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This paper deals with the coupling of a quasilinear parabolic problem with a first order hyperbolic one in a multidimensional bounded domain Ω. In a region Ωp a diffusion-advection-reaction type equation is set while in the complementary Ω h ≡ Ω\Ωp, only advection-reaction terms are taken into account. Suitable transmission conditions along the interface ∂Ωp ∩ ∂Ω h are required. We select a weak solution characterized by an entropy inequality on the whole domain. This solution is given by a vanishing viscosity method.

Introduction

We are interested in a coupling of a quasilinear parabolic equation with an hyperbolic first-order one in a bounded domain Ω of R n ; n ≥ 1. The main motivation for considering this problem is the study of infiltration processes in an heterogeneous porous media. For instance, in a stratified subsoil made up of layers with different geological characteristics, the effects of diffusivity may be negligible in some layers. Such a coupled problem occurs also in fluid-dynamical theory for viscous-compressible flows around a rigid profile so that near this profile the viscosity effects have to be taken into account while at a distance they can be neglected. Another example arises in heat transfer studies as mentioned in [START_REF] Gastaldi | Coupling of two-dimensional hyperbolic and elliptic equations[END_REF].

We consider the case of two layers, that is sufficient. Then, the geometrical configuration is such that: Ω = Ω h ∪ Ω p ; Ω h and Ω p are two disjoint bounded domains with Lipschitz boundaries denoted by Γ l = ∂Ω l , l ∈ {h, p} and Γ hp = Γ h ∩ Γ p is such that H n-1 (Γ hp ∩ (Γ l \Γ hp )) = 0 where for q in [0, n + 1], H q is the q-dimensional Hausdorff measure over R n+1 . For l in {h, p}, ν l is the outward normal unit vector defined H n-1 -a.e. on Γ l .

The interface is denoted by Σ hp =]0, T [×Γ hp . At last, Q =]0, T [×Ω and for l in {h, p}, Q l =]0, T [×Ω l , Σ l =]0, T [×Γ l . Now, due to a combination of conservation laws and Darcy's law, the physical model is described as follows: For any positive and finite real T , find a measurable and bounded function u on Q such that,

∂ t u - n i=1 ∂ xi (f (u)∂ xi P ) + g(t, x, u) = 0 in Q h , ∂ t u - n i=1 ∂ xi (f (u)∂ xi P ) + g(t, x, u) = ∆φ(u) in Q p , u = 0 on ]0, T [×∂Ω, u(0, .) = u 0 on Ω. (1) 
Then, suitable conditions on u across the interface Σ hp must be added. As for the linear problem studied by F. Gastaldi and al. in [START_REF] Gastaldi | Coupling of two-dimensional hyperbolic and elliptic equations[END_REF] or for the one dimensional nonlinear problem studied by G. Aguilar and al. in [START_REF] Aguilar | Analysis of a nonlinear parabolic-hyperbolic problem[END_REF], these transmission conditions include the continuity property of the flux through the interface formally written here as:

-f (u)∇P.ν h = (∇φ(u) + f (u)∇P ).ν p on Σ hp .

(2)

Moreover, the transmission conditions involve a property on the (dis)continuity of the function u via an entropy condition.

Let us mention that this problem has already been studied by the authors for a nondecreasing flux function f when ∇P.ν h ≤ 0, H n-1 -a.e. on Γ hp in [START_REF] Aguilar | Coupling of Multidimensional Parabolic and Hyperbolic Equations[END_REF] and when ∇P.ν h has a constant sign H n-1 a.e. on Γ hp in [START_REF] Aguilar | Nonlinear Multidimensional Parabolic-Hyperbolic Equations[END_REF].

Assumptions and notations

• The datum P is a known stationary function that belongs to W 2,∞ (Ω) and such that ∆P = 0 which is not restrictive as soon as [START_REF] Aguilar | Coupling of Multidimensional Parabolic and Hyperbolic Equations[END_REF] includes some reaction terms.

• The reaction function g belongs to W 1,∞ (]0, T [×Ω × R) and we set • The initial data u 0 belong to L ∞ (Ω). Thus we can define the nondecreasing time-depending function

M ′ g = ess sup
M : t ∈ [0, T ] → M (t) = u 0 L ∞ (Ω) e M ′ g t + M 0 e M ′ g t -1 M ′ g .
To simplify we write M = M (T ). Now, we assume local hypotheses on f and φ.

-The flux function f is a Lipschitzian function on [-M, M ] with constant M ′ f and such that f (0) = 0. To express the boundary conditions on the frontier of the hyperbolic area, we introduce as in [START_REF] Otto | Conservation Laws in Bounded Domains, Uniqueness and Existence via Parabolic Approximation[END_REF][START_REF] Otto | Initial-boundary value problem for a scalar conservation law[END_REF] the function F defined on [-M, M ] 3 by:

F(a, b, c) = 1 2 {sgn(a -b)(f (a) -f (b)) -sgn(c -b)(f (c) -f (b)) + sgn(a -c)(f (a) -f (c))}.
φ is a increasing Lipschitzian function on [-M, M ] such that φ(0) = 0.

• For any positive real µ, sgn µ is the Lipschitzian approximation of the function "sgn" defined by:

∀τ ∈ [0, +∞[ , sgn µ (τ ) = min τ µ , 1 and sgn µ (-τ ) = -sgn µ (τ ).
• Throughout this work, σ (resp. σ) denotes the variable on Σ l (resp. Γ l ), l ∈ {h, hp, p}. This way, for any t of [0, T ], σ = (t, σ).

• For any real a and b,

I(a, b) = [min(a, b); max(a, b)].

Functional spaces

• In the sequel, W (0, T ) is the Hilbert space

W (0, T ) ≡ {v ∈ L 2 (0, T ; H 1 0 (Ω)); ∂ t v ∈ L 2 (0, T ; H -1 (Ω))} equipped with the norm w W (0,T ) = ∂ t w 2 L 2 (0,T ;H -1 (Ω)) + ∇w 2 L 2 (Q) n 1/2
and V is the Hilbert space

V = {v ∈ H 1 (Ω p ), v = 0 a.e. on Γ p \Γ hp }
equipped with the norm v V = ∇v L 2 (Ωp) n . We denote ., . the pairing between V and V ′ .

• BV (O) with O = Ω h or O = Q h is the space of summable functions v with bounded total variation on O where the total variation is given by

T V O (v) = sup O v(x)divΦ(x)dx, Φ ∈ D(O) q , Φ L ∞ (O) q ≤ 1
where q is the dimension of the open set O. Moreover, we denote by γv the trace on Γ hp or Σ hp of a function v belonging to BV (O).

This work is organized as follows: the concept of a weak entropy solution to (1)-( 2) is defined in Section 2, 2.1 through an entropy inequality in the whole domain, the boundary conditions on the outer frontier of the hyperbolic area being expressed by referring to [START_REF] Otto | Conservation Laws in Bounded Domains, Uniqueness and Existence via Parabolic Approximation[END_REF][START_REF] Otto | Initial-boundary value problem for a scalar conservation law[END_REF]. This global formulation contains two local formulations: one on the hyperbolic area, stated in the paragraph 2.2, and one in the parabolic domain, stated in the paragraph 2.3. We also highlight some interface conditions along Σ hp in Section 3, 3.1, proper to ensure the uniqueness of a weak entropy solution to (1)-( 2), in the paragraph 3.2. The section 4 is devoted to the existence property to (1)-( 2) through the vanishing viscosity method.

The Entropy Formulation

Weak entropy solution

The definition of a weak entropy solution to (1)-( 2) has to include an entropy criterion in Q h where the quasilinear first-order hyperbolic operator is set. This way, the problem (1)-( 2) can be viewed as an evolutional problem for a quasilinear parabolic equation that strongly degenerates in a fixed subdomain Q h of Q.

As in [START_REF] Aguilar | Coupling of Multidimensional Parabolic and Hyperbolic Equations[END_REF][START_REF] Aguilar | Nonlinear Multidimensional Parabolic-Hyperbolic Equations[END_REF][START_REF] Aguilar | Analysis of a nonlinear parabolic-hyperbolic problem[END_REF], we propose a weak formulation through a global entropy inequality in the whole Q, the latter giving rise to a variational equality in the parabolic domain, to an entropy inequality in the hyperbolic one and to interface conditions along Σ hp . To establish these ones, it will be convenient to start by introducing a global entropy formulation using mollified entropy pairs. For this purpose, we set for any convex function

η in W 2,∞ loc (R) and any (w, k) in [-M, M ] 2 I (η) (w, k) = w k η ′ (φ(τ ) -φ(k)) dτ and q (η) (w, k) = φ(x) φ(k) η ′′ (τ -φ(k))(f • φ -1 )(τ ) dτ. Definition 1 A function u is a weak entropy solution to the coupling problem (1)-(2) if • u ∈ L ∞ (Q) with values in [-M, M ],
M being defined Section 1.1, φ(u) ∈ L 2 (0, T ; V ) and :

• ∀ϕ ∈ D(Q), ϕ ≥ 0, ∀k ∈ [-M, M ], ∀η ∈ W 2,∞ loc (R), Q I (η) (u, k)∂ t ϕdxdt - Qp η ′ (φ(u) -φ(k))∇φ(u).∇ϕ dx dt - Q f (u)η ′ (φ(u) -φ(k)) -q (η) (u, k) ∇P.∇ϕ dx dt - Q η ′ (φ(u) -φ(k))g(t, x, u)ϕ dx dt ≥ 0.
(3)

• ∀ζ ∈ L 1 (Σ h \Σ hp ), ζ ≥ 0, ∀k ∈ [-M, M ], ess lim τ →0 -Σ h \Σ hp F(u(σ + τ ν h ), 0, k)∇P (σ).ν h ζdH n ≤ 0, (4) 
• ess lim

t→0 + Ω |u(t, x) -u 0 (x)|dx = 0. ( 5 
)
Remark 1 For any u in L ∞ (Q) with values in [-M, M ], any ϕ in D(Q), ϕ ≥ 0, and k in [-M, M ], the assertion : "(3) is true for any η in W 2,∞ loc (R)" is equivalent to the entropy inequality written with the standard Kruzhkov entropy pairs:

Q |u -k|∂ t ϕ dx dt - Qp ∇|φ(u) -φ(k)|.∇ϕ dx dt - Q sgn(u -k)(f (u) -f (k))∇P.∇ϕ dx dt - Q sgn(u -k)g(t, x, u)ϕ dx dt ≥ 0. (6)

An entropy inequality on the hyperbolic zone

We first derive from (3) and ( 4) an entropy inequality in the hyperbolic domain. Indeed, Proposition 1 Let u be a weak entropy solution to (1)- [START_REF] Aguilar | Nonlinear Multidimensional Parabolic-Hyperbolic Equations[END_REF]. Then for any real k in [-M, M ] and any ϕ of

D(]0, T [×R n ), ϕ ≥ 0, Q h (|u -k|∂ t ϕ -sgn(u -k)(f (u) -f (k))∇P.∇ϕ -sgn (u -k) g(t, x, u)ϕ) dx dt ≥ -ess lim τ →0 -Σ hp sgn(u(σ + τ ν h ) -k)(f (u(σ + τ ν h )) -f (k))∇P (σ).ν h ϕ(σ)dH n - Σ h \Σ hp sgn(k)f (k)∇P (σ).ν h ϕ(σ)dH n + ess lim τ →0 -Σ h \Σ hp sgn(u(σ + τ ν h ))f (u(σ + τ ν h ))∇P (σ).ν h ϕ(σ)dH n . (7) 
Proof -In (3) choose, for any positive µ and for any real τ : η ′ (τ ) = sgn µ (τ ).

By taking the limit when µ goes to 0 + thanks to the Dominated Convergence Theorem, it comes that for ϕ

in D(Q h ), ϕ ≥ 0, Q h (|u -k|∂ t ϕ -sgn(u -k)(f (u) -f (k))∇P.∇ϕ -sgn(u -k)g(t, x, u)ϕ) dx dt ≥ 0. ( 8 
)
By referring to F.Otto's works in [START_REF] Otto | Conservation Laws in Bounded Domains, Uniqueness and Existence via Parabolic Approximation[END_REF][START_REF] Otto | Initial-boundary value problem for a scalar conservation law[END_REF], we deduce from (8) that for any real k in [-M, M ] and

β in L 1 (Σ h ), ess lim τ →0 -Σ h sgn(u(σ + τ ν h ) -k)(f (u(σ + τ ν h )) -f (k))∇P (σ).ν h β(σ)dH n exists. (9) 
Then, it results from (8) (see [START_REF] Otto | Conservation Laws in Bounded Domains, Uniqueness and Existence via Parabolic Approximation[END_REF][START_REF] Otto | Initial-boundary value problem for a scalar conservation law[END_REF]) that, for any real k in [-M, M ] and

ϕ in D(]0, T [×R n ), ϕ ≥ 0, Q h (|u -k|∂ t ϕ -sgn(u -k)(f (u) -f (k))∇P.∇ϕ -sgn(u -k)g(t, x, u)ϕ) dx dt ≥ -ess lim τ →0 -Σ h sgn(u(σ + τ ν h ) -k)(f (u(σ + τ ν h )) -f (k))∇P (σ).ν h ϕ(σ)dH n .
To conclude we split the frontier of Ω h into Γ hp and Γ h \Γ hp and we use the boundary condition (4) on Σ h \Σ hp .

A variational equality on the parabolic zone

We give now some information on the regularity for ∂ t u in Q p and we derive from (3) a variational equality satisfied by any weak entropy solution u to the coupling problem (1)-(2).

Proposition 2 Let u be a weak entropy solution to the coupling problem (1)- [START_REF] Aguilar | Nonlinear Multidimensional Parabolic-Hyperbolic Equations[END_REF]. Then ∂ t u belongs to L 2 (0, T ; V ′ ). Furthermore, for any ϕ in L 2 (0, T ; V ), 

+ ess lim τ →0 -Σ hp f (u(σ + τ ν h ))∇P (σ).ν h ϕdH n = 0. ( 10 
)
Proof. This proposition is proved in [START_REF] Aguilar | Coupling of Multidimensional Parabolic and Hyperbolic Equations[END_REF] (Proposition 3.4) by starting with (3).

The Uniqueness Property

We prove the uniqueness property in the class of weak entropy solutions satisfying the strong trace property:

∃u hp ∈ L 1 (Σ hp ), ess lim τ →0 -Σ hp |u(σ + τ ν h ) -u hp (σ)|dH n = 0. ( 11 
)
In this framework for any weak entropy solution u satisfying [START_REF] Peyroutet | Error estimate for a splitting method applied to convection-reaction equations[END_REF], we can establish that along the interface u satisfies two transmission conditions; the first one corresponds to (2) and the second one is an entropy-type inequality. Indeed :

About the transmission conditions along Σ hp

Proposition 3 Let u be a weak entropy solution to (1)-( 2) satisfying [START_REF] Peyroutet | Error estimate for a splitting method applied to convection-reaction equations[END_REF]. Then, for H n -a.e. σ in Σ hp ,

∀k ∈ I(u(σ), u hp (σ)), sgn(u(σ) -u hp (σ))(f (u hp (σ)) -f (k))∇P (σ).ν h (σ) ≥ 0, ( 12 
)
where u(σ) = φ -1 (φ(u)(σ)) and φ(u)(σ) is the trace on Σ hp of φ(u) |Qp .

Proof. Let (ρ δ ) δ>0 be a sequence of C 1 (Ω), such that

∀δ > 0, 0 ≤ ρ δ ≤ 1, ρ δ (x) = 1 if x ∈ Γ hp ∀δ > 0, ρ δ (x) = 0 if x ∈ Ω, dist(x, Γ hp ) ≥ δ and δ∇ρ δ ∞ is bounded, ∀x ∈ Ω\Γ hp , ρ δ (x) → 0 when δ → 0 + .
This way, from [START_REF] Otto | Initial-boundary value problem for a scalar conservation law[END_REF] and [START_REF] Peyroutet | Error estimate for a splitting method applied to convection-reaction equations[END_REF] it comes that: ∀ϕ ∈ L 2 (0, T, V ),

T 0 ∂ t u, ϕρ δ dt + Q {(∇φ(u) + f (u)∇P ).∇ϕ + +g(t, x, u)ϕ} ρ δ dx dt + Qp ∇φ(u).∇ρ δ ϕ dx dt + Qp f (u)∇P.∇ρ δ ϕ dx dt + Σ hp f (u hp (σ))∇P (σ).ν h (σ)ϕ(σ)dH n = 0. ( 13 
)
Now, we take ϕ = sgn µ (φ(u) -φ(k))ψ |Qp where ψ belongs to H 1 0 (Q), ψ ≥ 0. In order to take the limit with respect to δ for the first term in the left-hand side, we use an integration by parts formula based on a convexity inequality (see e.g. [START_REF] Gagneux | Analyse mathématique de modèles non lináires de l'ingénierie pétrolière[END_REF], the Mignot-Bamberger Lemma). This way,

T 0 ∂ t u, ϕρ δ dt = - T 0 Ω I µ (u, k)ρ δ ∂ t ψ dx dt,
where

I µ (u, k) = u k sgn µ (φ(τ ) -φ(k)) dτ. (14) So clearly, lim δ→0 + T 0 ∂ t u, ϕρ δ dt = 0.
Then, for the second term in the second line of (13), as f • φ -1 is continuous, thanks to the properties of the sequence (ρ δ ) δ>0 , we can assert that for any positive µ,

lim δ→0 + Qp f (u)∇P.∇ρ δ ϕ dx dt = - Σ hp f (u(σ))∇P (σ).ν h (σ)sgn µ (φ(u)(σ) -φ(k))ψ(σ)dH n ,
and therefore it results from (13) that lim

δ→0 + Qp sgn µ (φ(u) -φ(k))ψ∇φ(u)
.∇ρ δ dx dt exists and lim

δ→0 + Qp sgn µ (φ(u) -φ(k))ψ∇φ(u).∇ρ δ dx dt = - Σ hp (f (u hp (σ)) -f (u(σ)))∇P (σ).ν h (σ)sgn µ (φ(u)(σ) -φ(k))ψ(σ)dH n . (15) 
The equality (15) means in a sense that the flux through the interface is continuous. Now, let us come back to (3), written with η = sgn µ , µ > 0, and

ϕ = ψρ δ , ψ ≥ 0, ψ in H 1 0 (Q) -which is always possible thanks to a density argument. It comes that for any real k in [-M, M ], Q I µ (u, k)ρ δ ∂ t ψ dx dt - Qp sgn µ (φ(u) -φ(k))ρ δ ∇φ(u).∇ψ dx dt - Qp sgn µ (φ(u) -φ(k))ψ∇φ(u).∇ρ δ dx dt - Q (f (u)sgn µ (φ(u) -φ(k)) -q µ (u, k))∇P.∇ψ + sgn µ (φ(u) -φ(k))g(t, x, u)ψ ρ δ dx dt - Q (f (u)sgn µ (φ(u) -φ(k)) -q µ (u, k))∇P.∇ρ δ ψ dx dt ≥ 0, ( 16 
)
where I µ is given by ( 14) and

q µ (u, k) = φ(u) φ(k) sgn ′ µ (τ -φ(k))(f • φ -1 )(τ ) dτ.
In order to pass to the limit when δ goes to 0 + in (16), we use (15) for the second line and we split the fourth one into an integral over Q h and an integral over Q p ; then we refer to [START_REF] Peyroutet | Error estimate for a splitting method applied to convection-reaction equations[END_REF]. It comes that:

∀k ∈ [-M, M ], ∀ψ ∈ H 1 0 (Q), ψ ≥ 0, ∀µ > 0, Σ hp (sgn µ (φ(u(σ)) -φ(k))(f (u hp (σ)) -f (u(σ)))∇P (σ).ν h (σ)ψ(σ)dH n + Σ hp (f (u(σ))sgn µ (φ(u(σ)) -φ(k)) -q µ (u(σ), k)) ∇P (σ).ν h (σ)ψ(σ)dH n - Σ hp (f (u hp (σ))sgn µ (φ(u hp (σ)) -φ(k)) -q µ (u hp (σ), k)) ∇P (σ).ν h (σ)ψ(σ)dH n ≥ 0.
So, for any positive µ and any real k in [-M, M ], and H n a.e. on Σ hp ,

(sgn µ (φ(u(σ)) -φ(k))(f (u hp (σ)) -f (u(σ)))∇P (σ).ν h (σ) + f (u(σ))sgn µ (φ(u(σ)) -φ(k)) -q µ (u(σ), k) ∇P (σ).ν h (σ) -f (u hp (σ))sgn µ (φ(u hp (σ)) -φ(k)) -q µ (u hp (σ), k) ∇P (σ).ν h (σ) ≥ 0.
And when µ goes to 0 + , q µ (w, k) goes to f (k)sgn(w -k) for all reals w and k in [-M, M ], φ being increasing. So the µ-limit provides that for H n -a.e. σ on Σ hp and for any real k in [-M, M ]:

(f (u hp (σ)) -f (u(σ)))sgn(u(σ) -k)∇P (σ).ν h (σ) + sgn(u(σ) -k)(f (u(σ)) -f (k)) -sgn(u hp (σ) -k)(f (u hp (σ)) -f (k)) ∇P (σ).ν h (σ) ≥ 0.
The desired relation is obtained by taking k in the interval I(u(σ), u hp (σ)).

The uniqueness theorem

The uniqueness property of a weak entropy solution to the coupling problem ( 1)-( 2) is proved under local Hölder continuity assumption for f • φ -1 and is provided by the following statement:

Theorem 1 Assume that there exists a positive constant C and a real θ in

[ 1 2 , 1] such that ∀(v, w) ∈ [-M, M ] 2 , |(f • φ -1 )(v) -(f • φ -1 )(w)| ≤ C|v -w| θ . (17) 
Let u 1 , u 2 be two weak entropy solutions to (1)-( 2) for initial data u 0,1 and u 0,2 respectively and such that (11) holds. Then, for a.e. t of [0, T ],

Ω |u 1 (t, .) -u 2 (t, .)|dx ≤ e M ′ g t Ω |u 0,1 -u 0,2 |dx.

Preliminaries

In order to use the method of doubling variables, we introduce a sequence of mollifiers (W δ ) δ>0 on R n+1 defined by

∀δ > 0, ∀r = (t, x) ∈ R n+1 , W δ (r) = ̟ δ (t) n i=1 ̟ δ (x i ),
where (̟ δ ) δ>0 is a standard sequence of mollifiers on R. We use classical results on the Lebesgue set of a summable function on Q and a similar property on the whole boundary proved in [START_REF] Peyroutet | Error estimate for a splitting method applied to convection-reaction equations[END_REF]:

Lemma 1 Let v and w be in L ∞ (Q h ) such that (8) and (11) hold. Then for any continuous function ϕ on

Q h , lim δ→0 + Q h Σ h \Σ hp sgn(v(r))f (v(r))∇P (σ).ν h (σ)ϕ( σ + r 2 )W δ (σ -r)dH n σ dr = 1 2 ess lim τ →0 -Σ h \Σ hp sgn(v(σ + τ ν h ))f (v(σ + τ ν h ))∇P (σ)ν h (σ)ϕ(σ)dH n , lim δ→0 + Q h ess lim τ →0 -Σ h \Σ hp sgn(v(σ + τ ν h ))f (v(σ + τ ν h ))∇P (σ).ν h (σ)ϕ( σ + r 2 )W δ (σ -r)dH n σ dr = 1 2 ess lim τ →0 -Σ h \Σ hp sgn(v(σ + τ ν h ))f (v(σ + τ ν h ))∇P (σ).ν h (σ)ϕ(σ)dH n ,
and

lim δ→0 + Q h Σ hp sgn(v hp (σ) -w(r))(f (v hp (σ)) -f (w(r)))∇P (σ).ν h (σ)ϕ( σ + r 2 )W δ (σ -r)dH n σ dr = 1 2 Σ hp sgn(v hp (σ) -w hp (σ))(f (v hp (σ)) -f (w hp (σ)))∇P (σ).ν h (σ)ϕ(σ)dH n
where v hp (resp.w hp ) is defined by [START_REF] Peyroutet | Error estimate for a splitting method applied to convection-reaction equations[END_REF] for v (resp. w).

Proof of Theorem 1

(i) We first compare the two solutions u 1 and u 2 in the parabolic zone. The lack of regularity of the time partial derivative of any weak entropy solution to (1)-( 2) requires a doubling of the time variable. Therefore, let χ be a nonnegative element of D(0, T ). We consider positive reals δ small enough in order that α δ : ( t, t) → α δ ( t, t) = χ((t + t)/2)̟ δ (t -t)/2 belongs to D(]0, T [×]0, T [). Then, for µ > 0, in [START_REF] Otto | Initial-boundary value problem for a scalar conservation law[END_REF] written in variables (t, x) for u 1 we consider ϕ(t, x) = sgn µ (φ(u 1 )(t, x) -φ(u 2 )( t, x))α δ ( t, t) and in [START_REF] Otto | Initial-boundary value problem for a scalar conservation law[END_REF] written in variables ( t, x) for u 2 , we consider ϕ( t, x) = -sgn µ (φ(u 1 )(t, x) -φ(u 2 )( t, x))α δ ( t, t) . To simplify the writing, we add a "tilde" superscript to any function in the t variable. Moreover, thanks to [START_REF] Peyroutet | Error estimate for a splitting method applied to convection-reaction equations[END_REF] we observe that in [START_REF] Otto | Initial-boundary value problem for a scalar conservation law[END_REF], for i = 1, 2, ess lim

τ →0 -Σ hp f (u i (σ + τ ν h ))∇P (σ).ν h (σ)ϕ(σ)dH n = Σ hp f (u hp i (σ))∇P (σ).ν h (σ)ϕ(σ)dH n .
Then we integrate with respect to the corresponding time variable so that, by adding up, it comes:

T 0 T 0 ∂ t u 1 -∂ t ũ2 , sgn µ (φ(u 1 ) -φ(ũ 2 )) α δ dt d t + ]0,T [×Qp sgn ′ µ (φ(u 1 ) -φ(ũ 2 ))|∇(φ(u 1 ) -φ(ũ 2 ))| 2 α δ dx dt d t + ]0,T [×Qp sgn ′ µ (φ(u 1 ) -φ(ũ 2 ))(f (u 1 ) -f (ũ 2 ))∇P.∇(φ(u 1 ) -φ(ũ 2 ))α δ dx dt d t + ]0,T [×Qp (g(t, x, u 1 ) -g( t, x, ũ2 ))sgn µ (φ(u 1 ) -φ(ũ 2 )) α δ dx dt d t = - T 0 Σ hp f (u hp 1 (σ))∇P (σ).ν h (σ)sgn µ (φ(u 1 )(σ) -φ(u 2 )(σ))α δ dH n σ d t + T 0 Σ hp f (u hp 2 (σ))∇P (σ).ν h (σ)sgn µ (φ(u 1 )(σ) -φ(u 2 )(σ))α δ dH n σ dt. (18) 
We want to pass to the limit first when µ goes to 0 + in (18). For the second and third terms in the left-hand side, we argue by using the Cauchy-Scharwz inequality in the third term,

Qp sgn ′ µ (φ(u 1 ) -φ(ũ 2 )) |∇(φ(u 1 ) -φ(ũ 2 ))| 2 α δ dx dt + Qp sgn ′ µ (φ(u 1 ) -φ(ũ 2 ))(f (u 1 ) -f (ũ 2 ))∇P.∇(φ(u 1 ) -φ(ũ 2 ))α δ dx dt ≥ - 1 2 Qp sgn ′ µ (φ(u 1 ) -φ(ũ 2 ))(f • φ -1 (φ(u 1 )) -f • φ -1 (φ(ũ 2 ))) 2 |∇P | 2 α δ dx dt + 1 2 Qp sgn ′ µ (φ(u 1 ) -φ(ũ 2 )) |∇(φ(u 1 ) -φ(ũ 2 ))| 2 α δ dx dt,
where the second term in the right-hand side is nonnegative. This way, due (17) and as P belongs to W 1,∞ (Ω), we establish that there exists a positive constant C such that

Qp sgn ′ µ (φ(u 1 ) -φ(ũ 2 )) |∇(φ(u 1 ) -φ(ũ 2 ))| 2 α δ dx dt + Qp sgn ′ µ (φ(u 1 ) -φ(ũ 2 ))(f (u 1 ) -f (ũ 2 ))∇P.∇(φ(u 1 ) -φ(ũ 2 ))α δ dx dt ≥ -C Qp |φ(u 1 ) -φ(ũ 2 )| 2θ sgn ′ µ (φ(u 1 ) -φ(ũ 2 ))α δ dx dt,
and the term in the right-hand side goes to 0 with µ as θ ≥ 1/2. For the first term in the left-hand side of (18), we use the Mignot-Bamberger Lemma (see [START_REF] Gagneux | Analyse mathématique de modèles non lináires de l'ingénierie pétrolière[END_REF]) to obtain, for a fixed t

T 0 ∂ t u 1 , sgn µ (φ(u 1 ) -φ(ũ 2 )) α δ dt = - Qp u1 ũ2 sgn µ (φ(τ ) -φ(ũ 2 ))dτ ∂ t α δ dx dt,
while for a fixed t,

- T 0 ∂ t ũ2 , sgn µ (φ(u 1 ) -φ(ũ 2 )) α δ d t = - Qp u1 ũ2 sgn µ (φ(u 1 ) -φ(τ ))dτ ∂ tα δ dx d t,
So, we are able to pass to the limit in (18) when µ goes to 0 + and it comes

- ]0,T [×Qp |u 1 -ũ2 |(∂ t α δ + ∂ tα δ ) dx dt d t ≤ ]0,T [×Qp |g(t, x, ũ2 ) -g( t, x, ũ2 )|α δ dx dt d t - T 0 Σ hp (f (u hp 1 (σ)) -f (u hp 2 (σ)))∇P (σ).ν h (σ)sgn(φ(u 1 ) -φ(u 2 (σ)))α δ dH n σ d t.
Now, we come back to the definition of α δ to express the sum ∂ t α δ + ∂ tα δ . Then we can take the limit with respect to δ through the notion of the Lebesgue's set of a summable function on ]0, T [. Therefore, as g is Lipschitzian, for any χ in D(0, T ), χ ≥ 0,

- Qp |u 1 -u 2 |χ ′ (t) dx dt ≤ M ′ g Qp |u 1 -u 2 |χ(t)dxdt - Σ hp (f (u hp 1 ) -f (u hp 2 ))∇P.ν h sgn(u 1 -u 2 )χ(t)dH n , (19) 
where we remind that u i (σ) = φ -1 (φ(u i )(σ)) and φ(u i )(σ) is the trace on Σ hp of φ(u i ) |Qp .

(ii) Now we work in the hyperbolic domain. We use a doubling method for all the variables. Let ψ be such that ψ ≡ χζ where χ is a function in D(0, T ), χ ≥ 0, as in Part (i) and ζ is in D(R n ) such that: ζ ≥ 0, ζ ≡ 1 on Q h . We consider positive reals δ small enough in order that the mapping ( t, t) → χ((t+ t)/2)w δ (t -t)/2 belongs to D(]0, T [×]0, T [). Then, for such any positive δ, we define the function Ψ

δ in ]0, T [×R n ×]0, T [×R n by Ψ δ (r, r) = χ((t + t)/2)ζ((x + x) /2)W δ (r -r).
Due to the proposition 1, the inequality (7) holds for u 1 and u 2 . We choose in [START_REF] Gagneux | Analyse mathématique de modèles non lináires de l'ingénierie pétrolière[END_REF] written for u 1 in variables (t, x), k = ũ2 ≡ u 2 ( t, x) and ϕ(t, x) = Ψ δ (t, x, t, x) and in [START_REF] Gagneux | Analyse mathématique de modèles non lináires de l'ingénierie pétrolière[END_REF] written for u 2 in variables ( t, x), k = u 1 (t, x) and ϕ( t, x) = Ψ δ (t, x, t, x).

By integrating over Q h and adding up, it comes:

-

Q h ×Q h (|u 1 -ũ2 |(∂ t Ψ δ + ∂ tΨ δ ) -sgn(u 1 -ũ2 )(f (u 1 ) -f (ũ 2 ))(∇P.∇ x Ψ δ + ∇ P .∇ xΨ δ ) dr dr + Q h ×Q h sgn(u 1 -ũ2 )(g(t, x, u 1 ) -g( t, x, ũ2 ))Ψ δ dr dr ≤ Q h Σ h \Σ hp sgn(ũ 2 )f (ũ 2 )∇P (σ).ν h (σ)Ψ δ (σ, r) dH n σ dr + Q h Σ h \Σ hp sgn(u 1 )f (u 1 )∇ P ( σ).ν h ( σ)Ψ δ (r, σ) dH n σ dr - Q h ess lim τ →0 -Σ h \Σ hp sgn(u 1 (σ + τ ν h ))f (u 1 (σ + τ ν h ))∇P (σ).ν h (σ)Ψ δ (σ, r) dH n σ dr - Q h ess lim τ →0 -Σ h \Σ hp sgn(u 2 (σ + τ ν h ))f (u 2 (σ + τ ν h ))∇ P ( σ).ν h ( σ)Ψ δ (r, σ) dH n σ dr + Q h Σ hp sgn(u hp 1 (σ) -ũ2 )(f (u hp 1 (σ)) -f (ũ 2 ))∇P (σ).ν h (σ)Ψ δ (σ, r) dH n σ dr + Q h Σ hp sgn(u hp 2 (σ) -u 1 )(f (u hp 2 (σ)) -f (u 1 ))∇ P ( σ).ν h ( σ)Ψ δ (r, σ) dH n σ dr. (20) 
Then through a classical reasoning we pass to the limit with δ on the left-hand side of (20). On right-hand side, we refer to Lemma 1. It comes:

- Q h |u 1 -u 2 |χ ′ (t)dxdt ≤ - Q h sgn(u 1 -u 2 )(g(t, x, u 1 ) -g(t, x, u 2 ))χ(t) dx dt + Σ hp sgn(u hp 1 (σ) -u hp 2 (σ))(f (u hp 1 (σ)) -f (u hp 2 (σ)))∇P (σ).ν h (σ)χ(t) dH n .
The Lipschitz condition for g provides: ∀χ ∈ D(0, T ), χ ≥ 0,

- Q h |u 1 -u 2 |χ ′ (t)dxdt ≤ Σ hp sgn(u hp 1 -u hp 2 )(f (u hp 1 ) -f (u hp 2 ))∇P.ν h χ(t) dH n +M ′ g Q h |u 1 -u 2 |χ(t) dx dt. (21) 
By adding inequalities ( 19) and ( 21) we get:

- Q |u 1 -u 2 |χ ′ (t) dx dt ≤ M ′ g Q |u 1 -u 2 |χ(t) dx dt + Σ hp sgn(u hp 1 -u hp 2 )(f (u hp 1 ) -f (u hp 2 ))∇P.ν h χ(t) dH n - Σ hp sgn(u 1 -u 2 )(f (u hp 1 ) -f (u hp 2 ))∇P.ν h χ(t) dH n .
We set for H n -a.e. σ in Σ hp ,

I = sgn(u hp 1 (σ) -u hp 2 (σ)) -sgn(u 1 (σ) -u 2 (σ)) (f (u hp 1 (σ)) -f (u hp 2 )(σ))∇P (σ).ν h (σ),
and we develop a pointwize reasoning to establish that I ≤ 0, H n -a.e. on Σ hp . Indeed, for H n -a.e. σ in Σ hp , if sgn(u hp

1 (σ) -u hp 2 (σ)) = sgn(u 1 (σ) -u 2 (σ)) or sgn(u hp 1 (σ) -u hp 2 (σ)) = 0 then I = 0 while if sgn(u hp 1 (σ) -u hp 2 (σ)) = sgn(u 1 (σ) -u 2 (σ)
) and sgn(u hp 1 (σ) -u hp 2 (σ)) = 0 then sgn(I) = sgn(J) where,

J = sgn(u hp 1 (σ) -u hp 2 (σ))(f (u hp 1 (σ)) -f (u hp 2 )(σ))∇P (σ).ν h (σ).
Assume for example that u hp 1 (σ) < u hp 2 (σ), the study of the converse situation being similar. If u 2 (σ) belongs to ]u hp 1 (σ), u hp 2 (σ)[ then we may write (12) for u 1 and for u 2 and with k = u 2 (σ). By adding and taking into account that sgn(u

1 (σ) -u hp 1 (σ)) = -sgn(u 2 (σ) -u hp 2 (σ)) = 1 we obtain that J ≤ 0. If u 2 (σ) is not an element of ]u hp 1 (σ), u hp 2 (σ)[ then we take k = u hp 1 (σ) in (12) for u 2 if u 2 (σ) ≤ u hp 1 (σ) and k = u hp 2 (σ) in (12) for u 1 if u 2 (σ) ≥ u hp 2 (σ). In each case J ≤ 0. Therefore (22) becomes - Q |u 1 -u 2 |χ ′ (t)dxdt ≤ M ′ g Q |u 1 -u 2 |χ(t)dxdt,
for any nonnegative χ of D(0, T ). The inequality of the Theorem 1 follows from the initial condition ( 5) for u 1 and u 2 and thanks to the Gronwall Lemma. That completes the proof.

Existence through the vanishing viscosity method

In [START_REF] Aguilar | Nonlinear Multidimensional Parabolic-Hyperbolic Equations[END_REF] we have obtained an existence result of a weak entropy solution to ( 1)-( 2) satisfying ( 11) when along the interface all the characteristics of the first-order operator set in Q h have the same behavior: either there are all leaving the hyperbolic domain, either there are all entering in. However in the first situation, an existence property is also established in [START_REF] Aguilar | Coupling of Multidimensional Parabolic and Hyperbolic Equations[END_REF] by means of the vanishing viscosity method and thanks to the notion of process solution (note that for this special outwards characteristics framework, the uniqueness proof does not require [START_REF] Peyroutet | Error estimate for a splitting method applied to convection-reaction equations[END_REF], since data are living the hyperbolic zone along the interface). In this section we use the latter tools to provide an existence result whatever the behavior of characteristics along Σ hp but we are not able to ensure that the weak entropy solution obtained this way fulfills [START_REF] Peyroutet | Error estimate for a splitting method applied to convection-reaction equations[END_REF].

For any positive ǫ, we introduce φ ǫ = φ + ǫI R and we consider the next formal problem : find a bounded and measurable function u ǫ on Q such that

∂ t u ǫ - n i=1 ∂ xi (f (u ǫ )∂ xi P ) + g(t, x, u ǫ ) = ǫ∆φ ǫ (u ǫ ) in Q h , ∂ t u ǫ - n i=1 ∂ xi (f (u ǫ )∂ xi P ) + g(t, x, u ǫ ) = ∆φ ǫ (u ǫ ) in Q p , u ǫ = 0 on Σ, u ǫ (0, .) = u 0 in Ω, ( 22 
)
subject to the transmission conditions across the interface:

-(ǫ∇φ ǫ (u ǫ ) + f (u ǫ )∇P ).ν h = (∇φ ǫ (u ǫ ) + f (u ǫ )∇P ).ν p on Σ hp , u ǫ |Q h = u ǫ |Qp on Σ hp . (23) 

The viscous problem

First of all, as stated in [START_REF] Aguilar | Coupling of Multidimensional Parabolic and Hyperbolic Equations[END_REF], we remind the next existence and uniqueness result:

Theorem 2 For any positive ǫ, there exists a unique weak solution

u ǫ to (22)-(23) in W (0, T ) ∩ L ∞ (Q) with ∂ t u ǫ in L 2 loc (0, T ; L 2 (Ω))
. This solution fulfills

∂ t u ǫ -div(λ ǫ (x)∇φ ǫ (u ǫ )) + f (u ǫ )∇P ) + g(t, x, u ǫ ) = 0 a.e. on Q, (24) 
u ǫ (0, .) = u 0 a.e. on Ω,

where λ ǫ (x) = ǫI Ω h (x) + I Ωp (x).
The lack of regularity of the initial data but also the fact that the diffusive term depends on the space variable through λ ǫ only allow us to establish in [START_REF] Aguilar | Coupling of Multidimensional Parabolic and Hyperbolic Equations[END_REF] the following a priori estimates: Proposition 4 There exists a constant C independent of ǫ such that:

u ǫ L ∞ (Q) ≤ M, ( 25 
) (λ ǫ ) 1/2 ∇ φ(u ǫ ) 2 L 2 (Q) n + (ǫλ ǫ ) 1/2 ∇u ǫ 2 L 2 (Q) n ≤ C, (26) 
∂ t u ǫ L 2 (0,T ;H -1 (Ω)) ≤ C,
where M is defined in paragraph 1.1 and φ(τ ) = τ 0 φ ′ (s)ds.

The ǫ-limit

As a consequence of the proposition 4 and by using a reasoning highlighted in [START_REF] Gagneux | Analyse mathématique de modèles non lináires de l'ingénierie pétrolière[END_REF], chapter 2:

Proposition 5 Assume that φ -1 is Hölder continuous with an exponent θ in ]0, 1[. ( 27 
)
Then there exists a measurable function u of L ∞ (Q) with φ(u) in L 2 (0, T ; V ) such that up to a subsequence when ǫ goes to 0 + , the sequence (u ǫ ) ǫ>0 converges toward u in L ∞ (Q) weak * , in L q (Q p ) for any finite q and a.e. on Q p . Besides we also have

∇φ ǫ (u ǫ ) ⇀ ∇φ(u) weakly in L 2 (Q p ) n , ǫ∇φ ǫ (u ǫ ) → 0 + strongly in L 2 (Q h ) n .
To characterize the function u -that is formally to pass to the limit with respect to ǫ in ( 22)-( 23) -on the hyperbolic zone we take advantage of (25) and we use that:

Claim 1 (see [START_REF] Eymard | Existence and uniqueness of the entropy solution to a nonlinear hyperbolic equation[END_REF]) -Let O be an open bounded subset of R q (q ≥ 1) and (u n ) n>0 a sequence of measurable functions on O such that:

∃M > 0, ∀n > 0, u n L ∞ (O) ≤ M.
Then, there exist a subsequence (u ϕ(n) ) n>0 and a measurable function π in L ∞ (]0, 1[×O) such that for all continuous and bounded functions ψ on O×] -M, M [,

∀ξ ∈ L 1 (O), lim n→+∞ O ψ(x, u ϕ(n) )ξ dx = ]0,1[×O ψ(x, π(α, w)) dα ξ dx.
Such a result has first been applied to the approximation through the artificial viscosity method of the Cauchy problem in R p for conservation laws, as one can establish a uniform L ∞ -control of approximate solutions [START_REF] Diperna | Convergence of approximate solutions to conservation laws[END_REF]. It has also been applied to the numerical analysis of transport equations since "Finite-Volume" schemes only give an L ∞ -estimate uniformly with respect to the mesh length of the numerical solution (see [START_REF] Eymard | Existence and uniqueness of the entropy solution to a nonlinear hyperbolic equation[END_REF]). Here the approximating sequence is the sequence of solutions to viscous problems ( 22)-(23).

Theorem 3 If (27) holds and if f • φ -1 is Lipschitz continuous on [-M ; M ], (28) 
then when ǫ goes to 0 + the sequence of solutions to viscous problems (22)-(23) ǫ>0 strongly converges in L 1 (Q) toward a weak entropy solution to the coupled parabolic-hyperbolic problem (1)-(2).

Proof. We consider the function u highlighted in the proposition 5. Since (u ǫ |Ω h ) ǫ>0 is uniformly bounded, there exist a subsequence -still labelled (u ǫ |Ω h ) ǫ>0 -and a measurable and bounded function π -called a process -on ]0, 1[×Q h such that for any continuous bounded function

ψ on Q h ×] -M, M [ and for any ξ of L 1 (Q h ) lim ǫ→0 + Q h ψ(t, x, u ǫ )ξ dx dt = ]0,1[×Q h ψ(t, x, π(α, t, x))ξ dα dx dt (29) 
Our aim is first to establish that on the hyperbolic zone, the process π is reduced to u |Ω h , independently of α in ]0, 1[, and secondly to prove that u is a weak entropy solution to (1)-( 2) for initial data u 0 . To do so, for any positive µ, we take first the scalar product in L 2 (]µ, T [×Ω) between (24) and the function

∂ 1 H 1 (u ǫ , k)ζ 1 ,
where ζ 1 belongs to D(] -∞, T [×Ω), ζ 1 ≥ 0, and for any m in N * and any real k through

H 1,m (u ǫ , k) = (u ǫ -k) 2 + 1 m 2 1/2 - 1 m .
By denoting

Q 1,m (u ǫ , k) = uǫ k ∂ 1 H 1,m (τ, k)f ′ (τ )dτ, G 1,m (u ǫ , k) = g(t, x, u ǫ )∂ 1 H 1,m (u ǫ , k),
it comes after some integrations by parts

- T µ Ω (H 1,m (u ǫ , k)∂ t ζ 1 -Q 1,m (u ǫ , k)∇P.∇ζ 1 -G 1,m (u ǫ , k)ζ 1 ) dx dt - Ω H 1,m (u ǫ (µ, x), k)ζ 1 (µ, x) dx ≤ - T µ Ω λ ǫ ∂ 1 H 1,m (u ǫ , k)∇φ ǫ (u ǫ ).∇ζ 1 dx dt,
the inequality resulting from the convexity of the function ξ → H 1,m (ξ, k) for any real k.

Let us take the limit when µ tends to 0 + -remember that u ǫ is an element of L ∞ (Q) ∩ C([0, T ]; L 2 (Ω))and then the ǫ-limit separately on the parabolic and hyperbolic zones by using (29) and Proposition 5. We obtain:

-

Qp (H 1,m (u, k)∂ t ζ 1 -Q 1,m (u, k)∇P.∇ζ 1 -G 1,m (u, k)ζ 1 ) dxdt - ]0,1[×Q h (H 1,m (π, k)∂ t ζ 1 -Q 1,m (π, k)∇P.∇ζ 1 -G 1,m (π, k)ζ 1 ) dα dx dt ≤ Ω H 1,m (u 0 , k)ζ 1 (0, x)dx - Qp ∂ 1 H 1,m (u, k)∇φ(u).∇ζ 1 dx dt. (30) 
So for any

ζ 1 in D(] -∞, T [×Ω h ), ζ 1 ≥ 0, - ]0,1[×Q h (H 1,m (π, k)∂ t ζ 1 -Q 1,m (π, k)∇P.∇ζ 1 -G 1,m (π, k)ζ 1 ) dα dx dt ≤ Ω h H 1,m (u 0 , k)ζ 1 (0, x) dx.
where the limit with respect to m provides:

- ]0,1[×Q h (|π -k|∂ t ζ 1 -sgn(π -k)(f (π) -f (k))∇P.∇ζ 1 -sgn(π -k)g(π, t, x)ζ 1 ) dα dx dt ≤ Ω h |u 0 -k|ζ 1 (0, .) dx. (31) 
Let us come back to (24) and consider the L 2 (Q h )-scalar product with 

H φǫ(w) 2,m (φ ǫ (u ǫ ), φ ǫ (k)) = (dist(φ ǫ (u ǫ ), I(φ ǫ (w), φ ǫ (k)))) 2 + 1 m 2 1/2 - 1 m .
Lastly ζ ǫ belongs to H 1 0 (Ω h ), ζ ǫ ≥ 0, while ξ is an element of D(]0, T [×Ω h ), ξ ≥ 0. By taking into account the convexity of the function z → H φǫ(w) 2,m (z, φ ǫ (k)) it comes:

- Q h ( uǫ k ∂ 1 H φǫ(w) 2,m (φ ǫ (τ ), φ ǫ (k))dτ )∂ t ξζ ǫ -Q w 2,m (u ǫ , k)∇P.∇ξζ ǫ -∂ 1 H φǫ(w) 2,m (φ ǫ (u ǫ ), φ ǫ (k))g(t, x, u ǫ )ζ ǫ ξ dx dt ≤ - Q h Q w 2,m (u ǫ , k)∇P.∇ζ ǫ ξ dx dt -ǫ Q h ∂ 1 H φǫ(w) 2,m (φ ǫ (u ǫ ), φ ǫ (k))∇φ ǫ (u ǫ ).∇(ζ ǫ ξ) dx dt, by denoting Q w 2,m (u ǫ , k) = uǫ k ∂ 1 H φǫ(w) 2,m (φ ǫ (τ ), φ ǫ (k))f ′ (τ )dτ.
Now we write:

ǫ Q h ∂ 1 H φǫ(w) 2,m (φ ǫ (u ǫ ), φ ǫ (k))∇φ ǫ (u ǫ ).∇(ζ ǫ ξ) dx dt = ǫ Q h ∇(H φǫ(w) 2,m (φ ǫ (u ǫ ), φ ǫ (k))).∇(ζ ǫ ξ) dx dt = ǫ Q h ∇(H φǫ(w) 2,m (φ ǫ (u ǫ ), φ ǫ (k))ξ).∇ζ ǫ dx dt + ǫ Q h ∇(H φǫ(w) 2,m (φ ǫ (u ǫ ), φ ǫ (k))ζ ǫ ).∇ξ dx dt -2ǫ Q h H φǫ(w) 2,m (φ ǫ (u ǫ ), φ ǫ (k))∇ζ ǫ .∇ξ dx dt,
and through an integration by parts of the first line in the last right-hand side:

ǫ Q h ∂ 1 H φǫ(w) 2,m (φ ǫ (u ǫ ), φ ǫ (k))∇φ ǫ (u ǫ ).∇(ζ ǫ ξ) dx dt = ǫ Q h ∇(H φǫ(w) 2,m (φ ǫ (u ǫ ), φ ǫ (k))ξ).∇ζ ǫ dx dt -ǫ Q h H φǫ(w) 2,m (φ ǫ (u ǫ ), φ ǫ (k))ζ ǫ ∆ξ dx dt -2ǫ Q h H φǫ(w)
2,m (φ ǫ (u ǫ ), φ ǫ (k))∇ζ ǫ .∇ξ dx dt.

Eventually,

- Q h ( uǫ k ∂ 1 H φǫ(w) 2,m (φ ǫ (τ ), φ ǫ (k))dτ )∂ t ξζ ǫ -Q w 2,m (u ǫ , k)∇P.∇ξζ ǫ -∂ 1 H φǫ(w) 2,m (φ ǫ (u ǫ ), φ ǫ (k))g(t, x, u ǫ )ζ ǫ ξ dx dt ≤ - Q h Q w 2,m (u ǫ , k)∇P.∇ζ ǫ ξ dx dt -ǫ Q h ∇(H φǫ(w) 2,m (φ ǫ (u ǫ ), φ ǫ (k))ξ).∇ζ ǫ dx dt +ǫ Q h H φǫ(w) 2,m (φ ǫ (u ǫ ), φ ǫ (k))ζ ǫ ∆ξ dx dt + 2ǫ Q h H φǫ(w) 2,m (φ ǫ (u ǫ ), φ ǫ (k))∇ζ ǫ .∇ξ dx dt. (32) 
We consider now the particular choice for the function ζ ǫ ,

ζ ǫ (x) = 1 -exp - M ′ f •φ -1 ǫ ∇P ∞ + ǫL ǫ s(x) , ǫ ≥ 0, (33) 
where for any positive parameter µ small enough, s(x) = min(dist(x, Γ h ), µ) for x in Ω h , with L = sup 0<s(x)<µ |∆s(x)|. That way (see [START_REF] Otto | Conservation Laws in Bounded Domains, Uniqueness and Existence via Parabolic Approximation[END_REF][START_REF] Otto | Initial-boundary value problem for a scalar conservation law[END_REF]), for any ϕ of W 1,1 (Ω h ), ϕ ≥ 0,

M ′ f •φ -1 ǫ ∇P ∞ Ω h |∇ζ ǫ |ϕdx ≤ ǫ Ω h ∇ζ ǫ .∇ϕdx + (M ′ f •φ -1 ǫ ∇P ∞ + Lǫ) Γ h ϕdH n-1 . (34) 
Therefore, considering that,

|Q w 2,m (u ǫ , k)| = φǫ(uǫ) φǫ(k) ∂ 1 H φǫ(w) 2,m (τ, φ ǫ (k))(f • φ -1 ǫ ) ′ (τ )dτ ≤ M ′ f •φ -1 ǫ H φǫ(w)
2,m (φ ǫ (u ǫ ), φ ǫ (k)) a.e. on Q, and using (34) with ϕ = H φǫ(w)

2,m (φ ǫ (u ǫ ), φ ǫ (k))ξ, we argue that the first line of the right-hand side of (32) is less or equal than:

M ′ f •φ -1 ǫ ∇P ∞ Σ h H φǫ(w) 2,m (T ǫ (u ǫ ), φ(k))ξdH n + o(ǫ), with lim ǫ→0 + o(ǫ) = 0 and for H n -a.e. σ in Σ h , T ǫ (u ǫ (σ)) = 0 on Σ h \Σ hp , φ ǫ (u ǫ (σ)) on Σ hp .
Hence (32) has became:

- Q h ( uǫ k ∂ 1 H φǫ(w) 2,m (φ ǫ (τ ), φ ǫ (k))dτ )∂ t ξζ ǫ -Q w 2,m (u ǫ , k)∇P.∇ξζ ǫ -∂ 1 H φǫ(w) 2,m (φ ǫ (u ǫ ), φ ǫ (k))g(t, x, u ǫ )ζ ǫ ξ dx dt ≤ M ′ f •φ -1 ǫ ∇P ∞ Σ h H φǫ(w) 2,m (T ǫ (u ǫ ), φ(k))ξdH n + o(ǫ) + ǫ Q h H φǫ(w) 2,m (φ ǫ (u ǫ ), φ ǫ (k))ζ ǫ ∆ξ dx dt + 2ǫ Q h H φǫ(w) 2,m (φ ǫ (u ǫ ), φ ǫ (k))∇ζ ǫ .∇ξ dx dt.
Let us interested in the ǫ-limit for this inequality: since

f • φ -1 is Lipschitz continuous, lim ǫ→0 + M f •φ -1 ǫ = M f •φ -1
and stated in [START_REF] Otto | Conservation Laws in Bounded Domains, Uniqueness and Existence via Parabolic Approximation[END_REF][START_REF] Otto | Initial-boundary value problem for a scalar conservation law[END_REF], (ζ ǫ ) ǫ>0 goes to 1 in L 1 (Ω) and (ǫ∇ζ ǫ ) ǫ>0 goes to 0 in L 1 (Ω) n . For the term over Σ h we denote

I ǫ = Σ h H φ(w) 2,m (T ǫ (u ǫ ), φ(k))ξdH n .
As soon as H φ(w) 2,m (., φ(k)) is nonlinear, the weak convergence of the traces of φ(u ǫ ) on Σ hp (observe that on Σ h \Σ hp there is no difficulty to pass to the limit on ǫ) is not sufficient. That is why we consider the sequence (H φǫ(w) 2,m (φ ǫ (u ǫ ), φ ǫ (k))ξ) ǫ>0 . Thanks to the proposition 5 and since H φǫ(w) 2,m (., φ ǫ (k)) is Lipschitz, up to a subsequence (H

φǫ(w) 2,m (φ ǫ (u ǫ ), φ ǫ (k))ξ) ǫ>0 strongly converges toward H φ(w) 2,m (φ(u), φ(k))ξ in L q (Q p ), 1 ≤ q < +∞.
Besides, thanks to a chain rule argument and estimate (26), we argue that (H

φǫ(w) 2,m (φ ǫ (u ǫ ), φ ǫ (k))ξ) ǫ>0 is uniformly bounded in L 2 (0, T ; V ) ∩ L ∞ (Q p )
and so weakly converges (up to a subsequence) towards H φ(w) 2,m (φ(u), φ(k))ξ in L 2 (0, T ; V ). The trace operator from L 2 (0, T ; V ) into L 2 (Σ p ) being linear and continuous, (H

φǫ(w) 2,m (φ ǫ (u ǫ ), φ ǫ (k))ξ) ǫ>0 weakly converges towards H φ(w)
2,m (φ(u), φ(k))ξ in L 2 (Σ p ), and so in L 2 (Σ hp ). It comes lim ǫ→0 + I ǫ = I where

I = Σ h H φ(w) 2,m (T (u), φ(k))ξdH n ,
where for H n -a.e. σ in Σ h ,

T (u(σ)) = 0 on Σ h \Σ hp , φ(u(σ)) on Σ hp .
In addition, thanks to (25) and Claim 1, we are able to pass to the ǫ-limit in the left-hand side of (32). To resume, it comes for any function

ξ of D(]0, T [×Ω h ), ξ ≥ 0: ]0,1[×Q h π k ∂ 1 H φ(w) 2,m (φ(τ ), φ(k))dτ ∂ t ξ -Q w 2,m (π, k)∇P.∇ξ -∂ 1 H φ(w) 2,m (φ(π), φ(k))g h (t, x, π)ξ dαdxdt ≥ -M ′ f •φ -1 ∇P ∞ Σ h H φ(w) 2,m (T (u), φ(k))ξdH n .
When one refers to F.Otto's reasoning in [START_REF] Otto | Conservation Laws in Bounded Domains, Uniqueness and Existence via Parabolic Approximation[END_REF][START_REF] Otto | Initial-boundary value problem for a scalar conservation law[END_REF], p. 115, lemma 7.34, this inequality implies that for any ζ of L ∞ (Σ h ) and ξ of L 1 (Σ h ), ξ ≥ 0, ess lim

τ →0 -]0,1[×Σ h Q ζ 2,m (π(α, σ + τ ν), k)∇P (σ).ν h ξdαdH n ≤ M ′ f •φ -1 ∇P ∞ Σ h H φ(ζ)
2,m (T (u), φ(k))ξdH n .

By taking for H n -a.e. σ in Σ h ζ(σ) = φ -1 (T (u(σ))) = 0 on Σ h \Σ hp , u(σ) on Σ hp , where u(σ) is defined as φ -1 (φ(u(σ))) and belongs to L ∞ (Σ hp ), and then the limit with respect to m we get the boundary conditions for π:

ess lim τ →0 -]0,1[×Σ h F(π(α, σ + τ ν), φ -1 (T (u(σ))), k)∇P (σ).ν h ξdαdH n ≤ 0. ( 35 
)
To conclude, the process π fulfills (31) and (35), that means π is an entropy process solution to the quasilinear first-order hyperbolic problem set on Q h : find a measurable and bounded function w such that formally

       ∂ t w - n i=1 ∂ xi (f (w)∂ xi P ) + g(t, x, w) = 0 in Q h , w = u Γ h on Γ h , w(0, .) = u 0 on Ω h ,
where u Γ h is the element of L ∞ (Γ h ) given, for H n -a.e. σ in Σ h , by: u Γ h (σ) = 0 on Σ h \Σ hp , u(σ) on Σ hp , the trace u(σ) being defined as above. Due to [START_REF] Otto | Conservation Laws in Bounded Domains, Uniqueness and Existence via Parabolic Approximation[END_REF][START_REF] Otto | Initial-boundary value problem for a scalar conservation law[END_REF] we know that this problem has a unique solution.

Namely we may rewrite in the context of entropy process the proof provided in [START_REF] Otto | Conservation Laws in Bounded Domains, Uniqueness and Existence via Parabolic Approximation[END_REF][START_REF] Otto | Initial-boundary value problem for a scalar conservation law[END_REF]. It follows that if π 1 and π 2 are two process solutions for initial data u 0,1 and u 0,2 respectively, then for a.e. Classically we first deduce that when u 0,1 = u 0,2 on Ω h , there exists a measurable function u h on Q h such that a.e. on Q h , u h (.) = π 1 (α, .) = π 2 (β, .) for a.e. α and β of ]0, 1[. Another consequence of the uniqueness property is that the whole sequence (u ǫ ) ǫ>0 strongly converges to u h in L q (Q h ), 1 ≤ q < +∞. Thus u h = u |Ω h a.e. on Q h and in (30) the integrals over ]0, 1[ are performed. By taking the limit with respect to m, it follows that u fulfills (3) and [START_REF] Diperna | Convergence of approximate solutions to conservation laws[END_REF]. Boundary conditions (4) are written in (35) due to the definition of φ -1 (T (u)) that completes the proof of Theorem 3.

Conclusions

As a conclusion, let us collect the existence result stated in section 3 and the existence property of section 4.

The key point of the uniqueness theorem 1 being the existence of a strong trace of a weak entropy solution to (1)-(2), while the existence property just requires additional assumptions on f and φ. So we claim:

Corollary 1 Suppose that (27) and (28) hold. Then the coupling problem (1)-( 2) has a weak entropy solution that is the L 1 (Q)-limit of a sequence of solutions to viscous problems (22)-(23) ǫ>0 when ǫ goes to 0 + . In addition if u fulfills (11) then u is the only weak entropy solution satisfying [START_REF] Peyroutet | Error estimate for a splitting method applied to convection-reaction equations[END_REF].

Observe that in [START_REF] Aguilar | Nonlinear Multidimensional Parabolic-Hyperbolic Equations[END_REF], when the interface is included either in the set of outwards characteristics for the first order operator set in Q h , either in set of inward characteristics for the first order operator set in Q h , we highlight in each situation a weak entropy solution to (1) that fulfills [START_REF] Peyroutet | Error estimate for a splitting method applied to convection-reaction equations[END_REF]. So that, in this special framework, the coupling problem (1) has a unique weak entropy solution.

  (t,x,u)∈]0,T [×Ω×R |∂ u g(t, x, u)| and M 0 = ess sup ]0,T [×Ω |g(t, x, 0)|.

∂ 1 H

 1 φ(w) 2,m (φ(u ǫ ), φ(k))ζ ǫ ξ where for any m in N * and any real k and w in [-M, M ]

  t in ]0, T [, ]0,1[×Ω h |π 1 (α, t, x) -π 2 (β, t, x)| dα dβdx dt ≤ Ω h |u 0,1 -u 0,2 | dx e M ′ g t .
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