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SPECTRAL PROPERTIES OF GENERAL ADVECTION OPERATORS AND
WEIGHTED TRANSLATION SEMIGROUPS

B. LODS, M. MOKHTAR-KHARROUBI, AND M. SBIHI

ABSTRACT. We investigate the spectral properties of a class of wedgstift semigroup@/(¢)):>o
associated to abstract transport equations with a Lipsetontinuous vector field# with no—
reentry boundary conditions. Generalizing the result25ff ve prove that the semigroup((¢))+>o
admits a canonical decomposition into theg@esemigroupsgifi (t))i>o, (U2(t))e=0 and(Us(t))e=o
with independent dynamics. A complete description of thectp of the semigroup@/; (t)):>o
and their generatorg;, i = 1,2 is given. In particular, we prove that the spectra/pre left-half
plane and that the Spectral Mapping Theorem holsl§4; (t)) = exp {t&(7;)}, ¢ = 1, 2. More-
over, the semigroufifs(t)):>0 extends to &o-group and its spectral properties are investigated
by means of abstract results from positive semigroups yh@dre properties of the flow associated
to .# are particularly relevant here and we investigate segdsrtite case of periodic and aperiodic
flows. In particular, we show that, for periodic flow, the SpaldMapping Theorem fails in general
but (U3(t))¢>0 and its generator; satisfy the so-called Annular Hull Theorem. We illustrate o
results with various examples taken from collisionlesetimtheory.

1. INTRODUCTION AND PRELIMINARIES

We develop in the present paper a systematic approach tepéuotral analysis in.?-spaces
(1 < p < o) of a class ofveighted shift semigrougising in kinetic theory

t
U) : fr— Ul) f(x) = exp {—/0 v(®(x, —s))ds} O =) Xp<r 3(x)  (1.1)
where the flond(x, ¢) is associated to a globally Lipschitz transport fighkdandv (x) is given by
v(x) = h(x) + div(.F)(x), x e
where the function and.# satisfy the following:

Assumption 1.1. The field# : @ — R¥ is Lipschitz-continuous with Lipschitz constant- 0.
Moreover, its divergencdiv(.#) is a bounded function of2. The absorption functiot(-) is
measurable and bounded below.

Before explaining more in details the contents of this wavk, have to explicit a bit the first
properties of the different terms arising in E4.1). Since.% is Lipschitz overQ2 (with constant
k > 0), itis known from Kirszbraun’s extension theoredi’[ p. 201], that¥# can be extended
as a Lipschitz function (with the same Lipschitz constant 0) over the whole spack”. We

Keywords:Spectral Mapping Theorem, weighted shift, Annular Hull @em, transport equation.
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2 B. LODS, M. MOKHTAR-KHARROUBI, AND M. SBIHI

shall still denote this extension b¥. In Eq. (L.1), ®(x,t) is the unique maximal solution of the
characteristic equation

d -z .

FX(1) = F(X(D),  (t€R); 12

X(0) =x,
which is well-defined since the (extended) fieldis globally Lipschitz. In {.1), 7_(x) denotes
the stay time irf2 of the characteristic curves> 0 — ®(x, —t) starting fromx € € :

7+ (x) = inf{s > 0; ®(x, £s) ¢ Q}, (1.3)

with the convention thainf @ = co. In other words, giverx € Q, Ix = (—7_(x), 74 (x)) is the
maximal time interval for which the solutioK (¢) lies in 2 for anyt € Ix. We shall denote by
7(x) := 74 (x) + 7_(x) the length of the maximal intervdl,.

The general strategy we adopt to describe the spectral fhiepef the semigroul/(t)):>o
consists in a canonical decomposition of the semigidL(p) ), into three semigroup@4;(t)):>o,
(¢ = 1,2,3) with independent dynamicthe third one(ifs(t)).>o extending to a’y-group. No-
tice that it would be possible to investigate the spectraperties of(i/3(t)):cr Within the general
framework developed inl3, Chapter 6] (see als@?]). The approach ofl3] uses sophisticated
tools from dynamical systems theory while our approach isfetely different and relies on gen-
eral results concerning the spectral propertie§@froups inLP-spaces given in the Appendix.

1.1. Preliminaries and motivation. If 7(x) is finite, then the functioX : s € Ix — ®(x, s)
is bounded since” is Lipschitz continuous. Moreover, still by virtue of thepsichitz continuity
of .7, the only case whemy (x) is finite is when®(x, +s) reaches the bounda®f so that
O (x, £74(x)) € 092. We finally mention that it is not difficult to prove that the ppngs. :
Q — RT are lower semi-continuous and therefore measurahlp.[ 301]. Note that, since the
field .7 is not assumed to be divergence—free, then the transfametiiuced by the flowdb is
not measure—preserving. Precisely, one has the follovdhg]:
Proposition 1.2. Let o; denote the image of th¥-dimensional Lebesgue measutehrough the
transformationT; : x — ®(x, —t), (t € Ix). Then,g, is absolutely continuous with respectrto
and its Radon-Nikodym derivati\% with respect tan is given by
t
%(x) = exp [/ div(F)(®(x, s))ds form—ae xeQ, tel.
0

The semiflond enjoy the following elementary properties
Proposition 1.3. Letx € © andt € R be fixed. Then,
(i) ®(x,0)=x.
(i) D(D(x,51),82) = P(x,51 + 82), Vs1 € Ix, 82 € (—81 — 7— (%), 74 (X) — 51).
(iii)) |P(x1,t) — P(x2,t)| < exp(k|t])|x1 — x2| foranyx;,xs € Q,t € Iy, N Ix,.
In all the paper, wéix 1 < p < oo and set
X = LP(Q,dm).
The following classical result (see, e.dZ, b, 8]) asserts that the famil{t/(¢)):>o given by (L.1)
is a strongly continuous semigroup of bounded operatoss.in
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Theorem 1.4. Let
t
U(t)f(x) = exp [—/0 v(P(x, —s))ds} F(@(x, =) X {t<r_ (x)} (%), xe, feX,

wherey 4 denotes the characteristic function of a skt The family(L/(t));>o is a positiveCy-
semigroup of bounded operators . We shall denote b§7", (7)) its generator.

In the present paper, we do not need to explicit further threegetor (7', 2(7)) of (U(t)):
since our spectral analysis does not depend on its descrigilote however that, £ is a suffi-
ciently smooth open subsetBf", then it can be shown that the generdtdtr (7)) is explicitly
described in§] for A = 0. In some sense, which we do not explicit here (see for instf)&]),
the semigroug/(¢)):>o governs the following advection equation:

O f(x,1) + Vx - (F(x)f(x,1)) + h(x) f(x,1) =0 (x €, 1>0), (1.4a)
supplemented by the boundary condition
f\l—‘, (yvt) =0, (y el_t> 0)7 (l4b)

and the initial condition
f(X>O) = fO(X)> (X S Q)v (14C)
wherel'_ is the incoming part of the boundary ©f (we refer the reader t&[ 7] for details on the

matter), i.e.f(x,t) = [U(t) fo](x) at least for regular initial datg,. A typical example of such
an absorption equation is the so-called Vlasov equatiowfoch:

i) The phase spac® is given by the cylindrical domai®2 = D x ¥ c RS whereD is a
smooth open subset &, referred to as thposition spaceand? C R? is referred to as the
velocity space

i) Foranyx = (z,v) € D x ¥,

Z(x) = (v,F(z,v)) € R (1.5)
whereF = (Fq,F9, F3) is a time independent globally Lipschitz field (the forced)ebver
DxV.

With the above choice, Eql 4§ reads:

Of(x,v,t) +v-Vaf(z,v,t) + F(z,v) - Vyf(x,0,t) +v(z,v)f(x,v,t) =0, (1.6)

supplemented with suitable initial and boundary condgi¢see {.40)). More general problems
can be handled with. For instance, one can treat with ourdbsm the collisionless version of
the linear Boltzmann arising isemiconductor theory

O f(r,k, t) + %Vke(k) Vi f(r k,t) + %5 Vi f(r,k,t) +v(r, k) f(r,k,t) =0

where the unknowry (r, k, t) is the density of electrons having the positiore R?, the wave-
vectork € R? at timet > 0. The parameters and 27/ are the positive electron charge and
the Planck constant respectively whilg) represents the electron energy a&he- £(r, k) is an
external electric field.
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The abstract equatiord () allows also to consider collisionless kinetic equationrédativistic
models for which

v=u(p) = L :
my/1+ p?/c2m?

wherem stands for the mass of particles antbeing the velocity of light. For all this kind of
models, the solutiorf to the collisionless kinetic equation is given, under sésconditions on
the data, byf(x,t) = U(t) fo(x) where f, corresponds to the initial state of the system &fft)
is a weighted shift semigroup of the shapel). We provide in the rest of the paper a large number
of examples arising in kinetic theory for which our abstragults apply. Spectral properties of
systems of scalar advective equations on the torus coupledgseudo-differential operator of
order zero (motivated by fluid mechanics ) are dealt with byy8koy [28] (see also27, 29, 30,
14]). We note certain similarities between some of those tesand our results concerning the

group (Us(t))icr-

1.2. Main results and methodology. To describe the spectral features of the semig(dL(p) )+ >o
and its generatdrl, we generalize the approach initiated in a recent work o$éoend authoiZ5).
The analysis ofZ25] is restricted to the neutron transport equation, corredpm to the choice of
F = 0 in the above equatiori(6). We generalizeZ5] to general vector field#. Precisely, thanks
to a suitable decomposition of the phase spcaccording to the finiteness of (-) and (),
we show that a general weighted shift semigr@ift)):>o admits a canonical decomposition
into three semigroup&/;(t)):>o0, (i = 1,2, 3) with independent dynamicg he third semigroup
(Us(t))+=0 actually extends to &-group, which corresponds to the global in time fld@\t, -)
already investigated irep]. Concerning the spectral properties of the semigraqifi$t)):~o and
(Ua(t))e=0 (which correspond ttrajectories(®(x, t)), such that either (x) or 7_(x) is finite),
they both enjoy the same spectral structure:

SUi(t)) = {p; |p| < exp(—it)}, S(T;) = {\; ReA< —}, i=1,2 (1.7)

where~; (i = 1,2) are positive constants, depending/oand.# (see Theorem8.4& 2.6). The
above description relies on several abstract results atiygosemigroups on Banach lattices and,
in particular, on the following property, proved i24]:

Proposition 1.5. Let (7'(t)):>0 be aCy-semigroup of positive operators on a complex Banach
lattice X. LetQ) denote the subspace of local quasinilpotencé€ltt));>o:

P = {u €x, tllrgloexp %log HT(t)(\u])Hx] = 0}.

If Q) is dense ir¥ then|0, exp(wo (T)t)] C Sap(T'(t)) for anyt > 0 while (—oo, s(A)] C Sap(A),
wherewy(T') € [—o0,00) is the type of(T'(¢)):>o and s(A) denotes the spectral bound of the
generatorA of (T'(t)):>0-

Such a result allows to describe very preciselyrésd spectrunof U/ (t) andis(t). Then, to
deal with the non-real spectrum, we prove the invarianceotstion of the spectrum @f; (¢) and
U>(t) and the invariance by translation along the imaginary aktbeir generators. This is done
in the spirit of 31], see Propositior2.2.
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The description 1.7) shows in particular that, whenever the fldw(and the geometr§?) do
not allow trajectories that are global in both positive amdjative times (i.e. either,(x) or
7_(x) is finite), then the spectrum of the generafois a left-half plane and the Spectral Mapping
Theorem

SU(t)) =exp (6(T)t), t >0, (2.8)
holds. Such a result seems to be new. Actually, we show thgttba existence of periodic
orbits and/or stationary points could prevent the Spedfi@bping Theorem1(.8) to hold. In-
deed, when dealing with th€,-group (U5(t)):cr, we show that, here again, this group admits a
canonical decomposition into three groups with independgnamics(Uyest (t))tcr, (Uper (t))ter
and (U (t))ter corresponding respectively to stationary orbits, pedaibits and infinite orbits
which are neither stationary nor periodic. The spectralyaigof (Lcs(t))er is really easy to
derive sincel4,.s(t) acts as amultiplication group. On the other hand, the grold..(t)):cr
falls within the general theory of Mather groups associabedperiodic flow investigated irlp]
and R2]. Concerning the delicate case of periodic trajectories,de@al with a description of the
spectrum of the generatdf,., and prove (thanks to a general result on positiegroupson
LP-spaces) thald,e; (t)):cr fulfils the so-called Annular Hull Theorem

T - SUper(t)) =T - exp <t(6(7;0r) ﬂR)), vt € R.

Notice that, in full generalityl4,.:(t) does not satisfy the Spectral Mapping Theordn8)((see
Example4.l).

The organisation of the paper is as follows: in Section 2, staldish the aforementioned
decomposition oft/(t)):>o into three semigroup84;(t)):>o, (i = 1,2, 3) with independent dy-
namics. Moreover, we provide a complete description of feesum of (L4 (t):>0, (U2(t))i>0
and their generators and illustrate our results by severahples from kinetic theory. The prop-
erties of the groufiiss(t)).>o are investigated in Section 3 where we deal only with statipror
aperiodic flow. In Section 4, we investigate the more deticase of a periodic flow. Finally, in
the Appendix, we state some known and new abstract resuttempectral properties of positive
Cy-semigroups irLP-spaces] < p < oc.

2. SPECTRAL PROPERTIES OF THE STREAMING SEMIGROU®/(?)):>0
Let us define the following subsets Qf
Q) ={xeQ; 71(x) < o0}, Qy ={xe€Q; 7(x) =occandr_(z) < oo}
and
Q3 ={xe€Q; 74(x) =7_(x) = 00}.
Moreover, define
Xi={feX; f(x)=0 m—aexecQ\Q}, i=1,2,3.

In the sequel, we shaillentify X; with LP(£2;,dm), i = 1,2, 3. Since(;);=1,.. 3 iS a partition
of Q, it is clear that
X =X1 6 Xs® Xs.
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Of course, ifm(€2;) = 0, the spaceX; reduces tq0} and drops out in the direct sufh= 1, 2, 3).

Following [25], we can state the following:

Theorem 2.1. For anyi = 1,2,3, X; is invariant under(l(t))¢>o. Definel4;(t) = U(t),y, for

anyt > 0,7 =1,2,3. Then,(U;(t)):>o is a positiveCy-semigroup ofX; (i = 1,2, 3) and
SU(t)) = S(Ui(t)) U S(Us(t)) U S(Us(t)) (t>0) (2.1)

whereS (U, (t)) stands for the spectrum &f () in the spaceX; (i = 1,2, 3). Moreover,(Us(t)):>o0

extends to &y-group in X3.

Proof. Let f € X and recall that

U(t) f(x) = exp {— | vt —s))ds} F@0 D) xprer ooy (x) (£ 0).

Consequently, it/(t)f(x) # 0, thent < 7_(x) and f(®(x, —t)) # 0. Moreover, one deduces
easily from Propositior.3, that 7, (®(x, —t)) = t + 74(x) for anyt < 7_(x). Therefore,
7+(x) < oo ifand only if 7 (®(x, —t)) for anyt < 7_(x). As a direct consequence, one gets that
U(t)f(x) = 0m-a.e. o2\ Q; for any f € X;. This shows thak; is invariant undefi/(t));>o.

In the same way, still using Propositidn3, one observes that

T_(P(x,—t)) =7-(x) — ¢ Vit < 7_(x)

so thatr_(x) < oo if and only if 7_(®(x, —t)) for anyt < 7_(x). As before, this leads to the
invariance of bothX, and X3 under(i4(t)):>o. Thus, the triple{ X, X5, X3) reduceg(t)):>o
and @.1) follows. Finally, defining{s(—t) f(x) foranyt > 0,x € Q3 andf € X3 as

Us(—t)f(x) = exp UO

—t

v(P(x, —s))ds} f(®(x,1))
one obtains easily the last assertion. O

From the above Theorem, to describe the spectfd'¢f));~o and7’, one can deal separately
with the spectral properties of the various semigro(ipst)):>o and their generato¥; on X,
i = 1,2,3. We will show in the rest of this paper that our analysig@f(t)):>o and (Uz(t))r=0
differs very much from that of the grouprs(t)):cr. In particular, to show the rotational invariance
of the spectra of the formers, we will make use of the follaywiasult B1]:

Proposition 2.2. Let 2 be a measurable subset@fsuch that
)N(:{fGX; f(x)=0 m—a.e.xeﬂ\ﬁ}

is invariant under(Z/(t) )0 and let(Z(t));o and T be the restrictions toX of (U(t));>o and T
respectively. Assume that there existeeasurable mappinga(-) : € — R such that

(@) |o(x)| is finite for almost any € €;

(b) for almost any € € such thatt < 7_(x),

a(®(x,—t)) = a(x) +t. (2.2)
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Then, for any; € R, the mapping

M, : feXr— [M,fl(x)=exp(—ina(x))f(x) € X
is an isometric isomorphism of such that
MITMy =T +igld  and  MUEM, = ™MUE) (¢ >0). (2.3)

Consequentlys(7) = &(7) + iR and S(U(t)) = SU(t)) - T for any (¢ > 0) whereT is the
unit circle of the complex plane.

2.1. Spectral properties of (U (t)):>0. To investigate the spectral properties of the restrictibn o
the Cyp-semigroup(l/(t)):>0 to X; we employ a strategy inspired b3] based upon Propositions
1.5and2.2. First, one gets the following invariance result as a shtégward application of Prop.
2.2

Theorem 2.3. The spectra oftf; (t)):>0 and7; in X; enjoy the following invariance properties:
S(T)=6(T) +iR  and  SA) = SU®)-T  (t>0)
whereT is the unit circle of the complex plane.

Proof. The proof consists in applying the above Proposifiaito the subsef2; and the subspace
X using the function

a(x) = —14(x), x € Q.
One checks immediately tha{-) fulfills (2.2). Note thatx(-) is finite over(2;. O

According to the above Theorem, to describe the spectralresof(i/(t));>o, it is sufficient
to describéts real spectrumWe shall denote

Yp(x) = h(x) + ]%div(ﬁ)(x), x € Q,

wherep* is the conjugate of the exponeh p < co we fixed at the beginningﬂl—* + - =1

1
p
Theorem 2.4. Assumen(£2;) # 0. One has
S(Uh(t) = Gap(th(t)) = {¢ € C; [¢] < exp(—mnt)}
and
S(T1) = Gup(T1) = {N; ReA < —mn}
where

t
"= tli)rgo inf {t_l/o Yp(P(x,—s))ds; x € Q, t < T_(X)} .

Proof. Let us denote by (U4 ) the type of(i (t)):>0 and let us fix > 0 and f € X;. One has

L6 (8) fII%, 2/{ <oy T [—p/o V(q’(X’—S))dS}\f(CI’(& )" Xgr<r_ (03 () dm(x).
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Recalling that the finiteness of (x) is equivalent to that of, (®(x, —t)) for anyt < 7_(x), the
change of variable — y = ®(x, —t) mapsf2; onto itself. Moreover, according to Proposition
1.2, the Jacobian of the transformation is given by

G(t,y) = exp {/Ot div(?)(@(y,s))ds} .

Now, using thatb(y, s) = O(x,t,s) = ®(x,s —t) € Qaslongad <t — s < 7_(x), one sees
that

X{14 (x)<oo}n{t<7_ (x)} (X) = X{7+(y)<ooIn{rs (y)>t} (y) :

Therefore,
t
|nh<wfn&1::Jcm(y%am}exp[—43[;u(@(y,r»dr}UXyNPXﬁ<TMy»<yx;u,y)dwwy>
t
-/ exp [—p / zp<<1><y,r>>dr] FOPX(t<rs (3 (3)dm().
{re(y)<o0} 0
(2.4)
Consequently,

Wl = sup {exp [ [ S@trar] i mat) < oot < i)}

or, equivalently,

log (|t ()] z(x,) = — inf {/0 Yp(®(y,7))dr; 74 (y) < oo, t < T+(y)} :

Performing now the converse change of variaple> x = ®(y, —t) one sees as previously that

log [t (t)[| z(x,) = — inf {/0 Ep(P(x, —s))ds; T4(x) <00, t < T_(X)} :

Finally, recalling thatuo (1) = limy o ¢~ " log [|U1(t)]| (x,), One deduces thaty(l) = —71.
Moreover, from the positiveness @f (t)):>o and B3], one getss(7;) = —v; wheres(7;) is the
spectral bound of;. Let us now show that the sg}; of local quasi-nilpotence off (t)):>o is
dense inX;. Indeed, sef2]* = {x € Q; 7 (x) < m}, m € N. One ha€2; = U,,>19Q7". Set
Y1 = Un1 X7 Where X" = {f € X1; f(x) =0 a.e.x € Q1 \ Q"}. One checks easily that
Y1 is adense sublattic¥;. Now, let f € Y;. There exists some integer > 1 such thatf(x) = 0
for almost every € Q, with 7. (x) > m. From @.4), one gets

K@) fDllx, =0 VE>m

which clearly shows thal; is a subset of); and shows th&l); is dense inX;. From Proposition
1.5, one gets then that

(_OO’ _/71] - Gap(’]—l) and [OveXp(_’Vlt)] - 6ap(bll (t)) (t > O)

Now, the result follows from the invariance &(7;) and &(i4(t)) under vertical translations
along the imaginary axis and under rotations respectivtheorem?2.3). O
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2.2. Spectral properties of (Uz(t))r>0. Let us investigate now the spectral properties of the re-
striction of (U(t)):>o to the subspac&,. As in the previous case, the main ingredient of our
proof is the following special version of Propositi@r?.

Theorem 2.5. The spectra ofif»(t)):>0 and 7 in X, enjoy the following invariance properties:
S(T) =6(T) +iR  and  Sh(t) = SU 1) T  (t>0)
whereT is the unit circle of the complex plane.
Proof. The proof consists in applying the above Propositiahto (4> (t)):>0 by choosing
a(x) = 7-(x), x € Q.
One checks immediately tha{-) fulfills (2.2) and thato(-) is finite Q. O

This leads to the following result whose proof is a technigaheralization of 25] that we
repeat here for the self-consistency of the paper.

Theorem 2.6. Assumen(£22) # 0. One has
SUs(t) = {6 €C: [¢] Sexp(—m2t)}  and  &(T3) = {A; ReA <~}
where .
Yo = t{ngo inf {t_l/o Yp(P(x,8))ds; x € Qg, t < T_(X)} .

Proof. The proof relies on duality arguments. We only prove it in fiiecase, the caske < p <
oo being simpler (see2p]). Since the dual semigroufd/; (t)):>o0 of (Uz(t))¢>o is not strongly
continuous or.*°(£22), we have to introduce the space of strong continuity

x5 = {oe 120 Jim, sup W90 - a0 =0 }.
t—0" xe0,

The general theory of-semigroups 16, Chapter 2, Section 2.6] ensures tt4}f is a closed

subset ofL>°(£2y) invariant underi43 (t)),>o. For anyt > 0, definelss’(t) as the restriction of

Us(t) to X3, i.e. (US(t))i>o is the sun—dual semigroup (s (t))i>0.. Then, the semigroup

(U (t))i>0 is aCy-semigroup ofX5’ whose generator is denoted By’. Then, [L6, Chapter 2,

Section 2.6],

L) ={9€2(T3); g X5} and  Tg=T'g,  Vge (L),
whereZ; denotes the dual operator @ whose domainZ(75") is dense inXy’. Moreover [L6,
Chapter 4, Proposition 2.18],

6(T) =6(T) =6(Ty)  and  SUa(t) = SUs(t) = S (1))

where the spectra d@f;randi/; (¢) are intended in the spadé® (Q22) while that of 7,” andi/y ()
stand for spectra iy . Define

—

X?:{geXQQ; lim sup ]g(x)]:O}

T_(x)>1
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and let us show tha?/(26 is invariant undefi4s’ (t)):>o. Indeed, ley € )/(25 andf = (A—1Ty)"1g
where) > 0. Using again Propositiofi.2, one can check without difficulty that the dualigf(t)
is given by

U5 (0)9(x) = oo |- [ (. )s] (. )

foranyt > 0, x € Qg andg € L>(Q2) where we recall thaty (x) = oo for anyx € Qs.
Consequently,

P09 == 7) a0 = [ ew [ — [ o s (o .

Recalling that (®(x,t)) = 74 (x) — t, one sees that

sup |f(%)] < / exp(—At)dt sup |g(y)|
74 (2)>0 0 T (y)=>r

which proves thaf € 5(? and implies that thaf(-Q6 is invariant under the action @4’ (¢)):o.

Denote (145 (t))¢=o the restriction of U5 (t));>0 to X5. Define nowY, as the set ofy € X3’

for which there is some > 0 such thaty(x) = 0 if 7_(x) > r. One claims that is dense
in X5°. Indeed, for any integem > 1, let,,(-) be a continuous function fror, co) to [0, 1]

—

such thaty,,(s) = 1 for any0 < s < m and~,,(s) = 0 for anys > 2m. For anyg € X7,
one can defing,, (x) = v, (7-(x)) g(x) and prove without major difficulties thay,,),, C Y
and||gm — gll=(n,) — 0 asm — oo. This proves our claim. Now, the s}, of local quasi—

nilpotence 0f(ﬁ§(t))t>o obviously containsY; and is therefore dense iNS’. According to
Propositionl.5, one gets then

[0, exp(woU$)1)] C GapUS(H)NR  and  (—o0,wo(US)] C Gap(Z2) NR

where7, is the restriction off,” to X3’ and where we used the identity between the typ@/S’)

of (US(t)):>0 and the spectral bound G&°. SinceXs C X', one obtains the following inclu-
sion

0, exp(wo(s”) 1)] € SapUs' (1)) "R and (=00, wo(Us”)] € Gap(T3”) NR
and Theoren2.5implies that
S(Us(t) = SUS () = Gap(US (1)) = {€ € C; [¢] < explwo(Us)) 1)}

and

&(T2) = 6(T;") = Sup(Ty") = {A; Red < wo(lUhy)}-
To conclude the proof, it remains only to show m@@@) = —7,. To do so, one notes easily
that

5 O, 5, < wl0) = sup {exp [ [ hi@esas] ixe b <}
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Moreover, with the above notations, lgt,(x) = v, (7—(x)), m > 1. One has),, € )/(25 and
¥m = 1 onthe sefx € Qy; 7_(x) < m}. Therefore,

165 ()] 55, = 105" (0)oml 5

> sup {exp [— /Ot h(®(x, s))ds} X EM, < (x) < m} .

Letting m — oo, one gets|i/s ()] — w(t). One obtains immediately thaty (1Y) =

(X))
—72. U
The above results give a complete picture of the spect(& @f)):>o and7 whenm(£23) = 0:
Theorem 2.7. Assume that(€23) = 0. Then,
SU(t) ={{ € C; (] <exp(—rt)}  and  &(7)={A; Red < —7}

wherey = min{vy1,72}, 71,72 being given by Theorenis4 and 2.6. In particular, (¢(t)):>o
satisfies eSpectral Mapping Theorem &(U(t)) = exp (t&(7T)) for anyt > 0.

We shall see in the following section that the picture is ticaly different whenm(€23) # 0.
First, we shall illustrate the above results by several @tam

2.3. Examples. The above result is of particular relevance for applicatiamens? is bounded
in some directions.

Example 2.8. Let us consider the case of the classical Vlasov equatiocrides in (L.6) with
a Lorentz force. Namely, leR = D x R? whereD is a smooth open subset Bf. For any
x = (z,v) € D x R3, let.Z (x) = (v,F(v)) € R° where the force fiel® is given by theLorentz
force

F=F(v) =q(€+vxDB)

where€ € R? stands for some given electric field, € R? denotes a given magnetic field and
is the electric charge of the particle. One assumes in tlample that® and B are twoconstant
fields such that€, B) # 0 and thatD is bounded in thé-direction, i.e.

sup{[(z, B)|,z € D} < o0,
thenm(Q23) = 0. Indeed, one sees easily that the solutieft), v(¢)) to the characteristic system
Bt) =wv(t) 25
0(t) =q(€+v(t) x B), teR
with initial conditionz(0) = =, v(0) = v, is such that
(2(t), B) = S(€. B)Y* + (v, B}t + (x, B).

Since the right-hand side is unbounded as +oo for any (z,v) € Q, necessarily:(t) escapes
D in finite time andQ; = @.
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Remark 2.9. Note that, in general, the solutiofx(¢),v(¢)) to the characteristic systeif2.5)
describes an helix with axis directed aloBgand radius proportional td /|q||B| (Larmor radius).

Example 2.10. Consider now the following one dimensional relativistiarnsport equation

Ouf (@,p.1) + v (p)0:f (@,v.8) = (po(p) + (1 +27)7/)) ¢ ()0, (2,0,
+v(z,p)f(z,p,t) =0, (z,v) € (0,1) x R (2.6)

where the potentiap is a given smooth function, say< W2°°(0, 1), and the relativistic velocity
v(p) corresponding to the impulsigne R is given byv(p) = —2£

14p2'

The study of the above equatio®.®) is related to the relativistic Nordstrom-Vlasov systems
for plasma (se€ll2, 11] and the references therein). We can then define a smootbrfadtl over
Q=(0,1) x Rby

F(z,p) = (v(p), — (pv(p) +(1 +p2)‘1/2)) <25’(96)> = (\/%—pz, /1 +p2¢>’(96)>

It can be provedl2, Corollary 2] that, wheneves is convex the exit time associated to the above
field is finite for all characteristic curves with non zero uhgion, i.e., with the notations of the
above section,

T(z,p) <oo,  ¥(z,p) € (0,1) x (R\ {0}).
Therefore, Theorerf.7 applies to such a problem.

3. SPECTRAL PROPERTIES OKU5(t))ter

We are dealing in this section with the spectrum of €lyegroup (Us(t)):cr and its generator
73. We assume therefore for this section thgf2;) # 0. For anyx € Qg, the mappings —
d(x, s,0) is defined oveR. For simplicity, for anyt € R, we will denote byp; the mapping

wr @ x € Q31— pr(x) = D(x, —1).

With this notation, the groufifs(t)).cr is given by

Us(t) f(x) = exp [—/0 I/((,DS(X))dS] f (%)), Vx € Q3, t €R.

Notice that, arguing as above, it is possible to computei@iplthe type of both the semigroups
(Us(t))r=0 and (Us(—t))¢>0 (see B4, Theorem 1]). As we shall see further on, the arguments of
the previous section do not apply in general to the gr@dgt)).cr. However, for very peculiar
cases, it is possible to proceed in the same way. More phgoige recall the following definition

of section, taken fromd].

Definition 3.1. A setS C (23 is said to be a section d3 (associated to the flow) if, for any
x € §23, there exists a unique real numbfx) such thatpg)(x) € S.

One can state the following:
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Theorem 3.2. If there exists aneasurable sectionS associated to the floy, then
S(T:) = 6(T:) +iR  and  SUs(t) = SWUs(t) T,  (tE€R).

As a consequence,
S(Us(t)) = exp (t6(7T3)), (t € R).

Proof. As in the previous section, the proof consists in exhibitnfgnctiona(-) satisfying @.2).
Precisely, set

a(x) = —0(x), x € Q3
wheref(-) is provided by DefinitiorB.1 Since the sectio® is measurable, it is easy to see that
a(+) is measurable and is finite almost everywhere. Moreovem fiee definition ofd(x) as the
unique 'time’ at which a trajectory starting frommmeetsS, one has

a(p(x)) =t 4 a(x)
and we conclude the proof thanks to Proposittoh O

Remark 3.3. Notice that there exists a sectidhassociated to the floWy;):cr if and only if
(i1)tcr does not admit periodic orbits nor rest poirf& p. 48] However, it is a difficult task to
provide sufficient conditions on the fldw, );cr ensuring the sectio§ to be measurable. Let us
however mention that, whenever the fl@w).cr is dispersive ovef2; in the sense O, Chapter
IV] thenS is measurable (and the functiah-) provided by DefinitiorB.1is continuous).

Apart from the very special result above, one has to providalgernative approach to deal
with the spectral properties ¢f/3(t)):cr. The aim of this section is to get a more precise picture
of the spectrum of botfiif;(¢)).cr and73. Recall now that, for a poink € €23, since.# is
globally Lipschitz, three situations may occur:

(1) xis arest point of the flowy, ), i.e. . #(x) = 0;
(2) x belongs to a periodic orbit dfy; )., i.e. there is som&, > 0 such thatp, (x) = x.
(3) x belongs to an infinite but non closed orbit.

This leads to the following splitting di2s:
93 = Qrcst U Qpcr U Qoo
where
Qrest = {X € N3; py(x) = x Vt € R}, Qper = {x € Q3 : It >0,¢p(x) =x}
and
Qoo - 93 \ (Qrest U Qper)-
Notice that(2,.; is clearly a closed subset 6f while €2, is measurable (this follows from the
fact that the set§),,, , defined by ¢.2) are closed for any. € N according to 8, p. 314]). Itis
not difficult to see that these sets are all invariant undefltw (¢, )cr and consequently, under
the action ot4;(t) for anyt € R. Therefore, defining(,est, Xper aNd X, as the set of functions

in X3 which are null almost everywhere outside of the $2{s:, .. and2,, respectively, one
can define the following restrictions o (¢):

Urest(t) = Us ()| Xyones  Uper(t) = Us(l)|x,.,  AND Uoo(t) = Us(t)x, -
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Clearly, (Usest (t))ters (Urest (t))ter @and (Uso(t))icr are positiveCy-groups of Xyest, Xrest and
X~ respectively, whose generators will be denoted respégtine 7, ., 7per and 7. Arguing
as in Theoren?.1, the spectra df(;(¢) and73 are given respectively by

S(Us(t)) = S(Urest (1)) U S Uper(t)) U S(Uso(t)),

3.1

S(T3) = (T U S (Tyer) U S(To). Gy
Because of the possible existence of periodic orbits, ibtscteara priori that a result analo-

gous to Theorem8.3and2.5can be proved in this case (even{f) = 0). Indeed, ifm(Q2pe;) #

0, then there is no mapping(-) satisfying €.2) on Q3. Indeed, if such a mapping were exist, in

particular, for anyx € Qp.,,

a(p(x)) = a(x) +t, vt > 0.

However, there exists a periagl # 0 such thatp,, (x) = x so thatty = a(py,(x)) — a(x) = 0
which is a contradiction. Of course, the impossibility tostruct a functionx(-) with the above
properties does not imply that the spectrun¥gfs not invariant by vertical translations along the
imaginary axis. The following two examples illustrate ttegigus possible situations:

Example 3.4. Adopting notations from neutron transport theory, ass@ne- RY x VV where
V is a closed subset @&”". Then, for anyx = (z,v) € Q, with z € RY andv € V, define
Z(x) = (v,0). Then, the mapping«(x) = (x - v)/|v|? for anyv # 0, fulfills (2.2) and the
spectrum of(U(t)):>0 and7 are invariant by rotations and by vertical translationsngldhe
imaginary axis respectively (se2d, 31] for more details).

Example 3.5. Let us consider the planar fieléf (x) = (—y, z) for anyx = (z,y) € 2 = R%. In
such a case, the characteristic curvescanmilar, namely

®(x,0,5) = (rcoss —ysins, zsins + ycos s), x = (z,y), s €R.
In particular, for anyx = (z,y) € €2 one has1(x) = oo and the mapping:
t€R+— ¢i(x) = (rcost +ysint,ycost — xsint)

is 2r—periodic. This means th&, and2, are both empty sets. Consider for a whilg) = 0.
The semigrougdi/(t)):>o extends to a group and one has

UG Fx) = flei(x),  VEER, feX.

Clearly, (U(t)):er is a positive and periodi€y—group of X with period2r. As a consequence
[26], &(7) = iZ. In particular,&(7T) # &(T) + iR.

The previous example shows that one cannot hope to deduspdioral properties df3 or
(Us(t)):er from their respective real spectrum as it was the case foretsteictions of(4(t)):>o
to X7 and Xs.
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3.1. Stationary flow. We first deal with the spectral structure of the gaft.s;(t)):cr of the Cy-
group(U(t)):er acting on the set of rest poind,.s;. Sincey;(x) = x for anyx € Q. and any
t € R, itis clear that4..s () is given by:

urest(t)f(x) = exp(—tu(x))f(x), X € Qrest7 f € Xrest-

Hence, (U st (t))1cr IS @ positiveCy-group of multiplication. This leads naturally to the folling
description of its generator:

,Z;estf - _V(')fa f € g(zest)

which can easily be deduced from the definition@f.s;(t))icr. SinceZ..s is @ multiplication
operator, the following weak spectral mapping theorem $oide P6, p. 89J:

Theorem 3.6. Assume that(Q,.st) # 0. The spectra oflest(t))er and its generatorZ;est
satisfy the following spectral mapping theorem:

S (Urest () = exp(t6 (Trest)) vt E€R
where the spectrum of the generator is given by
6(Trest) = Ress(—v (1)) CR
whereR.«s(—v(-)) denotes the essential range-ef(-).
Remark 3.7. Note that the spectrum @f.g; is not necessarily connected.

3.2. Aperiodic flow. The study of the spectral properties of thg-group associated to an ape-
riodic flow has been investigated in a framework of contiraiéunctions in B] and in the more
general framework of Mather semigroups 8] under the supplementary assumption:

t
Assumption 3.8. The mapping € Q. — / h(ps(x))ds is continuous for anyt € R.
0

Namely, one can prove the following which is a consequen¢é&3)fTheorem 6.37, p.188]:
Theorem 3.9. Assume that(2,,) # 0 and AssumptioB.8 holds true. Then,
6(7x) = 6(7%) +iR and SU(t) = 6U(t)) - T, (t € R).

As a consequence,
SUso(t)) = exp (16(1)), (L E€R). 3.2)

Proof. Using the terminology of]3], the group({/-(t)):cr is an evolution Mather group induced
by a cocycle(¥,), over a flow(z,),. Indeed,

Uso () f(x) = Je (X)W (i () f(Y—i(T)), teR, x € Qx, f€ Xeo
where the flow(¢,); is given byy_; = ¢, while

v . Q. xR—-R
{ (%,1) — Ty(x) = exp (— / t hwx))ds)
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and Jy(x) = exp [— fot div(ff)(cp_s(x))ds] is the Radon-Nikodym derivative of thém o

with respect tan (see Propositiod.2). The fact tha{¥,), is a cocycle of2, over the flow(1),
is a consequence of the following straightforward idegditi

W s(x) = Uy (_s(x)) Py(x) and Py(x) =1 Vx € Q, t,s € R.

Therefore, one sees thdtd Theorem 6.37] applies since AssumptibBimplies that the mapping
(x,t) € Qo X R — ¥y(x) € Ris continuous. O

Remark 3.10. Notice that a more precise picture of the spectrun®of ) is still missing. We
also point out that that the rotational invariance of the spem &(U(t)) for anyt € R has
been proved if2Q] in a direct way.

Remark 3.11. Assumptior8.8is needed here in order to apply directly the result§ld, Chapter
6]. One may wonder if it is possible to get rid of such an asswnpti

Remark 3.12. From the results of the previous sections, one can deduedsten the flow
©(-) is aperiodic then the semigrou@/(¢)):> satisfies the following (weak) spectral mapping
theorem. Precisely, ifi(Q,e:) = 0 and Assumptio.8 holds, thenS(U(t)) = exp(t&(7)), for
anyt € R. If moreoverm(Q,est) = 0, then&(7) = &(7) + iR and

S(U(t)) = exp(t&(T)), vVt € R. (3.3)

Note that practical criteria ensurirf@,., to beemptyare well-known. For &!-planar field
F = (F1, %) (i.e. whenN = 2), one can mention the so-callBdilac’s criterion[1, Proposition
24.14] which states that, i is simply connected, and if there exisisc %'(Q,R) such that
div(Z o) is not identically zero and does not change sigfinthen there are no periodic orbits
lying entirely inQ2. Generalizations to higher dimensioN (> 3) can also be provided (see e.g.,
[23, 10]). For planarC' field, one has also the following useful criterion:

Corollary 3.13. Let I be an open interval dR and letF € €' (I x R; R). Consider the planar
field 7 (x) = (v, F(x,v)) foranyx = (z,v) € Q: =1 x R. If

F(z,0) #0, Vo eI,
then Qs = 2per = @ and the spectral mapping theore®.3) holds for anyh such that As-
sumption3.8is met.

Proof. Under the above assumptiof, does not possess any equilibrium poinflni.e. Qo =
@. According to [, Corollary 24.22, p. 346] there is no periodic orbit whoskiior lies com-
pletely in2 = I x R. Sincel is an interval ofR, 2,., = @ and we get the conclusion from
Remark3.12 0

Finally, it is also known thagiradient flowsdo not exhibit any periodic orbitlp, p. 49] leading
to the following useful corollary

Corollary 3.14. Assume that there exists : RV — R such that# (x) = —VV(x), ¥x € RV,
Then,&(7) = 6(7) + iR, andS(U(t)) = exp(t&(T)), for anyt € R as soon as Assumption
3.8is met.

We finally illustrate the above results by examples takemfrarious kinetic equations.
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3.3. Examples. Let us begin with the classical Vlasov equation with a quécifzotential

Example 3.15. One considers, as if (5), a cylindrical domairf2 = D x ¥ c R® whereD is a
smooth open subset Bf. For anyx = (x,v) € D x ¥, let
ZF(x) = (v,F(z,v)) € R (3.4)
whereF = (F, F9, F3) is atime independent globally Lipschitz field (the forced)everD x ¥
given by
F(z,v) = —z — V,U(v), V(z,v) € Q
whereU(v) is a Lipschitz space homogeneous poterfiial ¥ — R. Then,.# is a gradient flow

associated to the potentitll(z, v) = (v, z) + U(v). Therefore, the associated transport operator
and semigroups are satisfying Corollayl 4.

Example 3.16. Of course, the classical neutron transport equation foch = D x 7 C RS
and

F(x,v) = (v,0), Vx = (z,v) € Q
is such tham(2,c,) = 0.

More surprisingly, the above results also apply to kinetjuaions of second order via a suit-
able use of Fourier transform 3] :

Example 3.17. Consider as in15] the Vlasov-Fokker-Planck equation with quadratic comigni
potential:

atf—FU'vmf—l"VUf:VU'(VUf+Uf) (3.5)
wheref = f(z,v,t) € L*(RY x RY). The above equation is unitarily equivalent to the follogvin
first order equation i and:

Of +n-Vef + (=8 -Vyf + > f =0 (3.6)
where

femn = [ expl=ife € +von) o t)duds

denotes the.? Fourier transform (inc andv) of f. The above equatior8(6) falls within the
theory we developed in the previous sections. Precisdly, le

F(x)=F(E&n) =Mmn—¢§), Vx=(&n) eQ=RY xR".
Notice thatdiv.7 (x) = N for anyx € Q and, according to3(6), h(x) = h(¢,n) = |n|* —
The characteristic system

&(t )277( ) nt) =) —&@), teR
t) 50}-

with initial condition£(0) = &y, n(0) = no is explicitly solvable 15] with

§(t):—exp (t/2) {( < t) —%sin <§t>>§o+sin<
n(t):—exp (t/2) {( < t) —i—%sin <§t>>m—sin<

SR
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The flow ¢ : (&0,m0) — (£(t),n(t)) does not possess any periodic orbit while0) is the
unique rest point. Therefore, according to the above Tme@&é 2 the Cy-group governing3.6)
satisfies the Spectral Mapping Theor&m. Turning back to the original variables, the Vlasov-
Fokker-Planck(Uy rp(t)):er governing Eqg. §.5) also satisfies the Spectral Mapping Theorem
3.3

SUvrp(t)) = exp(tS(Lvrp)),  VEER,
whereLy rp is the Vlasov-Fokker-Planck operator:

LVFPf(l'aU) = _U'vmf‘i'l"vvf"'vv‘ (vvf+vf)a

with its maximal domain i 2(RY x RY).

4. PERIODIC FLOW

We now deal with the study of the periodic part of the graufg), by studying the spectral
properties ofUye:(t)):cr ON the spaceX,,.,. In contrast to what happens for aperiodic flow, for
periodic flow the spectral mapping theorem

S (Uper (t)) = exp (t&(Tper)) VteR (4.2)
does not hold. Indeed, let us consider the following example

Example 4.1. We turn back to the rotation group ®? introduced in Exampl&.5. Recall that,
for such an exampl® = R?, .7 (x) = (—y, =) for anyx = (z,y) and the associated,-group in
LP(R?,dm) is given byl (t) f(x) = f(¢:(x)), t € R where the flowy, is given by the rotation
of anglet € R :

or(x) = ( cost sint > < T ) x = (z.9) € B2

—sint cost Y

According to P6], the spectrum of the generat@rof (U(t)):cr is given by&S(7) = iZ. More-
over, foranyt € R, u,,(t) = exp(int) is an eigenvalue @ (¢) for anyn € Z. If t/2x isirrational,
the eigenvalue$.,,(t), n € Z} describe a dense subsetfnd the closedness of the spectrum
of U(t) implies that&(U(t)) = T while exp(t&(7)) = exp(itZ) # T for such at. This shows
that, in general, the Spectral Mapping Theorérhfails for periodic flows.

For anyx € €2, one can define thegrime periodof x as
p(x) =inf{t > 0, p(x) = x}.

The main properties of the prime period are listed in thefeihg Proposition. We refer the reader
to [1, 3] for the first assertions while the last one is referred to ak&'s Theorem32).

Proposition 4.2. The mapping(-) : x € Qper — p(x) € (0, 00) enjoys the following properties:

(i) Foranyx € Qper, ¢(x) = xif and only ift = np(x) for somen € Z.
(i) p(-) is lower semicontinuous, and thus measurable.
(i) p(-) is invariant under the flowy,, i.e. p(¢:(x)) = p(x) for anyt € R.
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(iv) p(-) is bounded away from zero. Namely,
p(x) = 27/k forany x € Qper,
wherex > 0 is the Lispchitz constant of the field.

Notice that,a priori, the prime periog is an unbounded function. However, we shall prove
that the description o&(7,.,) relies actually on the behavior @f,., on functions supported on
sets wherg is bounded. Precisely, for amy> 0, define€2,, , as :

Qpern = {xX € Qper; P(x) < n}. 4.2)

Proposition4.2 asserts thaf,,., , = @ for any0 < n < 27 /k andQ.; ,, is invariant under the
action of the flow(¢y ) for anyn > 0. As above, one can defin€,., ,, as

Xpern = {f € Xper; f(x) =0 m—aexe€ Qper \ QLpern}, Vn > 27 /K,

and let(Uper o (t))er be the restriction oftsper(t))icr 0N Xper,n. We denote byr,, ,, its gener-
ator. One has the following abstract result:

Theorem 4.3. Let A € C be given. Then) € o(7,.,) if and only if

\ e ,QN o(Tper.n), and sup H(/\ - Tpor,n)_l‘

. 4.3
Xper,7L =0 ( )

Proof. Assume first thak € o(7,er) and letn € N. Giveng € X, C Xper, there is a unique
f € Xper such that A — 7y ) f = g. Itis clear that,f € X, , which proves thah € o(Zper,n).
Moreover’”f”xper,n < ”()\ - ,Z;)er)_l”Xpeng”Xper,rﬂ Wthh proves that

|| (A~ Tyer)”!
neN

<[|r = Toe) |

chr,n

per

Conversely, assume Egt.f) to holds. Lelg € X,.;. Foranyn € N, letg, = gxaq,....- Itis clear
thatg,, € Xpern- SinceX € o(7Tper ), thereis auniqug, € Xper n, such thatA—Tper 1) fr. = -
Now, one notes that, for any € Qp;, lim, .o X0,....(X) = 1. Consequentlyg, converges to
g in X,.,. Letus prove thatf,), also converge inX,.,. Givenn; < ng, one hasf,, — fn, €
Xper,n, @and

Vs = Fnallper = s = Frallpenny < 5D [ 3= Tpera) || N9 = a1 penn
neN X

per,n

< sup H()\ - ,Z;)er,n)_l‘
neN

9n: = gnallxpers M1 <2

per,n

Therefore( f,,), is @ Cauchy sequence Ki,.,. Let f denote its limit. Since,, — f andg,, — g,

one hasl,, ., f, converges to\f — g. Since7,., is a closed operator, one getss Z(7per) With

(A—"Tper)f = g. Now, leth € Z(7,.,) be another solution to the spectral problem- 7., )h =

g. Then, since\ € o(7,er,n) for anyn, one sees thatyq,,,,, = f. foranyn € N. Using again
the fact thatyq,., , (x) — 1 for anyx € Q., one sees thdt(x) = f(x) for anyx € ;. This

proves that\ € o(7Tper). O
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We describe now more precisely the specti@if?,.,). For any\ € C, define
1

9isc) — p(x) d d M B Ny Q
(X)__m/o v(ps(x))ds  an A(x) =exp{-p(x)(A —9(x))},  x€Qper

Note that, for any € R and anyx € Qper, p(¢:(x)) = p(x) so that
Hpp(x)) =0(x), and My(pr(x)) = My(x) Vx € Qper.
One has
Theorem 4.4. Assume thatt(2,,c;) # 0. Then,
S(Tper) C{ANEC; 1 € Ress(My)}
whereR.s (M) denotes the essential range/df, : Qper — C.

Proof. According to Theorem.3, &(T,er) C U, ey ©(Zper,n) and it suffices thus to prove that
S(Tpern) C{A € C; 1 € Ress(M))} foranyn € N. In other words, there is no loss of generality
in assuming there existE > 0 such thap(x) < 7" for anyx € Q.. First, for any\ € C, let

p(x)
It f € Xper — If(x) = / exp(—At)Uper (t) f(x)dt, X € Qper.
0

The proof of the Proposition is based on the fact thigf € Z(7,..) for any f € X, With
()\ - lTpor)j)\f(X) = (1 - M)\(X)) f(x)v X € onr- (44)
Indeed, giverf € X, sincep(x) < T for anyx € Q,q, One sees that f € X, With

T
[T f]] </0 exp(—ReAt)|[Uper (1) f || dt.

Now, givent € Randf € X, sincep(-) is invariant under the action of the flol, ),, one sees
easily that

p(x)
Uper(0) I f(x) = /0 exp(—As)Uper (t + ) f(x)ds

t+p(x)
= exp(At) / exp(—As)Uper(s) f(x)ds, Vx € Qpers
t

and,

% [Uper (£) T f (x)] o AT (%) + exp (=Ap(x)) Uper (p(x)) f(x) — f(x), X € Qper.

Now, since
p(x)

Uper (p(x)) f](x) = exp (— / v(sos(x))ds> f(x)

0

one has

% Uper (1) T f (x)] o AN (x) + (Ma(x) = 1) f(x),  Vx € Qper.
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This proves that7, f € Z(7pe:) and Eq. £.4) holds. Now, let us prove that € &(7,,.,) implies
1 € Ress(M)). To do so, assume ¢ R.q (M) ), and define the operator

Zrf(x) = (1 = Mx(x)) " Inf (%)

Sincel ¢ R.s(M)), one sees tha?) is a bounded operator i¥,,.,. Moreover, using the fact
thatp(-) and M, (+) are invariant under the flog, ), one easily sees that

%Auper(t) = Uper(t)%)\, t e R.
Classically, this implies tha#\ 7 (T,e;) C 2(Tper) @and
%)\ITporf = lTpor%)\f» \V/f € -@(%cr)

Using again the fact that/, (-) is invariant under the flowy, );, one sees thal,.Z\f = (1 —
My (-)" ' TheeJnf @and Eq. §.4) asserts that

I~ Tper) f = (A — Tper) 2 S, Vf € D(Tper)-
This proves thah € o(Tper) With (A — Tper) ™! = % O
Remark 4.5. We conjecture that the inclusion in the above Theorem is aaléy, i.e.
X € S(Tper) <= 1 € Ress(My). (4.5)

The following reasoning comforts us in our belief.11E R (M) ), then, for any fixed > 0,
the setQ2, = {x € Qe ; |1 — My (x)| < €} is of non zero measure. L¢t € X, be such that
||l = 1 and Suppg. C Q.. Letg. = J»f.. Then, Eq(4.4) implies that

(A= Tper)ge(x) = (1 = Mi(x)) fe(x),
so that
H(/\ - lTpor)Qé” < e

To prove thath € &(7,.,), it would suffice to prove thdfg.|| > C > 0 for some constanf’ > 0
that does not depend an We did not succeed in proving this point. Notice however that
identity (4.5 holds true in space of continuous functidid}.

The following Proposition provides a complete picture @& et of\ for which1 € Ress(M)).
Its proof is inspired by similar calculations already usedhe study of2D neutron transport
equations 24:

Proposition 4.6. Assume thain(€2,.,) # 0 and there exists soni > 0 such thatp(x) < 7" for
anyx € Q.. Then,

1€ Ress(My) ifandonlyif Xe U Ress(Fr)
keZ

where, for anyk € Z, Fj, : Qp — Cis a measurable mapping given by

x € Qper.
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Proof. Let us pick\ ¢ (J;,cz Ress(Fx). Then, for anyk € Z, there exists?, > 0 such that
|>\ - Fk(X)| > [k a. e.x c Qpcr,
i.e.
| — p(x)0(x) — 2ikm — Ap(x)| = p(x) Bk = 270k /K a. e.x € Qper

where we made use of Yorke’s Theorem for the last estimatés mieans that, for any integer
n > 0, there exists;,, > 0 such that

—p(x)I(x) — Ap(x)

j:z" Zc, ae x€Qp, n>l, (4.6)
2mn
and

Ip(x)d(x) — Ap(x)| = co a. e.x € Qpe. 4.7)
Now, since

u a U2

e _1:ue2£<1+4”2n2>7 u € C,

and

uniformly on any compact subset &f for any M > 0, there existsV > 0 such that

N
L= gl i+
2t n 27Tn
n=1

1
le" — 1] >§]u\ ez

, lu] < M.

Now, sincev is bounded ang(x) < 7', there exists\/ > 0 (large enough), such that
p(x)H(x) — Ap(x)| < M a. e.x € Qper,
one gets form4.6) and @.7) that

lexp{p(x)¥(x) — Ap(x)} — 1| > H c a. e.x € Qper,

p(x)

whereC' = essinfxeqn ‘exp{T(ﬁ(x) —)\)H. Hence,essinfxecq, ., [Mi(x) — 1| > 0

which proves the first inclusion. To prove the second indiusit is enough to notice, from the
continuity of the exponential function that, if there is soagonstanC' > 0 such that
lexp(p(x)9(x) — A\p(x)) — 1| > C >0, a. e.x € Qper,

then, for anyk € Z, there exists;, > 0 such thatlp(x)d(x) — A\p(x) — 2ikw| > ¢ for a. e.
X € Qper. Now, sincep(x) < 7' for anyx € y,,, One sees thah — Fj(x)| > ¢, /T for a. e.
x € Qper. O

per per

It remain to investigate the spectral properties of the pr@¢..(t)):cr. As we already saw
it, the Spectral Mapping Theorem fails to be true in genetdbwever, one can deduce from
Proposition A2 the following version of the Annular Hull Theorem:
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Theorem 4.7. Assumen(£2,.,) # 0. Then,

T & (Uper(t)) =T - exp (tG(’Z'por) N R> =T- RCSS<eXp (tz?(-))), vt e R.

In particular, under the assumptidh8, the semigroudl/(t)):> fulfils the Annular Hull Theorem:

T <G(U(t)) \ {0}> =T exp (tG(T)), vt > 0.

Remark 4.8. The above Annular Hull Theorem is known to be true for genemrgghted shift
semigroupg22, 13]. Notice that the proof df22, 13] rely on completely different arguments and
involve very sophisticated tools. On the contrary, our lesua very easy consequence of a more
general result on positive groups @ spaces. Of course, the simplification relies on the fact that
we are dealing here with'y-groups rather than semigroups.

In the L' case, one can strengthen this result thanks to the Weakr&ipéletpping Theorem
for positive Cy—group by W. Arendt and G. Greine3,[Corollary 1.4]. Precisely,

Theorem 4.9. Assume = 1, i.e. Xper = L' (Qper, dm). For anyt € R, the following weak
spectral mapping theorem hold&i (U, (t)) = exp (t&(7per)) @and, under the assumptich8,

SUt) = exp (#6(T)), Yt = 0.
APPENDIX: SPECTRAL PROPERTIES OF GENERAL POSITIVE SEMIGROUPS

Let X be a complex Banach lattice with positive calie and let(7'(t)):cr be a positiveCy-
group in#(X) with generatord. Recall that the positivity of the groufI’(¢));cg means thaf ;.
is invariant underfl'(¢) for anyt € R. We establish in this appendix several abstract results on
(positive) Cy-groups we used in the paper. The key point is the followirecspl decomposition
result for strongly continuous groups of positive opemstdue to ArendtZ, Theorem 4.2] and
Greiner [L8].

Theorem A. 1. Let (T'(t)):cr be aCy—group of positive operators with generatdron some
Banach latticeX. Let . € o(A) NR. Then,X is the direct sum of the orthogonal projection bands:
I, ={x e X; Z(n, A)|z| >0} and Jy={r e X; Z(n, A)|zr| <0}.

Moreover, ], andJ,, are invariant undef’(¢) (¢ € R) and&(Aj;,) = {\ € &(A); ReA < pu},
6(A;;,) = {) € 6(A); ReX > u} where A (respectivelyA|; ) denotes the generator of
(T'(t)1, )ter (resp. of(T'(t),;, )ter)-

Using this result, G. Greined ] has been able to proveSpectral Mapping Theorefor the
real spectrun{Theorem A3 hereafter). Borrowing the ideas of Greiner, it is possiblprove the

following more general result. Actually, we did not find thésult in the literature and give here a
simple proof of it.

Proposition A. 2. Let (X, w) be aG-measured space and (8t(¢)):.cr be apositiveCy-group in
LP(¥,dw) (1 < p < o0), with generatorA. Then,

{lul; p e 6(T(1)} = exp {t (6(A) NR)} foranyz > 0.
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In particular, the following Annular Hull Theorem holds éu
T -&(T(t) =T-exp (t(G(A) N ]Ri)), vt € R. (4.8)

Proof. It is clear thatexp {t (6(A) NR)} C {|u|; p € S(T'(t))}. Let us show the converse
inclusion. Letz € RT \ exp{t (&(A) NR)}. Then,z = exp (at), with a € o(A) N R. Then,
according to Theorem AL, there exist two projection bandg and.J, such that.?(Q2, dw) =
I, ® J,and

&(Aj1,) ={z € 6(A); Rez < a}, while &(A,) ={z € 6(A); Rez > a}.

Consequentlys(A);,) < aands(—A,;,) < —a wheres(-) denotes the spectral bound. Since, in
LP—spacegl < p < o0), the type of any positiv€’y-semigroup coincide with the spectral bound
of its generator33], one gets

r(T(t)ua) < exp (at), r(T(—t)‘Ja) < exp (—at).
Hence, using tha® (T'(t)5,) = {z € C; 1/2 € 8(T(~t)5.) }»
&(T(t)1,) C{z€C; |zl <exp(at)} whereas &(T'(t);,) C {z € C; |z > exp (at)}.
Now, sinceS(T'(t)) = &(T'(t)7,) U &(T(t)s.), anyu € C with |u| = exp (at) is such that
w ¢ S(T(t)) which achieves the proof. The proof of the Annular Hull Thexoris then obvious

since anyu € &(T'(t)) writes . = || exp(if) for somed € R while || = exp(at) for some
ae G(A)NR. O

The Spectral Mapping Theorerfior the real spectrumof Greiner [L8] (see also 2] and [26,
Corollary 4.10]) is now a direct consequence of the abovedxition.

Theorem A. 3. Let (3, w) be aG-measured space and I&t(t)).cr be apositive Cy-group in
LP(¥,dw) (1 < p < o), with generatorA. Then,

S(T(t) NRy =exp{t(S(A) NR)} for anyt > 0.

Proof. Itis clear thatS(7T'(t)) "Ry D exp {t (6(A) NR)} for anyt € R. Now, sinceS(T'(t)) N
Ry C {Jul; p € 6(T'(t))}, the converse inclusion follows immediately from PropositA.2.
O

Another consequence of Proposition Ais the following spectral mapping theorem which
applies to generator whose approximate spectrum is imtdviavertical translations:

Theorem A. 4. Let (3, w) be aG-measured space and I&t(¢)).cr be apositive Cy-group in
LP(Y,dw) (1 < p < 00), with generatord. If G,,(A) = G,p(A) + iR then

S(T(t)) =exp (t&(A)) for anyt € R.

Proof. It clearly suffices to prove thec™ inclusion. We first note thaS(A) = S(A) + iR.
Indeed, let\ € G(A), assume thak + iR ¢ S(A). Then, there isy € R such that\ + i« lies
in the boundary of5(A). In particular,A + ia € &,,(A), and by assumption + iR C &(A)
which is a contradiction. Therefor&(A) = G(A) + iR. Now, letz ¢ exp (t&(A)). Then, there
is A € o(A) such that: = exp (A\t), A = a + i3. Since the spectrum of is invariant by vertical
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translationso € p(A). Henceexp (at) ¢ exp {t (6(A) NR)}. According to Proposition 4,
and sincgz| = exp (at), this means that € o(T'(t)). O

Remark A. 5. As a consequence of the above result, one sees th@k,(if),cr is a positive
groups of operator with generatdrin someL?-space [ < p < oco) and if6(A4) = &(A) + iR,
thenS(T'(t)) = &(T'(t)) - T (¢t € R) whereT is the unit circle ofC.
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