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Abstract

The electron beam induced selfconsistent charge transport in layered insulators (here

bulk alumina covered by a thin silica layer) is described by means of an electron-hole flight-

drift model FDM and an iterative computer simulation. Ballistic secondary electrons and

holes, their attenuation and drift, as well as their recombination, trapping, and detrapping

are included. Thermal and field-enhanced detrapping are described by the Poole-Frenkel

effect. Furthermore, an additional surface layer with a modified electric surface conductivity

is included which describes the surface leakage currents and will lead to particular charge

incorporation at the interface between the surface layer and the bulk substrate.

As a main result the time dependent secondary electron emission rate σ(t) and the spa-

tial distributions of currents j(x, t), charges ρ(x, t), field F (x, t), and potential V (x, t) are

obtained. For bulk full insulating samples, the time-dependent distributions approach the

final stationary state with j(x, t) = const = 0 and σ = 1. In case of a measurable surface

leakage current the steady stationary state is reached for σ < 1. First measurements are

extended to the sample current measurement including instationary components of charge

incorporation and polarization as well as dc-components of leakage currents.
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I. Introduction

For numerous industrial applications, the ongoing miniaturization is the key point for

future development1. For instance, the scaling down of electronic devices results in a con-

stant decrease of the involved dielectric thickness leading to various problems of physical

limits such as high leakage currents or breakdown phenomena2. A second example is the

mass improvement of space shuttle or the miniaturization of automotive components like

the reduction of size of the sparkplug to save on energetic resources while maintaining the

breakdown strength3 . The use of a modified surface layer or a thin film deposition is a clas-

sical solution to reach the targeted thickness or mass reduction while avoiding the problems

mentioned above. In the case of complementary metal oxide semiconductor (CMOS) devices

materials with higher dielectric constant (higher than that of SiO2) are used in order to

reduce of the gate thickness2. For the dielectric strength or resistance to breakdown, one has

used also encapsulation by thin films of the solar arrays by insulating coverslides4 . In the

case of size reduction of sparkplug with no loss of the dielectric strength, several surface treat-

ments of the alumina material can be considered : (i) laser or heat treatments that allow to

produce pore-free, crack-free, homogenous and harder surface than untreated surfaces5, (ii)

coating with quasi-metallic layer or silica layer6,7, or (iii) doping or implantation with various

ions6,8. However the presence of these surface layers modifies the electrical charging of the

whole sample. For example, in case of electronic devices X-ray photoelectron spectroscopy

(XPS) is usually applied to characterize thin dielectric layers but mostly being affected by

presence of an overlayer. Particularly the electrical charging of the substrate covered by an

overlayer has retained the attention of several teams employing XPS characterization9,10.

The electrical charging of spacecraft engines in space plasma environment can be also di-

3



rectly affected by the presence of the coverslide. Finally, measurements of surface charge

and secondary emission of coated or doped alumina have shown that substantial differences

in the secondary electron emission and the total electron yield are due to minor changes in

surface finish or modification6,8.

For a better understanding of these phenomena of charge transport and secondary elec-

tron emission, a physical model and a computer simulation will be set up in the present

paper. Indeed, thanks to a flight-drift model (FDM) of injected electrons and holes in in-

sulators and an iterative computer simulation, measurements of the charge injection during

electron beam irradiation and understanding of the selfconsistent charge transport in bulk

insulating samples is possible11,12. In Ref. 12 three types of non-conductive samples have

been considered: A - the insulating bulk sample with an open surface to the vacuum, B -

the bulk sample with a positive ion-covered surface as it is given in environmental secondary

electron microscopy (ESEM) under a certain gas pressure (some Torr) and gas ionization13,14,

and C - the conducting and grounded surface coated by a metal or carbon layer in order to

prevent charging of the bulk insulator.

The aim of the present work is to show the influence of a surface layer on the electron and

hole injection, drift, and trapping, on the secondary electron emission, and on the spatial

charging. For this reason a special Effective Layer Method (ELM) will be introduced to

describe the electron scattering and straggling in a layered target. Moreover, the top surface

layer will be characterized by surface leakage currents. As an example and application the

particular case of a silica SiO2 surface layer deposited on an alumina Al2O3 substrate will be

considered by simulation of the selfconsistent charge transport as well as by measurement of

the polarization and surface leakage currents and the charge storage dynamics.
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II. Theoretical Background

The strong charging of insulators under electron beam irradiation has been well known,

at least, since Malter 1936 discovered the anomalous high secondary electron emission (SEE)

and long-lasting electron post-emission from MgO layers15. A strong positive charging due

to the emission of secondary electrons (SE) from the surface-near regions is responsible for

that selfconsistent field-enhanced SEE. On the other hand, the deeper injection of primary

electrons (PE) will produce an electron surplus within the bulk of an insulator. The respec-

tive charge ρ(x) and field F (x) distributions maintain the selfconsistent charge transport

and the SEE emission.

An approach for a first estimation is based on the dynamic double layer model (DDLM)

in which the phenomenon is brought to the simplified case of two layers of opposite charge.

Complete solutions of the respective equations were achieved by Melchinger et al.16 and

J. Cazaux17 developed an effective approach of the SEE evolution in insulating samples us-

ing this DDLM.

The first comprehensive Monte Carlo calculations of the self-consistent charging were

made by Vicario et al.18, Ganachaud et al.19 and Renoud et al.20,21. Of course, these cal-

culations are very complex because of the deal with the full simulation of primary electron

straggling as well as with the generation and transport of secondary electrons and holes in

the selfconsistent field. However, the decisive advantage of the full Monte-Carlo simulation

is the 3-dimensional description of the charging process with the lateral charge spreading in

case of point-like electron beam injection by a very small beam focus.

Of course, a planar 1-dimensional self-consistent model will approach validity if the elec-

tron beam diameter is much larger than the maximum electron penetration depth R(E0).
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Unambiguously, this is fulfilled in scanning electron microscopes (SEM) with a slightly defo-

cused beam. Thus the 1-dimensional simulation can be applied to 3-dimensional description

of the sample potential in a SEM chamber11,12. Early attempts with the planar selfconsistent

charging simulation were performed by our co-author (HJF) already in 197822,23, later on

improved for insulating layers on conducting substrate in Ref. 24 and for bulk insulating

materials in Ref. 11 and 12. These authors use field-dependent attenuation lengths λ(F ) for

the ballistic transport of electrons and holes which had been found experimentally by means

of electron beam induced currents (EBIC) measurements25 and had been verified by Monte

Carlo calculations26−29.

The present paper will use the more comprehensive and realistic flight-drift model (FDM)

for electrons and holes as already demonstrated in Ref. 12 . There the ballistic flight of

excited electrons and holes is followed by their drift and respective recombination and/or

trapping in shallow and deep traps. Moreover, the electron and hole scattering and transport

should be considered in a heterogeneous layered insulator sample. Thus the numerical and

experimental results will be presented in particular for bulk alumina (Al2O3) covered by a

thin surface layer of silica (SiO2). Nevertheless, these simulations can be easily adapted to

any layered insulator system using the relevant material data.
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A. Electron beam injection and excitation - the effective layer method (ELM)

The problem of electron beam charge injection in a heterogeneous layered target is

demonstrated in Fig. 1. Incident electrons (so-called primary electrons PE) with initial

energy E0 and current density j0 penetrate the insulator target up to the maximum range

R(E0). The injection of primary electrons (PE) and their creation of secondary electrons

(SE) and holes (H) are very similar for alumina Al2O3 and silica SiO2 as we have described

already in Refs. 30 - 32 based on empirical results of the electron penetration into and

through thin films, see the ”film-bulk method” in Ref. 31, 32. By means of this method the

resulting PE current density in dependence on the target depth x and the PE initial energy

E0 was found:

jPE(x,E0) = j0(1− ηB)exp


−4.605

(
x

R(E0, Z)

)p(Z)

 , (1)

with j0 as impinging PE current density and the material parameters for SiO2 and Al2O3:

ηB ≈ 0.2 the backscattering coefficient, p = 2 the transmission exponent. An appropriate

formula for the maximum range R(E0) of electrons reached by 1% of PE in dependence on

their initial energy E0 was deduced from experimental data,30−38, see Fig. 2 and presented

in Ref. 38 for SiO2 and Al2O3 in the relevant energy region 1 < E0 ≤ 30 keV with:

RSiO2 = 33.7 (E0/keV)1.55 (2a)

RAl2O3 = 28.7 (E0/keV)1.55 (2b)

where R is given in nm, and the electron beam energy E0 should be inserted in keV. Electron

penetration curves according to Eq. (1) and (2) are presented already in Refs. 12, 32, and

38. For an exact charge balance within the insulating target the deposited, i.e. absorbed

PE’s in the depth x have to be taken into account too. They present an additional negative

electron charge, added to the excited secondary electrons (SE), which are generated in parity
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to the positive holes (H). The PE absorption density, or better said PE deposition function

gPE, is given by the negative first derivative of the PE penetration current density of Eq. (1),

see Ref. 12:

j0 · gPE = 9.21 · x

R2
· jPE(x,E0) (3)

Of course, these exhausted and deposited PE will continue their motion like created common

SE and should be added finally to the SE generation function gSE of Eq. (4) as will be done

in Eq. (9).

On the other hand, the spatial SE generation rate gSE(x,E0) excited by PE is propor-

tional to the spatial energy loss dE/dx of the impinging and straggling primary electrons

(PE). This energy transfer has to be divided by the SE excitation energy Ei. From Ref. 39

and the given dielectric electron energy loss function Im(−1/ε) for SiO2 we recognize en-

ergy losses up to 90 eV for valence band electron excitation, i.e. excitation of secondary

electrons. The most probable loss amounts 24 eV and the mean loss even will exceed the

3-fold energy gap width 3Eg
∼= 27 eV. Moreover, the SE creation energy Ei is increasing

with the PE energy E0 as we could show directly by film-bulk measurements40. Thus our

application with a relatively high PE energy E0 = 20 keV will justify Ei = (3Eg + 1) eV as

used for semiconductors too41. As we have already shown in Refs. 11, 12, and 38, for the

both insulators SiO2 and Al2O3 with the same band gap of Eg = 9 eV and nearly the same

SE generation energy of Ei ≈ 28 eV, we may write the spatial SE generation rate gSE in

both SiO2 and Al2O3 targets in the form of a semi-empirical equation:

gSE(x,E0) = gSH(x,E0) =
1.544

R(E0)

E0

Ei

exp

[
−7.5

(
x

R
− 0.3

)2]
(4)

Of course, secondary electrons (gSE) and holes (gSH) are created in parity presenting a Gaus-

sian distribution with the maximum shifted by 0.3R from the surface into the target volume,
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as shown in Fig. 3.

Of course, the energy transfer function dE/dx in a heterogeneous layered target is step-

wise inhomogeneous, and there is no simple mathematical expression to describe it. Therefore

we have proposed an Effective Layer Model (ELM) in Ref. 38 based on effective layers deff

substituting all the previous top material layers i− 1 above the layer i by an effective layer

thickness deff
i−1 of the following material Zi. In order to determine the effective layer thickness

deff
1 of only one covering top material Z1 we will compare equal transmission rates in both

materials: ηT (d1, Z1, E0) = ηT(deff
1 , Z2, E0). With electron transmission rates in dependence

on reduced depths according to Eq.(1) we get:

ηT = exp


−4.605 ·

(
d1

R1

)p1

 = exp


−4.605 ·

(
deff

1

R2

)p2

 (5)

and a power relation for the effective layer deff
1 replacing the first (top) material:

deff
1 =

(
d1

RSiO2

)p1/p2 ≈ 1
·RAl2O3 (6)

can be deduced from Fig. 1. This effective layer deff
1 of the top material is inserted into the

depth-related function of the transmission rate Eq. (1):

ηT(x,E0) = exp


−4.605

(
x− d1 + deff

1

RAl2O3(E0)

)2
 (7)

deff
1 replaces the top material of real thickness d1 by the effective layer deff

1 of the substrate,

whereas x is the absolute sample depth within the layered target but now located already

in the bottom substrate, see Fig. 1.

The similar substitution we may perform for the SE generation function in the bottom Al2O3

substrate, modifying Eq. (4):

gSE(x,E0) =
1.544

RAl2O3(E0)

E0

Ei

exp


−7.5

(
x− d1 + deff

1

RAl2O3(E0)
− 0.3

)2 
 (8)
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The respective excitation functions for a SiO2-Al2O3 layer system with a top layer SiO2

of thickness d1 = 0; 0.25; 0.5; 0.75; and 1.0·RSiO2 is presented in Fig. 3. Because of a

shorter maximum range R(E0) in Al2O3 (see Eq. (2a)-(2b)) the excitation density in this

bottom substrate material is higher (more concentrated) than in the top layer material SiO2,

indicated by a certain step at the chosen interface d1. As already mentioned, inner secondary

electrons and holes are generated in parity, i.e. their generation rates are equal: gSE ≡ gSH,

as it will be used in the following part.

B. Ballistic currents of excited electrons and holes

Assuming an isotropic SE generation, one half of the created SE: 1/2j0gSE(x,E0)∆x

will move into the bulk sample, i.e. in the direction towards the sample support, called

transmission (T), and the other half towards the sample surface, called reverse direction or

remission (R). Then the respective continuity equation in 1-dimensional form for ballistic SE

or hole current densities in transmission (T) direction towards the sample substrate (holder)

or in reverse or remission (R) direction towards the surface can be written11,12:

jBER
BET(x) =

[
jBER
BET(x±∆x) +

1

2
j0

[
gSE(x,E0) + gPE(x,E0)

]
∆x

]
exp

[
− ∆x

λE,0exp (±βEF )

]

︸ ︷︷ ︸
WEF

(9)

and for holes, respectively:

jBHR
BHT(x) =

[
jBHR
BHT(x±∆x) +

1

2
j0gSE(x,E0) ·∆x

]
exp

[
− ∆x

λH,0exp (∓βHF )

]

︸ ︷︷ ︸
WHF

(10)

convection generation ballistic attenuation

The first term in the brackets presents the convection part from the adjacent cell ∆x; the

second one the generation of inner SE: (gSE + gPE) or holes (gSH = gSE) followed by the
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ballistic attenuation probability WEF(x) and WHF(x) of the charge carriers over the small

distance ∆x in the target depth x. These attenuation probabilities have been described com-

prehensively in Refs. 25, 11, 12, 22, 23. Note that in Eq. (9) we have added the exhausted

and deposited PE with gPE to the generated SE with gSE.

The part jBER(x = 0) of ballistic SE moving towards the surface and being reflected at

the surface barrier (x = 0) presents the initial current density jBET(x = 0) of transmitting

SE into the sample volume towards the bulk :

jBET(x = 0) =

√
χ

ĒSE

jBER(x = 0) ' 0.3jBER(x = 0) (11)

where χ = 0.9 eV is the surface electron affinity and ĒSE the mean kinetic energy of SE in

the conduction band of Al2O3 or SiO2, see Refs. 42, 11 and 12. The part of SE non-reflected

at the surface is emitted into the vacuum presenting the external current jSEE of secondary

electrons:

jSEE =

(
1−

√
χ

ĒSE

)
jBER(x = 0) ' 0.7jBER(x = 0) (12)

where the forefactor is deduced from reflection and refraction at the surface barrier42. Thus

the rate of ”true” SE is given by: δ = jSEE/j0.

Moreover, this rate of SEE may be reduced additionally by retarding field effects, i.e. if

the surface potential V0(x = 0) becomes more positive than the first grid electrode with a

potential VG. For V0 > VG we get a retarded SEE current density:

j ∗
SEE = jSEE exp

(
− V0 − VG

5 Volt

)
(13)

as we have demonstrated in Refs. 11 and 12.

Finally, the rate of total SEE, i.e. the sum of backscattered and material released electrons

is obtained by:
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σ(t) = ηB + δ(t) = 1 +
j(x = 0, t)

j0

(14)

where j(x = 0) is the total current over the surface barrier11,12.

C. Drift currents of attenuated electrons and holes

The Flight-Drift Model (FDM) with the scattering and straggling of primary electrons

(PE), their excitation of secondary electrons (SE) and holes (SH), their ballistic flight as

ballistic electrons (BE) and holes (BH), respectively, their attenuation and drift as drifting

electrons (DE) and holes (DH) in selfconsistent fields, followed by recombination and/or

trapping and detrapping in localized states (traps) is presented schematically in Fig. 4 and

has been described comprehensively in our previous paper12. All these processes are included

in the following Eq. (15) for drifting electrons (DE) in reverse (R) direction towards the sur-

face and transmission (T) directions into the sample volume (bulk) :
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jDER
DET(x) =

{
jDER
DET(x±∆x) +

[
jBER(x)[1−WEFR(x)] + jBET(x)[1−WEFT(x)] +

convection generation by ballistic attenuation (15)

+ %E1(x)WE1PF + %E2(x)WE2PF

]
× FE(x)

}
×

detrapping by Poole-Frenkel effect

× exp
[
−

(
N1 − %E1

e0

)
SE1∆x

]

︸ ︷︷ ︸
WE1

· exp
[
−

(
N2 − %E2

e0

)
SE2∆x

]

︸ ︷︷ ︸
WE2

×

trapping in shallow(1) and deep(2) states

× exp
[
−%H1

e0

SEH1∆x
]

︸ ︷︷ ︸
WEH1

· exp
[
−%H2

e0

SEH2∆x
]

︸ ︷︷ ︸
WEH2

recombination with holes

Here the first convection term describes incoming and outgoing drifting electrons in the

depth element ∆x; the second generation term presents the sources of drifting electrons

by attenuated (exhausted) ballistic electrons; the third (detrapping) term is given by the

Poole-Frenkel release of electrons from traps, presenting also a source of drifting electrons.

The field factor FE describes the anisotropy of all generated drifting electrons (DE) in the

electric field F . Finally, as electron drains we see the trapping and recombination terms

with trap concentrations N and actual charges % as well as the respective cross sections S,

all as presented in Fig. 4. Of course, the current density equation jDHR
DHT for drifting holes

(DH) looks adequate with the respective trapping parameters of holes, as already described

in Ref. 12.

Note that the field direction factors FE and FH are acting to all ”initial” drift electrons (DE)

and holes (DH), as shown in Eq. (15).
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This field direction factor FE for electrons is explained in Fig. 5 as a result of Monte Carlo

calculations and given in analytic form by means of Eqs. (16a) and (16b) presented in Fig. 6:

FE =
1

2
− 1

2
tanh

F

FE0

(16a)

FH =
1

2
+

1

2
tanh

F

FH0

. (16b)

Further on, the Poole-Frenkel release43,44 of charges from traps is given by Eq. (17):

WHPF
EPF = fH

E exp

[
− EH

E −∆EPF

kT

]
(17)

for electrons (E) and holes (H), respectively. This enhanced charge release from traps is due

to a trap barrier lowering ∆EPF by an electric field F 44:

∆EPF = 2
e3/2

(4πε0εr)1/2
F 1/2 = βPFF 1/2 (18)

For the relevant dielectric and insulating materials alumina and silica with respective dielec-

tric permittivities εr we get the trap barrier lowering:

∆EPF

eV
= 104

(
e

πε0εr

)1/2

F
1/2
MV
cm

'





0.24eV· F
1/2
MV
cm

for Al2O3; εr = 10

0.38eV· F
1/2
MV
cm

for SiO2; εr = 4

(19)

Finally, as given in Eqs. (15) - (19) for electrons (E), the same procedure has to be performed

for holes (H) too and the resulting charges will be counted from the balance of trapping and

detrapping: %(x, t) = −%E1 − %E2 + %H1 + %H2.

On the other hand, we may account the charges and the fields from current fluctuations

(divergences) too:

− ∂

∂x
j(x, t) =

∂%(x, t)

∂t
= ε0εr

∂

∂t

∂

∂x
F (x, t) (20)

as it has been already described more detailed in Ref. 12. However, in case of heterogeneous
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samples a jump of field strengths should be considered at the interface d1 of the top layer to

the substrate (see Fig. 1):

F2(d1+) =
ε1

ε2

F1(d1−) (21)

when integrating the field strengths over the charges, see Eq. (20) and Ref. 12.

D. Electron and hole trapping and detrapping by Poole-Frenkel effect

In this part let us check the validity and reasonability of the Poole-Frenkel trapping-

detrapping mechanisms. We may describe the trapping and detrapping processes by first-

order kinetics. Thus an incident current density j leads to an actual trap occupation rate

nT (t) with time t:

dnT = +
j

e0

(N − nT ) · S · dt − nT f exp
(
− ET −∆EPF

kT

)
· dt (22)

where the second term means the Poole-Frenkel release of trapped charges (detrapping).

N is the existing trap concentration, S the capture cross section, f an ”attempt of escape

frequency factor”, shortly called pre-exponential ”frequency factor”, and ∆EPF the lowering

of the thermal activation energy ET by an electric field F , i.e. the Poole-Frenkel effect, as

already described by Eqs. (17) - (19).

In the following we have tested the trapping and Poole-Frenkel release mechanism by

means of time-dependent filling and detrapping of the balance Eq. (22) and its iterative

integration t = t + ∆t. Thus we get the partial filling rates as presented in Fig. 7. From

these calculations we may deduce an appropriate frequency factor dependence on the trap

activation energy, see Fig. 8:

logf = 4 + 5ET (eV). (23)
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where the frequency factor f is given in s−1 and the activation energy ET in eV.

Thus very shallow traps like small polarons possess only little thermal activation energies

Et ≈ (0.1 - 0.5) eV with relatively low frequency factors of f ≈ (104−106)s−1 whereas deeply

trapped electrons with activation energies Et ≈ 2 eV will be released at higher temperatures

T ≈ 500 oC with an almost highest frequency factor of f ≈ 1014 s−1. This is in agreement

with the experiences of thermally stimulated processes, e.g. of Chen42 and Refs. 46 - 48.

E. Surface leakage current

Insulating devices are not only characterized by their bulk volume electrical resistance

but also by their surface leakage conductivity. In our experiments11,12 of polarization dis-

placement current measurements we often observed a dc-current component to the metallic

sample support (holder) as a considerable background to the highly instationary and fast

decaying polarization current ip, see Fig. 1. Because we could exclude real bulk conduc-

tion currents ic only tertiary scattered electrons TE from the SEM chamber walls or surface

leakage currents could be taken into account, see Fig. 1 in Ref. 11. The first ones we could

exclude by full screening of the sample49 and the metallic sample holder (support electrode),

thus the latter ones, the surface leakage currents should be responsible for such a dc sample

current towards the sample support electrode. Moreover, we have measured them by surface

ring electrodes50.

In the present paper we want to insert these surface leakage currents iS into our selfconsistent

charging and current balances. As we have described all kinds of currents i by their current

densities j related to the spot area of electron irradiation and the incident PE current density

j0 we also will relate the surface leakage current to this irradiated area and current densities
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describing it by jS.

Our ansatz will include proportionality to the surface potential V0 and indirect to the

surface radius RS, further on, to a surface conductivity σ0 modified by a Poole-Frenkel charge

release from shallow surface states with small thermal activation energy ES (hopping):

jS =
V0

RS

σ0 exp
[
−ES −∆EPF

kT

]
(24)

The first factor V0/RS presents a medium surface field strength of about tens of kV/cm; the

surface conductivity could be estimated to σ0 = 1.25 · 10−7 A/Vcm or S/cm; whereas the

surface trap energy was chosen with ES = (0.1− 0.3) eV. These parameters were estimated

from first surface current measurements of Ref. 50 and data of thermal trap spectroscopy46,

respectively.

The resulting surface currents jS are presented in Fig. 9 in dependence on the surface

potential V0. Of course the current magnitude is increasing with the sample temperature T

as well as with the surface trap barrier lowering as a function of the surface field strength

∆EPF(V0/RS) as given with Eqs. (18) and (19). However, the surface field strength FS with

tens of kV/cm are relatively small with respect to internal bulk field strengths F (x) and so

the surface current jS will be controlled mostly by the temperature T .
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III. Simulation of Selfconsistent Charging

The general computation scheme has been presented already in Ref. 12. In the present

work, the scattering interaction mechanisms, according to the Eqs. (5) - (10) and (16a) -

(24) and as described in the previous chapter, have been installed additionally. The first

simulations for layered targets were performed for 3 mm bulk Al2O3 samples covered by a 1

µm SiO2 surface layer, see Fig. 1. The necessary material parameters of the substrate Al2O3

are given in Tab. 1 of Ref. 11; the data of the surface layer SiO2 mostly in Ref. 24. Other

parameters are described already in the respective text parts of this paper. Furthermore,

comprehensive Monte Carlo calculations of secondary electron generation, scattering, and

emission are made and well illustrated in Ref. 28. There one may find SiO2 material pa-

rameters presented in a table too, as well as SE energy distributions, attenuation and escape

depths.

In order to protect the samples from thermal irradiation effects and material modifica-

tions, we used in our measurements as well as simulations a slightly ”defocused” electron

beam of 1 nA impinging an area of (100 µm2) leading to a primary electron current density

of j0 = 10−5A/cm2 = 10 µA/cm2. This planar geometry of about 100 µm beam width

(diameter) much greater than R = 3 µm electron maximum penetration depth maintains

the assumption of the planar 1-dimensional target model. So we may use mean ballistic

attenuation lengths for secondary electrons λE,0 = 5 nm, for holes λH,0 = 2 nm and respec-

tive attenuation field factors βE = 4.6 cm/MV and βH = 0.8 cm/MV in accordance with

Refs. 11, 12 and 22 - 29.

More difficult is the selection of appropriate electron and hole trap concentrations N,H,

their capture cross sections SE, SH , their thermal activation energies EE, EH , and recombi-
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nation cross sections SEH and SHE, as given in Fig. 4. For our first calculations presented

here we choose the following data, estimated from Refs. 46 - 51: shallow trap concen-

trations NE1 = NH1 = 1020 cm−3 corresponding to high concentrations of selftrapping by

small polaron formation; their capture cross sections SE1 = SH1 = 10−13 cm2 and thermal

activation energies EE1 = EH1 = 0.2 eV. Of course, the deeper traps possess less concen-

tration: NE2 = NH2 = 1016 cm−3, SE2 = SH2 = 10−13 cm2, and EE2 = EH2 = 2 eV.

The Coulomb-attractive recombination can be described by a relatively high cross section

SEH = SHE = 10−13 cm2. We should mention here that a more diverse trap parameter se-

lection and optimization will be done when more direct comparison with experimental data

will be available. In this context also especial interface traps should be introduced at the

boundary d1 between the top layer and the substrate.

A. Saturation of SE rate and surface potential

First of all we want to check the total SE emission rate σ = η+δ of backscattered (η) and

true secondary electrons (δ) released from the target material. For bulk insulating samples

and no electrical conduction to the support this rate σ should approach the value ”one” in

stationary saturation state, σ(t) → 1, i.e. currents of injected primary electrons (PE) j0 and

emitted backscattered and secondary electrons jSE compensate each other, see Fig. 1.

In Fig. 10 (top) we see that this steady stationary state is reached after (20 - 50) ms

electron beam injection with E0 = 20 keV and j0 = 10µA/cm2 in case of a sufficiently low

temperature, here at about room temperature T = 300 K. It means that for this temper-

ature the supposed surface traps with thermal activation energy ES
∼= 0.2 eV are not yet

activated and the surface charges remain still localized. Increasing the sample temperature
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T to 500 and 1000 K we observe a lower (less 1) saturation value of σ(t) with an indication

of a surface leakage current jS > 0 due to the increasing mobility of the surface charges in

the higher mean surface field V0/RS as given by Eq. (24) in the part II-E.

This increasing negative surface potential V0(t) is presented in the lower part of Fig.

10. There the maximum negative value V0 ≈ −15 kV is reached already after t = 17 ms

injection but then a slight decrease due to surface charge release and surface leakage current

jS(t) is observed leading finally also to a saturation state with a surface potential of about

V0(t > 70ms) ≈ 12.5 kV for a high temperature of T = 1000 K. Obviously, this behavior of

the both experimentally accessible quantities, the SE rate σ and the surface potential V0,

offers the possibility to compare and characterize insulators with respect to their electrical

features.

B. Spatial distributions of currents, charges, and field

The peculiarity of the layered sample with a surface layer of thickness d1 on a bulk

substrate is the interface between both in the depth d1 as shown in Fig. 1. Thus in Fig. 2

the SE-hole excitation densities are demonstrated in such a heterogeneous layered sample.

Consequently, the ballistic electron and hole currents show an inhomogeneity at d1 too, as

demonstrated in Fig. 11. Within the more dense material Al2O3 the spatial concentration of

electrons and holes is higher than in SiO2 leading to a jump of currents across the interface

at d1.

Zooming on the interface we observe a ”hysteresis” of the ballistic currents in reverse

(R) and transmission (T) direction, Fig. 12 (top). Below we find the respective diffusion

currents but still in nearly field-free conditions after an injection time of only 1 ms. Whereas

the ”hysteresis” of ballistic charge carriers is sharply bended at the interface d1, the diffusion
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currents show smeared and spread junctions across the interface. But the drains and sources

of diffusion currents are regions of charge accumulation and depletion, respectively, as given

by Eqs. (15) and (20). Consequently, a bipolar minus-plus spatial charge distribution is

built up at the interface d1, as to be seen in Fig. 12 (lower part). Because the electric field

in this region is negative (see below in Fig. 12) the diffusion electrons in reverse direction

jDER are prevailing all the other current components producing finally the negative charge

accumulation on the left hand side of the interface. Consequently more holes are trapped

on the right hand side of the interface forming a positive charge concentration. The initial

(1 ms) electric field distribution F (x) in Fig. 12 (bottom) shows the expected jump at the

interface d1 due to the different electrical permittivities ε1/ε2 according to Eq. (21). Fur-

thermore, the field F appears negative and represents the charge distribution %(x) discussed

above according to Eq. (20).

With ongoing electron beam injection the internal current density j(x, t) will be flattened

and finally approaching the value zero over the full depth x: j(x,∞) → 0. This corresponds

to the steady stationary state σ = 1. Thereby the irradiated volume is shrinked due to the

electron beam retarding by the strong negatively charged surface of nearly -15 kV for room

temperature T = 300 K or -12.5 kV for T = 1000 K. Both distributions are presented on

the left and right hand side of Fig. 13, respectively. This negative charging and retarding

leads to an electron beam landing energy of only

E
′
0 = E0 + eV0 (25)

diminished by the negative surface potential eV0. Thus the primary electron (PE) maximum

range and excitation depth is diminished too by means of Eqs. (2), (4), and (8). The

respective charge distributions in Fig. 13 (middle) show a typical plus-minus-plus-minus
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quadro-polarity as already described in Refs. 11 and 12. The reason for that is the electric

field distribution in plus-minus bipolarity as to be seen in the bottom part of Fig. 13.

In general, the escape and emission of SE into the vacuum produces a positive charge and

a positive field beneath the surface. The positive field even leads to a so-called field-enhanced

secondary electron emission. Thus drifting electrons will be swept to the left hand side in

reverse direction towards the surface whereas holes are swept to the right in transmission

direction into the bulk forming the successive region of minus-plus charge accumulation. In

deeper regions the field changes the sign because of totally prevailing negative charges due

to σ < 1, and becomes negative. So drifting electrons are swept in transmission direction

into the volume; even they may exceed the maximum range R of injected primary electrons

and form the deep negative volume charge. Thus we get the plus-minus-plus-minus charge

distribution in direction of increasing target depth x. But here in the layered sample an

additional bi-polar local charge minus-plus is build up at the interface d1 as described already

above in context with Fig. 12. This alternating charge is growing still during the irradiation

as can be seen in Fig. 13 (middle). Of course, a higher temperature, e.g. T = 1000 K (Fig.

13, right) will diminish the incorporated charges, first by their higher mobility and increasing

drift and compensation (recombination), secondly by an increasing surface leakage current

and the removal of electrons lowering the overall negative charge and the negative surface

potential V0, see Fig. 10.

IV. Sample Current Measurement

According to Fig. 1 we may construct a current measurement arrangement as given

in Fig. 14. In order to measure the mostly instationary sample current iSC(t) the support
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electrode must be shielded thoroughly to prevent stray electrons (tertiary electrons TE)

from the microscope chamber walls and lens pole pieces to be collected too. They would

produce an artificial dc component of iSC what may be interpreted wrongly as an insulator

real conduction current iC. However, the shield should collect and ground the surface leakage

current iS. Thus we get the sample current iSC as the primary electron (PE) beam injection

current i0, but diminished by the total secondary electron rate σ = ηBE +δSE and the surface

current iS:

iSC(t) = [1− σ(t)]i0 − iS(t) (26)

The surface leakage current iS(t) will depend on the setup of the negative surface potential

V0(t) as given with Eq. (24). Hence V0(t) approaches a saturation value, iS(t) will approach

a constant value too. Further on, σ(t) draws near unit with time (see Fig. 10) thus the

sample current iSC will decrease nearly to zero. The remaining dc-component of iSC should

be associated to iS.

In our measurements the instationary sample current iSC(t) was recorded by a storage

oscilloscope. The sample itself was a non-covered bulk alumina ceramic disc of 17 mm diam-

eter and 2.7 mm thickness. The aperture of the metallic shield amounts 10 mm in diameter.

More experimental details are described in Ref. 49.

In Fig. 15 experimental and simulated sample currents iS(t) are compared. Clearly we

observe the instationary behavior as described above as well as a small, but constant surface

leakage current after irradiation of about 30 ms. The beam injection was performed with

E0 = 30 keV and j0 = 30 µA/cm2 over 100 ms on a fresh spot position of the sample.

Thus the beam current density is 3 times higher than in our simulations of Fig. 10 and the

saturation σ → 0 is reached faster, already at about 10 ms indicating a sublinear function
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of charging velocity vs. electron beam density j0. It may be explained by the binary pro-

cesses of electron-hole recombination and subsequently higher order of charge recombination

kinetics.

We may state a still sufficient agreement of the simulated and the measured sample

currents iSC(t), although, a certain deviation in the pulse shape becomes obvious. Prob-

ably, this is due to a more rapid charge trapping behavior in reality than we have used

in our calculations. It will be a forthcoming task to optimize the simulation with respect

to experimental data. In this context we give preference to the real-time measurements of

the here presented instationary sample current measurement iSC(t) and the direct surface

potential measurement eV0(t) = E0 − E
′
0 according to Eq. (25) by means of the shifted

high energy x-ray bremsstrahlung (BS) edge E
′
0, the so-called Duane-Hunt limit, as we have

demonstrated in Ref. 11. A direct imaging of charge distributions by low vacuum scanning

electron microscopy LV-SEM has been presented recently51 and is based on field-enhanced

conductivity.

V. Conclusions

Electron beam irradiation and charge injection associated by selfconsistent charge trans-

port in insulating samples are described by means of an electron-hole flight-drift model

(FDM) implemented by an iterative computer simulation. Ballistic scattering and trans-

port of secondary electrons and holes is followed by electron and hole drift, their possible

recombination and/or trapping in shallow and deep traps. Furthermore a detrapping by

the temperature- and field-dependent Poole-Frenkel-effect becomes possible allowing even

a charge hopping transport. In this context a special surface layer has been installed to
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investigate the effect of surface leakage current, also following the Poole-Frenkel trapping-

detrapping mechanism.

As a main result the spatial distributions of currents j(x, t), charges ρ(x, t), electric

field F (x, t), and potential V (x, t) are obtained in a selfconsistent procedure as well as the

time dependent secondary electron emission rate σ(t) and surface potential V0(t) both ex-

perimentally accessible. For bulk full insulating samples the above quoted time-dependent

distributions approach the final stationary state under the condition j(x, t) = const = 0 and

σ = 1. In case of remarkable surface leakage current iS the steady stationary final state

is obtained with σ < 1. The difference is collected with the surface current iS and can be

measured by a respective ring electrode. For a high beam energy E0 = 20 keV and room

temperature T = 300 K a high negative surface potential V0 = −14 kV is obtained, di-

minished to -12.5 kV with increasing temperature up to T < 1000 K. Because of this high

negative surface potential the electron beam is decellerated down to a real landing energy

E
′
0 = E0 + eV0 ≈ (6 − 7.5) keV → (EII

0 ) near to the second sigma-unit value σ(EII
0 ) = 1.

In spite of a negative surface potential V0 the charge beneath the surface is positive due

to the favored SE escape. But, generally we obtain a plus-minus-plus-minus spatial charge

distribution with prevailing minus parts within the bulk insulator produced by a bipolar

field: a positive field near the surface and a negative one in the remaining bulk. Thus, due

to drift processes we obtain two opposite charge separations leading to the quadro-polarized

charge structure across the sample depth.

The experimental method of stationary-instationary sample current iSC(t) measurements

allows us to measure the instationary charge displacement (incorporation) and polarization

current ip as well as the surface leakage current iS, or occasionally, the volume conduction

current ic as a function of temperature. The experimental results are still in a sufficient
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agreement with our selfconsistent charge transport simulation. It offers the opportunity

to investigate and to characterize insulating materials with respect to their quality, their

electrical behavior, and radiation resistance.
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Captions of the Figures

Fig. 1 Primary electron (PE) injection into a layered target with a surface layer d1 and

an overall sample thickness D; the interaction volume (hatched) is extended

to the maximum electron range R(E0) with following currents: iBE : backscat-

tered electron, iSE : secondary electrons, iS : surface current, ic : possible real

conduction current, ip : polarization displacement current.

Fig. 2 Maximum range relations R(E0) in insulators silica SiO2 and alumina Al2O3

obtained by different authors30−38. The special approaches Eqs. (2a) and (2b)

for the SEM energy region 1-30 keV are obtained in Ref. 38.

Fig. 3 Heterogeneous energy deposition in layered insulator targets SiO2 on Al2O3

with different top SiO2 layer thicknesses: d1 = 0 ; 0.25 ; 0.5 ; 0.75 ; and

1.0 RSiO2 ; thus the top distribution corresponds to uncovered bulk Al2O3, the

bottom one to full bulk SiO2.

Fig. 4 Scheme of the flight-drift model (FDM) including the excitation of ballistic

electrons and holes, their flight and attenuation, followed by drift or diffusion,

trapping, and/or recombination. Indicated are the respective trap parameters

and cross sections.

Fig. 5 Angular distributions of electron diffusion and drift in SiO2 as obtained in

Monte Carlo simulations of Ref. 26.
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Fig. 6 Field direction factors FE and FH of Eqs. (16a) and (16b) for anisotropic drift

of electrons and holes in and against an electric field F , respectively.

Fig. 7 Trapping and detrapping rates nT of charge carriers in localized states

(traps) with concentration N = 1018cm−3 and thermal activation energies

ET = 0.3 and 1.5 eV, respectively, according to Eq. (22). Respective fre-

quency factors f = 105 and 1011 s−1 were estimated according to Fig. 8

and Eq. (23).

Fig. 8 Detrapping frequency factor f of charge release from traps with

thermal activation energy ET, demonstrating the range from full to empty

traps for two temperatures T = 300 and 800 K according to Eq. (22) and

Fig. 7, finally leading to Eq. (23).

Fig. 9 Surface current jS as a function of the surface potential V0 and temperature

T ; thermal activation energy of surface traps ES = 0.1 eV, surface radius

RS = 1 cm.

Fig. 10 Total SE rate σ(t) and surface potential V0 as a function of irradiation

time t and sample temperature T ; sample: 1µm SiO2 layer on 3 mm Al2O3;

ES = 0.2 eV; E0 = 20 keV; j0 = 10µA/cm2.
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Fig. 11 Current density j(x) of ballistic electrons (inner SE’s) and holes in reverse and

transmission direction within a layered target after t = 1 ms irradiation still

in nearly field-free state; E0 = 20 keV; j0 = 10µA/cm2.

Fig. 12 Zoom of the SiO2 - Al2O3 interface at x = d1 = 1µm from Fig. 11 with

the spatial distributions of ballistic and diffusion electrons and holes, trapped

charges, and electric field (from top to bottom) after t = 1 ms still in nearly

field-free conditions.

Fig. 13 Development of spatial distribution with time t at two temperatures T = 300

and 1000 K within a layered target SiO2 - Al2O3: total internal current j(x)

(top), charge density ρ(x) (middle), and electric field F (x) (bottom);

E0 = 20 keV, j0 = 10µA/cm2.

Fig. 14 Sample shielding and arrangement for sample current iSC, surface current iS,

and polarisation current ip measurements according to Eq. (26).

Fig. 15 Simulated acc. Eq. (26) and experimental sample currents iSC(t) as given

in Fig. 14 with the instationary decreasing polarisation current ip(t) and an

increasing but then stationary surface current iS(t).
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