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1 Introduction

Let Ω be a domain is R
N (N ≥ 2) with a C2 compact boundary ∂Ω. A function u ∈ W 1,p

loc (Ω)
is p-harmonic if

∫

Ω

|Du|
p−2

〈Du,Dφ〉 dx = 0 (1.1)

for any φ ∈ C1
0 (Ω). Such functions are locally C1,α for some α ∈ (0, 1). In the case p = N ,

the function u is called N -harmonic. The N -harmonic functions play an important role as a
natural extension of classical harmonic functions. They also appear in the theory of bounded
distortion mappings [8]. One of the main properties of the class of N -harmonic functions
is its invariance by conformal transformations of the space R

N . This article is devoted to
the study of N -harmonic functions which admit an isolated boundary singularity. More
precisely, let a ∈ ∂Ω and u ∈W 1,N

loc (Ω)∩C(Ω \ {a}) be a N -harmonic function vanishing on
∂Ω \ {a}, then u may develop a singularity at the point a. Our goal is to show the existence
of such singular solutions, and then to classify all the positive N -harmonic functions with a
boundary isolated singularity. We denote by na the outward normal unit vector to Ω at a
The main result we prove are presented below:

There exists a unique positive N -harmonic function u = u1,a in Ω, vanishing on ∂Ω \ {a}
such that

lim
x → a

x−a
|x−a|

→ σ

|x− a|u(x) = −〈σ,na〉 (1.2)

uniformly on SN−1 ∩ Ω = {σ ∈ SN−1 : 〈σ,na〉 < 0}.

The functions u1,a plays a fundamental role in the description of all the positive singular
N -harmonic functions since we the next result holds

Let u be a positive N -harmonic function in Ω, vanishing on ∂Ω \ {a}. Then there exists
k ≥ 0 such that

u = ku1,a. (1.3)

∗To appear in Communications in Partial Differential Equations

1



When u is no longer assumed to be positive we obtain some classification results provided
its growth is limited as shows the following

Let u be a N -harmonic function in Ω, vanishing on ∂Ω \ {a} and verifying

|u| ≤Mu1,a,

for some M ≥ 0. Then there exists k ∈ R such that

u = ku1,a. (1.4)

In the last section we give a process to construct p-harmonic regular functions (p > 1)
or N -harmonic singular functions as product of one variable functions. Starting from the
existence of p-harmonic functions in the plane under the form u(x) = u(r, σ) = rβω(θ)
(see [5]), our method, by induction on N , allows us to produce separable solutions of the
spherical p-harmonic spectral equation

−divσ

(

(

β2v2 + |∇σv|
2
)(p−2)/2

∇σv

)

= λN,β

(

β2v2 + |∇σv|
2
)(p−2)/2

v. (1.5)

on SN−1, where λN,β = β (N − 1 + (β − 1)(p− 1)). This equation equation is naturally

associated to the existence of p-harmonic functions under the form u(x) = |x|β v(x/ |x|). As
a consequence, we express p-harmonic functions under the form of a product of N -explicit
functions of one real variable. If we represent R

N as the set of {x = (x1, ..., xN )} where
x1 = r sin θN−1 sin θN−2... sin θ2 sin θ1, x2 = r sin θN−1 sin θN−2... sin θ2 cos θ1, ..., xN−1 =
r sin θN−1 cos θN−2 and xN = r cos θN−1 with θ1 ∈ [0, 2π] and θk ∈ [0, π], for k = 2, ..., N−1,
then, for any integer k the function

u(x) = (r sin θN−1 sin θN−2... sin θ2)
βkωk(θ1) (1.6)

is p-harmonic in R
N , in which expression βk > 1 is an algebraic number depending on k

and ωk is a π/k-antiperiodic solutions of a completely integrable homogeneous differential
equation. Moreover N -harmonic singular functions are also obtained under the form

u(x) = r−βk(sin θN−1 sin θN−2... sin θ2)
βkωk(θ1). (1.7)

Our paper is organized as follows: 1- Introduction. 2- Construction of fundamental
singular N -harmonic functions. 3- The classification theorem. 4- Separable solutions of the
p-harmonic spectral problem.

2 Construction of fundamental singular N-harmonic func-

tions

We denote by HN the group of conformal transformations in R
N . This group is generated

by homothethies, inversion and isometries. Our first result is classical, but we repeat the
proof for the sake on completeness.

Proposition 2.1 Let u be a N -harmonic function in a domain G ⊂ R
N and h ∈ HN . Then

uh = u ◦ h is N -harmonic in h−1(G).
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Proof. Because for any p > 1 the class of p-harmonic functions is invariant by homothethies
and isometries, it is sufficient to prove the result if h is the inversion I1

0 with center the
origin in R

N and power 1. We set y = I1
0 (x) and v(y) = u(x). For any i = 1, ..., N

uxi(x) =
∑

j

(

δij |x|
−2

− 2 |x|
−4
xixj

)

vyj (y).

Then
|Du|

2
(x) = |x|

−4
|Dv|

2
(y) = |y|

4
|Dv|

2
(y).

If φ is a test function, we denote similarly ψ(y) = φ(x), thus

〈Du,Dφ〉 = |x|
−4

〈Dv,Dψ〉 = |y|
4
〈Dv,Dψ〉,

and
∫

G

|Du|N−2 〈Du,Dφ〉 dx =

∫

I1

0
(G)

|y|2N |Dv|N−2 〈Dv,Dψ〉
∣

∣DI1
0

∣

∣ dy

Because
∣

∣DI1
0

∣

∣ = |det(∂xi/∂yj)| = |y|
−2N

, the result follows. �

Proposition 2.2 Let N ≥ 2, B = B1(0) and a ∈ ∂B. Then there exists a unique positive
N -harmonic function U i in B which vanishes on ∂B \ {a} and satisfies

U i(x) =
1 − |x|

|x− a|
2 (1 + ◦(1)) as x→ a. (2.1)

Proof. We first observe that the coordinates functions xi are N -harmonic and positive in
the half-space Hi = {x ∈ R

N : xi > 0} and vanishes on ∂Hi. Therefore, the functions

χi(x) = xi/ |x|
2

are also N -harmonic and singular at 0. Without loss of generality we can
assume that a is the origin of coordinates, and that B is the ball with radius 1 and center
(−1, 0, ..., 0). Let ω be the point with coordinates (−2, 0, ..., 0). By the inversion I4

ω , a is
invariant and B is transformed into the half space H1. Since χ1 is N -harmonic in H1, the
function

x 7→ χ1 ◦ I
4
ω(x) = −

|x|
2

+ 2x1

2 |x|
2

is N -harmonic and positive in B = {x : |x|
2

+ 2x1 < 0}, vanishes on ∂B and is singular at
x = 0. If we set x′1 = x1 + 1, x′i = xi for i = 2, ..., N and U i(x′) = χ1 ◦ I

4
ω(x), then the x′

coordinates of a are (1, 0, ..., 0) and

U i(x′) =
1 − |x′|

2

2 |x′ − a|
2 =

1 − |x′|

|x′ − a|
2 (1 + ◦(1)) as x′ → a.

Let Ũ i be another positive N -harmonic function in B which verifies (2.1 ) and vanishes on
∂B \ {a}. Thus, for any δ > 0, (1 + δ)Ũ i, is positive, N -harmonic, and U i − (1 + δ)Ũ i is
negative near a. By the maximum principle, U i ≤ (1 + δ)Ũ i. Letting δ → 0, and permuting
U i and Ũ i yields Ũ i = U i. �

By performing the inversion I1
0 , we derive the dual result
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Proposition 2.3 Let N ≥ 2, G = Bc
1(0) and a ∈ ∂B. Then there exists a unique positive

N -harmonic function Ue in G which vanishes on ∂B \ {a} and satisfies

Ue(x) = ◦(ln |x|) as |x| → ∞, (2.2)

and

Ue(x) =
|x| − 1

|x− a|
2 (1 + ◦(1)) as x→ a. (2.3)

Proof. The assumption (2.2 ) implies that the function U = Ue ◦ I1
0 , which is N -harmonic

in B \ {0} verifies
U(x) = ◦(ln(1/ |x|)) near 0.

By [9], 0 is a removable singularity and thus U can be extended as a positive N -harmonic
function in B which satisfies (2.1 ). This implies the claim. �

We denote by ρ̇(x) the signed distance from x to ∂Ω. Since ∂Ω is C2, there exists β0 > 0
such that if x ∈ R

N verifies −β0 ≤ ρ̇(x) ≤ β0, there exists a unique ξx ∈ ∂Ω such that
|x− ξx| = |ρ̇(x)|. Furthermore, if νξx is the outward unit vector to ∂Ω at ξx, x = ξx−ρ̇(x)νξx .
In particular ξx − ρ̇(x)νξx and ξx + ρ̇(x)νξx have the same orthogonal projection ξx onto ∂Ω.

Let Tβ0
(Ω) = {x ∈ R

N : −β0 ≤ ρ̇(x) ≤ β0}, then the mapping Π : [−β0, β0] × ∂Ω 7→
Tβ0

(Ω) defined by Π(ρ, ξ) = ξ − ρν(ξ) is a C2 diffeomorphism. Moreover DΠ(0, ξ)(1, e) =
e − νξ for any e belonging to the tangent space Tξ(∂Ω) to ∂Ω at ξ. If x ∈ Tβ0

(Ω), we
define the reflection of x through ∂Ω by ψ(x) = ξx + ρ̇(x)νξx . Clearly ψ is an involutive
diffeomorphism from Ω ∩ Tβ0

(Ω) to Ωc ∩ Tβ0
(Ω), and Dψ(x) = I for any x ∈ ∂Ω. If a

function v is defined in Ω ∩ Tβ0
(Ω), we define ṽ in Tβ0

(Ω) by

ṽ(x) =

{

v(x) if x ∈ Ω ∩ Tβ0
(Ω)

−v ◦ ψ(x) if x ∈ Ωc ∩ Tβ0
(Ω).

(2.4)

Lemma 2.4 Assume that 0 ∈ ∂Ω. Let v ∈ C1,α(Ω∩ Tβ0
(Ω) \ {0}) be a solution of (1.1 ) in

Ω ∩ Tβ0
(Ω) vanishing on ∂Ω \ {0}. Then ṽ ∈ C1,α(Tβ(Ω) \ {0}) is solution of a quasilinear

equation
∑

j

∂

∂xj
Ãj(x,Dṽ) = 0 (2.5)

in Tβ(Ω) \ {0} where the Ãj are C1 functions defined in Tβ(Ω) where they verify



































(i) Ãj(x, 0) = 0

(ii)
∑

i,j

∂Ãj

∂ηi
(x, η)ξiξj ≥ Γ |η|

p−2
|ξ|

2

(iii)
∑

i,j

∣

∣

∣

∣

∣

∂Ãj

∂ηi
(x, η)

∣

∣

∣

∣

∣

≤ Γ |η|
p−2

(2.6)

for all x ∈ Tβ(Ω) \ {0} for some β ∈ (0, β0], η ∈ R
N , ξ ∈ R

N and some Γ > 0.
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Proof. The assumptions (2.6 ) implies that weak solutions of (2.5 ) are C1,α, for some α > 0
[12] and satisfy the standard a priori estimates. As it is defined the function ṽ is clearly C1 in
Tβ0

(Ω)\{0}. Writing Dv(x) = −D(ṽ ◦ψ(x)) = −Dψ(x)(Dṽ(ψ(x))) and x̃ = ψ(x) = ψ−1(x)

∫

Ω∩Tβ(Ω)

|Dv|
p−2

Dv.Dζdx

=

∫

Ω
c
∩Tβ(Ω)

|Dψ(Dṽ)|p−2Dψ(Dṽ).Dψ(Dζ) |Dψ| dx̃.

But

Dψ(Dṽ).Dψ(Dζ) =
∑

k

(

∑

i

∂ψi

∂xk

∂ṽ

∂xi

)





∑

j

∂ψj

∂xk

∂ζ

∂xj





=
∑

j





∑

i,k

∂ψi

∂xk

∂ψj

∂xk

∂ṽ

∂xi





∂ζ

∂xj
.

We set b(x) = |Dψ|,

Aj(x, η) = |Dψ| |Dψ(η)|p−2
∑

i

(

∑

k

∂ψi

∂xk

∂ψj

∂xk

)

ηi, (2.7)

and
A(x, η) = (A1(x, η), ..., AN (x, η)) = |Dψ| |Dψ(η)|

p−2
(Dψ)tDψ(η). (2.8)

For any ξ ∈ ∂Ω, the mapping Dψ∂Ω(ξ) is the symmetry with respect to the hyperplane
Tξ(∂Ω) tangent to ∂Ω at ξ, so |Dψ(ξ)| = 1. Inasmuch Dψ is continuous, a lengthy but
standard computation leads to the existence of some β ∈ (0, β0] such that (2.6 ) holds in

Tβ(Ω)∩Ω
c
. If we define Ã to be |η|

p−2
η on Tβ(Ω)∩Ω and A on Tβ(Ω)∩Ω

c
, then inequalities

(2.6 ) are satisfied in Tβ(Ω). �

These three results allows us to prove our main result

Theorem 2.5 Let Ω be an open subset of R
N with a compact C2 boundary, ρ(x) = dist (x, ∂Ω)

and a ∈ ∂Ω. Then there exists one and only one positive N -harmonic function u in Ω, van-
ishing on ∂Ω \ {a} verifying

lim
x → a

x−a
|x−a|

→ σ

|x− a|u(x) = −〈σ,na〉 (2.9)

uniformly on SN−1 ∩ Ω, and

u(x) = ◦(ln |x|)) as |x| → ∞, (2.10)

if Ω is not bounded.

Proof. Uniqueness follows from (2.9 ) by the same technique as in the previous propositions.

Step 1 (Existence). If Ω is not bounded, we perform an inversion I
|m−a|2

m with center some

m ∈ Ω. Because of (2.10 ), the new function u ◦ I
|m−a|2

m is N -harmonic in Ω′ = I
|m−a|2

m (Ω)
and satisfies (2.9 ). Thus we are reduced to the case were Ω is bounded. Since Ω is C2,
it satisfies the interior and exterior sphere condition at a. By dilating Ω, we can assume
that the exterior and interior tangent spheres at a have radius 1. We denote them by

5



B1(ω
e) and B1(ω

i), their respective centers being ωi = a − na and ωe = a + na. We set
V i(x) = U i(x − ωi) and V e(x) = Ue(x − ωe) where U i and Ue are the two singular N -
harmonic functions described in Proposition 2.2 and Proposition 2.3, respectively in B1(ω

i)
and Bc

1(ω
e), with singularity at point a. For ǫ > 0, we put Ωǫ = Ω \Bǫ(a), Σǫ = Ω∩ ∂Bǫ(a)

and ∂∗Ωǫ = ∂Ω ∩Bc
ǫ (a). Let uǫ be the solution of







div(|Duǫ|
N−2

Duǫ) = 0 in Ωǫ

uǫ = 0 on ∂∗Ωǫ

uǫ = V e on Σǫ.

(2.11)

This solution is obtained classicaly by minimisation of a convex functional over a class of
functions with prescribed boudary value on ∂Ωǫ. For any x ∈ B1(ω

i), there holds

dist (x, ∂B1(ω
e)) = |x− ωe| − 1 ≥ dist (x, ∂Ω) ≥ dist (x, ∂B1(ω

i)) = 1 −
∣

∣x− ωi
∣

∣ .

thus
V i(x) ≤ V e(x) ∀x ∈ B1(ω

i),

by using (2.1 ), (2.3 ) and the maximum principle. Therefore

V i(x) ≤ uǫ(x) ≤ V e(x) ∀x ∈ B1(ω
i) ∩ Ωǫ

and
uǫ(x) ≤ V e(x) ∀x ∈ Ωǫ.

Finally, for 0 < ǫ′ < ǫ, uǫ′ Σǫ
≤ V e

Σǫ
= uǫΣǫ

. Thus

uǫ′(x) ≤ uǫ(x) ∀x ∈ Ωǫ.

The sequence {uǫ} is increasing with ǫ. By classical a priori estimates concerning quasilinear
equations, it converges to some positive N -harmonic function u in Ω which vanishes on
∂Ω \ {a} and verifies

V i(x) ≤ u(x) ∀x ∈ B1(ω
i),

and
u(x) ≤ Ue(x) ∀x ∈ Ω.

This implies

1 − |x− ωi|
2

2 |x− a|
2 ≤ u(x) ∀x ∈ B1(ω

i), (2.12)

u(x) ≤
|x− ωe|

2
− 1

2 |x− a|2
∀x ∈ Ω, (2.13)

By scaling we can prove the following estimate

u(x) ≤ C
ρ(x)

|x− a|
2 ∀x ∈ Ω. (2.14)

for some C > 0: for simplicity we can assume that a is the origin of coordinates and, for
r > 0 set ur(y) = u(ry). Clearly ur is N -harmonic in Ω/r and

max{|Dur(y)| : y ∈ Ω/r ∩ (B3/2 \B2/3)} ≤ C max{|ur(z)| : z ∈ Ω/r ∩ (B2 \B1/2)},

where C, which depends on the curvature of ∂Ω/r, remains bounded as long as r ≤ 1. Since
Dur(y) = rDu(ry), we obtain by taking ry = x, |y| = 1 and using (2.13 ) with general a,
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|Du(x)| ≤ C |x− a|
−2

. By the mean value theorem, since u vanishes on ∂Ω \ {a}, (2.14 )
holds.
Step 2. In order to give a simple proof of the estimate (2.9 ), we fix the origin of coordinates
at a = 0 and the normal outward unit vector at a to be −eN . If ũ is the extension of u
by reflection through ∂Ω, it statisfies (2.5 ) in Tβ(Ω)\{0} (see lemma 2.4 ). For r > 0, set
ũr(x) = rũ(rx). Then ũr is solution of

∑

j

∂

∂xj
Ãj(rx,Dũ

r) = 0 (2.15)

in Tβ/r(Ω/r)\{0}. By the construction of Ãj(x, η), we can note that

lim
r→0

Ãj(rx, η) = |η|p−2ηj , ∀η ∈ R
N .

Furthermore, for any x ∈ Tβ(Ω)\{0}, ρ(x) = ρ(ψ(x)) and c |x| ≤ |ψ(x)| ≤ c−1 |x| for some
c > 0, the estimate (2.14 ) holds if u is replaced by ũr, Ω by Tβ/r(Ω/r) and ρ(x) by ρr(x) :=
dist(x,Ω/r) i.e.

|ũr(x)| ≤ C|x|−2ρr(x) ∀x ∈ Tβ/r(Ω/r).

For 0 < a < b fixed and for some 0 < r0 ≤ 1 the spherical shall Γa,b = {x ∈ R
N : a ≤ |x| ≤ b}

is included into Tβ/r(Ω/r) for all 0 < r ≤ r0. By the classical regularity theory for quasilinear
equations [12] and lemma 2.4 , there holds

‖Dũr‖Cα(Γ2/3,3/2)
≤ Cr ‖ũ

r‖L∞(Γ1/2,2)
,

where Cr remains bounded because r ≤ 1. By Ascoli’s theorem, (2.12 ) and (2.14 ), ũr(x)
converges to xN |x|−2 in the C1(Γ2/3,3/2)-topology. This implies in particular that r2Dũ(rx)
converges uniformly in Γ2/3,3/2 to −2xN |x|−4x + |x|−2eN . Using the expression of Dũ in
spherical coordinates we obtain

r2ũri − rũφe +
r

sinφ
∇σ′ ũ→ −2σN i + eN uniformly on SN−1 as r → 0,

where cosφ = xN |x|−1, i = x/|x|, e is derived from x/|x| by a rotation with angle π/2 in
the plane 0, x,N (N being the North pole), and ∇σ′ is the covariant gradient on SN−2.
Inasmuch i, e and ∇σ′ are orthogonal, the components of eN are cosφ, sinφ and 0, thus

rũφ(r, σ′, φ) → − sinφ as r → 0.

Since

ũ(r, σ′, φ) =

∫ φ

π/2

ũφ(r, σ′, θ)dθ,

the previous convergence estimate establishes (2.9 ). �

Definition 2.6 We shall denote by u1,a the unique positive N -harmonic function satisfying
(2.9 ), and call it the fundamental solution with a point singularity at a.

7



3 The classification theorem

In this section we characterize all the positive N -harmonic functions vanishing on the bound-
ary of a domain except one point. The next statement is an immediate consequence of
Theorem 2.5 and [2, Th. 2.11].

Theorem 3.1 . Let Ω be a bounded domain with a C2 boundary and a ∈ ∂Ω. If u is a
positive N -harmonic function in Ω vanishing on ∂Ω \ {a}, there exists M ≥ 0 such that

u(x) ≤Mu1,a(x) ∀x ∈ Ω (3.1)

In the next theorem, which extends [2, Th. 2.13], we characterize all the signed N -
harmonic functions with a moderate growth near the singular point.

Theorem 3.2 . Let Ω be a bounded domain with a C2 boundary and a ∈ ∂Ω. Assume that
u1,a has only a finite number of critical points in Ω. If u is a N -harmonic function in Ω
vanishing on ∂Ω \ {a} verifying |u(x)| ≤ Mu1,a(x) for some M > 0 and any x ∈ Ω, there
exists k ∈ [−M,M ] such that u = ku1,a.

Proof. We define k as the minimum of the ℓ such that u ≤ ℓu1,a in Ω. Without any loss of
generality we can assume k > 0. Then either the tangency of the graphs of the functions u
and ku1,a is achieved in Ω \ {a}, or it is achieved asymptotically at the singular point a. In
the first case we considered two sub-cases:

(i) The coincidence set G of u and ku1,a has a connected component ω isolated in Ω. In this
case there exists a smooth domain U such that ω ⊂ U and δ > 0 such that ku1,a − u ≥ δ on
∂U . The maximum principle implies that ku1,a − u ≥ δ in U , a contradiction.

(ii) In the second sub-case any connected component ω of the coincidence set touches ∂Ω\{a},
or the two graphs admits a tangency point on ∂Ω \ {a}. If m ∈ ω ∩ ∂Ω \ {a} or is such
a tangency point, the regularity theory implies ∂u(m)/∂nm = ku1,a(m)/∂nm. By Hopf
boundary lemma, u1,a(m)/∂nm < 0. By the mean value theorem, the function w = ku1,a−u
satisfies an equation

Lw = 0 (3.2)

which is elliptic and non degenerate near m (see [3], [4]), it follows that w vanishes in a
neighborhood of m and the two graphs cannot be tangent only on ∂Ω \ {a}. Assuming that
ω 6= Ω, let x0 ∈ Ω \ ω such that dist (x0, ω) = r0 < ρ(x0) = dist (x0, ∂Ω, and let y0 ∈ ω be
such that |x0 − y0| = r0. Since u1,a has at most a finite number of critical points, we can
choose x0 such that y0 is not one of these critical points. By assumption w = ku1,a − u
is positive in Br0

(x0) and vanishes at a boundary point y0. Since the equations are not
degenerate at y0 there holds

k∂u1,a(y0)/∂ν − ∂u(y0)/∂ν < 0

where ν = (y0 − x0)/r0, which contradicts the fact that the two graphs are tangent at y0.

Next we are reduced to the case where the graphs of u and ku1,a are separated in Ω and
asymptotically tangent at the singular point a. There exists a sequence {ξn} ⊂ Ω such
that limn→∞ u(ξn)/u1,a(ξn) = k. We set |xn − a| = rn, un(y) = rnu(a+ rny) and vn(y) =
rnu1,a(a + rny). Both un and vn are N -harmonic in Ωn = (Ω − a)/rn. The functions un

and vn are locally uniformly bounded in Ωn \ {0}. It follows, by using classical regularity
results, that, there exists sub-sequences, such that {unk

} and {vnk
} converge respectively

to U and V in the C1
loc-topology of Ωnk

\ {0}. The functions U and V are N -harmonic
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in H ≈ R
N
+ = {x = (x1, x2, ..., xN ) : xN > 0} and vanish on ∂H \ {0}. Since it can be

assumed that (ξnk
− a)/rnk

→ ξ, there holds U ≤ kV in H , U(ξ) = kV (ξ), if ξ ∈ H , and
∂U(ξ)/∂xN = k∂V (ξ)/∂xN > 0, if ξ ∈ ∂H (notice that |ξ| = 1). If ξ ∈ ∂H , Hopf lemma
applies to V at ξ and, using the same linearization with the linear operator L as in the
previous proof, it yields to U = kV . If ξ ∈ H , we use the fact that |Du1,a(x)| ≥ β > 0
for |x− a| ≤ α for some β, α > 0. Thus |Dvn(ξ)| ≥ β. The non-degeneracy of V and the
strong maximum principle lead again to U = kV . Whatever is the position of ξ, the equality
between U and kV and the convergence in C1

loc leads to the fact that for any ǫ > 0 there
exists nǫ ∈ N such that n ≥ nǫ implies

(k − ǫ)u1,a(x) ≤ u(x) ≤ (k + ǫ)u1,a(x) ∀x ∈ Ω ∩ ∂Brn(a).

By the comparison principle between N -harmonic functions this inequality holds true in
Ω \ ∂Brn(a). Since rn → 0 and ǫ is arbitrary, this ends the proof. �

Remark. The assumption that u1,a has only isolated critical points in Ω is clearly satisfied
in the case of a ball, a half-space or the complementary of a ball where no critical point
exists. It is likely that this assumption always holds but we cannot prove it. However the
Hopf maximum principle for p-harmonic functions (see [11]) implies that u1,a cannot have
local extremum in Ω.

4 Separable solutions of the p-harmonic spectral prob-

lem

In this section we present a technique for constructing signed N -harmonic functions, regular
or singular, as a product of functions depending only on one real variable. Some of the
results were sketched in [16]. The starting point is the result of Krol [5] dealing with
the existence of 2-dimensional separable p-harmonic functions (the construction of singular
separable p-harmonic functions was performed in [4]).

Theorem 4.1 (Krol) Let p > 1. For any positive integer k there exists a unique βk > 0
and ωk : R 7→ R, with least antiperiod π/k, of class C∞ such that

uk(x) = |x|
βk ωk(x/ |x|) (4.1)

is p-harmonic in R
2; βk is the unique root ≥ 1 of

(2k − 1)X2 −
pk2 + (p− 2)(2k − 1)

p− 1
X + k2 = 0. (4.2)

(βk, ωk) is unique up to translation and homothety over ωk.

This result is obtained by solving the homogeneous differential equation satisfied by ωk = ω:

−
(

(

β2ω2 + ω2
θ

)(p−2)/2
ωθ

)

θ
= β (1 + (β − 1)(p− 1))

(

β2ω2 + ω2
θ

)(p−2)/2
ω. (4.3)

In the particular case k = 1, then β1 = 1 and ω1(θ) = sin θ. For the other values of k the
βk are algebraic numbers and the ωk are not trigonometric functions, except if p = 2. More
generally, if one looks for p-harmonic functions in R

N \ {0} under the form u(x) = u(r, σ) =
rβv(σ), r = |x| > 0, σ = x/ |x| ∈ SN−1, one obtains that v verifies

−divσ

(

(

β2v2 + |∇σv|
2
)(p−2)/2

∇σv

)

= λN,β

(

β2v2 + |∇σv|
2
)(p−2)/2

v (4.4)
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on SN−1, where λN,β = β (N − 1 + (β − 1)(p− 1)) and divσ and ∇σ are respectively the
divergence and the gradient operators on SN−1 (endowed with the Riemaniann structure
induced by the imbedding of the sphere into R

N ). This equation, called the spherical
p-harmonic spectral problem, is the natural generalization of the spectral problem of the
Laplace-Beltrami operator on SN−1. Since it does not correspond to a variational form
(except if p = 2), it is difficult to obtain solutions. In the range of 1 < p ≤ N−1, Krol proved
in [5] the existence of solutions of (4.4 ), not on the whole sphere, but on a spherical cap
(which reduced (4.4 ) to an non-autonomous nonlinear second order differential equation).
His methods combined ODE estimates and shooting arguments. Later on, Tolksdorf [11]
introduced an entirely new method for proving the existence of solutions on any C2 spherical
domain S, with Dirichlet boundary conditions. Only the case β > 0 was treated in [11],
and, by a small adaptation of Tolksdorf approach, the case β > 0 was considered in [16]. We
develop below a method which allows to express solutions as product of explicit one variable
functions.

4.1 The 3-D case

Let (r, θ, φ) ∈ (0,∞) × [0, 2π] × [0, π] be the spherical coordinates in R
3







x1 = r cos θ sinφ
x2 = r sin θ sinφ
x3 = r cosφ

Then (4.4 ) turns into

−
1

sinφ

[

sinφ

(

β2v2 + v2
φ +

v2
θ

sin2 φ

)(p−2)/2

vφ

]

φ

−
1

sin2 φ

[

(

β2v2 + v2
φ +

v2
θ

sin2 φ

)(p−2)/2

vθ

]

θ

= β (2 + (β − 1)(p− 1))

(

β2v2 + v2
φ +

v2
θ

sin2 φ

)(p−2)/2

v

(4.5)
We look for a function v under the form

v(θ, φ) = (sinφ)βω(θ) (4.6)

then

β2v2 + v2
φ +

v2
θ

sin2 φ
= (sinφ)2β−2(β2ω2 + ω2

θ),

1

sin2 φ

[

(

β2v2 + v2
φ +

v2
θ

sin2 φ

)(p−2)/2

vθ

]

θ

= (sinφ)(β−1)(p−1)−1
(

(β2ω2 + ω2
θ)(p−2)/2ωθ

)

θ
,

(

β2v2 + v2
φ +

v2
θ

sin2 φ

)(p−2)/2

v = (sinφ)(β−1)(p−1)+1(β2ω2 + ω2
θ)(p−2)/2ω,

and

1

sinφ

[

sinφ

(

β2v2 + v2
φ +

v2
θ

sin2 φ

)(p−2)/2

vφ

]

φ

= β(sin φ)(β−1)(p−1)−1
[

((β − 1)(p− 1) + 1) − sin2 φ ((β − 1)(p− 1) + 2)
]

(β2ω2 + ω2
θ)(p−2)/2ω.
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It follows that ω satisfies the same equation (4.3 ). The next result follows immediately
from Theorem 4.1

Theorem 4.2 Assume N = 3 and p > 1. Then for any positive integer k there exists a
p-harmonic function u in R

3 under the form

u(x) = u(r, θ, φ) = rβk(sinφ)βkωk(θ) (4.7)

where βk and ωk are as in Theorem 4.1.

In the case p = 3 we can use the conformal invariance of the 3-harmonic equation in R
3 to

derive

Theorem 4.3 Assume p = N = 3. Then for any positive integer k there exists a p-
harmonic function u in R

3 \ {0} under the form

u(x) = u(r, θ, φ) = r−βk(sinφ)βkωk(θ) (4.8)

where βk and ωk are as in Theorem 4.1 with p = 3.

As a consequence of Theorem 4.3 we obtain signed 3-harmonic functions under the form
(4.7 ) in the half space R

3
+ = {x : x2 > 0}, vanishing on ∂R

3
+ \ {0}, with a singularity at

x = 0. They correspond to even integers k. The extension to general smooth domains Ω is a
deep chalenge. In the particular case k = 1, we have seen that β1 = 1 and ω1(θ) = sin θ = x2,
that we already know.

4.2 The general case

We assume that N > 3 and write the spherical coordinates in R
N under the form

x =
{

(r, σ) ∈ (0,∞) × SN−1 = (r, sin φσ′, cosφ) : σ′ ∈ SN−2, φ ∈ [0, π]
}

. (4.9)

The main result concerning separable p-harmonic functions is the following.

Theorem 4.4 Let N > 3 and p > 1. For any positive integer k there exists p-harmonic
functions in R

N under the form

u(x) = u(r, σ′, φ) = (r sinφ)βk w(σ′). (4.10)

where βk is the unique root ≥ 1 of (4.2 ) and w is solution of (4.15 ) with β = βk. Further-
more, if p = N there exists a singular N -harmonic function under the form

u(x) = u(r, σ′, φ) = r−βk(sinφ)βk w(σ′). (4.11)

Proof. We first recall (see [17] for details) that the SO(N) invariant unit measure on SN−1

is dσ = aN sinN−2 φdσ′ for some aN > 0, and

∇σv = −vφe +
1

sinφ
∇σ′v.

where e is derived from x/ |x| by the rotation of center 0 angle π/2 in the plane going thru
0, x/ |x| and the north pole. The weak formulation of (4.4 ) expresses as

∫ π

0

∫

SN−2

(

β2v2 + v2
φ +

1

sin2 φ
|∇σ′v|2

)(p−2)/2(

vφζφ +
1

sin2 φ
∇σ′v.∇σ′ζ

)

sinN−2 φdσ′ dφ

= λN,β

∫ π

0

∫

SN−2

(

β2v2 + v2
φ +

1

sin2 φ
|∇σ′v|

2

)(p−2)/2

v ζ sinN−2 φdσ′ dφ

(4.12)
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or, equivalently

−
1

sinN−2 φ

[

sinN−2 φ

(

β2v2 + v2
φ +

1

sin2 φ
|∇σ′v|

2

)(p−2)/2

vφ

]

φ

−
1

sin2 φ
divσ′

[

(

β2v2 + v2
φ +

1

sin2 φ
|∇σ′v|2

)(p−2)/2

∇σ′v

]

= λN,β

(

β2v2 + v2
φ +

1

sin2 φ
|∇σ′v|2

)(p−2)/2

v

(4.13)

where divσ′ is the divergence operator acting on vector fields on SN−2. We look again for
p-harmonic functions under the form

u(r, σ) = u(r, σ′, φ) = rβv(σ′, φ) = rβ sinβ φw(σ′). (4.14)

Then
(

β2v2 + v2
φ +

1

sin2 φ
|∇σ′v|2

)(p−2)/2

= (sinφ)(β−1)(p−2)
(

β2w2 + |∇σ′w|2
)(p−2)/2

,

thus

1

sinN−2 φ

[

sinN−2 φ

(

β2v2 + v2
φ +

1

sin2 φ
|∇σ′v|

2

)(p−2)/2

vφ

]

φ

= β(sin φ)(β−1)(p−1)−1
(

(N − 2 + (β − 1)(p− 1)) − (N − 1 + (β − 1)(p− 1)) sin2 φ
)

×
(

β2w2 + |∇σ′w|2
)(p−2)/2

w,

and
1

sin2 φ
divσ′

[

(

β2v2 + v2
φ +

1

sin2 φ
|∇σ′v|

2

)(p−2)/2

∇σ′v

]

= (sinφ)(β−1)(p−1)−1divσ′

[

(

β2w2 + |∇σ′w|
2
)(p−2)/2

∇σ′w

]

Finally w satisfies

−divσ′

[

(

β2w2 + |∇σ′w|
2
)(p−2)/2

∇σ′w

]

= λN−1,β

(

β2w2 + |∇σ′w|
2
)(p−2)/2

w (4.15)

on SN−2, which is the desired induction. �

In order to be more precise, we can completely represent the preceding solutions by
introducing the generalized Euler angles in R

N = {x = (x1, ..., xN )}






























x1 = r sin θN−1 sin θN−2... sin θ2 sin θ1
x2 = r sin θN−1 sin θN−2... sin θ2 cos θ1
.
.
.
xN−1 = r sin θN−1 cos θN−2

xN = r cos θN−1

(4.16)
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where θ1 ∈ [0, 2π] and θk ∈ [0, π], for k = 2, ..., N − 1. Notice that θN−1 is the variable φ
in the representation (4.9 ). The above theorem combined with the induction process yields
to the following.

Theorem 4.5 Let N > 3 and p > 1. For any positive integer k there exists p-harmonic
functions in R

N under the form

u(x) = (r sin θN−1 sin θN−2... sin θ2)
βkωk(θ1) (4.17)

where (βk, ωk) are obtained in Theorem 4.1. Furthermore, if p = N there exists a singular
N -harmonic function under the form

u(x) = r−βk(sin θN−1 sin θN−2... sin θ2)
βkωk(θ1). (4.18)
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[15] Véron L., Singularities of solutions of second order quasilinear elliptic equations, Pitman
Research Notes in Math. 353, Addison-Wesley- Longman (1996).
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