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DIOPHANTINE UNDECIDABILITY OF HOLOMORPHY RINGS OF

FUNCTION FIELDS OF CHARACTERISTIC 0

LAURENT MORET-BAILLY AND ALEXANDRA SHLAPENTOKH

Abstract. Let K be a one-variable function field over a field of constants of characteristic 0.
Let R be a holomorphy subring of K, not equal to K. We prove the following undecidability
results for R: If K is recursive, then Hilbert’s Tenth Problem is undecidable in R. In general,
there exist x1, . . . , xn ∈ R such that there is no algorithm to tell whether a polynomial
equation with coefficients in Q(x1, . . . , xn) has solutions in R.

1. Introduction

The interest in the questions of existential definability and decidability over rings goes back
to a question that was posed by Hilbert: given an arbitrary polynomial equation in several
variables over Z, is there a uniform algorithm to determine whether such an equation has
solutions in Z? This question, otherwise known as Hilbert’s Tenth Problem (“HTP” in the
future), has been answered negatively in the work of M. Davis, H. Putnam, J. Robinson and
Yu. Matijasevich. (See [4], [5] or [20] for the details of the solution of the original problem.)
Since the time when this result was obtained, similar questions have been raised for other
fields and rings. In other words, let R be a ring. Then, given an arbitrary polynomial
equation in several variables over a recursive subring R0 of R, is there a uniform algorithm
to determine whether such an equation has solutions in R? (If R is countable and recursive
then we can set R0 = R.)

Depending on the nature of the ring the difficulty of answering the question can vary
widely. By now, a lot of work has been done to solve the problem over some subrings of
number fields and function fields, including the fields themselves in the case of function fields.
However there remain quite a few open questions which at the moment seem intractable.
Chief among these questions are arguably the Diophantine status of Q (and number fields
in general), the rings of integers of an arbitrary number field, and an arbitrary function field
of characteristic 0.

More details on the Diophantine problem over number fields and related issues can be
found in [1], [2], [3], [6], [9], [10], [21], [22], [23], [24], [26], [29], [30], [32], [34], [36], [38], [40],
[43], [44], and [45]. Results concerning function fields of positive characteristic can be found
in [8], [12], [27], [28], [33], [39], [41], and [48]. Also, for a general reference on the subject we
suggest [11] and [47].

It turned out that solving HTP over function fields of characteristic 0 was more difficult
than over function fields of positive characteristic. However we do know that HTP is un-
decidable over many function fields and rings of characteristic 0. In particular, we know
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that HTP is undecidable over fields of functions of finite transcendence degree over constant
fields that are formally real or are subfields of finite extensions of Qp for some odd rational
prime p. (These constant fields include number fields.) Further, we also know that HTP is
undecidable over function fields of transcendence degree at least 2 whose field of constants is
C. (See [7], [13], [14], [16], [17], [25], [49] for more details on these field results). We also have
a few ring results: for rings of S -integers and semi-local rings over any field of constants,
and some results for rings “in the middle”. (See [25], [37], [42], [50] for more details on ring
results.)

One of the problems which was solved over global fields was the construction of an existen-
tial definition of order. In other words there exists an existential definition in the language
of rings of the set of elements of a given global field whose order at a fixed non-archimedean
valuation is non-negative. Over function fields of characteristic 0 this was done successfully
over a limited class of fields and the success depended heavily on the nature of the field of
constants. As it turned out, an existential definition of order was one of the two ingredients
used for showing the Diophantine undecidability of one variable function fields of character-
istic 0. The other ingredient was an elliptic curve of rank 1. This plan was first implemented
by Denef for the formally real rational function fields in [7]. As will be described below, the
issue of finding the right elliptic curve has been solved in the greatest possible generality by
the first author in [25], but the issue of defining the order remains a stumbling block. So we
can solve HTP precisely over those function fields in one variable where we can define the
order. (See Corollary 10.3.3 of [25].)

To make the matters even more vexing, it is not hard to see that a definition of order
together with the Diophantine undecidability of any semilocal subring of a field implies
Diophantine undecidability of any ring “in the middle”, i.e. any holomorphy ring, pretty
much in the same fashion as the Diophantine undecidability of a domain follows from the
Diophantine undecidability of its field of fractions. (Both cases also require being able to
define the set of non-zero elements. Fortunately, we know how to do it in all cases of interest
to us.) And thus the absence of a definition of order in a manner of speaking is responsible
for the subject of this paper: the Diophantine undecidability of arbitrary holomorphy rings
of characteristic 0 not equal to a field. The main results of this paper are stated below.

Theorem 1. Let K be a countable recursive one variable function field of characteristic 0.
Then Hilbert’s Tenth Problem is not solvable over any holomorphy ring of K not equal to
the whole field.

Theorem 2. Let K be a one variable function field of characteristic 0 over a field of constants
C. Then for any holomorphy ring of K not equal to the whole field, there exist elements
x1, . . . , xn ∈ K \C such that there is no algorithm to tell whether a polynomial equation with
coefficients in Q(x1, . . . , xn) has solutions in the ring.

Remark 1. The reason for two separate statements has to do with the possibility that the
function field K is not countable. That possibility forces us to examine more carefully what
we can allow as coefficients of our polynomial equations. In the case of a countable field it
is possible to allow every element of the field as a coefficient, but in the case the field is not
countable we have to restrict the set of possible coefficients to a countable set. In our case
this set will depend on the ring.
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Remark 2. The case of holomorphy rings which are actually rings of S -integers, i.e. rings
where only finitely many primes of the field are allowed in the pole divisors of the ring
elements, has been treated by the second author in [35]. While it is not explicitly discussed
in the paper, the statement of the Theorem 2 follows from the construction of the equations.
We should also like to note that the aforementioned paper of the second author, just as the
present one, was a generalization of ideas of Denef from [7]. In this paper Denef used a Pell
equation to construct a model of integers instead of an elliptic curve. In view of this result
we will always assume that the set of primes allowed in the pole divisors is infinite.

In some cases we will be able to prove a stronger result giving an existential definition
of Z over an arbitrary holomorphy subring of the field not equal to the whole field. More
specifically the following theorem holds.

Theorem 3. Let K be any function field of characteristic 0 over a field of constants C. As-
sume there exists a subset C0 of C such that C0 contains Z and has a Diophantine definition
over K. Then Z is existentially definable over any holomorphy ring of K not equal to the
whole field.

Remark 3. We know of many function fields of characteristic 0 where constants are existen-
tially definable. They include function fields over ample fields of constants and other large
fields, including fields which are algebraically closed. (See [18], [31], and [46] for various
examples.)

The main idea behind the proofs of Theorems 1 – 3 is rather simple. In a ring, where not
all primes are inverted, there is a natural way to define the order using divisibility. So even
if we cannot do it over a field, we can define the order over a ring (or come pretty close).
We are now ready to proceed with the technical details.

2. Basic Diophantine Facts.

We start with giving precise definitions to the objects we are going to study, beginning
with Diophantine sets.

Definition 2.1. Let R0 ⊂ R be rings and let A ⊂ Rm. A Diophantine definition of A over
R, with coefficients in R0, is a finite collection of polynomials {fi,j(t1, . . . , tm, x1, . . . , xn), i =
1, . . . , r, j = 1, . . . , s} ⊂ R0[t1, . . . , tm, x1, . . . , xn] such that for any (t1, . . . , tm) ∈ Rm, we
have the equivalence

(t1, . . . , tm) ∈ A ⇐⇒ ∃x1, . . . , xn ∈ R,

s
∨

j=1

r
∧

i=1

fi,j(t1, . . . , tm, x1, . . . , xn) = 0.

We say that A is Diophantine over R w.r.t. R0 if it has such a Diophantine definition.

Remark 2.2. In general R0 plays an auxiliary role and is often omitted, the default value
being of course R.

Remark 2.3. Consider a Diophantine set A as in Definition 2.1.
If R is a domain (which is generally the case in applications), then A has a Diophantine

definition “with s = 1”, i.e. consisting of a system of polynomial equations, without the
disjunction operation.
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If, moreover, the fraction field of R is not algebraically closed, we can even take r = s = 1;
in other words, A has Diophantine definition consisting of one equation. Most authors take
this as the definition of a Diophantine set. (See [5] or [47], Chapter I for more details.)

We will be able to construct such a definition of Z over holomorphy subrings of our function
field K provided a subset of the constant field containing Z has a Diophantine definition over
K.

Definition 2.4. Let R be a ring and let R0 be a recursive subring of R. We say that Hilbert’s
tenth problem is solvable in R, with coefficients in R0, if there is an algorithm taking as input
a finite set of polynomials in R0[X1, . . . , Xm] (for some arbitrary m > 0) and telling whether
they have a common zero in Rm.
We write H10(R, R0) for this property. If R is recursive we take H10(R) to mean H10(R, R).

Remark 2.5. Assume H10(R, R0) holds, and let A ⊂ Rm be Diophantine w.r.t. R0, with
given Diophantine definition (fi,j)1≤i≤r,1≤j≤s. Then A is a finite union of projections of sets
Aj (1 ≤ j ≤ s) defined by polynomial systems (with some extra variables). Since A = ∅ if
and only if each Aj is empty, there is an algorithm (taking (fi,j) as input) telling whether A
is empty or not. This of course could be taken as a definition for the H10 property.

With the same assumptions, let t be a point in Rm
0 ⊂ Rm. Then {t} is Diophantine

w.r.t. R0, and we have that t ∈ A if and only if {t} ∩ A 6= ∅. Hence, the above discussion
shows that there is an algorithm telling whether t belongs to A.

Remark 2.6. Just as in Remark 2.3, if R is a domain with non-algebraically closed fraction
field, it suffices to check H10 for systems consisting of one polynomial: this is the traditional
definition of the H10 property.

Proposition 2.7. Let R1 ⊂ R2 ⊂ R3 be rings, with R1, R2 and the inclusion R1 ⊂ R2

recursive. Let I be an ideal of R3 with the following properties:

• I is generated by finitely many elements of R2 (in particular, it is Diophantine
w.r.t. R2).

• R1 ∩ I = {0}.
• The set R1 + I ⊂ R3 is Diophantine w.r.t. R2.

Then H10(R3, R2) implies H10(R1).

Proof. Assume H10(R3, R2). Let D ⊂ Rm
1 be defined by

D :=
{

t ∈ Rm
1 | ∀i ∈ {1, . . . , r}, fi(t) = 0

}

where the fi’s are polynomials with coefficients in R1. We are looking for an algorithm telling
whether D is empty.

Put ∆ := R1 + I, which is Diophantine in R3 by assumption, and define B ⊂ Rm
3 by

B :=
{

t ∈ ∆m | ∀i ∈ {1, . . . , r}, fi(t) ∈ I
}

.

Clearly, B is Diophantine w.r.t. R2 since ∆ and I are. Hence, by H10(R3, R2), there is
an algorithm telling whether B is empty, so it suffices to prove that D = ∅ if and only if
B = ∅. The “if” part is trivial since D ⊂ B. Conversely, assume there exists some t ∈ B.
By definition of ∆, there exists t1 ∈ Rm

1 which is congruent (coordinatewise) to t mod I.
Then for each i we still have fi(t1) ∈ I, but also fi(t1) ∈ R1 since fi has coefficients in R1.
Hence fi(t1) = 0, which means that t1 ∈ D, hence D 6= ∅. (In fact it is easy to see that
B = D + IRm

3 and D = Rm
1 ∩ B.) �
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We will also use the following standard trick:

Proposition 2.8. Let R0 ⊂ R ⊂ R′ be rings, with R0 recursive. Assume that, as an R-
module, R′ has a finite basis B = {b1, . . . , bm} such that R0 contains the following elements:

• the coordinates of 1 in B,
• the entries of the matrix of multiplication by bi in R′, for each i ∈ {1, . . . , m}.

We identify R′ with Rm using B. Let D ⊂ R′d be Diophantine over R′ w.r.t. R0. Then:

(1) D (as a subset of Rmd) is Diophantine over R (w.r.t. R0).
(2) D ∩ Rd ⊂ Rd is Diophantine over R (w.r.t. R0).

Proof. (1) is immediate from the assumptions. The first assumption also implies that the
inclusion R ⊂ R′ ∼= Rm identifies R with a Diophantine subset of Rm w.r.t. R0, so the same
property holds for the inclusion Rd ⊂ R′d ∼= Rmd. Assertion (2) follows. �

3. Basic Facts on Function Fields and Holomorphy Rings.

Definition 3.1. Let C be a field. Then a (one-variable) function field K over C is is a finite
extension of the rational function field C(t). (Equivalently, it is a finitely generated extension
of C of transcendence degree 1). For such a function field K, a prime of K is a nontrivial
discrete valuation of K which is trivial on C. We denote by PK the set of such primes
(abusingly omitting C from the notation). For p ∈ PK we adopt the traditional notation ordp

for the corresponding normalized valuation and we denote by O(p) the associated valuation
ring. If W is a non-empty subset of PK , we put

OK,W =
⋂

p6∈W

O(p) =
{

h ∈ K | ∀p 6∈ W we have that ordph ≥ 0
}

.

OK,W is called a holomorphy ring of K.

Note that, with the above notations, taking W = ∅ would lead to the intersection of all
rings O(p) (p ∈ PK). This ring is the algebraic closure C ′ of C in K, a finite extension of C,
and K is a function field over C ′ with the same set PK and rings OK,W as over C. Therefore,
for the purposes of this paper we can always replace C by C ′, i.e. assume C algebraically
closed in K. (In other words, K is a regular extension of C).

If W = PK , then OK,W = K. Otherwise, OK,W is a Dedekind domain with fraction field
K; its maximal ideals correspond bijectively to elements of PK \ W , via the map

p 7−→ Ip :=
{

h ∈ OK,W | ordph > 0
}

.

We shall derive Theorems 1, 2 and 3 from the following result:

Theorem 3.2. Let K and W be as above, with ∅ 6= W 6= PK and char K = 0. Let p 6∈ W

be a prime of K, and let Ip be the corresponding maximal ideal of OK,W . Then Z + Ip is
Diophantine in OK,W .

Proof of Theorems 1, 2 and 3 (from 3.2): For Theorems 1 and 2 we simply apply Proposition
2.7 with R1 = Z and R3 = OK,W . We take for R2 the subring of R3 generated by a
finite subset containing a generating set for Ip and all elements occurring in a Diophantine
definition of Z+Ip. The condition Ip∩Z = {0} is obvious since nonzero integers are invertible
in C ⊂ OK,W .
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For Theorem 3, we have Z ⊂ (Z + Ip) ∩ C0 ⊂ (Z + Ip) ∩ C = Z (the last equality follows
from C ∩ Ip = {0}). Hence Z = (Z + Ip) ∩ C0 is Diophantine. �

From now on, we assume that C is algebraically closed in K, and that the characteristic
is zero. If Ĉ is a finite extension of C, then K̂ := Ĉ ⊗C K is a finite extension of K, and
a function field over Ĉ. Moreover, for W as above, the following three subrings of K̂ are
equal:

• Ĉ ⊗C OK,W ,

• the integral closure of OK,W in K̂,

• the holomorphy ring OK̂,Ŵ where Ŵ is the set of primes of K̂ inducing primes in W .

The first description shows in particular that OK̂,Ŵ is a free module over OK,W , of rank

[Ĉ : C].

In addition, let p 6∈ W be a prime of K. Then there exists a prime p̂ 6∈ Ŵ of K̂ extending
p, and the corresponding ideals Ip ⊂ OK,W and Ip̂ ⊂ OK̂,Ŵ satisfy Ip = OK,W ∩ Ip̂. It follows

that Z + Ip = OK,W ∩ (Z + Ip̂). By Proposition 2.8 (2) we see that if Z + Ip̂ is Diophantine
in OK̂,Ŵ , then Z + Ip is Diophantine in OK,W .

In particular, to prove Theorem 3.2 for K, W , p, we may replace these data by K̂, Ŵ , p̂,
respectively.

We shall use this remark as follows: take for Ĉ the residue field of p. We have a surjective
morphism OK,W → Ĉ of C-algebras, hence (tensoring with Ĉ) a surjective Ĉ-morphism

OK̂,Ŵ → Ĉ. Its kernel defines a prime p̂ of K̂ above p, which has degree one in the sense

that its residue field is the constant field Ĉ of K̂. To summarize, we can always assume that
the prime p of Theorem 3.2 has degree one.

As we have already mentioned above, our paper has two main inputs. The first one is
contained in a paper of Denef (see [7]) which constructs a rank one elliptic curve over any
rational function field of characteristic 0 together with a way of generating integers. The
second input is a result of the first author that allows the elliptic curve constructed by
Denef to retain its nice properties under finite extensions. More specifically we will use the
following result which is a consequence of Theorem 1.8 (ii) and Proposition 2.3.1 of [25].

Theorem 3.3. Let K be a function field of characteristic 0 over a field of constants C. Let p

be a degree one prime of K. Let D be a divisor of K such that ordqD ∈ {0, 1} for any prime
q of K, ordpD = 0, and the degree of D is at least 2gK + 2, where gK is the genus of K.
Let F (T ) be a nonsingular cubic polynomial over Q such that the elliptic curve Y 2 = F (X)
has no complex multiplication. Then there exists an x ∈ K such that its pole divisor is D,
ordpx > 0, and the elliptic curve Ex defined by the equation

(3.1) F
(1

x

)

Y 2 = F (X)

has the property that Ex(C(x)) = Ex(K). Also Ex(C(x)) is of rank 1 generated by the point
with affine coordinates ( 1

x
, 1) ∈ E(C(x)) \ E(C) modulo 2-torsion.

Proof. We need a slight refinement of Proposition 2.3.1 of [25]:

Lemma 3.4. With the assumptions of Theorem 3.3, there exists a nonzero g ∈ K with the
following properties:
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• the divisor of zeros of g is D,
• g has only simple poles, and p is one of them,
• g has simple ramification (i.e. in the extension K/C(g) no prime has ramification

degree greater than 2).

Proof. The argument is classical and entirely similar to [25], 2.3.1. Put d := deg D. The
linear system |D| is a projective space of dimension d − g, and we identify D with a (C-
rational) point in it. Inside |D| we consider the following subvarieties, where Q (resp. ∆)
denotes a variable point (resp. effective divisor):

• H = {divisors of the form p + ∆},
• Z1 = {divisors of the form 2p + ∆},
• Z2 = {divisors of the form p + 2Q + ∆}.
• Z3 = {divisors of the form 3Q + ∆},

Clearly, none of these contains D, and H is a hyperplane because p has degree 1. It is proved
in [25] that Z3 has codimension ≥ 2 in |D|, and similar arguments easily show that the same
holds for Z1 and Z2. Hence we can find a line in |D| through the point D, defined over C
and disjoint from Z1 ∪ Z2 ∪ Z3. This line meets H at a point D′. There is an element g of
K with divisor D − D′, and this g has the required properties. �

Let us return to the proof of Theorem 3.3. Clearly, by multiplying g by some nonzero
constant c (in Q, if we wish) we may also choose g with branch locus disjoint from the inverse
roots of F . This makes g admissible for D in the sense of [25], Definition 1.5.2. Further,
it follows from Theorem 1.8 (ii) of [25] that by choosing c appropriately we may assume in
addition that g is good, i.e. Eg−1(C(g)) = Eg−1(K).

Now let x = g−1: we now have that Ex(C(x)) = Ex(K), and the rest of the theorem
follows from the assumption on F and from [7] which describes Ex(C(x)). �

4. Diophantine Undecidability of Holomorphy Rings.

Notation and Assumptions 4.1. We start with a first notation set.

• Let K be a function field of characteristic 0 over a field of constants C.
• Let PK be the set of all primes of K.
• Let ∅ 6= W ⊂ P, W 6= P.
• Let p ∈ P \W be a prime of degree 1. (By assumption, P \W is not empty, and as

explained in the previous section we may assume that it contains a prime of degree
1 by extending K).

• Let gK be the genus of K.
• Assume that W contains infinitely many primes (in fact the present proof works

whenever
∑

q∈W
deg q ≥ 2gK + 2). As noted in Remark 2 of the introduction, the

case where W is finite is settled in [35]; more precisely, in that case, Z is Diophantine
in OK,W (Theorem 3.1 of [35]), hence our Theorem 3.2 also holds.

• Let D = {q1, . . . , q2gK+2} be a set of distinct elements of W . (We only need the total
degree of D to be at least 2gK + 2, in order to apply Theorem 3.3.)

• Let x ∈ K be such that its pole divisor is
∏

i qi, ordpx > 0, and E(K) = E(C(x)),
where E = Ex is the elliptic curve defined in (3.1). (Such an x exists by Theorem
3.3).
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Observe that x ∈ OK,W and therefore OK,W contains the polynomial ring C[x]. Moreover,
the condition ordpx > 0 means that p lies above the ideal (x) of C[x]. In other words, for
any z ∈ C(x) we have

(4.2) ordpz = (ordpx)(ord0z)

where, in the right-hand side, z is viewed as a rational function of x.

Two elements a, b ∈ OK,W will be called coprime if they generate the unit ideal, i.e. there
exist A, B ∈ OK,W such that

(4.3) Aa + Bb = 1.

Note that we have “Gauss’ Lemma”: if a and b are coprime and a divides bc in OK,W , then
a divides c.

Proposition 4.2. The set
{

h ∈ OK,W | h 6= 0
}

is Diophantine over OK,W .

Proof. The proof is essentially a consequence of the Strong Approximation Theorem and can
be found in [36]. �

Notation and Assumptions 4.3. We now add the following notation and assumptions to our
list.

• Let P ∈ E(K) be the point whose affine coordinates derived from (3.1) are ( 1

x
, 1).

• For nonzero n ∈ Z, let (xn, yn) be the affine coordinates of [n]P derived from (3.1).
Since P ∈ E(C(x)) we have that xn and yn are rational functions of x.

• Since [n]P is not a torsion point, we have yn 6= 0 and we can write

xxn

yn

=
αn

βn

,

where αn, βn ∈ C[x] are relatively prime polynomials in x (in particular, since they
satisfy relation (4.3) in C[x] ⊂ OK,W , they are also coprime in OK,W ).

The following lemma shows how we will generate integers to show undecidability. Its proof
can be found in Lemma 3.2 of [7].

Lemma 4.4. For any n ∈ Z>0 we have that ordp

(

xxn

yn
− n

)

> 0. �

Using Lemma 4.4 and the definition of being coprime, one easily deduces the following
lemma.

Lemma 4.5. Let n be a nonzero integer. Assume that

xxn

yn

=
an

bn

where an, bn ∈ OK,W are coprime. Then:

an = εαn and bn = εβn for some ε ∈ O×
K,W ,(4.4)

an − n bn = xw for some w ∈ OK,W ,(4.5)

ordp(bn) = 0.(4.6)
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Proof. To prove (4.4) we note that anβn = bnαn, hence (by Gauss’ lemma) an and αn divide
each other in OK,W . In other words, ε := an/αn is a unit.

To prove (4.5) and (4.6) we may and will assume, in view of (4.4), that an = αn and
bn = βn. Let w ∈ K be defined by (4.5). Let us prove that w ∈ C[x]. Since an and bn are in
C[x] it suffices to prove that an −n bn (as a polynomial in x) vanishes at 0, which by (4.2) is
equivalent to ordp(an−n bn) > 0. This is clear from Lemma 4.4 since an−n bn = bn(xxn

yn
−n)

and bn ∈ C[x].
Let us now prove (4.6). Since an − n bn vanishes at 0 it follows that if bn vanishes at 0, so

does an. Since they are relatively prime polynomials, this cannot happen. �

We also have a converse of sorts to (4.5) above.

Lemma 4.6. With the assumptions of 4.5, suppose for some c ∈ K we have that ordp(an −
bnc) > 0. Then ordp(c − n) > 0.

Proof. The equation an − bnc = xw implies that ordp(an − bnc) > 0 as ordpx > 0 and p 6∈ W .
Since ordp(an − bnn) > 0 by Lemma 4.5, we conclude that ordp(bn(c − n)) > 0. This proves
the result by (4.6). �

Next we prove an easy lemma.

Lemma 4.7. The set

E =
{

(u, v, w, z) ∈ (OK,W )4

∣

∣

∣
vw 6= 0, ∃n ∈ Z \ {0} : xn =

u

v
, yn =

z

w

}

is Diophantine.

Proof. Since we know how to define non-zero elements over any holomorphy ring and all the
points of E(K) are in fact of the form [n]P + T where T is a 2-torsion point, we can easily
define the set

Eeven =

{

(u′, v′, w′, z′) ∈ (OK,W )4

∣

∣

∣
∃k ∈ Z \ {0} : x2k =

u′

v′
, y2k =

z′

w′

}

using Theorem 3.3. Then (u, v, w, z) ∈ E if and only if either (u, v, w, z) ∈ Eeven or
(

u
v
, z

w

)

=
(

u′

v′
, z′

w′

)

+E

(

1

x
, 1

)

, where (u′, v′, w′, z′) ∈ Eeven. �

Proof of Theorem 3.2: Put I = Ip = {t ∈ OK,W | ordp(t) > 0}, and let us prove that Z + I
is Diophantine in OK,W .

Let ξ be an element of OK,W . We claim that the following are equivalent:

(1) ξ ∈ Z + I,
(2) either ξ ∈ I, or the following system has a solution (u, v, w, z, a, b, A, B) in O8

K,W :

(4.7)























(u, v, w, z) ∈ E

a

b
=

xuw

vz
Aa + Bb = 1

a − bξ ∈ I.

This clearly implies the result since both E and I are Diophantine (the former by 4.7, and
the latter because it is a finitely generated ideal).
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First, assume (1). If ξ ∈ I we are done. Otherwise, we may assume that ξ =: n is a
nonzero integer since both (1) and (2) are invariant under adding an element of I to ξ. We
construct a solution of (4.7) as follows. First, choose u, v, w, z so that u

v
= xn, z

w
= yn (first

relation). Put a = αn and b = βn (as defined in 4.3): the second relation is satisified and we
can find A and B satisfying the third. Finally by (4.5) the fourth relation holds since x ∈ I.

Now assume that (2) holds. As before, (1) is trivial if ξ ∈ I. Otherwise, fix a solution
(u, v, w, z, a, b, A, B) of (4.7). By definition of E there is a nonzero integer n such that xn = u

v

and yn = z
w
. We can then apply Lemmas 4.5 and 4.6 with an = a, bn = b and c = ξ to

conclude that ordp(ξ − n) > 0. In other words, ξ ∈ Z + I. �
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