the sample is rotated in the (110) plane, the 
elliptic mirror image is also rotated of the same angle, confirming the crystallographic nature of the 
observed anisotropy. As predicted by our previous calculations the major axis of the mirror is along 
the [001]=X2 direction that is the direction of highest permittivity. 
First, we will consider the image mirror obtained at low lecture potential (in the range 200-400 eV). 
For such low potentials, the point charge approximation is supposed to be valid and the charge will be 
considered as isotropic. Thus, it corresponds to the previous treated case where the injected charge is a 
point charge at the interface between a LHOA dielectric and the vacuum. In that case the two mirror 
diameters dX2, dY2, corresponding respectively to the main-major axis and main-minor axis values of 
the mirror image, should fulfil the condition defined by equation (43) whatever the low lecture 
potential.  
Experimentally, the slope at the origin of the 1/d curves versus Vl corresponding to the two main-axes 
of the elliptic mirror can be evaluated on figure 8: 

 l
Xaxismajor

V82.2
d

1
d

1

2

==
−

      (47) 

 l
Yaxisormin

V97.3
d

1
d

1

2

==
−

      (48) 

The ratio dmajor-axis/dminor-axis is then approximately equal to 1.41 experimentally, that corresponds to the 

expected analytical ratio 406.1
86

1701
R
R

y

x
2

y

x ==
ε
ε

=
α

=  
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Figure 7. Experimental mirror images obtained on TiO2 samples with a 1keV lecture potential in two 

different e-injection directions: (a) Injection in the [001] direction with the definition of the 
corresponding coordinate system CS1=(X1 ,Y1 ,Z1). Note that the permittivity is isotropic in the OX1Y1 
injection plane (b) Injection in the [110] direction with the definition of the corresponding coordinate 

system CS2=(X2 ,Y2 ,Z2) Note that the permittivity is anisotropic in the OX2Y2 injection plane. 
 

For higher lecture potential, the point charge approximation is no more verified and a curvature of the 
curve is observed. This observation is classical and is directly linked to the spreading of the charge 
distribution for LHI dielectrics [7, 8]. However, for TiO2, one can observe on figure 8 that the 
variation of the minor-axis diameter is stronger than the ones for the major axis versus the lecture 
potential value. To interpret these variations of the main-axis value at higher potential, it is possible to 
combine the two approaches of paragraph 3, anisotropic distribution of the charges, and of paragraph 
4, anisotropy of the dielectric. This interpretation necessitates other calculations and will be published 
later. 
 
.  

 
 

Figure 8. Experimental mirror curves 1/d=f(Vl) that show the evolutions of the two main-axis 
diameters of the elliptic mirror obtained on TiO2 in the case of the [110] e-injection versus the lecture 

potential Vl. 
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6. Conclusion 
 
The development of new materials leads to obtain anisotropic structures that have also anisotropic 
properties (mechanical, optical and dielectrical). This article presents a new analytical method based 
on linear transformations of the classical electrostatic solutions, in order to calculate the electrostatic 
field created by electric charges embedded in such anisotropic dielectrics (εx ≠ εy ≠ εz). In this case, the 
equipotentials are ellipsoids and the electrostatic potential can be evaluated analytically or by finite 
element simulation. 
The anisotropy can also influence the transport of electrical charges and their trapping in the 
insulators. One relevant way to characterize the transport properties of insulators and their ability to 
trap electrical charges is the use of the mirror method. However the interpretation of the SEMME 
experimental results was only known for isotropic materials and for isotropic (or axisymetric) 
distribution of the stored electrical charges, and was not correct for anisotropic materials. 
In this article, we have shown that elliptic mirrors can be obtained analytically either for a homeoidal 
charge distribution in an isotropic dielectric or for a charge embedded in a LHOA dielectric with two 
different permittivities in the e-injection plane. It is now possible to quantitatively interpret the 
experimental mirror results, but also any other effect resulting for a natural or artificial injection of 
electrical charges in an anisotropic dielectric which results in the creation of a local electrostatic 
potential. 
 
 
 
Appendix A: Curvature tensor of an ellipsoidal equipotential 
 
An ellipsoid can be defined by its quadratic form M, where M is a 2x2 matrix, and by the equation 

 1x.M.xt =
rr

      (A.1) 
The tangential plane Σ at the point )x(M 00

r
follows the equation  

 0x.M.x 0
t =δ

rr
      (A.2) 

where xrδ  belongs to the tangential plane Σ. The normal vector 0nr  at the tangential plane Σ is given 
by (cf. figure 2b) 

0

0
0 x.M

x.Mn r

r
r

=       (A.3) 

Locally, near M0, a point M'( 'xr ) with 00 nzxx'x rrrr
+δ+= and Σ∈δxr  belongs to the ellipsoid if it 

follows the equation (a). By writing equation (1) for M' up to second order terms in z2, one obtains: 

 
0

t

x.M
x.M.x

2
1z r

rr
δδ−

=      (A.4) 

Moreover, the local equation of the surface near the point M0 can also be written versus the local 
curvature tensor (see figure 2(b)) 

 x.C.x
2
1z t rr

δδ
−

= Σ      (A.5) 

So, we finally obtain  
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where MΣ and CΣ are respectively the restriction of the quadratic form M to the tangential plane Σ and 
CΣ the curvature tensor at that point. 
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Appendix B: Reference electrostatic problem 
 
Consider the case of a point charge q at the interface between two LHOA dielectrics with 

permittivities ε1ref and ε2ref defined as follow 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

β
α

α
=ε

00
010
00

ref1 and 
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

β
α

α
=ε

00
00
001

ref2

 . The equipotentials for such a problem can be approximated in a first step by spheres, and 
then the potential can be written: 
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0 )zyx(4
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=      (B.1) 

For example in the upper half-space, by writing the corresponding field D
r

: 

 
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

β
α

α

++
πε

=∇−ε=
−

z

y
x

)zyx(
4
Cq))r(V.(D 2

3
222

0
ref1

rr
   (B.2) 

This field has to follow the equation 0)D(div =
r

 after calculation one obtains: 

( ) 0KzJyIx)zyx(
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Cq)D(div 2222
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=++++

πε
=

−r
with β+

α
+α−=

12I , β+
α

−α=
2J  and 

β−
α

+α= 21K . To have the exact solution we should have I = J = K = 0, that is not possible. 

However in the case of the backscattering of electrons on an equipotential near the e-beam axis, the 
important term is the one concerning the space coordinate z that must be minimized. So by choosing 

⎟
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⎜
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α
+α=β

1
2
1

 the term K is zero, and )1(JI α−
α

=−= . With this solution there is no increase of 

the error when z is increasing and the errors in the plane z=0 are self-compensating because of the 
exchange between α and 1/α and they are null on the diagonals x = ±y. The same calculations can be 
done in the lower half-space. Finally, the corresponding charge q is given by  

 qCn.Dn.Dq

spacehalf
lower

spacehalf
upper

β=+= ∫∫
−−

rrrr
    (B.3) 

which determines the constant C=1/β. 
By replacing the constant C in the equation (g), it comes: 
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