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N-harmonic equations with absorption ∗

Rouba Borghol, Laurent Véron

Department of Mathematics,

University of Tours, FRANCE

Dedicated to Jim Serrin, on his eightieth birthday

Abstract We study the boundary behaviour of solutions u of −∆Nu + |u|q−1u = 0 in a bounded

smooth domain Ω ⊂ R
N subject to the boundary condition u = 0 except at one point, in the range

q > N − 1. We prove that if q ≥ 2N − 1 such a u is identically zero, while, if N − 1 < q < 2N − 1,

u inherits a boundary behaviour which either corresponds to a weak singularity, or to a strong

singularity. Such singularities are effectively constructed.

1 Introduction

Let Ω be a domain is R
N (N ≥ 2) with a C2 compact boundary ∂Ω. Let g be a continous real

valued function and a ∈ ∂Ω. This paper deals with the study of solutions u ∈ C1(Ω̄ \ {a})
of the problem







− div
(

|Du|N−2
Du
)

+ g(u) = 0 in Ω

u = 0 on ∂Ω \ {a},
(1.1)

and we shall be more specifically interested in the case when g has a power growth at
infinity. When N = 2, this problem falls into the scope of the boundary singularity problem
for semilinear elliptic equations. The study of the N -dimensional problem

{

−∆u+ g(u) = 0 in Ω
u = 0 on ∂Ω \ {a}, (1.2)

has been initiated by Gmira and Véron in [7]. Among the subjects under consideration
were the question of removability of isolated boundary singularities and, in the case such
singularities do exist, their precise description. This seminal article was at the origin of a long
series of further works by Dynkin, Kuznetsov, Le Gall, Marcus and Véron in the framework
of the trace theory and, later on, the fine trace theory in the case where g(r) = r |r|q−1,
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q > 1. One of the main reasons for such a large impact consists of the observation of the
existence of a critical exponent q = q∗ = (N + 1)/(N − 1). If q ≥ q∗ any solution of

{

−∆u+ |u|q−1
u = 0 in Ω
u = 0 on ∂Ω \ {a}, (1.3)

is identically zero, while if 1 < q < q∗ it appears that there exist two possible behaviours of
singular solutions near a, the solutions with weak singularities and the ones with the strong
singular behaviour. Later on, these two types of singular solutions played a fundamental
role in the description of the rough trace of positive solutions of (1.3 ).

Although the techniques needed are considerably more refined, it appeared that the
description of solutions of (1.1 ) inherits the same structure as for (1.2 ). The first step is
to understand the model case problem







− div
(

|Du|N−2
Du
)

+ |u|q−1
u = 0 in Ω

u = 0 on ∂Ω \ {a},
(1.4)

To this equation, we associate the homogeneous equation







− div
(

|Du|N−2Du
)

= 0 in Ω

u = 0 on ∂Ω \ {a}.
(1.5)

It is proved in [3] that for any k > 0 there exists a unique solution u = uk of (1.5 ) satisfying

uk(x) = k
ρ(x)

|x− a|2
(1 + ◦(1)) as x→ a, (x− a)/ |x− a| → σ, (1.6)

where ρ(x) = dist (x, ∂Ω). When k = 1, this solution plays the role of the Poisson kernel,
although neither any weak formulation nor any reasonable trace theory seems to exists, and
we shall denote it by V Ω

a . The behaviour (1.6 ) (up to a multiplicative constant) corresponds
to weak singularity behaviour for (1.1 ), whenever such singularities exist. The first result
we prove is the following:

Theorem Let N−1 < q < 2N−1 := qc . Then for any k > 0 there exists a unique solution
u = uk,a of problem (1.4 ) satisfying

uk,a(x) = k
ρ(x)

|x− a|2
(1 + ◦(1)) as x→ a, (x − a)/ |x− a| → σ. (1.7)

Furthermore u∞,a = limk→∞ exists and is a solution of (1.4 ) which satisfies

lim
x → a

x−a
|x−a|

→ σ

|x− a|N/(q+1−N)
u∞,a(x) = ω(σ), (1.8)

and ω is the unique positive solution of the following quasilinear equation on the upper
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hemisphere of the unit sphere SN−1,






















−divσ
(

(

β2
qω

2 + |∇σω|2
)(N−2)/2

∇σω

)

− Λ
(

β2
qω

2 + |∇σω|2
)(N−2)/2

ω + |ω|q−1
ω = 0 on SN−1

+

ω = 0 on ∂SN−1
+ ,

(1.9)

where βq = N/(q+1−N) and Λ = (N − 1)β2
q . The proof of the existence of uk,a, as well as

its singular behaviour, is settled upon the conformal invariance of the N -harmonic operator
and the construction of subsolution of the same equation. Estimate (1.8 ) is proved by
scaling method. The role of the critical exponent qc = 2N − 1 is enlighted by the following
result.

Theorem Let g be a continuous function such that

(i) lim infr→∞ g(r)/rqc > 0

(ii) lim supr→−∞ g(r)/ |r|qc < 0.
(1.10)

Then any function u ∈ C1(Ω \ {a}) solution of (1.1 ) extends as a function ũ ∈ C(Ω).

As in the semilinear case, the occurrence coincides with the case where the blow-up
exponent −βq which is natural for equation (1.4 ) coincides with the one of the function V Ω

a

solution of (1.5 ). Finally we provide the full classification of positive solutions of problem
(1.4 ).

Theorem Let N − 1 < q < qc and u is any nonnegative solution of (1.4 ), then

(i) Either u ≡ 0,

(ii) Either there exists k > 0 such that u = uk,a.

(iii) Or u = u∞,a.

In the proof of (iii) the boundary Harnack inequalities that satisfies any positive solution
of (1.4 ) (see [2]) play a fundamental role.

Our paper is organized as follows

1- Introduction

2- Weak and strong boundary singularities

3- The removability result

4- The classification theorem

2 Weak and strong boundary singularities

The construction of positive solutions of

−div
(

|Du|N−2
Du
)

+ |u|q−1
u = 0, (2.1)
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is settled upon three facts: the existence of solutions to the homogeneous equation

−div
(

|Du|N−2
Du
)

= 0, (2.2)

the conformal invariance of (2.2 ) and an a priori estimate satisfied by any solution of (2.1 ).
Throughout this paper C denotes a positive constant which depends only on the structural
assumptions corresponding to N , p, q and Ω. The value of the constant may change from
one occurrence to another.

Proposition 2.1 Let Ω ⊂ R
N be a domain with a compact boundary and a ∈ ∂Ω. Consider

real numbers q > p − 1 > 0, A > 0 and B ≥ 0. If u ∈ C(Ω \ {a}) ∩W 1,p
loc (Ω) is a weak

solution of
{

−div
(

|Du|p−2
Du
)

+A |u|q−1
u ≤ B in Ω

u ≤ 0 on ∂Ω \ {a},
(2.3)

it satisfies

u(x) ≤
(

λ

A |x− a|p
)1/(q+1−p)

+

(

µB

A

)1/q

∀x ∈ Ω \ {a}, (2.4)

where λ and µ depends on N , p and q.

Proof. By assumption
∫

Ω

(

|Du|p−2
Du.Dζ +A |u|q−1

uζ
)

dx ≤ B

∫

Ω

ζdx (2.5)

for any ζ ∈ W 1,p(Ω) with compact support, ζ ≥ 0. Let η ∈ C2(R) be a nonnegative function
such that 0 ≤ η′ ≤ 1, η′′ ≥ 0, η = η′ = η′′ on (−∞, 0], 0 < η(r) ≤ r on (0,∞). For
ǫ > 0 we set ηǫ(r) = η((r − ǫ)+). Let ζ ∈W 1,p(RN \ {0}) with compact support. Inasmuch
(η′ǫ(u))

p−1ζ has compact support in Ω and

D
(

(η′ǫ(u))
p−1ζ

)

= (η′ǫ(u))
p−1Dζ + (p− 1)(η′ǫ(u))

p−2η′′ǫ (u)ζDu,

it belongs to W 1,p(Ω) and is an admissible test function for (2.5 ). Thus

∫

Ω

(

|Du|p−2
Du.D

(

(η′ǫ(u))
p−1ζ

)

+A |u|q−1
u(η′ǫ(u))

p−1ζ
)

dx ≤ B

∫

Ω

(η′ǫ(u))
p−1ζdx,

and

|Du|p−2
Du.D

(

(η′ǫ(u))
p−1ζ

)

≥ (η′ǫ(u))
p−1 |Du|p−2

Du.Dζ = |Dvǫ|p−2
Dvǫ.Dζ,

where we have set vǫ = ηǫ(u). Furthermore, η can be chosen such that rq(η′ǫ(r))
p−1 ≥ ηqǫ (r),

for example if we fix η(r) = r2/2δ on (0, δ] and η(r) = r − δ/2 on [δ,∞) for some δ > 0.
We extend vǫ by 0 outside Ω \ {a} and denote by ṽǫ the new function, then ṽǫ ∈W 1,p

loc (RN \
{a}) ∩ C(RN \ {a}) and

∫

Ω

(

|Dṽǫ|p−2
Dṽǫ.Dζ +A |ṽǫ|q−1

ṽǫζ
)

dx ≤ B

∫

Ω

ζdx. (2.6)
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This means that ṽǫ is a weak subsolution in R
N \ {a}. By [18, Lemma 1.3], we derive

ṽǫ(x) ≤
(

λ

A |x− a|p
)1/q+1−p

+

(

µB

A

)1/q

∀x ∈ R
N \ {a},

for some λ > 0 and µ > 0 depending on N , p and q. Letting successively ǫ → 0 and δ → 0
we obtain (2.3 ). �

When Ω is smooth we have a sharper estimate

Proposition 2.2 Let Ω ⊂ R
N be a bounded domain with C2 boundary and a ∈ ∂Ω. Let

q ≥ p − 1 > 1 and a > 0. If u ∈ C(Ω \ {a}) ∩W 1,p
loc (Ω) is a weak solution of (2.3 ) with

B = 0, there exists C > 0 depending on Ω, p and q such that

u(x) ≤ Cρ(x)
(

A |x− a|q+1
)1/(q+1−p)

∀x ∈ Ω \ {a}, (2.7)

where ρ(x) = dist (x, ∂Ω.

Proof. By translation we can assume that a = 0. For ǫ > 0 let vǫ be the solution of

{

−div
(

|Dvǫ|p−2
Dvǫ

)

+A |v|q−1
ǫ vǫ = 0, in Ωǫ = Ω \Bǫ

vǫ = u+ on ∂Ωǫ.
(2.8)

By [18, Lemma 1.3] as in the proof of Proposition 2.1 and the maximum principle, there
holds

u+(x) ≤ vǫ(x) ≤
(

λ

A(|x| − ǫ)p

)1/(q+1−p)

∀x ∈ Ω
ǫ
.

Consequently ǫ ≤ ǫ′ =⇒ vǫ ≥ vǫ′ . Letting ǫ → 0 and using the previous inequalities and
the classical regularity results for solutions of quasilinear equations [12] we conclude that vǫ
converges, as ǫ→ 0, to some v which is a nonnegative solution of

{

−div
(

|Dv|p−2Dv
)

+Avq = 0, in Ω

v = 0 on ∂Ω \ {0}.
(2.9)

and dominate u. Further, if ℓ > 0 the function vℓ defined by vℓ(y) = ℓp/(q+1−p)v(ℓy) is a
solution of (2.9 ) with Ω replaced by Ωℓ = ℓ−1Ω. Let x ∈ Ω \ {0} and ℓ = |x|. Since

0 ≤ vℓ(y) ≤
(

λ

A(|y|)p
)1/(q+1−p)

∀y ∈ Ωℓ,

and

max
{∣

∣Dvℓ(y)
∣

∣ : y ∈ Ωℓ ∩B3/2 \B2/3

}

≤M max
{∣

∣vℓ(z)
∣

∣ : z ∈ Ωℓ ∩B2 \B1/2

}

,
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where M is uniformly bounded because the curvature of ∂Ωℓ is bounded, we obtain that
Dvℓ(y) is uniformly bounded by some constant C on Ωℓ ∩ B3/2 \ B2/3. Because Dvℓ(y) =

ℓ(q+1)/(q+1−p)Dv(ℓy), it follows that

|Dv(x)| ≤ C

A1/q+1−p |x|(q+1)/(q+1−p)

By the mean value Theorem, and using the fact that v vanishes on ∂Ω \ {0}, we derive

v(x) ≤ Cρ(x)

A1/q+1−p |x|(q+1)/(q+1−p)
,

which implies (2.7 ). �.

The construction of solutions of the quasilinear equations (2.1 ) with prescribed isolated
singularity on the boundary of a general C2 bounded domain Ω is settled upon similar
constructions when the domain is either a half space, or a ball.

Proposition 2.3 Assume N − 1 < q < 2N − 1 and let H = R
N
+ = {x = (x1, ..., xN ) : xN >

0)} and k > 0. Then there exists a unique positive solution u = uHk ∈ C1(H \ {0}) of (2.1 )
in H which vanishes on ∂H \ {0} and satisfies ,

u(x) = k
xN

|x|2
(1 + ◦(1)) as x→ 0. (2.10)

Proof. Since the function x 7→ kxN |x|−2
is N -harmonic in H and vanishes on ∂H \ {0}, it

is a supersolution of (2.1 ). We write spherical coordinates in R
N under the form

x =
{

(r, σ) ∈ [0,∞) × SN−1 = (r, sinφσ′, cosφ) : σ′ ∈ SN−2, φ ∈ [0, π]
}

, (2.11)

then

Du = uri +
1

r
∇σu,

where i = x/ |x|, ∇σ denotes the covariant gradient on SN−1, and equation (2.1 ) takes the
form

−r1−N
(

rN−1
(

u2
r + r−2 |∇σu|2

)(N−2)/2

ur

)

r

−r−2divσ.

(

(

u2
r + r−2 |∇σu|2

)(N−2)/2

∇σu

)

+ |u|q−1
u = 0.

(2.12)

Next

∇σu = −uφe +
1

sinφ
∇σ′u
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where e is derived from x/ |x| by the rotation with angle π/2 in the plane 0, x,N (N being
the North pole), and ∇σ′ is the covariant gradient on SN−2 and (see [3])

divσ.





(

u2
r +

|∇σu|2
r2

)(N−2)/2

∇σu





=
1

sinN−2 φ



sinN−2 φ

(

u2
r +

u2
φ

r2
+

|∇σ′u|2

r2 sin2 φ

)(N−2)/2

uφ





φ

+
1

sin2 φ
divσ′





(

u2
r +

u2
φ

r2
+

|∇σ′u|2

r2 sin2 φ

)(N−2)/2

∇σ′u



 .

(2.13)

If u depends only on r and φ, (2.1 ) takes the form

−r1−N
(

rN−1
(

u2
r + r−2u2

φ

)(N−2)/2

ur

)

r

−r−2 sin2−N φ

(

sinN−2 φ
(

u2
r + r−2u2

φ

)(N−2)/2

uφ

)

φ

+ |u|q−1
u = 0.

(2.14)

Step 1 We look for a local subsolution w under the form

w(r, σ) = k(1 − rα)r−1 cosφ r > 0 , φ ∈ [0, π/2].

where α > 0 is to be determined. Then

wr = −kr−2(1 + (α − 1)rα) cosφ and wφ = −kr−1(1 − rα) sinφ

w2
r + r−2w2

φ := P = k2r−4
(

1 + 2(α cos2 φ− 1)rα + r2α((α2 − 2α) cos2 φ+ 1)
)

wrr = kr−3(2 − (α − 1)(α− 2)rα) cosφ and wφφ = −kr−1(1 − rα) cosφ

Pr = −2k2r−5
[

2 + (4 − α)(α cos2 φ− 1)rα + (2 − α)((α2 − 2α) cos2 φ+ 1)r2α
]

Pφ = −k2αrα−4 [2 + (α− 2)rα] sin 2φ,

Prwr + r−2Pφwφ = 2k3r−7
[

2 + (5α− 6 + (2α− α2) cos2 φ)rα +O(r2α))
]

cosφ,

(N − 1)r−1wr + wrr + (N − 2)r−2 cotφwφ + r−2wφφ
= kr−3 [4 − 2N) + (2 − α)(N + α− 2)rα] cosφ.

Since

−div
(

|Dw|N−2
Dw

)

+ wq = Lw

= −P (N−2)/2
[

(N − 1)r−1wr + wrr + (N − 2)r−2 cotφwφ + r−2wφφ
]

− N − 2

2
P (N−4)/2

[

Prwr + r−2Pφwφ
]

+ wq ,

and
wq = kq(1 − rα)qr−q cosq φ = kq(1 − qrα +O(r2α))r−q cosq φ,

7



a straightforward computation leads to

Lw = kp−1α
[

3 − 2N + (2 + α)(N − 2) cos2 φ+O(rα)
]

P (N−4)/2rα−7 cosφ

+ kq(1 − qrα +O(r2α))r−q cosq φ

= kp−1α
[

3 − 2N + (2 + α)(N − 2) cos2 φ
]

r−(2N−1)+α cosφ+ kqr−q cosq φ

− qkqr−q+α cosq φ+O(r−(2N−1)+2α cosφ) + O(r−q+2α cosφ).

(2.15)

By assumption q < 2N − 1. If we choose α < min{2N − 1 − q, 1/(N − 2)}, there exists
R ∈ (0, 1] such that Lw ≤ 0 on H ∩BR.

Step 2 Next we construct a solution uR in BR ∩ H which vanishes on ∂BR ∩ H and on
∂H \ {0} and satisfies

lim
r→0

ruR(r, σ)

cosφ
= k. (2.16)

Let ℓR = k(1 −Rα)R−1. Inasmuch w − ℓR is a subsolution, for any ǫ > 0 we can construct
a nonnegative solution uǫ of (2.1 ) in H ∩ (BR \ Bǫ) which vanishes on H ∩ ∂BR and on
∂H ∩ (BR \Bǫ) and takes the value kǫ−2xN on H ∩ ∂Bǫ. By comparison

(w(x) − ℓR)+ ≤ uǫ(x) ≤ kxN |x|−2
. (2.17)

Furthermore, ǫ 7→ uǫ is increasing. Set u = uR = limǫ→0 uǫ, then u is a solution of (2.1 )
in H ∩ BR which vanishes on ∂BR ∩H and on ∂H \ {0} and satisfies the same inequality
(2.17 ) as uǫ, but in whole H ∩BR. This implies that (2.16 ) holds uniformly on [0, π/2− δ],
for any δ > 0. In order to improve this inequality, we perform a scaling: for r > 0, we set
ur(x) = ru(rx). Then ur satisfies

−div
(

|Dur|N−2Dur
)

+ r2N−1−q(ur)q = 0 (2.18)

in H ∩BR/r where there holds

k(xN |x|−2
(1 − rα |x|α) − ℓR)+ ≤ ur(x) ≤ kxN |x|−2

. (2.19)

Since ur is uniformly bounded for 1/2 ≤ |x| ≤ 2, it follows from regularity theory [12] that it
is also bounded in the C1,α-topology of 2/3 ≤ |x| ≤ 3/2. Using Ascoli’s theorem and the fact

that ur(x) converges to kxN |x|−2
pointwise and locally uniformly, it follows that Dur(x) =

r2Du(rx) converges uniformly in {x ∈ H : 2/3 ≤ |x| ≤ 3/2} to −2kxN |x|−4
x + k |x|−2

eN

which is the gradient of x 7→ kxn |x|−2. Using the expression of Du in spherical coordinates
we obtain

r2uri − ruφe +
r

sinφ
∇σ′u→ −2kσN i + keN uniformly on SN−1

+ as r → 0,

where σN = 〈σ, eN 〉. Inasmuch i, e and ∇σ′u are orthogonal, the component of eN is sinφ,
thus

ruφ(r, σ
′, φ) → −k sinφ as r → 0. (2.20)
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Since

u(r, σ′, φ) =

∫ φ

π/2

uφ(r, σ
′, θ) dθ, (2.21)

the previous convergence estimate establishes (2.16 ).

Step 3 Construction of the solution in H . Let η be the truncation function introduced in
the proof of Proposition 2.1, and ηǫ(r) = η((r − ǫ)+). Then the function uR,ǫ defined by
uR,ǫ = ηǫ ◦ uR in H ∩BR and zero outside, is a subsolution of (2.1 ) in H which vanishes on
∂H \ {0} and satisfies (2.16 ). Using the same device as in Step 2, we construct a sequence
of solutions uδ (δ > 0) of (2.1 ) in H \ Bδ with boundary value kδ−2xN on ∂Bδ ∩H , zero
on ∂H \Bδ and satisfies

uR,ǫ ≤ uδ ≤ kxN |x|−2
.

When δ → 0, uδ decreases and converges to some u which satisfies (2.1 ) and the previous
inequality. Letting successively ǫ→ 0 and η(r) → r+ we obtain that u satisfies

ǔR(x) ≤ u(x) ≤ kxN |x|−2
in H, (2.22)

where ǔ is the extension of u by zero outside BR. The proof of (2.10 ) is the same as in Step
2.

Step 4 Uniqueness. Let u and û be two solutions of (2.1 ) satisfying (2.10 ) and ǫ > 0. Then
uǫ = (1 + ǫ)u+ ǫ is a super solution which is positive of ∂H \ {0}. Inasmuch it dominates û
both in a neighborhood of 0 and in a neighborhood of infinity, it dominates û in H . Letting
ǫ→ 0 yields to u ≥ û. Similarly û ≥ u. �

Proposition 2.4 Assume N − 1 < q < 2N − 1 and let B = B1(0), a ∈ ∂B and k > 0.
Then there exists a unique function u = uBk,a ∈ C1(B \ {a}) which vanishes on ∂B \ {a} and
satisfies (2.1 ) in B and

u(x) = k
1 − |x|
|x− a|2

(1 + ◦(1)) as x→ a. (2.23)

Proof. With a change of coordinates, we can assume that B has center m = (0, ..., 0,−1/2)
and a is the origin of coordinates. We denote by ω the point (0, ..., 0,−1) and by Iω the
inversion with center ω and power 1. By this involutive transformation, the half space
H = {x ∈ R

N : xN > 0} is transformed into the ball B∗ = {x ∈ R
N : |x|2 + xN < 0}. Thus

the function x 7→ Pk(x) = −k(|x|2 + xN )/2 |x|2 is N -harmonic and positive in B∗, vanishes
on ∂B∗ \ {0} and is singular at 0. Let vk be the solution of (2.1 ) in H satisfying (2.10 ),
and uk = vk ◦ Iω. Then uk ∈ C(B∗ \ {0}) satisfies







−div
(

|Duk|N−2
Duk

)

+ |x− ω|−2N
uqk = 0 in B∗

uk = 0 on ∂B∗ \ {0}.
(2.24)

Furthermore uk ≤ Pk and

Pk(x) = k
1/4− |x−m|2

2 |x|2
= k

1/2 − |x−m|
2 |x|2

(1 + ◦(1)) = uk(x)(1 + ◦(1)) (2.25)
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as x→ 0. Inasmuch |x− ω| ≤ 1, uk is a subsolution of (2.1 ) in B∗. For ǫ > 0 we construct
a solution vǫ of (2.1 ) in B∗ \ Bǫ(0) with boundary value Pk. By the maximum principle
uk ≤ vǫ ≤ Pk in B∗ \ Bǫ(0). Since the sequence {vǫ} is monotone, we obtain that there
exists a solution limǫ→0 vǫ := u ∈ C1(B∗ \ {0}) of (2.1 ) in B∗ which satisfies

uk(x) ≤ u(x) ≤ Pk(x) in B∗, (2.26)

and

u(x) = k
1/2 − |x−m|

2 |x|2
(1 + ◦(1)). (2.27)

We change the variables in setting x′N = xN + 1/2 and x′i = xi (i = 1, ..., N − 1). We
define u′(x′) = u(x) and denote by a the point (0, ..., 0, 1). Clearly u′ satisfies (2.1 ) in B1/2,
vanishes on ∂B1/2 \ {a} and

u′(x) = k
1/2 − |x|

2 |x− a/2|2
(1 + ◦(1)) as x→ a/2. (2.28)

By the transformation ℓ 7→ ℓp/(q+1−p)u′k(ℓx), where ℓ = 1/2, we obtain a solution uk,a of
(2.1 ) in B which verifies

uk,a(x) = 2N/(q+1−N)k
1 − |x|
|x− a|2

(1 + ◦(1)) as x→ a. (2.29)

Because k is arbitrary, (2.23 ) follows. Uniqueness of the solution is obtained as in Propo-
sition 2.3 with uǫ = (1 + ǫ)u. �

Proposition 2.5 Assume N − 1 < q < 2N − 1 and let G = B
c
, a ∈ ∂B and k > 0. Then

there exists a unique function u = uB
c

k,a ∈ C1(G \ {a}) which vanishes on ∂B \ {a} and
satisfies (2.1 ) in G and

u(x) = k
|x| − 1

|x− a|2
(1 + ◦(1)) as x→ a. (2.30)

Proof. Uniqueness follows from (2.30 ) by the same method as in Proposition 2.3 and Propo-
sition 2.4. Actually, it will be proved in Theorem 2.7. For existence we perform the inversion
I1

0 with center 0 and power 1. It transforms the function uBk,a constructed in the previous

proposition into a function v ∈ C1(G \ {a}) which vanishes on ∂B \ {a} and satisfies (2.30
). Furthermore v is solution of

−div
(

|Dv|N−2Dv
)

+ |x|−2N |v|q−1 v = 0 (2.31)

in G. Since |x| > 1, v is a super solution for (2.1 ) in G. With no loss of generality we can

assume that a = (0, ...0, 1) and let uH
1

k,a be the solution of (2.1 ) in H1 = {x = (x1, ..., xN :

xN > 1)} satisfying (2.10 ) already constructed in Proposition 2.3. Then υǫ = η(uH
1

k,a) is a
subsolution in G (where ηǫ has been defined in the proof of Proposition 2.1). By the same
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approximation as in the previous proposition, we construct an increasing sequence {uǫ}
(ǫ > 0) of solutions of (2.1 ) in G \ Bǫ(a) which vanishes on ∂G \ Bǫ(a), takes the value v
on G∩ ∂Bǫ(a) and verifies υǫ ≤ uǫ ≤ v in G \Bǫ(a). Letting ǫ→ 0, we obtain the existence
of a solution u∗ in G which satisfies

ũH
1

k,a ≤ u∗ ≤ v in G (2.32)

where we denote by ũH
1

k,a the extension of uH
1

k,a by zero in H1
c
. We conclude that (2.30 )

holds in H1. In order to extend this convergence to whole G, we proceed as in the proof
of Proposition 2.3, with a minor modification due to the geometry. We put the origin of
coordinates at a, takes the same spherical coordinates and obtain again that

r2u∗ri − ru∗φe +
r

sinφ
∇σ′u∗ → −2kσN i + ke uniformly on SN−1

+ as r → 0.

Therefore (2.20 ) holds for any φ ∈ [0, π/2]. For r > 0, the angle φ ranges from ψ(r) =

cos−1(−r/2) to 0 (here is the difference with the half-space case) and |x|2 ∇u(x) remains
bounded in this domain, by the regularity theory for quasilinear elliptic equations. Since

u∗(r, σ′, φ) =

∫ φ

ψ(r)

u∗φ(r, σ
′, θ) dθ, (2.33)

we derive, as in the proof of Proposition 2.3,

lim
r→0

u∗(r, σ′, φ) = k cosφ uniformly on [0, π/2]. (2.34)

The proof that (2.30 ) holds is a particular case of Theorem 2.7. �

In a general domain we have to extend the solution through the boundary. We denote
by ρ̇(x) the signed distance from x→ ∂Ω, that is ρ̇(x) = ρ(x) if x ∈ Ω and ρ̇(x) = −ρ(x) if
x ∈ Ωc. Since ∂Ω is C2, there exists β0 > 0 such that if x ∈ R

N verifies −β0 ≤ ρ̇(x) ≤ β0,
there exists a unique ξx ∈ ∂Ω such that |x− ξx| = |ρ̇(x)|. Furthermore, if νξx is the outward
unit vector to ∂Ω at ξx, x = ξx − ρ̇(x)νξx . In particular ξx − ρ̇(x)νξx and ξx + ρ̇(x)νξx have
the same orthogonal projection ξx onto ∂Ω.

Let Tβ0(Ω) = {x ∈ R
N : −β0 ≤ ρ̇(x) ≤ β0}, then the mapping Π : [−β0, β0] × ∂Ω 7→

Tβ0(Ω) defined by Π(ρ, ξ) = ξ − ρ̇ν(ξ) is a C2 diffeomorphism. Moreover DΠ(0, ξ)(1, e) =
e−νξ for any e belonging to the tangent space Tξ(∂Ω) to ∂Ω at ξ. If x ∈ Tβ0(Ω), we define the
reflection of x through ∂Ω by ψ(x) = ξx+ρ̇(x)νxix . Clearly ψ is an involutive diffeomorphism
from Ω ∩ Tβ0(Ω) to Ωc ∩ Tβ0(Ω). Furthermore for any ξ ∈ ∂Ω, Dψ(ξ) = STξ(∂Ω) is the
symmetry with respect to the tangent space Tξ(∂Ω) to ∂Ω at ξ. If a function v is defined in
Ω ∩ Tβ0(Ω), we define ṽ in Ωc ∩ Tβ0(Ω) by

ṽ(x) =

{

v(x) if x ∈ Ω ∩ Tβ0(Ω)

−v ◦ ψ(x) if x ∈ Ωc ∩ Tβ0(Ω).
(2.35)
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Proposition 2.6 Let v ∈ C1,α(Ω ∩ Tβ0(Ω) \ {0}) be a solution of (2.1 ) in Ω ∩ Tβ0(Ω)
vanishing on ∂Ω \ {0}. Then ṽ ∈ C1,α(Tβ0(Ω) \ {0}) is solution of a quasilinear equation

−
∑

j

∂

∂xj
Ãj(x,Dṽ) + b̃(x) |ṽ|q−1

ṽ = 0 (2.36)

in Tβ0(Ω) \ {0} where the Ãj and b̃ are C1 functions defined in Tβ0(Ω) where they verify











































(i) Ãj(x, 0) = 0

(ii)
∑

i,j

∂Ãj
∂ηi

(x, η)ξiξj ≥ Γ |η|p−2 |ξ|2

(iii)
∑

i,j

∣

∣

∣

∣

∣

∂Ãj
∂ηi

(x, η)

∣

∣

∣

∣

∣

≤ Γ |η|p−2

(iv) Γ ≥ b̃(x) ≥ γ

(2.37)

for all x ∈ Tβ(Ω) \ {0} for some β ∈ (0, β0], η ∈ R
N , ξ ∈ R

N and some 0 < γ ≤ Γ.

Proof. The assumptions (2.37 ) implies that weak solutions of (2.36 ) are C1,α, for some
α > 0 [17] and satisfy the standard a priori estimates. As it is defined the function ṽ is
clearly C1 in Tβ0(Ω) \ {0}. Writing Dv(x) = −D(ṽ ◦ ψ(x)) = −Dψ(x)(Dṽ(ψ(x))) and
x̃ = ψ(x) = ψ−1(x)

∫

Ω∩Tβ0
(Ω)

(

|Dv|p−2Dv.Dζ + |v|q−1 vζ
)

dx

=

∫

Ω
c
∩Tβ0

(Ω)

(

|Dψ(Dṽ)|p−2Dψ(Dṽ).Dψ(Dζ) + |ṽ|q−1 ṽζ(ψ(x̃))
)

|Dψ| dx̃.

But

Dψ(Dṽ).Dψ(Dζ) =
∑

k

(

∑

i

∂ψi
∂xk

∂ṽ

∂xi

)





∑

j

∂ψj
∂xk

∂ζ

∂xj





=
∑

j





∑

i,k

∂ψi
∂xk

∂ψj
∂xk

∂ṽ

∂xi





∂ζ

∂xj
.

We set b(x) = |Dψ|,

Aj(x, η) = |Dψ| |Dψ(η)|p−2
∑

i

(

∑

k

∂ψi
∂xk

∂ψj
∂xk

)

ηi, (2.38)

and
A(x, η) = (A1(x, η), ..., AN (x, η)) = |Dψ| |Dψ(η)|p−2 (Dψ)tDψ(η). (2.39)

For any ξ ∈ ∂Ω, the mapping Dψ∂Ω(ξ) is the symmetry with respect to the hyperplane
Tξ(∂Ω) tangent to ∂Ω at ξ, so |Dψ(ξ)| = 1. Inasmuch Dψ is continuous, a lengthy but
standard computation leads to the existence of some β ∈ (0, β0] such that (2.37 ) holds in
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Tβ(Ω)∩Ω
c
. If we define Ã (resp. b̃) to be |η|p−2

η (resp 1) on Tβ(Ω)∩Ω and A (resp. |Dψ|)
on Tβ(Ω) ∩ Ω

c
, then inequalities (2.37 ) are satisfied in Tβ(Ω). �

Remark. Notice that, similarly to the p-laplacian, the vector field Ã is positively homoge-
neous with exponent p − 1 with respect to η. Furthermore, if for r > 0 we set Ãrj(x, η) =

Ãj(rx, η) , then Ãrj satisfies the same estimates (2.37 ) as Aj , uniformly in Tr−1β(r
−1Ω), for

0 < r ≤ 1. Furthermore

lim
r→0

Arj(x, η) = |η|p−2 ηj ∀η ∈ R
N , ∀j = 1, ..., N,

and this limit is uniform on the bounded subsets of R
N .

Theorem 2.7 Let Ω be a bounded domain with a C2 boundary and a ∈ ∂Ω. Assume
N − 1 < q < 2N − 1 and denote by ρ(x) the distance from x to ∂Ω. Then for any k > 0
there exists a unique function u = uk,a ∈ C(Ω \ {a}) which vanishes on ∂Ω \ {a}, is solution
of (2.1 ) and satisfies

uk,a(x) = k
ρ(x)

|x− a|2
(1 + ◦(1)) as x→ a. (2.40)

Proof. Uniqueness follows from (2.40 ) by the same technique as in the previous propositions.
For existence let BiR be a ball of radius R such that BiR ⊂ Ω and a ∈ ∂BiR, and let ωi be
its center. We denote by U i the solution of (2.1 ) in BiR, which vanishes on ∂BiR \ {a} and
satisfies

U i(x) = k
R− |x− ωi|
|x− a|2

(1 + ◦(1)) as x→ a. (2.41)

If we set Uδ = ηδ(U
i), we have already seen that Ǔδ, the extension of Uδ by zero outside its

support, is a subsolution of (2.1 ) in Ω. Because V Ω
a , the N -harmonic function element of

C(Ω \ {a}) vanishing on ∂Ω \ {a}, satisfies

V Ω
a (x) =

ρ(x)

|x− a|2
(1 + ◦(1)) as x→ a, x ∈ BiR, (2.42)

there holds kV Ω
a ≥ Ǔδ. If Ωǫ = Ω \ {Bǫ(a)} (ǫ > 0), we construct a solution uǫ ∈ C(Ωǫ) of

(2.1 ) in Ωǫ, which vanishes on ∂Ω \Bǫ(a) and takes the value kV Ω
a on ∂Bǫ(a) ∩ Ω. By the

maximum principle ǫ 7→ uǫ is increasing and Ǔδ ≤ uǫ ≤ kV Ω
a in Ωǫ. Letting ǫ→ 0 we obtain

that uǫ converges in the C1
loc-topology of Ω \ {a} to a solution u = uk,a of (2.1 ) in Ω. It

follows from the previous inequalities that

Ǔδ(x) ≤ u(x) ≤ kV Ω
a (x) ∀x ∈ Ω \ {a}. (2.43)

In order to prove the asymptotic behaviour, we proceed as in Proposition 2.4 with the help
of the reflection principle of Proposition 2.6. We fix the origin of coordinates at a = 0 and
the normal outward unit vector at a to be −eN . If ũ is the extension of u by reflection
through ∂Ω, it satisfies

−
∑

j

∂

∂xj
Ãj(x,Dũ) + b̃(x) |ũ|q−1

ũ = 0 (2.44)
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in T β(Ω) \ {0}. For r > 0, set ũr(x) = rũ(rx). Then ũr is solution of

−
∑

j

∂

∂xj
Ãrj(x,Dũ

r) + r2N−1−q b̃(rx) |ũr|q−1
ũr = 0 (2.45)

in T βr
−1

(Ωr) \ {0}, where Ωr := r−1Ω. By [3, Th 2.4] there exists C > 0 such that

kV Ω
0 (x) ≤ Ck

ρ(x)

|x|2
.

Furthermore, for any x ∈ T β(Ω) \ {0}, ρ(x) := dist (x,Ω) = ρ(ψ(x)) (we recall that ψ(x)
is the symmetric of x with respect to ∂Ω as it is defined in Proposition 2.6), and c |x| ≤
|ψ(x)| ≤ c−1 |x| for some c > 0, the same relations holds if T β(Ω) is replaced by T βr

−1

(Ωr)
and ρ(x) by ρr(x) := dist (x,Ωr). Since Ω is C2,

lim
r→0

ρ(rx)

rρr(x)
= 1

uniformly on bounded subsets of R
N . Consequently

|ũr| (x) ≤ Ckr−1 ρ(rx)

|x|2
= Ck

ρr(x)

|x|2
(1 + ◦(1)).

For 0 < a < b fixed and r ≤ r0 (for some r0 ∈ (0, 1]) the spherical shall Γa,b = {x ∈ R
N :

a ≤ |x| ≤ b} is included into T βr
−1

(Ωr). By the classical regularity theory for quasilinear
equations [17] and Proposition 2.6, there holds

‖Dũr‖Cα(Γ2/3,3/2)
≤ Cr ‖ũr‖L∞(Γ1/2,2)

, (2.46)

where Cr remains bounded because r ≤ 1. By Ascoli’s theorem and (2.43 ) ũr(x) converges

to kxN |x|−2
in the C1(B3/2 \B1/2)-topology. This implies in particular

lim
r→0

r2Dũ(rx) = −2kxNx |x|−4
+ k |x|−2

eN .

If we take in particular |x| = 1, we derive

lim
r→0

(rũ(r, σ), r2∇ũ(r, σ)) = (k cosφ,−k sinφeN), (2.47)

uniformly with respect to σ = (sinφσ′, cosφ) ∈ SN−2 × [0, π]. Because ∂Ω is C2 there
exists ǫ0 > 0 and a C2 real valued function h defined in Θǫ0 := Bǫ0 ∩ ∂H (we recall that
∂H = {x = (x′, 0)}) and an open neighborhood Vǫ0 of 0 such that ∂Ω∩Vǫ0 = {x = (x′, xN :
xN = h(x′)}, and Dh(0) = 0 (this expresses the fact that ∂H = T0(∂Ω)). If we define Ψ by

Ψ(x) = (x′, xN − h(x′)) ∀x ∈ Vǫ0 .

then det(DΨ) = 1 and DΨ(0) = I. Up to replacing ǫ0 by a smaller quantity, Ψ is a C2

diffeomorphism from Vǫ0 into a neighborhood V ′ of 0 such that Vǫ0 ∩ ∂Ω) = Θǫ0 . Because
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dist (Ψ(x), ∂H) = xN − h(x′), dist (Ψ(x), ∂H) = ρ(x)(1 + ◦(1)) as x → 0. Thus, if we set
x = Ψ−1(y) and ũ(x) = u∗(y), (2.47 ) is equivalent to

lim
|y|→0

(|y|u∗(|y| , σ), |y|2 ∇u∗(|y| , σ)) = (k cosφ,−k sinφ eN), (2.48)

uniformly on SN−1, thus

|y|u∗(|y| , σ) = k sinφ (1 + ◦(1)) as |y| → 0 (2.49)

uniformly with respect to σ ∈ SN−1
+ , because u∗ vanishes on Bǫ0 ∩ ∂H \ {0}. This implies

(2.40 ). �

Clearly the mapping k 7→ uk,a is increasing. As uk satisfies the estimates (2.7 ) and (2.30
), uk,a converges in the C1

loc(Ω \ {a})-topology, as k → ∞, to some u∞,a, solution of (2.1 )
in Ω, vanishes on ∂Ω \ {a} and satisfies

lim
x→a

|x− a|2 u∞,a(x)

ρ(x)
= ∞. (2.50)

In order to describe the precise behaviour of u∞,a, we have to introduce separable solutions
of (2.1 ) in R

N \ {0}: if we look for solutions u under the form u(r, σ) = rβω(σ), then
β = −βq = −N/(q + 1 −N) and ω satisfies

−divσ
(

(

β2
qω

2 + |∇σω|2
)(N−2)/2

∇σω

)

− Λ
(

β2
qω

2 + |∇σω|2
)(N−2)/2

ω + |ω|q−1 ω = 0

(2.51)
on SN−1 where Λ = (N − 1)β2

q . We shall denote by Sq the set of (always C1,α) solutions of
(2.51 ). If u is a separable solution of (2.1 ) in H which vanishes on ∂H \ {0}, the function
ω is a solution of (2.51 ) in SN−1

+ which vanishes on ∂SN−1
+ = SN−2. We shall denote by S∗

q

the set of such functions and by S∗
q+ the subset of positive solutions. We recall some simple

facts

Proposition 2.8 (i) For any q > N − 1, Sq contains at least the three constant functions
0 and ±((N − 1)βNq )1/(q+1−N).

(ii) For any q ≥ 2N − 1, S∗
q = {0}.

(iii) For any q ∈ (N − 1, 2N − 1), S∗
q+ contains a unique element.

Proof. Assertion (i) is evident since Λ > 0. Assertion (ii), as well as the existence part of
assertion (iii), can be found in [9] or [22]. Furthermore any ω ∈ S∗

q+ is positive in SN−1
+

and verifies ωφ < 0 by Hopf boundary lemma as the outward normal derivative on ∂SN−1
+

is ∂ /∂φ. We can construct a minimal element in S∗
q+ in the following way: If we denote by

uHk the unique solution of (2.1 ) in H which satisfies (2.10 ) and set Tr(u
H
k )(x) = rβquHk (rx)

for r > 0, then Tr(u
H
k ) is a solution of (2.1 ) in H which satisfies

Tr(u
H
k ) = r(2N−1−q)/(q+1−N)k

xN

|x|2
(1 + ◦(1)) as x→ 0.
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Thus Tr(u
H
k ) = uH

r(2N−1−q)/(q+1−N)k
. Furthermore, if ω ∈ S∗

q+, the maximum principle at 0
and at infinity (replacing uω by uω + ǫ and letting ǫ→ 0) leads to

uω(r, σ) := r−βqω(σ) > uHk (r, σ) ∀(r, σ) ∈ (0,∞) × SN−1
+ , ∀k > 0.

Letting k → ∞ implies uω(r, σ) ≥ uH∞(r, σ) and Tr(u
H
∞) = uH∞ given that 2N − 1 − q > 0.

Then the function uH∞ is invariant with respect to the transformation Tr. It is therefore self-
similar, and consequently under the form uH∞(r, σ) = r−βqω(σ). As a result of the previous
inequality ω is the minimal element of S∗

q+. Next we denote δ∗ = max{δ ≥ 0 : δω ≤ ω}
and uω,δ∗ = δ∗uω. Notice that δ∗ ∈ (0, 1] as ω > 0 in SN−1

+ and satisfies Hopf boundary

lemma on ∂SN−1
+ Clearly uω,δ∗ is a subsolution for (2.1 ) and it is dominated by uH∞ in H .

Furthermore δ∗ω ≤ ω in SN−1
+ , δ∗ωφ ≤ ωφ on ∂SN−1

+ , and

(i) either there exists σ0 ∈ SN−1
+ such that δ∗ω(σ0) = ω(σ0),

(ii) or δ∗ω < ω in SN−1
+ and there exists σ′

0 ∈ SN−2 such that δ∗ωφ(σ
′
0, π/2) = ωφ(σ

′
0, π/2).

In case (i), and as DuH∞ never vanishes in H , it follows from [6, Lemma 1.3] (a variant of the
strong comparison principle) that uω,δ∗ = u. This implies that uω,δ∗ is a solution, δ∗ = 1
and, consequently ω = ω.

In case (ii) we follow the linearization procedure already introduced in [6]. By the mean
value theorem

∣

∣DuH∞
∣

∣

N−2
u∞xi − |Duω,δ∗ |N−2

uω,δ xi =
∑

j

αij(u
H
∞ − uω,δ∗)xj

where

αij =
∣

∣tiDu
H
∞ + (1 − ti)Duω,δ∗

∣

∣

N−4
(

δij
∣

∣tiDu
H
∞ + (1 − ti)Duω,δ∗

∣

∣

2

+(N − 2)
(

tiu
H
∞xi

+ (1 − ti)uω,δ∗ xi

)

(

tiu
H
∞xj

+ (1 − ti)uω,δ∗ xj

))

,

with 0 ≤ ti ≤ 1. Next w = uH∞ − uω,δ∗ is positive in H and satisfies

−
∑

ij

(

αijwxj

)

xi
+ cw ≥ 0

where c = ((uH∞)q−uqω,δ∗)/(uH∞−uω,δ∗) > 0. Notice that (αij(x)) is the Hessian of a strictly
convex function therefore it is nonnegative and that (αij)(r, σ

′
0, π/2) is positive-definite.

Therefore it is positive-definite in a neighborhood of (r, σ′
0, π/2) (independent of r, actu-

ally). Inasmuch (uH∞ − uω,δ∗)xN = 0 at (r, σ′
0, π/2), we derive a contradiction with Hopf

lemma. Therefore case (ii) cannot occur and ω = ω. �

Remark. If we look for separable solutions of

−div
(

|Du|p−2
Du
)

+ |u|q−1
u = 0, (2.52)
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in R
N , where q > p− 1 > 0, p not necessarily equal to N or to 2, under the form u(r, σ) =

rβω(σ), then β = βp,q = −p/(q + 1 − p) and ω is a solution of

−divσ
(

(

β2
p,qω

2 + |∇σω|2
)(p−2)/2

∇σω

)

−Λ(p, q)
(

β2
p,qω

2 + |∇σω|2
)(p−2)/2

ω+|w|q−1
ω = 0

(2.53)
on SN−1 where Λ(p, q) = βp−1

p,q (qβp,q − p). If we look for separable solutions in H which
vanishes on ∂H \ {0} the solution ω of (2.53 ) is subject to the boundary condition ω = 0
on ∂SN−1

+ = SN−2. A fairly exhaustive theory of existence is developped in [22], [9]. The
existence of non-trivial solution of (2.53 ) is insured as soon Λ(p, q) > 0, or equivalently
q < N(p − 1)/(N − p) if p < N , and no condition if p ≥ N . If q ≥ N(p − 1)/(N − p)
no solution exists, up to the trivial one. This is linked to the removability result proved
by Vàzquez and Véron [18]. The existence of non trivial solutions of the same equation in
SN−1

+ vanishing on ∂SN−1
+ is much more complicated. However it is proved in [22], [9] that

there exists a critical exponent qc > p− 1 such that, if q ≥ qc no non-trivial solution exists
while if p− 1 < q < qc there exist a unique positive solution in SN−1

+ vanishing on ∂SN−1
+ .

The uniqueness proof in the previous proposition is valid.

The next result characterizes the solution of (2.1 ) with a strong singularity on the
boundary. In order to express the result, we assume that the outward normal unit vector to
∂Ω at a is −eN .

Theorem 2.9 Let Ω be a bounded domain with a C2 boundary and a ∈ ∂Ω. Assume
0 < p−1 < q < 2N−1. Then there exists a unique function u ∈ C1(Ω\{a}) which vanishes
on ∂Ω \ {a}, is solution of (2.1 ) in Ω and satisfies

lim
x→a

|x− a|2 u(x)
ρ(x)

= ∞. (2.54)

Furthermore
lim
x → a

(x− a)/ |x− a| → σ

|x− a|βq u(x) = ω(σ), (2.55)

locally uniformly on SN−1
+ . Finally u = u∞,a = limk→∞ uk,a.

Proof. We already know that u∞,a satisfies (2.54 ). By translation we fix the origin 0 of
coordinates at the point a and we assume that −eN is the outward unit vector to ∂Ω at
0. If G is any C2 domain in R

N to the boundary of which 0 belongs, we denote by uGk the
solution of (2.1 ) in G, which vanishes on ∂G \ {0} and verifies

uGk = k
ρ

G
(x)

|x|2
(1 + ◦(1)) as x→ 0, (2.56)

where ρG(x) = dist (x,G). When there is no ambiguity, uΩ
k = uk. By the maximum principle

G ⊂ G′ implies uGk ≤ uG
′

k in G. By dilation we can assume that there exist two balls of radius

1, B ⊂ Ω and B′ ⊂ Ω
c

with respective center b = eN and b′ = −b with the property that
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0 = ∂B∩∂B′. It follows from the maximum principle, the fact that uBk (x) = uB
′

k (S(x)) where
S is the symmetry with respect to the hyperplane ∂H and Proposition 2.4, Proposition 2.5

(i) uBk (x) ≤ uk(x) ≤ uB
′c

k (x) ≤ uB
′

k

(

b′ +
x− b′

|x− b′|2

)

= uBk

(

S
(

b′ +
x− b′

|x− b′|2

))

∀x ∈ B

(ii) uk(x) ≤ uB
′c

k (x) ≤ uBk

(

S
(

b′ +
x− b′

|x− b′|2

))

∀x ∈ Ω,

(2.57)
and similarly

(i) uBk (x) ≤ uHk (x) ≤ uB
′c

k (x) ≤ uBk

(

S
(

b′ +
x− b′

|x− b′|2

))

∀x ∈ B

(ii) uHk (x) ≤ uB
′c

k (x) ≤ uBk

(

S
(

b′ +
x− b′

|x− b′|2

))

∀x ∈ H,

(2.58)

Letting k → ∞, we obtain

(i) uB∞(x) ≤ u∞(x) ≤ uB
′c

∞ (x) ≤ uB∞

(

S
(

b′ +
x− b′

|x− b′|2

))

∀x ∈ B

(ii) u∞(x) ≤ uB
′c

∞ (x) ≤ uB∞

(

S
(

b′ +
x− b′

|x− b′|2

))

∀x ∈ Ω,

(2.59)

as well as

(i) uB∞(x) ≤ |x|−βq ω

(

x

|x|

)

≤ uB
′c

∞ (x) ≤ uB∞

(

S
(

b′ +
x− b′

|x− b′|2

))

∀x ∈ B

(ii) |x|−βq ω

(

x

|x|

)

≤ uB
′c

∞ (x) ≤ uB∞

(

S
(

b′ +
x− b′

|x− b′|2

))

∀x ∈ H.

(2.60)

From (2.60 )-(i) and the fact that b′ = −b, we also derive

|x|−βq ω(x/ |x|) ≤ uB
′c

∞ (x) ≤
∣

∣

∣

∣

∣

S
(

x+ b

|x+ b|2
− b

)∣

∣

∣

∣

∣

−βq

ω





S
(

x+ b− |x+ b|2 b
)

∣

∣

∣S
(

x+ b− |x+ b|2 b
)∣

∣

∣



 . (2.61)

But
∣

∣

∣

∣

∣

S
(

x+ b

|x+ b|2
− b

)∣

∣

∣

∣

∣

=
|x|

|x+ b| = |x| (1 + ◦(1)) as x→ 0

(remember that |b| = 1). If x = (x1, . . . , xN ), |x+ b|2 = |x|2 + 1 + 2xN and

S
(

x+ b− |x+ b|2 b
)

= (x1, . . . , xN + |x|2).
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Thus (2.61 ) becomes

|x|−βq ω(x/ |x|) ≤ uB
′c

∞ (x) ≤ |x|−βq |x+ b|βq ω





x+ |x|2 eN

|x|
√

1 + |x|2 + 2xN



 . (2.62)

If we assume |x|2 = ◦(xN ) then (x + |x|2 eN )/(|x|
√

1 + |x|2 + 2xN) = x(1 + ◦(1))/ |x| as
x→ 0, and

uB
′c

∞ (x) = |x|−βq ω(x/ |x|)(1 + ◦(1)). (2.63)

If we define T by

T (x) = S
(

x+ b

|x+ b|2
− b

)

,

then (2.60 )-(i) reads also as

∣

∣T −1(x)
∣

∣

−βq
ω

( T −1(x)

|T −1(x)|

)

≤ uB∞(x) ≤ |x|−βq ω

(

x

|x|

)

. (2.64)

Furthermore

T −1(x) =

(

x1

|x− b|2
, ...,

xN−1

|x− b|2
,
1 − xN

|x− b|2
− 1

)

=
x− |x|2 eN

|x− b|2
.

Then
∣

∣T −1(x)
∣

∣ =

∣

∣

∣

∣

∣

b+
x− b

|x− b|2

∣

∣

∣

∣

∣

=
|x|

|x− b| ,

and
∣

∣T −1(x)
∣

∣

−βq
ω

( T −1(x)

|T −1(x)|

)

= |x|−βq |x− b|βq ω

(

x− |x|2 eN

|x| |x− b|

)

.

If we assume again |x|2 = ◦(xN ) then (x− |x|2 eN )/(|x|
√

1 + |x|2 − 2xN ) = x(1 + ◦(1))/ |x|
as x→ 0, and

uB∞(x) = |x|−βq ω(x/ |x|)(1 + ◦(1)). (2.65)

Combining (2.59 )-(i), (2.62 ) and (2.64 ) we obtain that

u∞(x) = |x|−βq ω(x/ |x|)(1 + ◦(1)) as x→ 0 (2.66)

uniformly on any subset of Ω such that |x|2 = ◦(xN ) near 0. In order to obtain the precise
behaviour (2.55 ), we proceed and in the proof of Theorem 2.7. We extend u by reflection
through ∂Ω near 0 and denote by ũ the extended function defined in T β(Ω). For r ∈ (0, 1]
we define

wr := Tr(ũ)(x) = rβq ũ(rx).

Then wr satisfies

−
∑

j

∂

∂xj
Ãrj(x,Dwr) + b̃(rx) |wr |q−1

wr = 0 (2.67)
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in T βr
−1

(Ωr). Since wr is uniformly bounded on Γ1/2,2 (by Proposition 2.1 applied to u and
−u) and the definition of the refected function), Dwr(u) is bounded in Cα(Γ2/3,3/2). By

Ascoli’s theorem wr converges in the C1(Γ2/3,3/2)-topology to x 7→ |x|−βq ω̃(x/ |x|), where

ω̃ is defined from ω by reflection through the equator ∂SN−1
+ . In ordre to get rid of the

boundary, we use again the C2 diffeomorphism Ψ which sends Bǫ0 onto itself and verifies
Ψ(Bǫ0 ∩ ∂Ω) = Bǫ0 ∩ ∂H . We set x = Ψ−1(y) and ũ(x) = u∗(y). Then

lim
|y|→0

(|y|βq u∗(|y| , σ), |y|βq+1 ∇u∗(|y| , σ)) = (ω(φ),−ωφ eN), (2.68)

uniformly on SN−1, thus

u∗(|y| , σ) = |y|βq ω(φ)(1 + ◦(1)) as |y| → 0 (2.69)

uniformly with respect to σ ∈ SN−1
+ , because u∗ vanishes on Bǫ0 ∩ ∂H \ {0}. Actually, a

stronger result than (2.55 ) follows, namely

u(x) = |x|−βq ω(x/ |x|)(1 + ◦1)) as x→ 0. (2.70)

Mutatis mutandis, this estimate implies uniqueness of a solution with a strong singularity
as in Theorem 2.7. �

3 The removability result

In this section Ω is a C2 domain of R
N and a ∈ ∂Ω. The next result extends the removability

result of Gmira-Véron [7] dealing with semilinear equations.

Theorem 3.1 Let g be a continuous function defined on R which satisfies

lim inf
r→∞

g(r)/rqc > 0 and lim sup
r→−∞

g(r)/|r|qc < 0, (3.1)

where qc := 2N − 1 and let u ∈ C1(Ω \ {a}) be a solution of

−div
(

|Du|N−2
Du
)

+ g(u) = 0 in Ω (3.2)

which coincides with some φ ∈ C1(∂Ω) on ∂Ω \ {a}. Then u extends to Ω as a continuous
function.

Proof. Without any loss of generality, we can assume that Ω is bounded, a = 0 and −eN is
the outward normal vector to ∂Ω at 0. We denote by V Ω

0 the solution of (2.2 ) in Ω which
vanishes on ∂Ω \ {0} and satisfies

V Ω
0 (x) =

ρ(x)

|x|2
(1 + ◦(1)) as x→ 0.

Let M be the supremum of |φ| on ∂Ω and M̃ = max{M, (B/A)
1/q}. By assumption there

exists A > 0 and B ≥ 0, depending only on g, such that

−div
(

|Du|N−2
Du
)

+Auqc ≤ B in {x ∈ Ω : u(x) > 0}. (3.3)
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If v = u− M̃ , then v ≤ 0 on ∂Ω \ {0} and

−div
(

|Dv|N−2Dv
)

+Avqc ≤ 0 in {x ∈ Ω : v(x) > 0}, (3.4)

Using the same functions ηǫ as in the proof of Proposition 2.1 we deduce that ηǫ(v) satisfies
the same inequality as v, but on whole Ω. By Proposition 2.2 with q = qc and the expression
of V Ω

0 it follows that
v(x) ≤ cV Ω(x) ∀x ∈ Ω, (3.5)

where the constant c depends on A and N . Furthermore, there exists a function u∗ ∈
C1(Ω \ {0}) such that 0 ≤ v+ ≤ u∗(x) ≤ cV Ω

0 in Ω, and

−div
(

|Du∗|N−2Du∗
)

+Au∗ qc = 0 in Ω. (3.6)

As in the proof of Theorem 2.9 we extend u∗ through the boundary into ũ and scale it by
setting Tr(ũ) := wr(x) = rũ(rx) for r > 0. Inasmuch all the previous a priori estimates
apply (compactness), it follows that there exists a subsequence {rn} converging to 0 and a
function w ∈ C1(RN \ {0}) such that wrn → w in the C1

loc-topology of R
N \ {0}, w is a

solution of


















−div
(

|Dw|N−2
Dw

)

+Awqc = 0 in R
N \ {0}

w ≥ 0 in H = {x ∈ R
N : xN > 0}

w = 0 on ∂H \ {0}.
(3.7)

At end, (3.5 ) transforms into

0 ≤ w(x) ≤ c
xN

|x|2
∀x ∈ H. (3.8)

For ǫ > 0 we denote by Wǫ the solution of



















−div
(

|DWǫ|N−2
DWǫ

)

+AW qc
ǫ = 0 in H \Bǫ(0)

Wǫ = cǫ−2xN on H ∩ ∂Bǫ(0)

Wǫ = 0 on ∂H \Bǫ(0).

(3.9)

By the maximum principle 0 ≤ w(x) ≤Wǫ(x) ≤ cxN |x|−2
for any ǫ > 0, and by uniqueness,

Tr(Wǫ)(x) = rWǫ(rx) = Wǫ/r(x). Furthermore ǫ 7→ Wǫ is increasing. Letting ǫ → 0 we
conclude that Wǫ decreases to some W0, which is a solution of



















−div
(

|DW0|N−2DW0

)

+AW qc

0 = 0 in H

W0 ≥ 0 in H

W0 = 0 on ∂H \ {0},
(3.10)
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by the standard regularity results, and satisfies 0 ≤ w ≤ W0. Finally, W0 inherits the
following scaling invariance property Tr(W0)(x) = W0(x) for any r > 0. Therefore W0 is a
separable solution which endows the following form

W0(x) = W0(r, σ) = r−1ω(σ),

where ω is nonnegative on SN−1
+ and satisfies



















−divσ
(

(

ω2 + |∇σω|2
)(N−2)/2

∇σω

)

− (N − 1)
(

ω2 + |∇σω|2
)(N−2)/2

ω +Aωqc = 0

in SN−1
+

ω = 0 on ∂SN−1
+ .
(3.11)

By Proposition 2.8, ω = 0. Thus W0 = 0 =⇒ w = 0, which implies wr(x) → 0 as r → 0 and

equivalently rũ(rx) → 0 in the C1
loc-topology of R

N \ {0}. Consequently Dũ(x) = ◦(|x|−2)
as x→ 0 and finally u∗(x) = ◦(V Ω

0 (x)) as x→ 0. The maximum principle and the positivity
of u∗ yields to u∗ ≡ 0 and finally u ≤ M̃ in Ω. In the same way u ≥ −M̃ . Because the
modulus of continuity of u is uniformly bounded near 0, by the classical regularity theory
of degenerate elliptic equations (see [12] for example), u extends as a continuous function in
whole Ω. �

4 The classification theorem

The next result extends some of Gmira-Véron’s classification theorem [7, Sect. 4, 5 ] obtained
in the study of problem (1.3 ). In the above mentioned article, the main idea was to reduce
the equation to a infinite dimensional quasi-autonomous evolution system in R+×SN−1

+ and
to use Lyapounov-energy function. Such an approach cannot be adapted in the quasilinear
case. Our method is based upon scaling and uniqueness arguments.

Theorem 4.1 Assume N − 1 < q < 2N − 1, Ω is a bounded domain with a C2 boundary,
a ∈ ∂Ω and −eN is the outward normal unit vector to ∂Ω at a. Let u ∈ C1(Ω \ {a}) be
a positive function satisfying (2.1 ) in Ω and vanishing on ∂Ω \ {a}. Then the following
alternative holds.

(i) Either there exists k > 0 such that

u(x) = k
ρ(x)

|x− a|2
(1 + ◦(1)) as x→ a. (4.12)

Furthermore u = uk,a, the unique solution of (2.1 ) defined in Theorem 2.7.

(ii) Or

u(x) = |x− a|−βq ω(σ)(1 + ◦(1)) as x→ a. (4.13)

where ω is the unique positive solution of (2.51 ) on SN−1
+ which vanishes on ∂SN−1

+ , in
which case u = u∞,a.
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Proof. We assume that a = 0 with ν0 = −eN and define

k = lim sup
x→0

u(x)

V Ω
0 (x)

= lim sup
r→0

sup
|x|=r

u(x)

V Ω
0 (x)

. (4.14)

Suppose k = 0. It follows from the maximum principle that for any ǫ > 0 there exists a
sequence rn → 0 such that 0 ≤ u(x) ≤ ǫV Ω

0 (x) in Ω \ {Brn(0)}. This fact implies the nullity
of u. Therefore we assume that k 6= 0. Assume first that k is finite. Then, for any ǫ > 0,
there exists a sequence of points xn converging to 0 such that

lim
n→∞

u(xn)

V Ω
0 (xn)

= k (4.15)

and

sup
|x|≤rn

u(x)

V Ω
0 (x)

≤ k + ǫ. (4.16)

Since uk satisfies (2.40 ) with a = 0, the two previous relations can be replaced by

(i) limn→∞
u(xn)

uk(xn)
= 1

(ii) sup|x|≤rn

u(x)

uk(x)
≤ 1 + ǫ.

(4.17)

We denote rn = |xn|, ξn = xn/rn and define un = rnu(rnx) and uk n = rnuk(rnx). By
the previous arguments combining a priori estimate and regularity theory, there exist a
subsequence {rnj} and two nonnegative functions v and v′, N -harmonic in H and vanishing
on ∂H \ {0}, such that

(

unj , uk nj

)

converges to (v, v′) in the C1
loc-topology of H = R

N
+ .

Clearly equality (2.40 ) implies that rnjuk(rnjx) converges to kV H0 (x) (which is defined by

kV H0 (x) := kxN/ |x|−2
) in the same topology. Since v′ is uniquely determined by its blow-up

at 0, this implies v′ = kV H0 in H . Furthermore there exists ξ ∈ SN−1
+ such that ξnk

→ ξ.

If ξ ∈ SN−1
+ , v(ξ) = v′(ξ), while, if ξ ∈ ∂SN−1

+ , ∂v/∂ν(ξ) = ∂xN v(ξ) = ∂v′/∂ν(ξ). In
both situation, the tangency conditions of the graphs of v and v′ and the strong maximum
principle implies that v = v′ = kV H0 . By estimate (4.17 )-(i) and the convergence properties,
it follows

lim
n→∞

u(rnξ)

uk(rnξ)
= 1, uniformly on |ξ| = 1.

Consequently, for any δ > 0, there holds,

(1 − δ)uk(x) ≤ u(x) ≤ (1 + δ)uk(x) ∀x ∈ Ω \Brn ,

for n large enough, which leads to uk = u. At end we consider the case k = ∞. Writting
(2.1 ) under the form

−div
(

|Du|N−2
Du
)

+ d(x)uN−1 = 0 (4.18)

where d(x) = |u|q+1−N
(x) ≤ C |x|−N , by (2.4 ), We use the boundary Harnack principle.

By [2, Th 2.2] there exists a constant c = c(N, q,Ω) > 0 such that

1

c

u(y)

ρ(y)
≤ u(x)

ρ(x)
≤ c

u(y)

ρ(y)
(4.19)
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for any x and y in Ω such that |x| = |y| be small enough. Since there exists a sequence
xn → 0 such that limn→∞ u(xn)/V

Ω(xn) → ∞, this implies that

lim
n→∞

{

inf
u(x)

V Ω(x)
: |x| = |xn|

}

= ∞. (4.20)

Thus u satisfies (2.54 ); Theorem 2.9 and (2.55 ) imply that (4.13 ) holds. �

The assumption of positivity on u can be weakened if a better a priori estimate is already
known. The next result extends [6, Th 1.2] into the framework of boundary singularities.

Theorem 4.2 Assume N − 1 < q < 2N − 1, Ω is a bounded domain with a C2 boundary,
a ∈ ∂Ω and −eN is the outward normal unit vector to ∂Ω at a. Let u ∈ C1(Ω \ {a}) be a
solution of (2.1 ) in Ω vanishing on ∂Ω \ {a} such that u/V Ω

a is bounded in Ω. Then there
exists k ∈ R such that u = uk,a.

Proof. The outline of the proof are very similar to the finite case of the previous theorem.
We still assume a = 0 and define k by (4.14 ). If k = 0 the maximum principle implies u ≤ 0
and we return to Theorem 4.1 in the case u ≤ 0. If k 6= 0, k > 0 for example, (4.15 ) and
(4.16 ) apply. By the previous scaling method we derive that unk

converges to some function
v in the C1

loc-topology of H = R
N
+ which is N -harmonic in H and vanishes on ∂H \ {0}.

Because rnk
uk(rnk

x) converges to kV H0 , the tangency condition of v and kV H0 at some ξ
implies that v = kV H0 . Thus u(x) ≥ 0 for |x| = rnk

for nk large enough. This implies that
u ≥ 0 in Ω and we are back to Theorem 4.1. �

Remark. In the semilinear case of problem (1.3 ), it is proved in [7] that any signed solution

u which satisfies limx→a |x− a|N u(x) = 0 has constant sign. The exponent N characterize
the minimal changing sign harmonic function vanishing on ∂Ω, with an isolated singularity
at a. Changing sign singular N -harmonic functions are constructed in [3]. In particular
there exist singular N -harmonic functions w under the form

w(r, σ) = r−β2ω(σ)

where

β2 =
7N − 1 +

√
N2 + 12N + 12

6(N − 1)

and ω is defined on SN−1
+ = {x ∈ SN−1 : xN > 0}, vanishes on the equator ∂SN−1

+ , is

positive on SN−1
+ ∩ {x : xN−1 > 0} and negative on SN−1

+ ∩ {x : xN−1 < 0}. A natural
question is therefore wether any signed solution u of (2.1 ) in Ω which vanishes on ∂Ω \ {a}
and satisfies limx→a |x− a|β2 u(x) = 0 has constant sign, and can be henceforth classified
through Theorem 4.1.

Final remark. If one replaces the N -harmonic operator by the p-harmonic operator (p > 1)
and tries to extend the results of sections 2, 3, 4, several difficulties will appear. Even if the
existence of separable singular solutions is known, the precise value of the exponent β > 0
such that (r, σ) 7→ r−βφ(σ) is p-harmonic and positive in H and vanishes on ∂H \ {0} is
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unknown but for the specific cases N = 2 or p = N or p = 2. Notice that in that case the
function φ satisfies the so-called spherical p-harmonic spectral equation















−divσ
(

(

β2φ2 + |∇σφ|2
)(p−2)/2

∇σφ

)

− λ
(

β2φ2 + |∇σφ|2
)(p−2)/2

φ = 0 in SN−1
+

φ = 0 on ∂SN−1
+ .

(4.21)
where λ = β(β(p − 1) + p−N). If p = 2 then β = N − 1, while if N = 2, β is the positive
root of the equation

3β2 + 2
p− 3

p− 1
β − 1 = 0. (4.22)

Furthermore, up to now and due to the lack of conformal invariance, it has not been possible
to construct the equivalent of the V Ω

a in a general smooth bounded domain Ω, that are
positive p-harmonic functions in Ω, vanishing on ∂Ω \ {a} and satisfying

lim
x → a

(x− a)/ |x− a| → σ

|x− a|β u(x) = φ(σ). (4.23)

However, if Ω = H = R
N
+ the removability and the classification results of Sections 3 and 4

are still valid. The proofs of these theorems are developed in [1].
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