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Partial Differential Equations/ Équations aux dérivées partielles Diffusion versus absorption in semilinear parabolic problems 1

We study the limit, when k → ∞, of the solutions u = u k of (E)

where ω > 0 satisfies to 1 0 ω(t)t -1 dt < ∞, the limit function u∞ is a solution of (E) with a single singularity at (0, 0), while if ω(t) ≡ 1, u∞ is the maximal solution of (E). We examine similar questions for equations such as ∂tu -∆u m + h(t)u q = 0 with m > 1 and ∂tu -∆u + h(t)e u = 0.

Diffusion versus absorption dans des problèmes paraboliques semilinéaires

Résumé. Nous étudions la limite, quand k → ∞, des solutions u = u k de (E) ∂tu -∆u + h(t)u q = 0 dans R N × (0, ∞), u k (., 0) = kδ 0 avec q > 1, h(t) > 0. Nous montrons que si h(t) = e -ω(t)/t où ω > 0 vérifie 1 0 ω(t)t -1 dt < ∞, la fonction limite u∞ est une solution of (E) avec une singularité isolée en (0, 0), alors que si ω(t) ≡ 1, u∞ est la solution maximale de (E). Nous examinons des questions semblables pour des équations des type suivants ∂tu -∆u m + h(t)u q = 0 avec m > 1 et ∂tu -∆u + h(t)e u = 0.

Version française abrégée

Soit q > 1 et h : R + → R + une fonction continue, croissante telle que h(t) > 0 pour t > 0. Il est facile de vérifier que toute solution positive u de [START_REF] Brezis | A very singular solution of the heat equation with absorption[END_REF] ∂ t u -∆u + h(t)u q = 0 dans R N ×]0, +∞[ satisfait à

(2) u(x, t) ≤ U (t) := (q -1)

t 0 h(s) ds -1/(q-1) ∀(x, t) ∈ R N ×]0, +∞[.
Si h ∈ L 1 (0, 1, t N q/2 dt), il est classique que pour tout k > 0 il existe une unique solution (dite fondamentale) u = u k de (1) sur R N ×]0, +∞[ vérifiant u k (., 0) = kδ 0 . Par le principe du maximum k → u k est croissant et deux cas peuvent se produire: (i) ou bien u ∞ = lim k→∞ u k = U . Explosion initiale complète.

(ii) ou bien u ∞ est une solution de (1) singulière en (0, 0) vérifiant lim t→0 u ∞ (x, t) 1 To appear in C. R. Acad. Sci. Paris, Ser. I.
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= 0 pour tout x = 0. Explosion initiale ponctuelle.

Theorem 1. (I) Si h(t) = e -σ/t pour un σ > 0, alors u ∞ = U . (II) Si h(t) = e -ω(t)/t où ω est monotone croissante sur ]0, +∞[ et vérifie, pour un α ∈ [0, 1[, inf{ω(t)/t α : 0 < t ≤ 1} > 0 et 1 0 ω(t) t -1 dt < ∞, alors u ∞ a une explosion initiale ponctuelle.
Dans le cas de l'équation

(3) ∂ t u -∆u + h(t)e u = 0 dans R N ×]0, +∞[, toute solution u satisfait à (4) u(x, t) ≤ Ũ (t) := -ln t 0 h(s) ds ∀(x, t) ∈ R N ×]0, +∞[, et l'existence d'une solution fondamentale u = u k est assurée si h(t) = e -b(t) avec lim t→+∞ t N/2 b(t) = +∞.
Theorem 2.(I) Si h(t) = e -e σ/t pour un σ > 0, alors u ∞ = Ũ .

(II) Si h(t) = e -e ω(t)/t où ω vérifie les conditions du Théorème 1, alors u ∞ a une explosion initiale ponctuelle.

Nos méthodes nous permettent ausi de traiter l'équation des milieux poreux avec absorption.

Main results

Let q > 1 and h : (0, ∞) → (0, ∞) be a continuous nondecreasing function. It is easy to prove that any positive solution u of (1) ∂ t u -∆u + h(t)u q = 0 dans R N × (0, +∞) verifies

(2) u(x, t) ≤ U (t) := (q -1)

t 0 h(s) ds -1/(q-1) ∀(x, t) ∈ R N × (0, ∞).
If h ∈ L 1 (0, 1, t N q/2 dt), it is classical that, for any k > 0, there exists a unique solution (called fundamental) u = u k of (1) sur R N × (0, ∞) such that u k (., 0) = kδ 0 . By the maximum principle k → u k is increasing and the following alternative occurs: (i) either u ∞ = lim k→∞ u k = U . Complete initial blow-up.

(ii) or u ∞ is a solution of (1) singular at (0, 0) such that lim t→0 u ∞ (x, t) = 0 for all x = 0. Single-point initial blow-up.

Theorem 1. (I) If h(t) = e -σ/t for some σ > 0, then u ∞ = U . (II) If h(t) = e -ω(t)/t
where ω is nondecreasing on (0, +∞) and verifies, for some α ∈ [0, 1), inf{ω(t)/t α : 0 < t ≤ 1} > 0 and

(3)

1 0 ω(t) dt t < +∞,
then u ∞ has single-point initial blow-up.

Concerning equation (4)

∂ t u -∆u + h(t)e u = 0 dans R N × (0, +∞), any solution u verifies (5) u(x, t) ≤ Ũ (t) := -ln t 0 h(s) ds ∀(x, t) ∈ R N × (0, +∞).
and the existence of a fundamental solution

u = u k is ensured if h(t) = e -b(t) where lim t→+∞ t N/2 b(t) = +∞. Theorem 2. (I) If h(t) = O(e -e σ/t ) for some σ > 0, then u ∞ = Ũ . (II) If h(t) = e -e ω(t)/t
where ω satisfies the conditions of Theorem 1, then u ∞ has single-point initial blow-up.

Our methods apply to equations of porous media type ( 6)

∂ t u -∆u m + h(t)u q = 0 in R N × (0, ∞),
with m > 1, q > 1 and h : (0, ∞) → (0, ∞) is nondecreasing. As above, any positive solution satisfies [START_REF] Galaktionov | Saint-Venant's principle in blow-up for higher-order quasilinear parabolic equations[END_REF]. If h ∈ L 1 ((0, 1; t -(q-1)/(m-1+2N -1 ) dt), for any k > 0 there exists a solution u = u k of ( 6) such that u k (., 0) = kδ 0 . Since k → u k is increasing, the same alternative as in case of (1) occurs concerning u ∞ .

Theorem 3. Assume q > m > 1. (I) If h(t) = O(t (q-m)/(m-1) ) , then u ∞ = U . (II) If h(t) = t (q-m)/(m-1) ω -1 (t)
where ω is nondecreasing and positive on (0, +∞) and verifies

(7) 1 0 ω θ (t) dt t < +∞,
where

θ = m 2 -1 (N (m -1) + 2(m + 1)) (q -1)
,

then u ∞ has single-point initial blow-up.

Sketch of the proofs. The complete initial blow-up results are proved by constructing local subsolutions by modifying the very singular solutions of some related equations. Since for equation (1), the proof is already given in [START_REF] Marcus | Initial trace of positve solutions to semilinear parabolic inequalities[END_REF] we shall outline the (more complicated) construction for equation (4).

Lemma 4. If h(t) = σt -2 e σt -1 -e -σ/t for some σ > 0, complete initial blow-up occurs for equation (4).

Proof. Writing h(t) = e -a(t) is is first observed that fundamental solutions u k of (4) exist for all k > 0 if lim t→0 t N/2 a(t) = ∞. For ℓ > 1, let v = v ∞,ℓ be the very singular solution of (8)

∂ t v -∆v + ct α ℓ v ℓ = 0 in R N × (0, ∞)
, where α ℓ and c are positive constants. The choice of

α ℓ = (N + 2)/(ℓ -1)/2 -1 ensures the existence of v ∞,ℓ . Furthermore, if we write v ∞,ℓ (x, t) = 2c N + 2 1/(ℓ-1) t -(1+N/2) f ℓ (x/ √ t), then f ℓ (η) ≤ 1 for η ∈ R N and (9) ∆f ℓ + 1 2 Df ℓ .η + N + 2 2 f ℓ -f ℓ ℓ = 0.
By the maximum principle 0 < f ℓ < f ℓ ′ ≤ 1 for ℓ ′ > ℓ > 1. For the particular choice ℓ * = (N + 4)/(N 2), we can use the expression of the asymptotic expansion of the very singular solution given in [START_REF] Brezis | A very singular solution of the heat equation with absorption[END_REF],

f ℓ * (η) = C|η| 2 e -|η| 2 /4 (1 + •(1)) as |η| → ∞, from which follows f ℓ (η) ≥ f ℓ * (η) ≥ δ * (|η| 2 + 1)e -|η| 2 /4
for some δ * > 0, any η ∈ R N and ℓ ≥ ℓ * . Thus there exists δ > 0 depending only on N such that

(10) v ∞,ℓ (x, t) ≥ δc 1/(ℓ-1) t -1-N/2 (|x| 2 + t)e -|x| 2 /4t ∀(x, t) ∈ R N × (0, ∞).
Because any positive solution u of ( 4) satisfies ( 5), we have to prove that we can fix c and τ > 0 such that

(11) ct α ℓ (ρ ℓ + 1) ≥ h(t)e ρ ∀(t, ρ) ∈ (0, τ ] × [0, Ṽ (t)].
Writing h under the form h(t) = -ω ′ (t)e ω(t) where ω(t) = e γ(t) and γ is a positive decreasing C 1 function, infinite at t = 0, we first notice that it is sufficient to prove this inequality for ρ = Ũ (t), and in that case (12) ct α ℓ (e ℓγ(t) + 1) ≥ -γ ′ (t)e γ(t) ∀t ∈ (0, τ ].

We take now γ(t) = σ/t, and prove that there exists β > 0, depending only on N such that, for any 0 < τ ≤ βσ, estimate (11) holds with

c = e (1-ℓ)σ/τ -2 -1 (ℓ(N +2)-N ) ln τ .
The maximum principle and (11) imply that for any ℓ > 1 and k > 0 the solutions u = u k of ( 4) and v = ṽk of

∂ t v -∆v + ct α ℓ (v ℓ + 1) = 0 with initial data kδ 0 verifies 0 ≤ ṽk,ℓ ≤ u k , on (0, τ ]. Therefore v ∞,ℓ ≤ u ∞ + ct α ℓ +1 /(α ℓ + 1) on (0, τ ] leads to u ∞ (x, τ ) ≥ δτ -1-N/2 (|x| 2 + τ )e 4σ-|x| 2 4τ -ℓ(N +2)-N 2(1-ℓ) ln τ
Thus lim τ →0 u ∞ (x, τ ) = ∞, locally uniformly in B 2 √ σ , which implies the result.

The proof of Theorem 2 follows from the fact that for any σ > σ ′ > 0 there exists an interval (0, θ] where σ ′ t -2 e σ ′ t -1 -e -σ ′ /t ≥ e -e σ/t . The single-point initial blow-up is proved by local energy methods. Because of their high degree of technicality we shall just give a short sketch of them in the simplest case of Theorem 1. For k > 0, let u k = u be the solution of the next result.

(13)

∂ t u -∆u + h(t) |u| q-1 u = 0 in R N × (0, ∞) u(x, 0) = u 0,k (x) = M 1/2 k k -N/2 η k (x) ∀x ∈ R N , where η k ∈ C(R N ) is nonnegative, has compact support in B k -1 , converges weakly to δ 0 as k → ∞, and {M k } satisfies lim k→∞ k -N/2 M k = ∞. Furthermore it can be assumed that η k L 2 ≤ c 0 k N/2
. The single-point initial blow-up will be a consequence of Lemma 5. For any δ > 0 there exists C = C(δ) such that:

(14) sup t∈[0,1] |x|≥δ u 2 k (x, t)dx + 1 0 |x|≥δ (|∇u k | 2 + u 2 k )dx dt ≤ C ∀k ∈ N.
Proof. For r ∈ (0, 1), τ ≥ 0 we set Ω(τ

) = {x ∈ R N : |x| > τ }, Q r (τ ) = Ω(τ )×(0, r], Q r (τ ) = Ω(τ ) × (r, 1
) and Q r = R N × (r, 1), and denote

I 1 (r) = Qr |∇u| 2 dx dt, I 2 (r) = Qr u 2 dx dt, I 3 (r) = Qr h(t) |u| q+1 dx dt.
If we multiply the equation by u(x, t)e (r-t)/(2-r) , integrate on Q r and use Hölder's inequality, we get, since h is nondecreasing, (15)

R N u 2 (x, 1)dx + I 1 (r) + I 2 (r) + I 3 (r) ≤ c R N u 2 (x, r) dx ≤ cτ N (q-1) q+1 h(r) -2 q+1 (-I ′ 3 (r)) 2 q+1 + c Ω(τ ) u 2 (x, r)dx.
Let τ → µ(τ ) be a smooth decreasing function, we define

E µ 1 (r, τ ) = Q r (τ ) |∇u| 2 + µ 2 u 2 (x, t) e -µ 2 t dx dt, E 2 (r, τ ) = Q r (τ ) u 2 dx dt and f µ (r, τ ) = sup{e -µ 2 t Ω(τ ) u 2 (x, t)dx : 0 ≤ t ≤ r}
and f (r) = f 0 (r, 0). Then we introduce a parameter in the equation as in [START_REF] Oleinik | Method of introducing of a parameter in evolution equation[END_REF] by multiplying it by u(x, t) exp(-µ 2 (τ )t) and integrating in the domain Q r (τ ) with τ > k -1 Q r (τ ) and τ > k -1 . After some simple computations we deduce:

f µ (r, τ ) + 2E µ 1 (r, τ ) ≤ 2 µ r 0 ∂Ω(τ ) |∇u| 2 + µ 2 u 2 (x, t) e -µ 2 t dS dt ∀ τ > k -1 .
Assuming 1 -2µ ′ /µ 2 > 1/2, we deduce from last inequality:

f µ (r, τ ) + E µ 1 (r, τ ) ≤ - 2 µ(τ ) dE µ 1 (r, τ ) dτ ∀ τ > k -1 ,
and by integration

f µ (r, τ 2 ) e τ 2 τ 1 µ(τ ) dτ 2 -1 + E µ 1 (r, τ 2 )e τ 2 τ 1 µ(τ ) dτ 2 ≤ E µ 1 (r, τ 1 ) ∀τ 2 > τ 1 > k -1 .
The choice µ(τ ) = r -1 (τ -k -1 )/8 (τ > k -1 ) yields to ( 16)

Ω(τ ) u 2 (x, r)dx + Q r (τ ) |∇ x u| 2 + (τ -k -1 ) 2 64r 2 u 2 dx dt ≤ c 1 e -(τ -k -1 ) 2 64r × Q r (τ k 0 ) |∇ x u| 2 + u 2 2r dx dt ∀τ ≥ τ k 0 := k -1 + 8 √ r > τ k 0 := k -1 + 4 √ 2r.
We will need standard global energy estimate of solution of problem (13) too:

(17)

R N |u(x, r)| 2 dx + Q r (|∇ x u| 2 + |u| 2 + h(t)|u| q+1 ) dx dt ≤ c u 0,k 2 
L2(R N ) ≤ cM k ∀ r > 0.
Estimating the right-hand side terms in (15) and ( 16) by ( 17), we derive: (18) (i)

3 i=1 I i (r) ≤ c 1 τ N (q-1) q+1 h(r) -2 q+1 (-I ′ 3 (r)) 2 q+1 + c 2 M k r e -(τ -k -1 ) 2 /64r ∀ τ ≥ τ k 0 (r) (ii) f 0 (r, τ ) + E 0 1 (r, τ ) + τ -k -1 64r 2 E 2 (r, τ ) ≤ c 2 M k r e -(τ -k -1 ) 2 /64r ∀ τ ≥ τ k 0 (r).
Next we choose M k = e e k , fix ǫ 0 ∈ (0, e -1 ) and define a pair (r k , τ k ) by the following relations: r k = sup{r : 18)-i and solving the corresponding O.D.E. yields the estimate:

I 1 (r) + I 2 (r) + I 3 (r) > 2M ǫ0 k }; c 2 r -1 k exp(- τ 2 k 64r k )M k = M ǫ0 k ⇔ τ k = 8 r k (1 -ǫ 0 )e k + ln(c 2 /r k ). Taking τ = τ k + k -1 in (
(19)

3 i=1 I i (r) ≤ c 3 (τ k + k -1 )(H(r)) -2/(q-1) ∀r ≤ r k , H(r) = r 0 h(s)ds.
If we write h(t) = e -ω(t)/t , the assumption inf{ω(t)/t α : 0 < t ≤ 1} > 0 implies that H(r) ≥ c 0 e -ω(r)/r r 2 /ω(r) and, replacing τ k by its expression, (19) turns into

3 i=1 I i (r) ≤ c 4 ( r k (1 -ǫ 0 )e k + ln(c 2 /r k ) + k -1 ) N ω(r)e -ω(r)/r r 2 2/(q-1)
∀r ≤ r k .

Thus r k ≤ b k , where b k is solution of equation:

c 4 r k (1 -ǫ 0 )e k + ln(c 2 /b k ) + k -1 N ω(b k )e -ω(b k )/b k b 2 k 2/(q-1) = 2M ǫ0 k = 2e ǫ0e k .
From this inequality using additionally assumption on ω(t), we obtain inequalities: Using the definition of r k , inequality (18)-ii, the fact that 3M ǫ0 k ≤ cM k-1 ∀ k ≥ k 0 (c) (c is from (17), 0 < ǫ 0 < e -1 ), we deduce the main result of first round of computations:

(21)

3 i=1 I i (r k ) + f 0 (r k , τ k + k -1 ) + 2 i=1 E i (r k , τ k + k -1 ) ≤ 3M ǫ0 k ≤ cM k-1 .
Next we organize the second round of estimates with µ(τ ) = (τ -τ k -k -1 )/8, r k-1 and τ k-1 be defined similarly as r k and τ k , up to the change of indices, using obtained estimate (21) instead of (17). As result we derive:

(22)

3 i=1 I i (r k-1 )+f 0 (r k-1 , τ k + τ k-1 +k -1 )+ 2 i=1 E i (r k-1 , τ k + τ k-1 +k -1 ) ≤ cM k-2 .
Fixing arbitrary n > k 0 (c) and repeating the above described round of computations k -n times, we obtain: (23) Due to assumption (4) τ * (n) → 0 as n → ∞, therefore inequality (25) implies the result.

c 5 e

 5 k ≥ ω(b k )/b k ≥ c 6 e k , c 6 > 0; b k ≥ e -c7k , c 7 > 0. These inequalities yield: (20) τ k ≤ c 8 ω(c 9 e -k ) .

+ k - 1  ≤ cM n- 1 ,

 11 and, since by induction τ k-j satisfies (20) with k replaced by k -j,We denote τ * (n) = lim k→∞ c 8 k-n j=0ω(c 9 e -(k-j) ). We derive from (23) by letting k → ∞, (25) sup0<t≤rn |x|≥τ * (n) u 2 (x, t)dx + rn 0 |x|≥τ * (n) (|Du| 2 + u 2 )dx dt ≤ cM n-1 .