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Soit g une fonction localement lipschitzienne de la variable réelle. On suppose que g vérifie la condition de Keller et Osserman et qu'il existe un réel a > 0 tel que g est convexe sur [a, +∞[. Alors toute solution u de -∆u + g(u) = 0 dans une boule B de R N , N ≥ 2, qui tend vers l'infini au bord de B, est une fonction radiale.

Symmetry of large solutions of semilinear elliptic equations

Abstract. Let g be a locally Lipschitz continuous function defined on R. We assume that g satisfies the Keller-Osserman condition and there exists a positive real number a such that g is convex on [a, ∞). Then any solution u of -∆u + g(u) = 0 in a ball B of R N , N ≥ 2, which tends to infinity on ∂B, is spherically symmetric.

Abridged English version

Let g : R → R be a locally Lipschitz continuous function and B R (0) the open N -ball (N ≥ 2) of center 0 and radius R > 0. A classical result due to Gidas, Ni and Nirenberg [START_REF] Gidas | Symmetry and related properties via the maximum principle[END_REF] asserts that any positive solution u of [START_REF] Aftalion | Multiple boundary blow-up solutions for nonlinear elliptic equations[END_REF] -∆u + g(u) = 0 in B R (0) which vanishes on ∂B R (0) is radial. A conjecture proposed by H. Brezis is that any large solution of (1), that is a solution which verifies

(2) lim

|x|→R u(x) = ∞,
is radial. The existence of such solution is ensured by the Keller-Osserman condition: there exists some a > 0 such that g is nondecreasing on [a, ∞) and We prove two symmetry results dealing with this conjecture.

Theorem 1. Assume g is locally Lipschitz continuous and let u be a large solution of (1) in a ball

B = B R (0) ⊂ R N , N ≥ 2. If there holds (4) (i) lim |x|→R ∂u ∂r (x) = ∞ (ii) |∇ τ u(x)| = • ∂u ∂r (x) as |x| → R, then u is radial and ∂u ∂r (x) > 0 on B R (0) \ {0}.
In this statement ∂u ∂r (x) = Du(x), x/ |x| is the radial derivative and

∇ τ u(x) = Du(x) -|x| -2 Du(x), x
x is the tangential gradient. This result is settled upon an adaption of the key lemma of [START_REF] Gidas | Symmetry and related properties via the maximum principle[END_REF] in the framework of large solutions. Next we give a sufficient condition in order (4) to hold.

Theorem 2. Assume g is locally Lipschitz continuous, convex on [a, +∞) for some a > 0 and satisfies [START_REF] Du | Uniqueness and layer analysis for boundary blow-up solutions[END_REF]. Then any large solution of (1) in a ball is a radial function.

Remark. It is important to notice that this result is not related with uniqueness. For example, if g(x) = x 2 it is known that uniqueness may not hold if the radius of the ball is large enough. As a striking example, if g is any polynomial of degree larger than one with positive coefficient of higher order, any large solution of (1) in a ball is radial.

Résultats principaux

Soit g : R → R une fonction localement lipschitzienne et B R (0) la boule de centre 0 et de rayon R dans R N , N ≥ 2. Un résultat classique du à Gidas, Ni et Nirenberg [START_REF] Gidas | Symmetry and related properties via the maximum principle[END_REF] affirme que si u est une solution positive de Nous donnons deux résultats qui confirment la validité de la conjecture de Brezis.

Théorème 1 Supposons que g est localement lipschitzienne et soit u une grande solution de (1) dans la boule

B = B R (0) ⊂ R N , N ≥ 2. Si on a (4) (i) lim |x|→R ∂u ∂r (x) = ∞ (ii) |∇ τ u(x)| = • ∂u ∂r (x) as |x| → R, alors u est radiale et ∂u ∂r (x) > 0 dans B R (0) \ {0}.
Dans cet énoncé ∂u ∂r (x) = Du(x), x/ |x| est la dérivée radiale de u et

∇ τ u(x) = Du(x) -|x| -2 Du(x), x x son gradient tangentiel.
Théorème 2 Supposons que g est localement lipschitzienne et qu'il existe a > 0 tel que g est convexe sur [a, +∞[ et y vérifie [START_REF] Du | Uniqueness and layer analysis for boundary blow-up solutions[END_REF]. Alors toute grande solution de (1) dans une boule est radiale.

Remarque. Il est important de noter que ce résultat n'augure en rien de l'unicité des grandes solutions de [START_REF] Aftalion | Multiple boundary blow-up solutions for nonlinear elliptic equations[END_REF]. Ainsi, si g(x) = x 2 , il est classique [START_REF] Pohožaev | The boundary value problem for equation ∆U = U 2 (Russian)[END_REF] que si le rayon de la boule est assez grand, il existe plusieurs grandes solutions, dont une seule positive. Par exemple, si g est un polynôme de degré > 1 dont le coefficient du terme de plus haut degré est positif, alors le résultat du Théorème 2 s'applique.

Le résultat suivant étend aussi un autre théorème de [START_REF] Gidas | Symmetry and related properties via the maximum principle[END_REF].

Corollaire 1 Supposons que g vérifie les hypothèses du Théorème 2. Si u est une solution de (1

) dans Γ R,r = {x ∈ R N : r < |x| < R} qui vérifie (2), alors ∂u ∂r (x) > 0 pour tout x ∈ Γ R,(r+R)/2 .
Principe de la démonstration du Théorème 1. On commence par noter que pour tout

P ∈ ∂B + = ∂B R (0) ∩ {x 1 > 0}, il existe δ ∈]0, R[ tel que (5) ∂u ∂x 1 (x) > 0 ∀x ∈ B R (0) ∩ B δ (P ).
Ceci découle immédiatement de (4). La suite de la démonstration du Théorème 1 repose sur la méthode des plans mobiles comme dans [START_REF] Gidas | Symmetry and related properties via the maximum principle[END_REF]. Soit B = {e 1 , ...e N } une base orthonormée de R N et (x 1 , ..., x N ) les coordonnées d'un point x dans cette base. Pour 0 < λ < R on désigne par T λ l'hyperplan {x :

x 1 = λ}, Σ λ = {x ∈ B R (0) : λ < x 1 < R}, Σ ′ λ = {x ∈ B R (0) : 2λ -R < x 1 <
λ}, par x λ le symétrique de x, par rapport à T λ , de coordonnées (2λ -x 1 , x 2 , ..., x N ) et par u λ la fonction réfléchie de u, définie par u λ (x) = u(x λ ). On applique (5) avec P = P 0 = Re 1 , δ 0 = δ(P 0 ). On en déduit que pour tout λ ∈

[λ 0 , R[ (où λ 0 = R -δ 2 0 /2R) on a (6) u(x λ ) < u(x) et ∂u ∂x 1 (x) > 0 ∀x ∈ Σ λ .
Soit µ = inf{λ > 0 : t. q. (6) soit vérifiée}. On suppose µ > 0. Par définition u ≥ u µ dans Σ µ . Soit K µ = T µ ∩∂B R (0). Comme K µ est compact, grace à (5) il existe un ǫ-voisinage U ǫ de K µ tel que

(7) ∂u ∂x 1 (x) > 0 ∀x ∈ U ǫ ∩ B R (0). On pose D ǫ = B R-ǫ/2 (0) ∩ Σ µ et a(x) = (g(u) -g(u µ )/(u -u µ ). Comme w = u -u µ vérifie (8) 
∆w -aw = 0 dans D ǫ , w ≥ 0, w ≡ / 0, on en déduit w > 0 par le principe du maximum fort, et ∂u/∂x 1 > 0 sur T µ ∩ ∂D ǫ par le lemme de Hopf. La continuité de Du à l'intérieur et [START_REF] Marcus | Existence and uniqueness results for large solutions of general nonlinear elliptic equations[END_REF] impliquent qu'il existe σ > 0 tel que

(9) ∂u ∂x 1 (x) > 0 ∀x ∈ B R (0) ∩ {x : µ -σ < x 1 < µ + σ}.
De plus, comme ǫ est arbitrairement petit, u > u µ dans Σ µ . La définition de µ implique qu'il existe une suite positive croissante {λ n } convergeant vers µ et une suite de points {x n } convergeant vers x ∈ Σ µ telles que u(x n ) ≤ u((x n ) λn ). Comme u > u µ dans Σ µ , x ne peut appartenir à Σ µ . Le théorème des accroissement fini et (9) impliquent que x ne peut appartenir non plus à T µ . Enfin x ne peut appartenir à Σ µ \ T µ puisque cela impliquerait que u(x n ) -u((x n ) λn ) tende vers +∞. Par contradiction il s'ensuit que µ = 0. Changeant x 1 en -x 1 puis permutant les directions, on en déduit que u est radiale. Principe de la démonstration du Théorème 2. La clef est le résultat suivant.

Lemme 1 Supposons que g vérifie les hypothèses du Théorème 2, et que u est une grande solution de (1) dans B R (0). Alors

(10) (i) lim |x|→R ∇ τ u(x) = 0 (ii) lim |x|→R ∂u ∂r (x) = ∞,
et les deux limites ont lieu uniformément par rapport à {x : |x| = r}.

Démonstration. Soient (r, σ) ∈ R + × S N -1 les coordonnées sphériques dans R N , σ ∈ S N -1 et {γ j } N -1
j=1 un ensemble de géodésiques de S N -1 se coupant orthogonalement en σ, par exemple γ j (t) = e tA j (σ) où les matrices

{A j } N -1 j=1 sont anti-symétriques et vérifient A j σ, A k σ = δ k j . Si ∆ S est l'opérateur de Laplace-Beltrami sur S N -1 , on a (11) ∆ S u(r, σ) = N -1 j=1 d 2 u(r, γ j (t)) dt 2 | t=0 .
Par hypothèse g = g ∞ + g où g ∞ est convexe et vérifie (3) et g est localement lipschitzien et identiquement nul sur [M, +∞[ pour un M > 0. Sans restriction on peut supposer g ∞ croissante. Il existe

r 0 ∈]0, R[ tel que u(x) ≥ M pour tout |x| ≥ r 0 . Ainsi (12) |∆u -g ∞ (u)| = |g(u)| = |g(u)χ Br 0 (0) | ≤ K 0 . Soit φ(x) = (2N ) -1 (R 2 -|x| 2 ). Comme ∆φ = -1 on déduit de (12) ∆(u -K 0 φ) ≥ g ∞ (u) ≥ g ∞ (u -K 0 φ), et donc u -K 0 φ est une sous-solution du problème (13) -∆v + g ∞ (v) = 0 in B R (0) lim |x|→R v(x) = ∞.
Par convexité (voir par exemple [START_REF] Marcus | Uniqueness and asymptotic behaviour of solutions with boundary blow-up for a class of nonlinear elliptic equations[END_REF], [START_REF] Marcus | Existence and uniqueness results for large solutions of general nonlinear elliptic equations[END_REF], même si il existe une démonstration plus directe dans le cas radial) ce problème admet une unique solution v = U R . Comme u + K 0 φ est une sur-solution, on en déduit

(14) U R -K 0 φ ≤ u ≤ U R + K 0 φ.
Soit h > 0, j = 1, ..., N -1 et u h (x) = u(e hA j (x)) = u(r, e hA j σ), où x = (r, σ). Comme le problème est invariant par rotation, u h vérifie aussi (14). Par suite

(15) lim |x|→R u(x) -u h (x) = 0. De plus ∆u h = g ∞ (u h ) dans Γ R,r 0 = B R (0) \ B r 0 (0) et il existe L > 0, indépendant de h, tel que (u -u h )(x) ≤ L |h| pour |x| = r 0 . Si Ψ est la fonction harmonique dans Γ R,r 0 , nulle sur ∂B R (0) et valant 1 sur ∂B r 0 (0), et v h = u h + |h| LΨ, alors (16) 
∆(v h -u) ≤ g ∞ (v h ) -g ∞ (u) dans Γ R,r 0 . La relation (15) implique que v h (x) -u(x) → 0 si |x| → R. Par monotonie v h = u h + |h| LΨ ≥ u.
Si on définit la dérivée de Lie selon le champ de vecteurs σ → A j σ par

L A j u(r, σ) = du(r, e tA j σ ) dt | t=0 , alors (17) |L A j u(r, σ)| ≤ LΨ(x) ≤ C(R -r).
Cette relation implique (10)-i.

Pour démontrer (10)-ii, on pose w h = h -2 (u h + u -h -2u). La convexité de g ∞ implique que w h vérifie ∆w h ≥ ξ(x)w h dans Γ R,r 0 , où ξ(x) ≥ 0, et donc que w h + est sous-harmonique dans Γ R,r 0 . Comme u est de classe C 2 , il existe L > 0, indépendant de h, tel que w h ≤ L sur ∂B r 0 (0). Comme w h et Ψ s'annullent sur ∂B R (0), w h + ≤ LΨ dans Γ R,r 0 et donc 

( 1 )

 1 -∆u + g(u) = 0 dans B R (0) qui s'annulle sur ∂B R (0) alors elle est radiale. Si u prend la valeur k au bord le résultat reste valable pourvu que u -k ne change pas de signe dans B R (0). Partant de cette observation, H. Brezis a conjecturé que si u est une grande solution, c'est à dire une solution qui vérifie (2) lim |x|→R u(x) = ∞, alors elle est radiale. L'existence de grandes solutions est associée à la condition de Keller et Osserman qui est satisfaite si g est positive et croissante sur [a, +∞[ pour un a > 0 et y vérifie

(18) d 2 g

 2 u(r, γ j (t)) dt2 | t=0 ≤ LΨ.On déduit de (11) que (∆ S u) + (x) → 0 quand |x| → R. En écrivant l'équation (1) en coordonnées sphériques, on obtient donc(19) ∂ ∂r r N -1 ∂u ∂r ≥ r N -1 g ∞ (u) + •(1) uniformément quand |x| → R.Clairement u ≥ z où z est la solution de (20)   -∆z + g ∞ (z) = 0 dans Γ R,r 0 lim |x|→R z(x) = ∞ z = min ∂Br 0 (0) u sur ∂B r 0 (0). Donc g ∞ (u) ≥ g ∞ (z). Comme g ∞ (z) / ∈ L 1 (Γ R,r 0 ), ∞ (u(s, σ))s N -1 ds = +∞ uniformément pour σ ∈ S N -1 . σ) = +∞ uniformément pour σ ∈ S N -1 ,et donc (10)-ii et le Lemme 1. Le théorème 2 en découle.
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