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Boundary Harnack inequality and a priori estimates of singular solutions of quasilinear elliptic equations

Introduction

Let Ω be a domain is R N , N ≥ 2, d a locally bounded and measurable function defined in Ω and p a real number larger than 1. This article deals with the study of positive solutions of -div |Du| p-2 Dud(x)u p-1 = 0 in Ω (

which admit an isolated singularity on the boundary of Ω. It is known since the starting pioneering work of Serrin [START_REF] Serrin | Local behaviour of solutions of quasilinear equations[END_REF] that one of the main goals for studying the regularity of solutions of quasilinear equations consists in obtaining Harnack inequalities. The simplest form of this inequality is the following: Assume B 2r ⊂⊂ Ω and d ∈ L ∞ (B 2r ), then there exists a constant C = C(N, p, r d L ∞ (B2r )

1/p
) ≥ 1 such that any nonnegative solution u of (1.1 ) in B 2r satisfies u(x) ≤ Cu(y) ∀(x, y) ∈ B r × B r .

(1.2)

Actually this inequality is valid for a much wider class of operators in divergence form with a power-type growth. Among the important consequences of this inequality are the Hölder continuity of the weak solutions of (1.1 ) and the two-side estimate of solutions admitting an isolated singularity. Among more sophisticated consequences are the obtention of local upper estimates of solutions of the same equation near a singular point. This program has been carried out by Gidas and Spruck for equation

-∆u = u q (1.3)
in the case N ≥ 2 and 1 < q < (N + 2)/(N -2) [START_REF] Gidas | Local and global behaviour of positive solutions of nonlinear elliptic equations[END_REF], and recently by Serrin and Zhou [START_REF] Serrin | Isolated singularities of solutions of quasilinear equations[END_REF] for equation -div |Du| p-2 Du = u q (1.4) in the case N ≥ p and p -1 < q < N p/(Np) -1. A third type of applications of Harnack inequality linked to the notion of isotropy leads to the description of positive isolated singularities of solutions. This was carried out by Véron [START_REF] Véron | Singular solutions of some nonlinear elliptic equations[END_REF] for -∆u + u q = 0 (1.5) 1 in the case 1 < q < N/(N -2), and by Friedman and Véron [START_REF] Friedman | Singular solutions of some quasilinear elliptic equations[END_REF] for -div |Du| p-2 Du + u q = 0 (1.6) when p -1 < q < N (p -1)/(Np). When the singularity of u is not an internal point but a boundary point, the situation is more complicated and the mere inequality (1.2 ) with only one function has no meaning. Boundary Harnack inequalities which deals with two nonnegative solutions of (1.1 ) vanishing on a part of the boundary asserts that the two solutions must vanish at the same rate. For linear second order elliptic equations they are used for studying the properties of the harmonic measure [START_REF] Cafarelli | Boundary behavior of nonnegative solutions of elliptic operators in divergence form[END_REF] (see also [START_REF] Bauman | Positive solutions of elliptic equations in nondivergence form and their adjoints[END_REF]). For p-harmonic function in a ball, a sketch of construction is given by Manfredi and Weitsman [START_REF] Manfredi | On the Fatou Theorem for p-Harmonic Functions[END_REF] in order to obtain Fatou type results. In this article we consider singular solutions of (1.1 ) with a singular potential type reaction term. The first result we prove is the following: Assume ∂Ω is C 2 and d is measurable, locally bounded in Ω \ {a} for some a ∈ ∂Ω and satisfies

|d(x)| ≤ C 0 |x -a| -p
a. e. in B R (a) ∩ Ω (1.7)

for some C 0 , R > 0 and p > 1. Then there exists a positive constant C depending also on N , p and C 0 such that if u ∈ C 1 (Ω \ {a}) is a nonnegative solution of (1.1 ) vanishing on ∂Ω \ {a}, there holds

u(y) Cρ(y) ≤ u(x) ρ(x) ≤ Cu(y) ρ(y) ∀(x, y) ∈ Ω × Ω s.t. |x| = |y| . (1.8) 
where ρ(.) is the distance function to ∂Ω. Another form of this estimate, usually called boundary Harnack inequality, asserts that if u 1 and u 2 are two nonnegative solutions of (1.1 ) vanishing on ∂Ω \ {a}, there holds

u 1 (x) Cu 1 (y) ≤ u 2 (x) u 2 (y) ≤ Cu 1 (x) u 1 (y) ∀(x, y) ∈ Ω × Ω s.t. |x| = |y| . (1.9)
for some structural constant C > 0. Another consequence of the construction leading to (1.8 ) is the existence of a power-like a priori estimate: Assume Ω is a bounded C 2 domain with a ∈ ∂Ω, A ∈ Ω is an arbitrary point and d a measurable function such that |d(x)| ≤ C 0 |x -a| -p a. e. in Ω.

(1.10)

Then there exist two positive constants α > 0 depending on N , p, Ω and C 0 , and C depending on the same parameters and also on A such that, any nonnegative solution

u ∈ C(Ω \ {a}) ∩ W 1,p loc (Ω \ {a})) which vanishes on ∂Ω \ {a} verifies u(x) ≤ C ρ(x) |x -a| α+1 u(A) ∀x ∈ Ω \ {a}. (1.11)
The precise value of α is unknown and surely difficult to know explicitely, even in the simplest case when u is a p-harmonic function. In several cases the value of α is associated to the construction of separable p-harmonic functions called the spherical p-harmonics. Another striking applications of the boundary Harnack principle deals with the structure of the set of positive singular solutions. We prove the following: Let Ω be C 2 and bounded, a ∈ ∂Ω and d satisfies (1.10 ). Assume also that the operator

v → -div |Dv| p-2 Dv -d(x)v p-1
satisfies the comparison principle in Ω \ B ǫ (a) for any ǫ > 0, among nonnegative solutions which vanishes on ∂Ω \ B ǫ (a). If u and v are two positive solutions of (1.1 ) in Ω which vanish on ∂Ω \ {a}, there exists k > 0 such that

k -1 u(x) ≤ v(x) ≤ ku(x) ∀x ∈ Ω. (1.12)
Furthermore, if we assume also either p = 2, either p > 2 and u has no critical point in Ω, or 1 < p < 2 and d ≥ 0, there exists k > 0 such that

v(x) = ku(x) ∀x ∈ Ω. (1.13)
In the last section we give some partial results concerning the existence of singular solutions of equations of type (1.1 ) and their link with separable solutions which are solution under the form u(x) = |x| -γ φ(x/ |x|). If d ≡ 0 such specific solutions, studied by Kroll and Maz'ya [START_REF] Kroll | The lack of continuity and Hölder continuity of the solution of a certain quasilinear equation[END_REF], Tolksdorff [START_REF] Tolksdorff | On the Dirichlet problem for quasilinear equations in domains with conical boundary points[END_REF], Kichenassamy and Véron [START_REF] Kichenassamy | Singular solutions of the p-Laplace equation[END_REF], are called spherical p-harmonics.

Our paper is organized as follows: 1-Introduction. 

The boundary Harnack principle

In this section we consider nonnegative solutions of

-div |Du| p-2 Du -d(x)u p-1 = 0 (2.1)
in a domain Ω which may be Lipschitz continuous or C 2 . The function d, is supposed to be measurable and singular in the sense that it satisfies

|d(x)| ≤ C 0 |x -a| -p a.e. ∈ Ω (2.2) 
for some point a ∈ ∂Ω and some C 0 ≥ 0. By a solution of (2.1 ) vanishing on ∂Ω \ {a}, we mean a u ∈ C( Ω \ {a}) such that Du ∈ L p (K) for every K compact, K ⊂ Ω \ {a} which verifies

Ω |Du| p-2 Du.Dζ + d(x)u p-1 ζ dx = 0 (2.3)
for every ζ ∈ C 1 ( Ω), with compact support in Ω \ {a}.

Estimates near the boundary in Lipschitz domains

Let Ω be a bounded domain in R N with a Lipschitz continuous boundary. Then there exist m > 1 and r 0 > 0 such that for any Q ∈ ∂Ω there exists an isometry I Q in R N and a Lipschitz continuous real valued function φ defined in R N -1 such that

|φ(x) -φ(y)| ≤ m |x -y| ∀(x, y) ∈ R N -1 × R N -1 , (2.4) 
and

B 2r0 (Q) ∩ {x = (x ′ , x N ) = (x 1 , ..., x N ) : x N ≥ φ(x ′ )} = I Q (Ω ∩ B 2r0 (Q)) .
For any A ∈ B r0(Q) ∩ ∂Ω, A = (a ′ , φ(a ′ ), r > 0 and γ > 0, we denote by C A,r,γ the truncated cone

C A,r,γ = {x = (x ′ , x N ) : x N > φ(a ′ ) , γ |x ′ -a ′ | ≤ x N -φ(a ′ )} ∩ B r (A)
The opening angle of this cone is θ γ = tan -1 (1/γ) Clearly, for every γ ≥ m and 0 < r ≤ r 0 ,

I -1 Q (C A,r,γ
) is included into Ω. Up to an orthogonal change of variable, we shall assume that I Q = Id. We denote also by ρ(x) the distance from x to ∂Ω. The next result is a standard geometric construction which can be found in [START_REF] Bauman | Positive solutions of elliptic equations in nondivergence form and their adjoints[END_REF] Lemma 2.1 Let Q ∈ ∂Ω and 0 < r < r 0 /5 and h > 1 an integer. There exists N 0 ∈ N depending only on m such that for any points x and y in Ω∩B 3r/2 (Q) verifying min{ρ(x), ρ(y)} ≥ r/2 h , there exists a connected chain of balls B 1 , ...B j with j ≤ N 0 h such that remains bounded by a constant depending on p and C 0 .

x ∈ B 1 , y ∈ B j , B i ∩ B i+1 = ∅ and 2B i ⊂ B 2r (Q) ∩ Ω for 1 ≤ i ≤ j -1. ( 2 
Up to a translation, we shall assume that the singular boundary point a is the origin of coordinates.

Lemma 2.3

Assume Ω is as in Lemma 2.1 with Q = 0 ∈ ∂Ω, 0 < r ≤ min{r 0 , |Q| /4} and u is a nonnegative solution of (2.1 ) in B 2r (Q). Then there exists a positive constant c 2 > 1 depending on p, N , m and C 0 such that

u(x) ≤ c h 2 u(y), (2.7) 
for every x and y in B 3r/2 (Q) ∩ Ω such that min{ρ(x), ρ(y)} ≥ r/2 h for some h ∈ N.

Proof. By Lemma 2.1 there exists N 0 ∈ N * and a connected chain of j ≤ N 0 h balls B i with respective radii r i and centers x i , satisfying (2.5 ). Thus

max Bi u ≤ c 1 min Bi u ∀i = 1, ..., j, (2.8) 
by the previous lemma. Therefore (2.7 ) holds with

c 2 = c N0 1 . Lemma 2.4 Let 0 < r ≤ |Q| /4 and u be a nonnegative solution of (2.1 ) in B 2r (Q) ∩ Ω which vanishes on ∂Ω ∩ B 2r (Q). If P ∈ ∂Ω ∩ B r (Q) and 0 < s < r/(1 + m) so that B s (P ) ⊂ B 2r (Q)
, there exist two positive constants δ and c 3 depending on N , p, m and C 0 such that

u(x) ≤ c 3 |x -P | δ s δ M s,P (u) (2.9)
for all x ∈ B s (P ) ∩ Ω, where M s,P (u) = max{u(z) : z ∈ B s (P ) ∩ Ω}.

Proof. Since ∂Ω is Lipschitz, it is regular in the sense that there exists θ > 0,

s 1 > 0 such that meas (Ω c ∩ B s (y)) ≥ θ meas (B s (y)), ∀y ∈ ∂Ω, ∀0 < s < s 1 .
By [START_REF] Trudinger | On Harnack type inequalities and their applications to quasilinear elliptic equations[END_REF]Th. 4.2] there exists δ ∈ (0, 1) depending on p, N , C 0 , θ and s 1 , such that for any y ∈ ∂Ω, there holds

|u(z) -u(z ′ )| ≤ C s s 1 δ(1-γ) ∀(z, z ′ ) ∈ B s (y) ∩ Ω × B s (y) ∩ Ω, (2.10) 
where C depends on p, N , C 0 and sup Bs 1 (y)∩Ω u = M s1,y (u). Because the equation is homogeneous with respect to u, this local estimate is invariant if we replace u by ũ = u/M s1,y (u). Thus the dependence is homogeneous of degree 1 with respect to M s1,y (u), which implies

|u(z) -u(z ′ )| ≤ C ′ s s 1 δ(1-γ) M s1,y (u) ∀(z, z ′ ) ∈ B s (y) ∩ Ω × B s (y) ∩ Ω. (2.11)
Taking z ′ = P = y, s = |x -P |, we derive (2.9 ).

If X ∈ B 2r0 (0)∩∂Ω and r > 0, we denote by A r (X) the point with coordinates (x ′ , φ(x ′ )+ r). The next result is the key point in the construction. Although it follows [START_REF] Bauman | Positive solutions of elliptic equations in nondivergence form and their adjoints[END_REF], we give the proof for the sake of completeness.

Lemma 2.5 Let 0 < r ≤ min{2r 0 , |Q| /8, s 1 , 2 5 } and u be a nonnegative solution of (2.1 ) in B 2r (Q) ∩ Ω which vanishes on ∂Ω ∩ B 2r (Q).
Then there exists a positive constant c 4 depending only on N , p, m and C 0 such that

u(x) ≤ c 4 u(A r/2 (Q)) ∀x ∈ B r (Q) ∩ Ω.
(2.12)

Proof. The proof is by contradiction. We first notice from (2.9 ) that if

P ∈ B 2r (Q) ∩ ∂Ω verifies B s (P ) ∩ Ω ⊂ B 2r (Q) ∩ Ω and if c 5 = (2c 3 ) 1/δ
, there holds

M s/c5,P (u) ≤ 1 2 M s,P (u). (2.13) By Lemma 2.3, if y ∈ B 3r/2 (Q) satisfies u(y) > c h 2 u A r/2 (Q) , it means that ρ(y) < r/2 h . Let M > 0 such that 2 M > c 2 (defined in Lemma 2.3), N = max{1+E(6+M ln c 5 / ln 2), M +5}, so that 2 N > 2 6 c M 5 , and c 4 = c N 2 .
Let u be a positive solution of (2.1 ) vanishing on

B 2r (Q) ∩ ∂Ω which satisfies u(Y 0 ) > c N 2 u(A r/2 (Q)), (2.14) 
for some

Y 0 ∈ B r (Q) ∩ Ω. Then ρ(Y 0 ) < r/2 N . Let Q 0 ∈ ∂Ω such that ρ(Y 0 ) = |Y 0 -Q 0 |. Then |Q -Q 0 | ≤ |Y 0 -Q 0 | + |Y 0 -Q| ≤ r/2 N + r ≤ r(1 + 2 -5 ) Therefore Q 0 ∈ B 3r/2 (Q) ∩ ∂Ω. Set s 2 = c M 5 r/2 N , then B s2 (Q 0 ) ⊂ B r(1+2 -5 +2 -6 ) (Q) ⊂ B 3r/2 (Q) because s 2 ≤ 2 -6 by the choice of N . Applying (2.13 ) with s = s 2 yields to M s2,Q0 (u) ≥ 2 M M s2/c M 5 ,Q0 (u) ≥ 2 M u(Y 0 ) ≥ 2 M c N 2 u(A r/2 (Q)) ≥ c N +1 Now M s2/2,Q1 (u) ≥ 2 M M r/2 N +1 ,Q1 (u) ≥ 2 M u(Y 1 ) ≥ 2 2M c N 2 u(A r/2 (Q)) ≥ 2 N +2 A r/2 (Q).
Iterating this procedure, we construct two sequences

{Y k } of points such that ρ(Y k ) < r/2 k+N and {Q k } such that Q k ∈ ∂Ω and |Q -Q k | ≤ r(1+2(2 -5 +2 -6 +...+2 -5-k )) < 3r/2 and u(Y k ) ≥ 2 N +k A r/2 (Q) ∀k ∈ N * . Since Y k ∈ B 3r/2 and ρ(Y k ) → 0 as k → ∞ we get a contradiction with the fact that A r/2 (Q) > 0.
Remark. The proof of the previous lemma shows that estimate (2.12 ) is valid for a much more general class of equations under the form

-divA(x, u, Du) + B(x, u, Du) = 0 (2.15)
where A and B are respectively vector and real valued Caratheodory functions defined on Ω × R × R N and verifying, for some constants γ > 0 and a 0 , a 1 , C 0 ≥ 0,

A(x, r, q).q ≥ γ |q| p , |A(x, r, q)| ≤ a 0 |q| p-1 + a 1 |r| p-1 , and |B(x, r, q)| ≤ C 0 |r| p-1 |x| -p , for (x, r, q) ∈ Ω × R × R N .

Estimates near the boundary in C 2 domains

From now we assume that Ω is a bounded domain with a C 2 boundary. For any x ∈ ∂Ω, we denote by ν x the normal unit outward vector to ∂Ω at x. Let R 0 > 0 be such that for any x ∈ ∂Ω, the two balls B R0 (x -R 0 ν x ) and B R0 (x + R 0 ν x ) are subsets of Ω and Ωc respectively. If P ∈ ∂Ω, we denote by N r (P ) and N r (P ) the points Prν P and = P + rν P . Notice that r ≤ R 0 implies ρ(N r (P )) = ρ(N r (P )) = r.

Lemma 2.6 Let Q ∈ ∂Ω \ {0}, 0 < r ≤ min{R 0 /2, |Q| /2} and u be a nonnegative solution of (2.1 ) in B 2r (Q) ∩ Ω which vanishes on B 2r (Q) ∩ ∂Ω.
Then there exist b ∈ (0, 2/3) and c 6 > 0 depending respectively on N , p and C 0 and N , p, R 0 and C 0 such that

t c 6 r ≤ u(N t (P )) u(N r/2 (Q)) ≤ c 6 t r (2.16
)

for any P ∈ B r (Q) ∩ ∂Ω and 0 ≤ t ≤ rb/2.
Proof. Up to a dilation, we can assume that |Q| = 1, since if we replace x by x/ |Q|, equation (2.1 ) and the estimates (2.16 ) are structuraly invariant (which means that C 0 and the C i are unchanged), while the curvature constant R 0 is replaced by R 0 / |Q| which is no harm since Ω is bounded.

Step 1 The lower bound. For a > 0 and α > 0 to be made precise later on, let us define

v(x) = V ( x -N r/2 (P ) ) = e -a(|x-N r/2 (P )|/r) α -e -a/2 α e -a/4 α -e -a/2 α for x ∈ B r/2 (N r/2 (P )) ∩ B r/4 (P ). We set s = x -N r/2 (P ) . Since |Q| = 1, the function d satisfies -C0 ≤ d(x) ≤ C0 . Next -div(|Dv| p-2 Dv) + C0 v p-1 = -|V ′ | p-2 ((p -1)V ′′ + (N -1)V ′ /s) + C0 V p-1 .
Therefore this last expression will be nonpositive if and only if (p -1)

aαs α r α + 1 -α + 1 -N ≥ C0 aα r α 1-p
e (p-1)a(s/r) α s θ e -a(s/r) αe -a/2 α p-1

(2.17) where θ = p + (1p)α. But θ = 0 by choosing α = p/(p -1), thus (2.17 ) is equivalent to (p -1)

aαs α r α + 1 -α + 1 -N ≥ C0 aα r α 1-p 1 -e a(1/4 α -1/2 α ) p-1 . If r/4 ≤ s ≤ r/2 ≤ 1/4, (p -1) aαs α r α + 1 -α + 1 -N ≥ (p -1) aα 4 α + 1 -α + 1 -N = pa 4 α -N, while aα r α 1-p 1 -e a(1/4 α -1/2 α ) p-1 ≤ aα r α 1-p ≤ a 1-p .
Therefore, if we choose a such that

a p-1 ( ap 4 α -N ) ≥ C0 , (2.18) 
we derive -div(|Dv| 

v(x) ≥ e -a/2 α (2 -α -(s/r) α ) e -a/4 α -e -a/2 α ≥ C(a, α)(1 -(1 -2t/r) α ) ≥ C ′ (a, α)t r if x = N t (P ) with 0 ≤ t ≤ r/2.
This gives the left-hand side of (2.16 ).

Step 2 The upper bound. Let b ∈ (0, 2/3] be a parameter to be made precise later on. By the exterior sphere condition, B 3br (N 3rb (P )) ⊂ Ωc . Let φ 1 be the first eigenfunction of the p-Laplace operator in B 3 \ B1 with Dirichlet boundary conditions and λ 1 the corresponding eigenvalue. It is well known that φ 1 is radial. We normalize φ 1 by φ 1 (y) = 1 on {y : |y| = 2} (notice that φ 1 is radial) and set

φ rb (x) = φ 1 |x -N rb (P )| rb , thus -div |Dφ rb | p-2 Dφ rb = λ 1 (rb) p φ p-1
rb in B 3rb (N rb (P )) \ Brb (N rb (P )) and vanishes on the boundary of this domain. For b small enough λ 1 /(rb) p ≥ 1 + C0 for any r ∈ (0, 1/2], thus

-div |Dφ rb | p-2 Dφ rb -C0 φ p-1 rb ≥ φ p-1 rb (2.21) in Ω ∩ B 3rb (N rb (P )) \ Brb (N rb (P )) ⊇ Ω ∩ B 2rb (N rb (P )) while u verifies -div |Du| p-2 Du -C0 u p-1 ≤ 0 (2.22)
in the same domain. We can also take b > 0 such that B 2br (N br (P )) ⊂ B r (Q), thus 

u(x) ≤ c 4 u(N r/2 (Q)) for x ∈ ∂B 2rb (N rb (P )) ∩ Ω
Ω∩B 2rb (N rb (P ))     div |Du| p-2 Du u p-1 - div D φrb p-2 D φrb φp-1 rb     (u p -φp rb ) + dx ≤ 0, valid because (u p -φ p rb ) + ∈ W 1,p 0 (Ω ∩ B 2rb (N rb (P ))). Therefore Ω∩B 2rb (N rb (P )) (u p -φp rb ) + dx ≤ 0,
from which follows the inequality u ≤ φrb in Ω ∩ B 2rb (N rb (P )). In particular

u(N t (P )) ≤ c 4 φ 1 |N t (P ) -N rb (P )| rb u(N r/2 (Q)).
Since φ 1 (s) ≤ C(s -1) for s ∈ [1, 2], we obtain the right-hand side of (2.16 ).

The main result of this section is the following Theorem 2.7 There exists two constants α > 0 and c 7 > 0 depending on N , p, C 0 and N , p, C 0 and R 0 respectively such that if u is any nonnegative solution of (2.1 ) vanishing on ∂Ω \ {0} there holds

1 c 7 ρ(x) |x| α-1 u(A) ≤ u(x) ≤ c 7 ρ(x) |x| -α-1 u(A) (2.23) for any x ∈ Ω, where A is a fixed point in Ω such that ρ(A) ≥ R 0 . Proof. Step 1: Tangential estimate. Let x ∈ Ω such that |x| = 2r ≤ R 0 and ρ(x) = t < br/2. Let Q ∈ ∂Ω \ {0} such that |Q| = |x| and x ∈ B r (Q), the previous lemma implies 2 c 6 |x| ρ(x)u(N r/2 (Q)) ≤ u(x) ≤ 2c 6 |x| ρ(x)u(N r/2 (Q)).
(

2.24)

There exists a fixed integer k > 2 such that we can connect two points lying on ∂B 2r (0) ∩ ∂Ω by k connected balls B j (j = 1, ..., k) with radius r/4 and center on ∂B 2r (0). In particular we can connect N r/2 (Q) with N 2r (0) = -2rν 0 and all the balls can be taken such that the distance of their center to ∂Ω be larger that r/2. Since by Lemma 2.2 there holds sup

Bj u ≤ c 1 inf Bj u ∀j = 1, ...k, we derive 2 c k 1 c 6 |x| ρ(x)u(N 2r (0)) ≤ u(x) ≤ 2c k 1 c 6 |x| ρ(x)u(N 2r (0)). (2.25) Let A 0 = -R 0 ν 0 , b 1 = -2rν 0 = N 2r (0), for ℓ ≥ 2, b ℓ = -2(1 + 3(2 ℓ-1 -1)/2)rν 0 and r ℓ = 2 ℓ-1 r. Applying again Lemma 2.2 in B 2r ℓ (b ℓ ) ⊂ Ω, we have sup Br ℓ (b ℓ ) u ≤ c 1 inf Br ℓ (b ℓ ) u ∀ℓ = 1, 2, ... ( 2 

.26)

Let τ be the solution of

2(1 + 3(2 τ -1 -1)/2)r = R 0 ⇐⇒ τ = ln(R 0 + r) -ln 3r ln 2 + 1
and ℓ 0 = E(τ ) + 1, then A 0 ∈ B r ℓ 0 (b ℓ0 ), and the combination of (2.25 ) and (2.26 ) ℓ 0 times) yields to

1 c k+ℓ0 1 c 6 |x| ρ(x)u(A 0 ) ≤ u(x) ≤ c k+ℓ0 1 c 6 |x| ρ(x)u(A 0 ). (2.27) 
Since r ≤ R 0 /2, the computation of τ yields to

2 τ = 2(R 0 + r) 3r ≤ R 0 r =⇒ c τ 1 ≤ R 0 r ln c1/ ln 2 .
This implies (2.23 ) with α = ln c 1 / ln 2.

Step 2: Internal estimate. If x ∈ Ω satisfies |x| ≤ R 0 and ρ(x) ≥ b/4 absx, we can directly procede without using Lemma 2.6. Using internal Harnack inequality (2.6 ) and connecting x to N r (0) and then to A 0 we obtain ) by radii such that r ℓ+1 = βr ℓ , where β > 0 depends on the opening of the standard cone C associated to the inside cone property of Ω. This observation shows that in the general case p = 2 and d singular, the validity of Lemma 2.6 implies Theorem 2.7 when Ω is a bounded domain satisfying the inside cone property.

1 c 7 |x| α u(A) ≤ u(x) ≤ c 7 |x| -α u(A), (2.28 
Remark. In the case p = 2 and lim x→0 |x| 2 d(x) = 0 the value of α is known and equal to N -1. When p = 2 the value of α is unknown, even in the case where d = 0.

The next result is a consequence of the method used in the proof of Theorem 2.7.

Theorem 2.8 Let u ∈ C 1 ( Ω \ {0}) be a positive solutions of (2.1 ) vanishing on B 2R0 ∩ (∂Ω \ {0}). Then there exists a constant c 9 > 0 depending on p, N , C 0 and R 0 such that Proof. By (2.25 ) we have 

1 c 9 u(y) ρ(y) ≤ u(x) ρ(x) ≤ c 9 u(y) ρ(y) , ( 2 
1 c ′ |x| u(N |x| (0)) ≤ u(x) ρ(x) ≤ c ′ |x| u(N |x| (0)).
1 c 1 c 8 |x| ρ(x)u(N s (0)) ≤ u(x) ≤ c 1 c 8 |x| ρ(x)u(N s (0)). ( 2 
c 9 = c 2 1 c 2 8 .
Another consequence of this method and of Lemma 2.2 and Lemma 2.5 is the Theorem 2.9 There exists a constant c ′ 9 depending on N , p, C 0 and R 0 such that any u ∈ C 1 ( Ω \ {0}) be a positive solutions of (2.1 ) vanishing on

B 2R0 ∩ (∂Ω \ {0}) verifies u(x) ≤ c ′ 9 u(N r (0)) (2.32)
for every 0 < r ≤ R 0 /2 and any x ∈ Ω ∩ B 2r (0) \ B r/2 (0). 

Remark

i ∈ C 1 ( Ωǫ ) (i = 1, 2) nonnegative solutions of (2.1 ) in Ω ǫ = Ω \ Be (0) which vanish on ∂ * Ω ǫ = ∂Ω \ B ǫ (0), u 1 (x) ≥ u 2 (x) on Ω ∩ ∂B ǫ (0) implies u 1 ≥ u 2 in Ωǫ .
Clearly, if d is nonpositive it satisfies the local comparison principle. However there are many other cases, depending either on the value of C 0 or the rate of blow-up of d near 0 which insure this principle. Theorem 2.13 Assume d satisfies the local comparison principle and there exists a nonnegative nonzero solution u to (2.1 ) in Ω which vanishes on ∂Ω \ {0}. If v is any other nonnegative solution of (2.1 ) in Ω vanishing on ∂Ω\{0} there exists k ≥ 0 such that v ≤ ku.

Proof. Since any nontrivial nonnegative solution is positive by Harnack inequalities we can assume that both u and v are positive in Ω. We denote by H the set of h > 0 such that v < hu in Ω and we assume that H is empty otherwhile the results is proved. Then for any n ∈ N * there exists x n ∈ Ω such that v(x n ) ≥ nu(x n ). We can assume that x n → ξ for some ξ ∈ Ω. Clearly ξ ∈ Ω is impossible. Let us assume first that ξ ∈ ∂Ω \ {0} and denote by ξ n the projection of x n onto ∂Ω. Thus

v(x n ) -v(ξ n ) ρ(x n ) ≥ n u(x n ) -u(ξ n ) ρ(x n ) . Because u and v are C 1 in Ω \ {0}, lim n→∞ v(x n ) -v(ξ n ) ρ(x n ) = ∂v ∂ν ξ (ξ) and lim n→∞ u(x n ) -u(ξ n ) ρ(x n ) = ∂u ∂ν ξ (ξ).
Since Hopf boundary lemma is valid (see [START_REF] Tolksdorff | On the Dirichlet problem for quasilinear equations in domains with conical boundary points[END_REF]), the two above normal derivative at ξ are negative, which leads to a contradiction. Thus we are left with the case x n → 0. Set

r n = |x n |. By Theorem 2.11 inf v(x) u(x) : |x| = r n ≥ c -1 11 v(x n ) u(x n ) ≥ c -1 11 n
By the local comparison principle assumption, v ≥ nc -1 11 u in Ω rn . This again leads to a contradiction.

The next statement is useful to characterize unbounded solutions Proposition 2.14 Assume u is a nonnegative solution of (2.1 ) vanishing on ∂Ω \ {0}, unbounded and without extremal points near 0. Then

lim x→0 |x| u(x) ρ(x) = ∞. (2.40) 
Proof. Assume that (2.40 ) is not true. Then there exist a sequence {s n } converging to 0 and a constant M > 0 such that

sup |x| u(x) ρ(x) : |x| = s n ≤ M.
Therefore sup {u(x) : |x| = s n } ≤ M . Because u has no extremal points near 0, say in B s0 (0) for some s 0 > 0, the maximum of u in Ω ∩ (B s0 (0) \ B sn (0)) is achieved either on |x| = s 0 or on |x| = s n . Therefore max{u(x) :

x ∈ Ω ∩ (B s0 (0) \ B sn (0))} ≤ max {M, max{u(x) : x ∈ Ω ∩ ∂B s0 (0)}} = M.
Since this is valid for any n, it implies that u is bounded in Ω, contradiction.

Such a solution is called a singular solution. The next result, which extends a previous result in [START_REF] Borghol | Boundary singularites of solutions of quaslinear equations[END_REF], made more precise the statement of Theorem 2.13. Proof. Let us assume that v is not zero. By Theorem 2.13 there exists a minimal k > 0 such that v ≤ ku. As in the proof of Theorem 2.13 the following holds: (i) either the graphs of v and ku are tangent at some ξ ∈ Ω. If we set w = kuv, then w(ξ) = 0, and

-Lw -Dw = 0 (2.42)
where L is a linear elliptic operator and D = d(x)(k p-1 u p-1v p-1 )/w. Since ku(ξ) = v(ξ) > 0, D is locally bounded near ξ. If p > 2 and u admits no critical point in Ω, L is uniformly elliptic ([5], [START_REF] Borghol | Boundary singularites of solutions of quaslinear equations[END_REF] for details in a similar situation). Thus the strong maximum principles holds and w is locally zero. Since Ω is connected w ≡ 0 in Ω. If 1 < p ≤ 2, the strong maximum principle holds to and we have the same conclusion.

(ii) either the graphs of v and ku are not tangent inside Ω, but tangent on ∂Ω\{0}. Since the normal derivatives of ku and v at ξ coincide, L is uniformly elliptic. If p ≥ 2 the coefficient D is locally bounded. If 1 < p ≤ 2 this is not the case but D remains nonnegative. In both case Hopf maximum principle applies and yields to ∂w/∂ν ξ (ξ) < 0. This is again a contradiction.

(iii) or v < ku in Ω, ∂v/∂ν > k∂u/∂ν on ∂Ω \ {0} and there exists a sequence {x n } ⊂ Ω converging to 0 such that

lim n→∞ v(x n ) u(x n ) = k.
Furthermore we can assume that the degenerate elliptic equations theory [START_REF] Libermann | Boundary regularity for solutions of degenerate elliptic equations[END_REF] that, up to subsequences, u n and v n converge in the C 1 loc ( Ωn ∩ (B 2 (0) \ B1/2 (0)))-topology to functions U and V which satisfy

v(x n ) u(x n ) = sup v(x) u ( 
-div |Df | p-2 Df -d ∞ f p-1 = 0 in H ∩ (B 2 (0) \ B1/2 (0)))
, where H is the half space {η ∈ R N : η.ν 0 < 0} and d ∞ is some weak limit of d n in the weak-star topology of L ∞ . Moreover, if p > 2, (2.41 ), jointly with (2.43 ) and (2.44 ), implies that

|Du n (x)| = r n Du(r n x) a n ≥ γ (2.45)
for 2/5 ≤ |x| ≤ 8/5, where γ > 0. We put

ℓ n = inf v(x) u(x) : |x| = |x n | =: r n ≤ k
and ξ n = x n /r n . Up to another choice of subsequence, we can also assume that ℓ n → ℓ and

ξ n → ξ with ξ = 1. Furthermore V ≤ kU , V (ξ) = kU (ξ) and, if ξ ∈ ∂H ∩ (B 2 (0) \ B1/2 (0))), ∂V ∂ν 0 (ξ) = k ∂U ∂ν 0 (ξ) < 0.
In this case, and more generally if the coincidence set Ξ of V and kU has a nonempty intersection with ∂H ∩ (B 2 (0) \ B1/2 (0))), Hopf boundary lemma applies and implies that V = kV in the whole domain. If this is not the case we use (2.45 ) to conclude again by the strong maximum principle that V = kU in H ∩ (B 2 (0) \ B1/2 (0))). Therefore ℓ = k and for any ǫ > 0 there exists

n ǫ ∈ N such that n ≥ n ǫ implies (k -ǫ)u(x) ≤ v(x) ≤ ku(x) ∀x ∈ Ω ∩ ∂B rn (0).
By the local comparison principle the same estimate holds in Ω rn . Since this is valid for any n and any ǫ, we conclude that v = ku.

3 Existence of singular solutions

Separable solutions

The existence of N-dimensional regular separable p-harmonic functions associated to cones is due to Tolksdorff [START_REF] Tolksdorff | On the Dirichlet problem for quasilinear equations in domains with conical boundary points[END_REF]. Extension to singular function is proved in [START_REF] Véron | Some existence and uniqueness results for solution of some quasilinear elliptic equations on compact Riemannian manifolds[END_REF]. These solutions are obtained as follows: Let (r, σ) ∈ R + × S N -1 be the spherical coordinates in R N and S ⊂ S N -1 a smooth spherical domain. Then there exists two couples (γ S , ψ S ) and (β S , φ S ), where γ S and β S are positive real numbers and ψ S and φ S belong to C 2 ( S) and vanish on ∂S, such that U S = r γS ψ S and V S = r -βS φ S ,

are p-harmonic functions in the cone C S = {(r, σ) : r > 0, σ ∈ S}. These couples are unique up to homothety over ψ S and φ S . Furthermore the following equation holds

   -div (a 2 η 2 + |∇η| 2 ) (p-2)/2 ∇η = λ(a)(a 2 η 2 + |∇η| 2 ) (p-2)/2 η in S η = 0 on ∂S. (3.2)
where λ(a) = a(a(p -1) + p -N ) if (a, η) = (β S , φ S ), and λ(a) = a(a(p -1) + Np) if (a, η) = (γ S , ψ S ).

If p = 2 and N = 2, γ S and β S are unknown except if S = S N -1

+ = S N -1 ∩ {x = (x ′ , x N ) : x N > 0 ∈ R N }, in which case γ S = 1 and ψ S = x N . If N = 2, equation (3.2 )
is completely integrable and the values of the γ S and β S are known ([8], [START_REF] Kichenassamy | Singular solutions of the p-Laplace equation[END_REF]). When p = 2, the existence of solutions to (3.2 ) is not easy since this is not a variational problem on S. Tolksdorff's method ( [START_REF] Tolksdorff | On the Dirichlet problem for quasilinear equations in domains with conical boundary points[END_REF]) is based upon a N -dimensional shooting argument: he constructs the solution v of

-div |Dv| p-2 Dv = 0 in C 1 S = C S ∩ {x : |x| ≥ 1} v = (2 -|x|) + on ∂C 1 S . (3.3) 
Then he proves, thanks to an equivalence principle, that the function v stabilizes at infinity under the asymptotic form v(x) ≈ |x| -β φ(x/ |x|), with β > 0, which gives (3.2 ) and the function V S . The domain S characterizes the exponent β. The same argument applies if (3.3 ) is replaced by

       -div |Dv| p-2 Dv + cu p-1 |x| p = 0 in C 1 S = C S ∩ {x : |x| ≥ 1} v = (2 -|x|) + on ∂C 1 S . (3.4) 
with c > 0. This gives rise to a solution of (3. Remark. If N = p the set of p-harmonic functions is invariant under the Möebius group, and in particular under the transformation x → I(x) = x/ |x| 2 which preserves C S . In such a case β S N -1 + = 1. By using the transformation I it is possible to prove (see [START_REF] Borghol | Boundary singularites of solutions of quaslinear equations[END_REF]) that there exist positive N -harmonic functions in any bounded domain Ω having a singularity at a point a of the boundary and vanishing on ∂Ω \ {a}. We conjecture that such a result holds for (2.1 ) and p = 2 although the precise upper limit as x → a of |x -a| p d(x). We believe that at least if N ≥ p and lim sup x→a |x -a| 2 d(x) ≤ ((Np)/p) p , (the Hardy constant for W 1,p in R N ), such a singular solution do exist.

by Lemma 2 . 5 .

 25 Now the function φrb = c 4 u(N r/2 (Q))φ rb satisfies (2.21 ) in Ω ∩ B 2rb (N rb (P )) and dominates u on ∂(Ω ∩ B 2rb (N rb (P ))) = (∂B 2rb (N rb (P )) ∩ Ω) ∪ (B 2rb (N rb (P )) ∩ ∂Ω). By the Diaz-Saa inequality[START_REF] Diaz | Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires[END_REF] 

  .29) for every x and y in B R0 (0) ∩ Ω satisfying |y| /2 ≤ |x| ≤ 2 |y|.

c n 1 u

 1 for any x ∈ Ω such that |x| ≤ R 0 /2 and ρ(x) ≤ b |x| /4. If we assume that x ∈ Ω ∩ B R0/2 (0) verifies |x| ≤ R 0 /2 and ρ(x) > b |x| /4 we can connect x to N |x| (0) by a fixed number n of balls of radius b |x| /8 with their center at a distance to ∂Ω larger than b |x|. The classical Harnack inequality yields to 1 (N |x| (0)) ≤ u(x) ≤ c n 1 u(N |x| (0)). Since ρ(x) ≤ |x| ≤ ρ(x)/b, we obtain, for any x ∈ B R0/2 (0) ∩ Ω, 1 c 8 |x| ρ(x)u(N |x| (0)) ≤ u(x) ≤ c 8 |x| ρ(x)u(N |x| (0)). (2.30) where c 8 depends on p, N , C 0 and R 0 . By Harnack inequality, we can replace u(N |x| (0)) by u(N s (0)) for any |x| /2 ≤ s ≤ 2 |x| and get

Theorem 2 . 15

 215 Assume d satisfies the local comparison principle and there exists a positive singular solution u to (2.1 ) in Ω vanishing on ∂Ω \ {0}. Assume also either 1 < p ≤ 2 and d ≥ 0, or p > 2, u admits no critical point in Ω and If v is any other positive solution of (2.1 ) in Ω vanishing on ∂Ω \ {0} there exist k ≥ 0 such that v = ku.

  x) : |x| = |x n | =: r n Put a n = max{u(x) : |x| = r n }. By Theorem 2.9 there exists c ′ 9 > 0 depending on N , p, C 0 and R 0 such that u(N rn (0)) ≤ a n ≤ c ′ 9 u(N rn (0)), (2.43) which implies max{u(x) : r n /2 ≤ |x| ≤ 2r n } ≤ c ′ 9 a n . (2.44) We set u n (x) = u(r n x)/a n , v n (x) = v(r n x)/a n and d n (x) = r p n d(r n x). Then both u n and v n are solutions of -div |Df | p-2 Dfd n f p-1 = 0 in Ω n = Ω/r n and vanish on ∂Ω n \ {0}. By (2.44 ), u n and v n are uniformly bounded in Ωn = Ω n ∩ (B 2 (0) \ B1/2 (0)). Since ∂Ω n ∩ (B 2 (0) \ B1/2 (0)) is uniformly C 2 we deduce by

1 + 1 + 1 +: 1 + 1 +- 2 1 + 1 +- 1 +

 111112111 [START_REF] Diaz | Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires[END_REF] in C S under the form V S,c = r -βc,S η where β c,S > 0 and   -div (β 2 c,S η 2 + |∇η| 2 ) (p-2)/2 ∇η + cη p-1 = λ(β c,S )(β 2 c,S η 2 + |∇η| 2 ) (p-2)/2 η in S η = 0 on ∂S.(3.5) With these considerations we can construct singular solutions of (2.1 ) under a very restrictive geometry for Ω, where S = S N -, the upper half unit sphere. Theorem 3.1 Assume d(x) = -c |x| -p with c ≥ 0 and Ω is a bounded domain with a C 2 boundary containing 0. Assume also ∂Ω is flat in a neighborhood of 0 and x.ν 0 ≤ 0 for any x ∈ Ω. Then there exists a positive solution of (2.1 ) which vanishes on ∂Ω \ {0} and satisfieslim x → 0 x/ |x| → σ |x| β c,S N -1 + u(x) = η(σ) (3.6) uniformly for σ ∈ S N -, where η is a positive solution of (3.5 ).Proof. Since Ω is located on one side of the hyperplane Λ = {x : x.ν 0 = 0}, the restriction to Ω of the functionV c,S N -Λ ∩ ∂Ω \ {0} and is positive on Ω \ H. Let K = max{V c,S N -(x) : x ∈ ∂Ω \ Λ}. Then V c,S N -K is a solution (or a subsolution if c > 0). For any ǫ > 0 let u ǫ be the solution of Du ǫ + c |x| p |u ǫ | p-2 u ǫ = 0 in Ω \ B ǫ (0) u ǫ = 0 on ∂Ω ∩ B c ǫ (0) u ǫ = V c,S N -on Ω ∩ ∂B ǫ (0). (3.8) Then V c,S N -K ≤ u ǫ ≤ V c,S N -and the mapping ǫ → u ǫ is increasing. Therefore u ǫ converges to u in the C 1 loc ( Ω \ {0}) topology and u is a solution of (2.1 ) which vanishes on ∂Ω \ {0} and satisfies(3.6 ).

  Remark. When p = 2 it is possible to prove the existence of a singular solution to-∆u + d(x)u = 0 in Ω u = 0 on ∂Ω \ {a}(3.9)where a ∈ ∂Ω, for any C 2 domain Ω and any d locally bounded in Ω \ {a} such that-∞ < lim inf x→a |x -a| 2 d(x) ≤ lim sup x→a |x -a| 2 d(x) < N 2 /4.

  2 The boundary Harnack principle. 3 Existence of singular solutions. 4 References.

  Remark. If p = 2 and d is regular, it is proved that Lemma 2.6 holds even if ∂Ω is Lipschitz continuous. The previous proof is adapted by replacing the doubling property of the radius on the connecting balls B r ℓ (b ℓ

) from which (2.24 ) is derived since ρ(x) ≥ b |x| /4. Finally, if |x| ≥ R 0 and ρ(x) ≤ R 0 , we can replace the singular point 0 by a regular point B ∈ ∂Ω such that |x -B| ≤ R 0 . The previous procedure leads to the same estimate. At end, if ρ(x) > R 0 we apply again the internal Harnack inequality (2.6 ). Since Ω is bounded, x and A 0 can be joined by at most d = 2 diam (Ω)/R 0 balls B i with radius R 0 /2 and center b i satisfying ρ(b i ) ≥ R 0 . Then using d times (2.6 ) yields to (2.24 ).

  . Since Lemma 2.2 and Lemma 2.5 are valid in Lipschitz continuous domains and the construction of connected chain of balls too by Lemma 2.1, the above inequality remains valid if Ω is Lipschitz continuous. Definition 2.12 A measurable function d satisfying (2.2 ) with a = 0 ∈ ∂Ω is said to satisfy the local comparison principle in Ω if, for any ǫ > 0 and any u

The next result is known as the boundary Harnack inequality.

u(A r/2 (Q)), since |Y 0 -Q 0 | ≤ r/2 N = s 2 /c M 5 and 2 M > c 2 . Hence we can choose Y 1 ∈ B s2 (Q 0 ) ∩ Ω which realizes M s2,Q0 (u) and this implies that ρ(Y 1 ) < r/2 N +1 . A point Q 1 ∈ ∂Ω such that ρ(Y 1 ) = |Y 1 -Q 1 | satisfies also |Q -Q 1 | ≤ |Q -Q 0 | + |Q 0 -Q 1 | ≤ r(1 + 2 -5 + 2 -6 ).

Theorem 2.10 Let Q ∈ ∂Ω, 0 < r ≤ min{R 0 /2, |Q| /2}, and u 1 and u 2 be two nonnegative solutions of (2.1 ) in B 2r (Q) ∩ Ω which vanish on B 2r (Q) ∩ ∂Ω. Then there exists c 10 > 0 depending respectively on N , p and C 0 such that

for any x, y ∈ B r (Q) ∩ Ω.

Proof. If x ∈ B r (Q)∩Ω satisfies ρ(x) ≤ br/2, we denote by P x = P the unique projection of x on ∂Ω and put t = ρ(x). By (2.16 ),

for i = 1, 2. Therefore (2.35 ) holds with c 2 6 replaced by c β 2 . Finally (2.33 ) is verified with c 10 = max{c 4 6 , c 2β 2 }.

The next result is another form of the boundary Harnack inequality

Theorem 2.11 Let u i ∈ C 1 ( Ω \ {0}) (i = 1, 2) be two nonnegative solutions of (2.1 ) vanishing on B 2R0 ∩ (∂Ω \ {0}). Then there exists c 11 > 0 depending respectively on N , p and C 0 such that for any r ≤ R 0

Proof. Applying twice Theorem 2.8, we get

for any x and y such that |x| /2 ≤ |y| ≤ 2 |x|. Equivalently

which the claim with c 11 = c 2 9 .

The set of singular solutions

We still assume that Ω is a bounded domain with a C 2 boundary containing the singular point 0. We introduce the following assumption on the function d.