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Boundary singularities of N -harmonic functions *

Introduction

Let Ω be a domain is R N (N ≥ 2) with a C 2 compact boundary ∂Ω.

A function u ∈ W 1,p loc (Ω) is p-harmonic if Ω |Du| p-2 Du, Dφ dx = 0 (1.1)
for any φ ∈ C 1 0 (Ω). Such functions are locally C 1,α for some α ∈ (0, 1). In the case p = N , the function u is called N -harmonic. The N -harmonic functions play an important role as a natural extension of classical harmonic functions. They also appear in the theory of bounded distortion mappings [START_REF] Rešetnjak | Spatial mappings with bounded distortion (Russian)[END_REF]. One of the main properties of the class of N -harmonic functions is its invariance by conformal transformations of the space R N . This article is devoted to the study of N -harmonic functions which admit an isolated boundary singularity. More precisely, let a ∈ ∂Ω and u ∈ W 1,N loc (Ω) ∩ C(Ω \ {a}) be a N -harmonic function vanishing on ∂Ω \ {a}, then u may develop a singularity at the point a. Our goal is to show the existence of such singular solutions, and then to classify all the positive N -harmonic functions with a boundary isolated singularity. We denote by n a the outward normal unit vector to Ω at a The main result we prove are presented below:

There exists a unique positive N -harmonic function u = u 1,a in Ω, vanishing on ∂Ω \ {a} such that lim

x → a x-a |x-a| → σ |x -a| u(x) = -σ, n a (1.2)
uniformly on S N -1 ∩ Ω = {σ ∈ S N -1 : σ, n a < 0}.

The functions u 1,a plays a fundamental role in the description of all the positive singular N -harmonic functions since we the next result holds Let u be a positive N -harmonic function in Ω, vanishing on ∂Ω \ {a}. Then there exists k ≥ 0 such that u = ku 1,a .

(1.3)

When u is no longer assumed to be positive we obtain some classification results provided its growth is limited as shows the following

Let u be a N -harmonic function in Ω, vanishing on ∂Ω \ {a} and verifying

|u| ≤ M u 1,a ,
for some M ≥ 0. Then there exists k ∈ R such that u = ku 1,a .

(1.4)

In the last section we give a process to construct p-harmonic regular functions (p > 1) or N -harmonic singular functions as product of one variable functions. Starting from the existence of p-harmonic functions in the plane under the form u(x) = u(r, σ) = r β ω(θ) (see [START_REF] Krol | The behavior of the solutions of a certain quasilinear equation near zero cusps of the boundary[END_REF]), our method, by induction on N , allows us to produce separable solutions of the spherical p-harmonic spectral equation

-div σ β 2 v 2 + |∇ σ v| 2 (p-2)/2 ∇ σ v = λ N,β β 2 v 2 + |∇ σ v| 2 (p-2)/2 v. (1.5) on S N -1 , where λ N,β = β (N -1 + (β -1)(p -1)
). This equation equation is naturally associated to the existence of p-harmonic functions under the form u(x) = |x| β v(x/ |x|). As a consequence, we express p-harmonic functions under the form of a product of N -explicit functions of one real variable. If we represent R N as the set of {x = (x 1 , ..., x N )} where

x 1 = r sin θ N -1 sin θ N -2 ... sin θ 2 sin θ 1 , x 2 = r sin θ N -1 sin θ N -2 ... sin θ 2 cos θ 1 , ..., x N -1 = r sin θ N -1 cos θ N -2 and x N = r cos θ N -1 with θ 1 ∈ [0, 2π] and θ k ∈ [0, π],
for k = 2, ..., N -1, then, for any integer k the function

u(x) = (r sin θ N -1 sin θ N -2 ... sin θ 2 ) β k ω k (θ 1 ) (1.6)
is p-harmonic in R N , in which expression β k > 1 is an algebraic number depending on k and ω k is a π/k-antiperiodic solutions of a completely integrable homogeneous differential equation. Moreover N -harmonic singular functions are also obtained under the form

u(x) = r -β k (sin θ N -1 sin θ N -2 ... sin θ 2 ) β k ω k (θ 1 ). (1.7)
Our paper is organized as follows: 1-Introduction. 2-Construction of fundamental singular N -harmonic functions. 3-The classification theorem. 4-Separable solutions of the p-harmonic spectral problem.

Construction of fundamental singular N -harmonic functions

We denote by H N the group of conformal transformations in R N . This group is generated by homothethies, inversion and isometries. Our first result is classical, but we repeat the proof for the sake on completeness.

Proposition 2.1 Let u be a N -harmonic function in a domain G ⊂ R N and h ∈ H N . Then u h = u • h is N -harmonic in h -1 (G).
Proof. Because for any p > 1 the class of p-harmonic functions is invariant by homothethies and isometries, it is sufficient to prove the result if h is the inversion I 1 0 with center the origin in R N and power 1. We set y = I 1 0 (x) and v(y) = u(x). For any i = 1, ..., N

u xi (x) = j δ ij |x| -2 -2 |x| -4 x i x j v yj (y). Then |Du| 2 (x) = |x| -4 |Dv| 2 (y) = |y| 4 |Dv| 2 (y).
If φ is a test function, we denote similarly ψ(y) = φ(x), thus

Du, Dφ = |x| -4 Dv, Dψ = |y| 4 Dv, Dψ ,
and

G |Du| N -2 Du, Dφ dx = I 1 0 (G) |y| 2N |Dv| N -2 Dv, Dψ DI 1 0 dy Because DI 1 0 = |det(∂x i /∂y j )| = |y| -2N
, the result follows.

Proposition 2.2 Let N ≥ 2, B = B 1 (0) and a ∈ ∂B. Then there exists a unique positive N -harmonic function U i in B which vanishes on ∂B \ {a} and satisfies

U i (x) = 1 -|x| |x -a| 2 (1 + •(1)) as x → a. (2.1) 
Proof. We first observe that the coordinates functions x i are N -harmonic and positive in the half-space H i = {x ∈ R N : x i > 0} and vanishes on ∂H i . Therefore, the functions χ i (x) = x i / |x| 2 are also N -harmonic and singular at 0. Without loss of generality we can assume that a is the origin of coordinates, and that B is the ball with radius 1 and center (-1, 0, ..., 0). Let ω be the point with coordinates (-2, 0, ..., 0). By the inversion I 4 ω , a is invariant and B is transformed into the half space H 1 . Since χ 1 is N -harmonic in H 1 , the function

x → χ 1 • I 4 ω (x) = - |x| 2 + 2x 1 2 |x| 2
is N -harmonic and positive in B = {x : |x| 2 + 2x 1 < 0}, vanishes on ∂B and is singular at

x = 0. If we set x ′ 1 = x 1 + 1, x ′ i = x i for i = 2, ..., N and U i (x ′ ) = χ 1 • I 4 ω (x)
, then the x ′ coordinates of a are (1, 0, ..., 0) and

U i (x ′ ) = 1 -|x ′ | 2 2 |x ′ -a| 2 = 1 -|x ′ | |x ′ -a| 2 (1 + •(1)) as x ′ → a.
Let Ũ i be another positive N -harmonic function in B which verifies (2.1 ) and vanishes on ∂B \ {a}. Thus, for any δ > 0, (1 + δ) Ũ i , is positive, N -harmonic, and U i -(1 + δ) Ũ i is negative near a. By the maximum principle, U i ≤ (1 + δ) Ũ i . Letting δ → 0, and permuting U i and Ũ i yields Ũ i = U i .

By performing the inversion I 1 0 , we derive the dual result

Proposition 2.3 Let N ≥ 2, G = B c 1 (0)
and a ∈ ∂B. Then there exists a unique positive N -harmonic function U e in G which vanishes on ∂B \ {a} and satisfies

U e (x) = •(ln |x|) as |x| → ∞, (2.2) 
and

U e (x) = |x| -1 |x -a| 2 (1 + •(1)) as x → a. (2.3) 
Proof.

The assumption (2.2 ) implies that the function

U = U e • I 1 0 , which is N -harmonic in B \ {0} verifies U (x) = •(ln(1/ |x|)) near 0.
By [START_REF] Serrin | Local behaviour of solutions of quasilinear equations[END_REF], 0 is a removable singularity and thus U can be extended as a positive N -harmonic function in B which satisfies (2.1 ). This implies the claim.

We denote by ρ(x) the signed distance from x to ∂Ω. Since ∂Ω is C 2 , there exists

β 0 > 0 such that if x ∈ R N verifies -β 0 ≤ ρ(x) ≤ β 0 , there exists a unique ξ x ∈ ∂Ω such that |x -ξ x | = | ρ(x)|. Furthermore, if ν ξx is the outward unit vector to ∂Ω at ξ x , x = ξ x -ρ(x)ν ξx .
In particular ξ x -ρ(x)ν ξx and ξ x + ρ(x)ν ξx have the same orthogonal projection ξ x onto ∂Ω.

Let T β0 (Ω) = {x ∈ R N : -β 0 ≤ ρ(x) ≤ β 0 }, then the mapping Π : [-β 0 , β 0 ] × ∂Ω → T β0 (Ω) defined by Π(ρ, ξ) = ξ -ρν(ξ) is a C 2 diffeomorphism. Moreover DΠ(0, ξ)(1, e) = e -ν ξ for any e belonging to the tangent space T ξ (∂Ω) to ∂Ω at ξ. If x ∈ T β0 (Ω), we define the reflection of x through ∂Ω by ψ(x) = ξ x + ρ(x)ν ξx . Clearly ψ is an involutive diffeomorphism from Ω ∩ T β0 (Ω) to Ω c ∩ T β0 (Ω), and Dψ(x) = I for any x ∈ ∂Ω. If a function v is defined in Ω ∩ T β0 (Ω), we define ṽ in T β0 (Ω) by ṽ(x) = v(x) if x ∈ Ω ∩ T β0 (Ω) -v • ψ(x) if x ∈ Ω c ∩ T β0 (Ω). (2.4) Lemma 2.4 Assume that 0 ∈ ∂Ω. Let v ∈ C 1,α (Ω ∩ T β0 (Ω) \ {0}) be a solution of (1.1 ) in Ω ∩ T β0 (Ω) vanishing on ∂Ω \ {0}. Then ṽ ∈ C 1,α (T β (Ω) \ {0}) is solution of a quasilinear equation j ∂ ∂x j Ãj (x, Dṽ) = 0 (2.5) in T β (Ω) \ {0}
where the Ãj are C 1 functions defined in T β (Ω) where they verify

                 (i) Ãj (x, 0) = 0 (ii) i,j ∂ Ãj ∂η i (x, η)ξ i ξ j ≥ Γ |η| p-2 |ξ| 2 (iii) i,j ∂ Ãj ∂η i (x, η) ≤ Γ |η| p-2 (2.6) for all x ∈ T β (Ω) \ {0} for some β ∈ (0, β 0 ], η ∈ R N , ξ ∈ R N and some Γ > 0.
Proof. The assumptions (2.6 ) implies that weak solutions of (2.5 ) are C 1,α , for some α > 0 [START_REF] Tolksdorff | Regularity for a more general class of quasilinear elliptic equations[END_REF] and satisfy the standard a priori estimates. As it is defined the function ṽ is clearly

C 1 in T β0 (Ω) \ {0}. Writing Dv(x) = -D(ṽ • ψ(x)) = -Dψ(x)(Dṽ(ψ(x))) and x = ψ(x) = ψ -1 (x) Ω∩T β (Ω) |Dv| p-2 Dv.Dζdx = Ω c ∩T β (Ω)
|Dψ(Dṽ)| p-2 Dψ(Dṽ).Dψ(Dζ) |Dψ| dx.

But

Dψ(Dṽ).Dψ(Dζ)

= k i ∂ψ i ∂x k ∂ṽ ∂x i   j ∂ψ j ∂x k ∂ζ ∂x j   = j   i,k ∂ψ i ∂x k ∂ψ j ∂x k ∂ṽ ∂x i   ∂ζ ∂x j .
We set b(x) = |Dψ|,

A j (x, η) = |Dψ| |Dψ(η)| p-2 i k ∂ψ i ∂x k ∂ψ j ∂x k η i , (2.7) 
and

A(x, η) = (A 1 (x, η), ..., A N (x, η)) = |Dψ| |Dψ(η)| p-2 (Dψ) t Dψ(η). (2.8) 
For any ξ ∈ ∂Ω, the mapping Dψ ∂Ω (ξ) is the symmetry with respect to the hyperplane T ξ (∂Ω) tangent to ∂Ω at ξ, so |Dψ(ξ)| = 1. Inasmuch Dψ is continuous, a lengthy but standard computation leads to the existence of some β ∈ (0, β 0 ] such that (2.6 ) holds in T β (Ω)∩Ω c . If we define à to be |η| p-2 η on T β (Ω)∩Ω and A on T β (Ω)∩Ω c , then inequalities (2.6 ) are satisfied in T β (Ω).

These three results allows us to prove our main result Theorem 2.5 Let Ω be an open subset of R N with a compact C 2 boundary, ρ(x) = dist (x, ∂Ω) and a ∈ ∂Ω. Then there exists one and only one positive N -harmonic function u in Ω, vanishing on ∂Ω \ {a} verifying

lim x → a x-a |x-a| → σ |x -a| u(x) = -σ, n a (2.9)
uniformly on S N -1 ∩ Ω, and

u(x) = •(ln |x|)) as |x| → ∞, (2.10) 
if Ω is not bounded.

Proof. Uniqueness follows from (2.9 ) by the same technique as in the previous propositions.

Step 1 (Existence). If Ω is not bounded, we perform an inversion

I |m-a| 2 m
with center some m ∈ Ω. Because of (2.10 ), the new function u

• I |m-a| 2 m is N -harmonic in Ω ′ = I |m-a| 2 m
(Ω) and satisfies (2.9 ). Thus we are reduced to the case were Ω is bounded. Since Ω is C 2 , it satisfies the interior and exterior sphere condition at a. By dilating Ω, we can assume that the exterior and interior tangent spheres at a have radius 1. We denote them by B 1 (ω e ) and B 1 (ω i ), their respective centers being ω i = an a and ω e = a + n a . We set V i (x) = U i (x -ω i ) and V e (x) = U e (x -ω e ) where U i and U e are the two singular Nharmonic functions described in Proposition 2.2 and Proposition 2.3, respectively in B 1 (ω i ) and B c 1 (ω e ), with singularity at point a. For ǫ > 0, we put

Ω ǫ = Ω \ B ǫ (a), Σ ǫ = Ω ∩ ∂B ǫ (a) and ∂ * Ω ǫ = ∂Ω ∩ B c ǫ (a). Let u ǫ be the solution of    div(|Du ǫ | N -2 Du ǫ ) = 0 in Ω ǫ u ǫ = 0 on ∂ * Ω ǫ u ǫ = V e on Σ ǫ . (2.11)
This solution is obtained classicaly by minimisation of a convex functional over a class of functions with prescribed boudary value on ∂Ω ǫ . For any x ∈ B 1 (ω i ), there holds

dist (x, ∂B 1 (ω e )) = |x -ω e | -1 ≥ dist (x, ∂Ω) ≥ dist (x, ∂B 1 (ω i )) = 1 -x -ω i . thus V i (x) ≤ V e (x) ∀x ∈ B 1 (ω i ),
by using (2.1 ), (2.3 ) and the maximum principle. Therefore

V i (x) ≤ u ǫ (x) ≤ V e (x) ∀x ∈ B 1 (ω i ) ∩ Ω ǫ and u ǫ (x) ≤ V e (x) ∀x ∈ Ω ǫ .
Finally, for 0 < ǫ ′ < ǫ, u ǫ ′ Σǫ ≤ V e Σǫ = u ǫ Σǫ . Thus

u ǫ ′ (x) ≤ u ǫ (x) ∀x ∈ Ω ǫ .
The sequence {u ǫ } is increasing with ǫ. By classical a priori estimates concerning quasilinear equations, it converges to some positive N -harmonic function u in Ω which vanishes on ∂Ω \ {a} and verifies

V i (x) ≤ u(x) ∀x ∈ B 1 (ω i ), and u(x) ≤ U e (x) ∀x ∈ Ω. This implies 1 -|x -ω i | 2 2 |x -a| 2 ≤ u(x) ∀x ∈ B 1 (ω i ), (2.12 
)

u(x) ≤ |x -ω e | 2 -1 2 |x -a| 2 ∀x ∈ Ω, (2.13) 
By scaling we can prove the following estimate

u(x) ≤ C ρ(x) |x -a| 2 ∀x ∈ Ω. (2.14)
for some C > 0: for simplicity we can assume that a is the origin of coordinates and, for r > 0 set u r (y) = u(ry). Clearly u r is N -harmonic in Ω/r and max{|Du r (y)| :

y ∈ Ω/r ∩ (B 3/2 \ B 2/3 )} ≤ C max{|u r (z)| : z ∈ Ω/r ∩ (B 2 \ B 1/2 )},
where C, which depends on the curvature of ∂Ω/r, remains bounded as long as r ≤ 1. Since Du r (y) = rDu(ry), we obtain by taking ry = x, |y| = 1 and using (2.13 ) with general a,

|Du(x)| ≤ C |x -a| -2
. By the mean value theorem, since u vanishes on ∂Ω \ {a}, (2.14 ) holds.

Step 2. In order to give a simple proof of the estimate (2.9 ), we fix the origin of coordinates at a = 0 and the normal outward unit vector at a to be -e N . If ũ is the extension of u by reflection through ∂Ω, it statisfies (2.5 ) in T β (Ω)\{0} (see lemma 2.4 ). For r > 0, set ũr (x) = rũ(rx). Then ũr is solution of For 0 < a < b fixed and for some 0

< r 0 ≤ 1 the spherical shall Γ a,b = {x ∈ R N : a ≤ |x| ≤ b} is included into T β/r (Ω/r
) for all 0 < r ≤ r 0 . By the classical regularity theory for quasilinear equations [START_REF] Tolksdorff | Regularity for a more general class of quasilinear elliptic equations[END_REF] and lemma 2.4 , there holds

Dũ r C α (Γ 2/3,3/2 ) ≤ C r ũr L ∞ (Γ 1/2,2 ) ,
where C r remains bounded because r ≤ 1. By Ascoli's theorem, (2.12 ) and (2.14 ), ũr (x) converges to x N |x| -2 in the C 1 (Γ 2/3,3/2 )-topology. This implies in particular that r 2 Dũ(rx) converges uniformly in Γ 2/3,3/2 to -2x N |x| -4 x + |x| -2 e N . Using the expression of Dũ in spherical coordinates we obtain r 2 ũr i -rũ φ e + r sin φ ∇ σ ′ ũ → -2σ N i + e N uniformly on S N -1 as r → 0, where cos φ = x N |x| -1 , i = x/|x|, e is derived from x/|x| by a rotation with angle π/2 in the plane 0, x, N (N being the North pole), and ∇ σ ′ is the covariant gradient on S N -2 . Inasmuch i, e and ∇ σ ′ are orthogonal, the components of e N are cos φ, sin φ and 0, thus

rũ φ (r, σ ′ , φ) → -sin φ as r → 0. Since ũ(r, σ ′ , φ) = φ π/2 ũφ (r, σ ′ , θ)dθ,
the previous convergence estimate establishes (2.9 ).

Definition 2.6

We shall denote by u 1,a the unique positive N -harmonic function satisfying (2.9 ), and call it the fundamental solution with a point singularity at a.

The classification theorem

In this section we characterize all the positive N -harmonic functions vanishing on the boundary of a domain except one point. The next statement is an immediate consequence of Theorem 2.5 and [2, Th. 2.11].

Theorem 3.1 . Let Ω be a bounded domain with a C 2 boundary and a ∈ ∂Ω. If u is a positive N -harmonic function in Ω vanishing on ∂Ω \ {a}, there exists M ≥ 0 such that

u(x) ≤ M u 1,a (x) ∀x ∈ Ω (3.1)
In the next theorem, which extends [2, Th. 2.13], we characterize all the signed Nharmonic functions with a moderate growth near the singular point. Proof. We define k as the minimum of the ℓ such that u ≤ ℓu 1,a in Ω. Without any loss of generality we can assume k > 0. Then either the tangency of the graphs of the functions u and ku 1,a is achieved in Ω \ {a}, or it is achieved asymptotically at the singular point a. In the first case we considered two sub-cases: (i) The coincidence set G of u and ku 1,a has a connected component ω isolated in Ω. In this case there exists a smooth domain U such that ω ⊂ U and δ > 0 such that ku 1,a -u ≥ δ on ∂U. The maximum principle implies that ku 1,a -u ≥ δ in U, a contradiction. (ii) In the second sub-case any connected component ω of the coincidence set touches ∂Ω\{a}, or the two graphs admits a tangency point on ∂Ω \ {a}. If m ∈ ω ∩ ∂Ω \ {a} or is such a tangency point, the regularity theory implies ∂u(m)/∂n m = ku 1,a (m)/∂n m . By Hopf boundary lemma, u 1,a (m)/∂n m < 0. By the mean value theorem, the function w = ku 1,a -u satisfies an equation

Lw = 0 (3.2)
which is elliptic and non degenerate near m (see [START_REF] Friedman | Singular solutions of some quasilinear elliptic equations[END_REF], [START_REF] Kichenassamy | Singular solutions of the p-Laplace equation[END_REF]), it follows that w vanishes in a neighborhood of m and the two graphs cannot be tangent only on ∂Ω \ {a}. Assuming that ω = Ω, let x 0 ∈ Ω \ ω such that dist (x 0 , ω) = r 0 < ρ(x 0 ) = dist (x 0 , ∂Ω, and let y 0 ∈ ω be such that |x 0 -y 0 | = r 0 . Since u 1,a has at most a finite number of critical points, we can choose x 0 such that y 0 is not one of these critical points. By assumption w = ku 1,a -u is positive in B r0 (x 0 ) and vanishes at a boundary point y 0 . Since the equations are not degenerate at y 0 there holds k∂u 1,a (y 0 )/∂ν -∂u(y 0 )/∂ν < 0 where ν = (y 0 -x 0 )/r 0 , which contradicts the fact that the two graphs are tangent at y 0 .

Next we are reduced to the case where the graphs of u and ku 1,a are separated in Ω and asymptotically tangent at the singular point a. There exists a sequence {ξ n } ⊂ Ω such that lim n→∞ u(ξ n )/u 1,a (ξ n ) = k. We set |x n -a| = r n , u n (y) = r n u(a + r n y) and v n (y) = r n u 1,a (a + r n y). Both u n and v n are N -harmonic in Ω n = (Ω -a)/r n . The functions u n and v n are locally uniformly bounded in Ω n \ {0}. It follows, by using classical regularity results, that, there exists sub-sequences, such that {u n k } and {v n k } converge respectively to U and V in the C 1 loc -topology of Ω n k \ {0}. The functions U and V are N -harmonic in H ≈ R N + = {x = (x 1 , x 2 , ..., x N ) : x N > 0} and vanish on ∂H \ {0}. Since it can be assumed that (ξ n k -a)/r n k → ξ, there holds U ≤ kV in H, U (ξ) = kV (ξ), if ξ ∈ H, and ∂U (ξ)/∂x N = k∂V (ξ)/∂x N > 0, if ξ ∈ ∂H (notice that |ξ| = 1). If ξ ∈ ∂H, Hopf lemma applies to V at ξ and, using the same linearization with the linear operator L as in the previous proof, it yields to U = kV . If ξ ∈ H, we use the fact that |Du 1,a (x)| ≥ β > 0 for |x -a| ≤ α for some β, α > 0. Thus |Dv n (ξ)| ≥ β. The non-degeneracy of V and the strong maximum principle lead again to U = kV . Whatever is the position of ξ, the equality between U and kV and the convergence in C 1 loc leads to the fact that for any ǫ > 0 there exists

n ǫ ∈ N such that n ≥ n ǫ implies (k -ǫ)u 1,a (x) ≤ u(x) ≤ (k + ǫ)u 1,a (x) ∀x ∈ Ω ∩ ∂B rn (a).
By the comparison principle between N -harmonic functions this inequality holds true in Ω \ ∂B rn (a). Since r n → 0 and ǫ is arbitrary, this ends the proof.

Remark.

The assumption that u 1,a has only isolated critical points in Ω is clearly satisfied in the case of a ball, a half-space or the complementary of a ball where no critical point exists. It is likely that this assumption always holds but we cannot prove it. However the Hopf maximum principle for p-harmonic functions (see [START_REF] Tolksdorff | On the Dirichlet problem for quasilinear equations in domains with conical boundary points[END_REF]) implies that u 1,a cannot have local extremum in Ω.

Separable solutions of the p-harmonic spectral problem

In this section we present a technique for constructing signed N -harmonic functions, regular or singular, as a product of functions depending only on one real variable. Some of the results were sketched in [START_REF] Véron | Singularities of some quasilinear equations, Nonlinear diffusion equations and their equilibrium states[END_REF]. The starting point is the result of Krol [START_REF] Krol | The behavior of the solutions of a certain quasilinear equation near zero cusps of the boundary[END_REF] dealing with the existence of 2-dimensional separable p-harmonic functions (the construction of singular separable p-harmonic functions was performed in [START_REF] Kichenassamy | Singular solutions of the p-Laplace equation[END_REF]).

Theorem 4.1 (Krol) Let p > 1. For any positive integer k there exists a unique β k > 0 and ω k : R → R, with least antiperiod π/k, of class C ∞ such that

u k (x) = |x| β k ω k (x/ |x|) (4.1) is p-harmonic in R 2 ; β k is the unique root ≥ 1 of (2k -1)X 2 - pk 2 + (p -2)(2k -1) p -1 X + k 2 = 0. (4.2) 
(β k , ω k ) is unique up to translation and homothety over ω k .

This result is obtained by solving the homogeneous differential equation satisfied by ω k = ω:

-β 2 ω 2 + ω 2 θ (p-2)/2 ω θ θ = β (1 + (β -1)(p -1)) β 2 ω 2 + ω 2 θ (p-2)/2 ω. (4.3) 
In the particular case k = 1, then β 1 = 1 and ω 1 (θ) = sin θ. For the other values of k the β k are algebraic numbers and the ω k are not trigonometric functions, except if p = 2. More generally, if one looks for p-harmonic functions in R N \ {0} under the form u

(x) = u(r, σ) = r β v(σ), r = |x| > 0, σ = x/ |x| ∈ S N -1 , one obtains that v verifies -div σ β 2 v 2 + |∇ σ v| 2 (p-2)/2 ∇ σ v = λ N,β β 2 v 2 + |∇ σ v| 2 (p-2)/2 v (4.4)
on S N -1 , where λ N,β = β (N -1 + (β -1)(p -1)) and div σ and ∇ σ are respectively the divergence and the gradient operators on S N -1 (endowed with the Riemaniann structure induced by the imbedding of the sphere into R N ). This equation, called the spherical p-harmonic spectral problem, is the natural generalization of the spectral problem of the Laplace-Beltrami operator on S N -1 . Since it does not correspond to a variational form (except if p = 2), it is difficult to obtain solutions. In the range of 1 < p ≤ N -1, Krol proved in [START_REF] Krol | The behavior of the solutions of a certain quasilinear equation near zero cusps of the boundary[END_REF] the existence of solutions of (4.4 ), not on the whole sphere, but on a spherical cap (which reduced (4.4 ) to an non-autonomous nonlinear second order differential equation).

His methods combined ODE estimates and shooting arguments. Later on, Tolksdorf [START_REF] Tolksdorff | On the Dirichlet problem for quasilinear equations in domains with conical boundary points[END_REF] introduced an entirely new method for proving the existence of solutions on any C 2 spherical domain S, with Dirichlet boundary conditions. Only the case β > 0 was treated in [START_REF] Tolksdorff | On the Dirichlet problem for quasilinear equations in domains with conical boundary points[END_REF], and, by a small adaptation of Tolksdorf approach, the case β > 0 was considered in [START_REF] Véron | Singularities of some quasilinear equations, Nonlinear diffusion equations and their equilibrium states[END_REF]. We develop below a method which allows to express solutions as product of explicit one variable functions. 

The 3-D case

Let (r, θ, φ) ∈ (0, ∞) × [0, 2π] × [0, π] be the spherical coordinates in R 3    x 1 = r cos θ sin φ x 2 = r sin θ sin φ x 3 = r cos φ Then (4.4 ) turns into - 1 sin φ sin φ β 2 v 2 + v 2 φ + v 2 θ sin 2 φ (p-2)/2 v φ φ - 1 sin 2 φ β 2 v 2 + v 2 φ + v 2 θ sin 2 φ (p-2)/2 v θ θ = β (2 + (β -1)(p -1)) β 2 v 2 + v 2 φ + v 2
(x) = u(r, θ, φ) = r β k (sin φ) β k ω k (θ) (4.7)
where β k and ω k are as in Theorem 4.1.

In the case p = 3 we can use the conformal invariance of the 3-harmonic equation in R 3 to derive Theorem 4.3 Assume p = N = 3. Then for any positive integer k there exists a pharmonic function u in R 3 \ {0} under the form

u(x) = u(r, θ, φ) = r -β k (sin φ) β k ω k (θ) (4.8)
where β k and ω k are as in Theorem 4.1 with p = 3.

As a consequence of Theorem 4.3 we obtain signed 3-harmonic functions under the form (4.7 ) in the half space R 3 + = {x : x 2 > 0}, vanishing on ∂R 3 + \ {0}, with a singularity at x = 0. They correspond to even integers k. The extension to general smooth domains Ω is a deep chalenge. In the particular case k = 1, we have seen that β 1 = 1 and ω 1 (θ) = sin θ = x 2 , that we already know.

The general case

We assume that N > 3 and write the spherical coordinates in R N under the form

x = (r, σ) ∈ (0, ∞) × S N -1 = (r, sin φ σ ′ , cos φ) : σ ′ ∈ S N -2 , φ ∈ [0, π] .
(4.9)

The main result concerning separable p-harmonic functions is the following. where β k is the unique root ≥ 1 of (4.2 ) and w is solution of (4.15 ) with β = β k . Furthermore, if p = N there exists a singular N -harmonic function under the form

u(x) = u(r, σ ′ , φ) = r -β k (sin φ) β k w(σ ′ ). (4.11) 
Proof. We first recall (see [START_REF] Vilenkin | Fonctions spéciales et théorie de la représentation des groupes[END_REF] for details) that the SO(N ) invariant unit measure on S N -1 is dσ = a N sin N -2 φ dσ ′ for some a N > 0, and

∇ σ v = -v φ e + 1 sin φ ∇ σ ′ v.
where e is derived from x/ |x| by the rotation of center 0 angle π/2 in the plane going thru 0, x/ |x| and the north pole. The weak formulation of (4.4 ) expresses as 

π 0 S N -2 β 2 v 2 + v 2 φ + 1 sin 2 φ |∇ σ ′ v| 2 (p-2)/2 v φ ζ φ + 1 sin 2 φ ∇ σ ′ v.∇ σ ′ ζ sin N -2 φ dσ ′ dφ = λ N,β π 0 S N -2 β 2 v 2 + v 2 φ + 1 sin 2 φ |∇ σ ′ v|
∇ σ ′ v = λ N,β β 2 v 2 + v 2 φ + 1 sin 2 φ |∇ σ ′ v| 2 (p-2)/2 v (4.13)
where div σ ′ is the divergence operator acting on vector fields on S N -2 . We look again for p-harmonic functions under the form u(r, σ) = u(r, σ ′ , φ) = r β v(σ ′ , φ) = r β sin β φ w(σ ′ ). on S N -2 , which is the desired induction.

In order to be more precise, we can completely represent the preceding solutions by introducing the generalized Euler angles in R N = {x = (x 1 , ..., x N )}

              
x 1 = r sin θ N -1 sin θ N -2 ... sin θ 2 sin θ 1 x 2 = r sin θ N -1 sin θ N -2 ... sin θ 2 cos θ 1 . . . x N -1 = r sin θ N -1 cos θ N -2 x N = r cos θ N -1 (4.16) where θ 1 ∈ [0, 2π] and θ k ∈ [0, π], for k = 2, ..., N -1. Notice that θ N -1 is the variable φ in the representation (4.9 ). The above theorem combined with the induction process yields to the following. 

  Ãj (rx, Dũ r ) = 0(2.15) in T β/r (Ω/r)\{0}. By the construction of Ãj (x, η), we can note thatlim r→0 Ãj (rx, η) = |η| p-2 η j , ∀η ∈ R N .Furthermore, for any x ∈ T β (Ω)\{0}, ρ(x) = ρ(ψ(x)) and c |x| ≤ |ψ(x)| ≤ c -1 |x| for some c > 0, the estimate (2.14 ) holds if u is replaced by ũr , Ω by T β/r (Ω/r) and ρ(x) by ρ r (x) := dist(x, Ω/r) i.e.|ũ r (x)| ≤ C|x| -2 ρ r (x) ∀x ∈ T β/r (Ω/r).

Theorem 3 . 2 .

 32 Let Ω be a bounded domain with a C 2 boundary and a ∈ ∂Ω. Assume that u 1,a has only a finite number of critical points in Ω. If u is a N -harmonic function in Ω vanishing on ∂Ω \ {a} verifying |u(x)| ≤ M u 1,a (x) for some M > 0 and any x ∈ Ω, there exists k ∈ [-M, M ] such that u = ku 1,a .

5 ) 1 Theorem 4 . 2

 5142 We look for a function v under the form v(θ, φ) = (sin φ) β ω(θ) (4.6) It follows that ω satisfies the same equation (4.3 ). The next result follows immediately from Theorem 4.Assume N = 3 and p > 1. Then for any positive integer k there exists a p-harmonic function u in R 3 under the form u

Theorem 4 . 4

 44 Let N > 3 and p > 1. For any positive integer k there exists p-harmonic functions in R N under the form u(x) = u(r, σ ′ , φ) = (r sin φ) β k w(σ ′ ).(4.10)

2 =× β 2 w 2 + 2 ∇ 2 ∇ σ ′ w Finally w satisfies -div σ ′ β 2 w 2 +

 22222 (sin φ) (β-1)(p-2) β 2 w 2 + |∇ σ ′ w| 2 (p-2)/2 , sin φ) (β-1)(p-1)-1 (N -2 + (β -1)(p -1)) -(N -1 + (β -1)(p -1)) sin 2 φ |∇ σ ′ w| 2 (p-2σ ′ v = (sin φ) (β-1)(p-1)-1 div σ ′ β 2 w 2 + |∇ σ ′ w| 2 (p-2)/|∇ σ ′ w| 2 (p-2)/2 ∇ σ ′ w = λ N -1,β β 2 w 2 + |∇ σ ′ w|
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 45 Let N > 3 and p > 1. For any positive integer k there exists p-harmonic functions in R N under the formu(x) = (r sin θ N -1 sin θ N -2 ... sin θ 2 ) β k ω k (θ 1 ) (4.17)where (β k , ω k ) are obtained in Theorem 4.1. Furthermore, if p = N there exists a singular N -harmonic function under the formu(x) = r -β k (sin θ N -1 sin θ N -2 ... sin θ 2 ) β k ω k (θ 1). (4.18)