
HAL Id: hal-00281598
https://hal.science/hal-00281598

Submitted on 23 May 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An axiomatization of entropy of capacities on set
systems

Aoi Honda, Michel Grabisch

To cite this version:
Aoi Honda, Michel Grabisch. An axiomatization of entropy of capacities on set systems. Euro-
pean Journal of Operational Research, 2008, 190 (2), pp.526-538. �10.1016/j.ejor.2007.06.033�. �hal-
00281598�

https://hal.science/hal-00281598
https://hal.archives-ouvertes.fr


An axiomatization of entropy of capacities on

set systems

Aoi Honda a,b Michel Grabisch b

a Kyushu Institute of Technology
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Abstract

We present an axiomatization of the entropy of capacities de-
fined on set systems which are not necessarily the whole power set,
but satisfy a condition of regularity. This entropy encompasses the
definition of Marichal and Roubens for the entropy of capacities. Its
axiomatization is in the spirit of the one of Faddeev for the classical
Shannon entropy. In addition, we present also an axiomatization of
the entropy for capacities proposed by Dukhovny.
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1 Introduction

The notion of entropy of a probability measure, as proposed by Shannon [13],
is of primary importance in many application fields, e.g., information theory,
operations research, classification, data mining, etc.

It was therefore natural to investigate about the entropy of capacities
[1] (also called fuzzy measures [14], non-additive measures [3]), since they
are a generalization of probability measures. After a first attempt by Yager
[16], Marichal and Roubens [12, 11] proposed a definition having suitable
properties, and which can be considered as the generalization of the Shan-
non entropy. Another attempt was also done by Dukhovny [4], in a different
spirit. All these works considered finite universal sets, and the power set as
underlying set system. In a previous paper [8], we proposed a definition of
entropy able to work with capacities defined on set systems which are not
necessarily the whole power set, but satisfy a regularity condition. Our defi-
nition encompasses the one of Marichal and Roubens, and also encompasses
the Shannon entropy. Our entropy can be applied to capacities on lattices
as well.

An important question about entropy is to find suitable axiomatizations,
where axioms are enough understandable or natural. There exist many of
them for the classical Shannon entropy (see, e.g., [5]). For capacities, to the
best of our knowledge, there exists only the work of Kojadinovic et al. [9].
Their axiomatization is however rather complicated, due to the presence of
a recursive axiom, whose meaning is hard to grasp.

Our aim in this paper is to present a new axiomatization which is more
understandable in our general framework where the set system is not neces-
sarily the whole power set, but a subset of it. Our axiomatization is in the
spirit of the one proposed by Faddeev [6] for the Shannon entropy.

The paper is organized as follows. Section 2 introduces notations and
necessary materials about set systems. Then Section 3 presents capacities
on set systems and the definition of their entropy. The axiomatization of
entropy is given in Section 4, and proofs of the main theorems are given in
Section 5. Lastly, we give some final remarks on the suitability of regular set
systems as a fundamental concept, and some directions for future research
in Section 6.

2 Mathematical background

We begin by introducing some notations and definitions.
Throughout this paper, we consider a finite universal set N := {1, 2, . . . , n},

n ≥ 2, and 2N denotes the power set of N . Let us consider N a subcollec-
tion of 2N which contains ∅ and N . Then we call (N,N) (or simply N if no
confusion occurs) a set system.

A set system endowed with inclusion is a particular case of a partially

ordered set (P,≤), i.e., a set P endowed with a partial order (reflexive, an-
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tisymmetric and transitive) ≤, as for example (N,⊆).
Let A,B ∈ N. We say that A is covered by B, and write A ≺ B or

B ≻ A, if A � B and A ⊆ C � B together with C ∈ N imply C = A.

Definition 1 (maximal chain of set system) Let N be a set system. We

call C = (c0, c1, . . . , cm) a maximal chain of N if C satisfies ∅ = c0 ≺ c1 ≺
· · · ≺ cm = N, ci ∈ N, i = 0, . . . ,m.

We denote the set of all maximal chains of N by C(N).

Definition 2 (totally ordered set system) We say that (N,N) is a to-
tally ordered set system if for any A,B ∈ N, either A ⊆ B or A � B.

If (N,N) is a totally ordered set system, then |C(N)| = 1.

Definition 3 (regular set system [8]) We say that (N,N) is a regular set

system if for any C ∈ C(N), the length of C is n, i.e. |C| = n + 1.

Equivalently, N is a regular set system if and only if |A \ B| = 1 for any
A,B ∈ N satisfying A ≻ B.

3 Entropy of a capacity

Definition 4 (capacity on a set system) Let (N,N) be a set system. A

function v : N→ [0, 1] is a capacity on (N,N) if it satisfies v(∅) = 0, v(N) =
1 and, for any A,B ∈ N, v(A) ≤ v(B) whenever A ⊆ B.

Let v be a capacity on (N,N). For C := (c0, c1, . . . , cm) ∈ C(N), define
pv,C by

pv,C := (pv,C1 , pv,C2 , . . . , pv,Cm )

= (v(c1)− v(c0), v(c2)− v(c1), . . . , v(cm)− v(cm−1)).

Note that pv,C satisfies pv,Ci ≥ 0, i = 1, . . . , m, and
∑m

i=1 p
v,C
i = 1.

We introduce further concepts about capacities, which will be useful for
stating axioms.

Definition 5 (dual capacity) Let v be a capacity on (N,N). Then the

dual capacity of v is defined on Nd := {A ∈ 2N | Ac ∈ N} by vd(A) :=
1− v(Ac) for any A ∈ Nd, where Ac := N \ A.

A Hasse diagram for Nd is obtained by turning upside down a Hasse diagram
for N (cf. Fig. 1).

Definition 6 (permutation of v) Let π be a permutation on N . Then the

permutation of v by π is defined on π(N) := {π(A) ∈ 2N | A ∈ N} by

π ◦ v(A) := v(π−1(A)).
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N

{1} {2}

{1, 2} {2, 3}

∅

N

N

{1} {3}

{2, 3}{1, 3}

∅

N
d

Figure 1: Dual set system

Example 7 We show an example of a permutation of a set system. Let
N := {1, 2, 3} and N := {∅, {1}, {3}, {1, 2}, {1, 3}, {2, 3}, N} and let π =(
1 2 3
2 3 1

)
. Then, for instance π ◦ v({2, 3}) := v(π−1({2, 3})) = v({1, 2}) (cf.

Fig. 2). For the maximal chain C := (∅, {2}, {2, 3}, N) ∈ C(π(N)), π−1(C) =
(π−1(∅), π−1({2}), π−1({2, 3}), π−1(N)) = (∅, {1}, {1, 2}, N) ∈ C(N).

N

{1} {3}

{1, 2} {1, 3} {2, 3}

∅

N

N

{2} {1}

{2, 3} {2, 1} {3, 1}

∅

π(N)

Figure 2: Permutation of set system

As it is usual for functions, we denote the restriction of v to some regular
set system N

′ � N by v|N′ , i.e., v|N′(A) := v(A) for any A ∈ N′.
Let us consider a chain of length 2 as a set system, denoted by 2 (e.g.

{∅, {1}, {1, 2}}), and a capacity v2 on it. We denote by the triplet (0, u, 1),
0 ≤ u ≤ 1, the values of v2 along the chain.

Definition 8 (embedding of v2) Let v be a capacity on a totally ordered

regular set system (N,N), where N := {c0, . . . , cn} such that ci−1 ≺ ci, i =
1, . . . , n, and let v2 := (0, u, 1) be a capacity on 2. Then for ck ∈ N, vck is

called the embedding of v2 into v at ck, and defined on the totally ordered
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regular set system (N ck ,Nck) by

vck(A) :=






v(ck−1) + u · (v(ck)− v(ck−1)), if A = c′k,
v(cj), if A = cj for j < k

or A = c′′j for j ≥ k
(3.1)

with {ik} := ck \ ck−1, N ck := {1, . . . , ik−1, i
′
k, i

′′
k, ik+1, . . . , n} with i′k �= i′′k,

(N \ {ik}) ∩ {i
′′
k, i

′′
k} = ∅, c′k := (ck \ ik) ∪ i′k, c′′j := (cj \ ik) ∪ {i

′
k, i

′′
k} for

j = k, . . . , n, and Nck := {c0, . . . , ck−1, c
′
k, c

′′
k, c

′′
k+1, . . . , c

′′
n}.

Example 9 Let us take N := {1, 2, 3}, N := {∅, 1, 12, 123} and ck = 12
(“12” stands for {1, 2}, etc.). Then ik = 2, which is replaced by 2’ and 2”.
We obtain

N12 = {1, 2′, 2′′, 3}

N
12 = {∅, 1, 12′, 12′2′′, 12′2′′3}

v12(1) = v(1)

v12(12′) = v(1) + u · (v(12)− v(1))

v12(12′2′′) = v(12)

v12(12′2′′3) = v(123).

We turn now to the definition of the entropy. We first recall the classical
definition of Shannon.

Definition 10 (Shannon Entropy) Let p = (p1, . . . , pn) be a probability

measure on N . Then the Shannon entropy of p is defined by

(S) HS(p) = HS(p1, . . . , pn) := −
n∑

i=1

pi log pi,

where log denoting the base 2 logarithm, and by convention 0 log 0 := 0.

Definition 11 (entropy of a capacity on a set system [8]) Let v be a

capacity on a regular set system (N,N). The entropy of v is defined by

(HG) HHG(v) :=
1

|C(N)|

∑

C∈C(N)

HS(p
v,C).

.

We recall the definition of Dukhovny [4] for capacities defined on the
power set, which we extend to our framework. We call it minimum entropy.

Definition 12 Let v be a capacity on a regular set system (N,N). The

minimum entropy of v is defined by

(D) HD(v) := min
C∈C(N)

HS(p
v,C).
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As it is clear from its definition, HD is not differentiable.

Before entering the axiomatization part, a remark on the domain of en-
tropy functions is in order. For mathematical rigor, one should define the
Shannon entropy relatively to the cardinality of the universe, hence when
necessary we will use the notation Hn

S , with |N | =: n. More precisely, let ∆n

be the set of all probability measures on N = {1, . . . , n} and algebra 2N . HS

is a function defined on ∆ :=
⋃∞
n=2 ∆n to [0,∞), and Hn

S is its restriction to
∆n.

Accordingly, we do the same for our definition, up to the fact that HHG

depends not only on N but also on the set system N. As it will become
clear hereafter, in fact only the number of maximal chains matters. But
since in the axiomatization part, this cannot be known in advance, we let as
superindex the set system N , and also the cardinality n of the universe, the
latter only for clarity since this can be known from the set system: Hn,N

HG or
Hn,N. We denote by Λn,N the set of all capacities defined on (N,N), and the
domain of HHG is Λ :=

⋃∞
n=2

⋃
N on N Λn,N.

4 Axiomatization of the entropy of capacities

First, we recall Faddeev’s axiomatization, which will serve as a basis for our
axiomatization. In what follows, Hn is a function from ∆n to [0,∞).

(F1) f(x) := H2(p, 1 − p) is continuous on 0 ≤ p ≤ 1, and there exists
p0 ∈ [0, 1] such that f(p0) > 0.

(F2) For any permutation π on N ,

Hn(pπ(1), . . . , pπ(n)) = Hn(p1, . . . , pn).

(F3) If pn = q + r, q > 0, r > 0, then

Hn+1(p1, . . . , pn−1, q, r) = Hn(p1, . . . , pn) + pnH
2(q/pn, r/pn).

Theorem 13 (Faddeev’s axiomatization of the Shannon entropy [6])
Under the condition H2(1/2, 1/2) = 1, Hn = Hn

S for all n ≥ 2 holds if and

only if (F1), (F2) and (F3) hold.

We introduce five axioms for the entropy of capacities. In what follows,
Hn,N is a function from Λn,N to [0,∞).

(HG1) (continuity) The function f(u) := H2,2(0, u, 1) is continuous on

[0, 1], and there exists u0 ∈ [0, 1] such that f(u0) > 0.

(HG2) (dual invariance) For any capacity (0, u, 1) on 2,

H2,2(0, u, 1) = H2,2(0, 1− u, 1).
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(HG3) (increase by embedding) Let v be a capacity on a totally ordered

regular set system (N,N), with n ≥ 2. Then for any ck ∈ N and any v2 :=
(0, u, 1), the entropy of vck is

Hn+1,Nck (vck) = Hn,N(v) + (v(ck)− v(ck−1)) ·H
2,2(0, u, 1). (4.1)

(HG4) (convexity) Let (N,N) with n ≥ 2, (N,N1),. . . , and (N,Nk) be

regular set systems on N, satisfying C(N) = C(N1)∪· · ·∪C(Nk), and C(Ni)∩
C(Nj) = ∅, for all i �= j. Then there exist unique α1, . . . , αk ∈]0, 1[ satisfying∑k

i=1 αk = 1 such that for any capacity v on (N,N),

Hn,N(v) = α1H
n,N1(v|N1) + · · ·+ αkH

n,Nk(v|Nk).

(HG5) (permutation invariance) Let v be a capacity on a regular set system

N with n ≥ 2. Then for any permutation π on N satisfying π(N) = N, it

holds that

Hn,N(v) = Hn,N(π ◦ v).

Theorem 14 Under the condition H2,2(0, 1
2
, 1) = 1, Hn,N = Hn,N

HG for n ≥ 2
and any regular set system N on N , if and only if (HG1), (HG2), (HG3),
(HG4) and (HG5) hold.

(See proof in Section 5)

For additive capacities on 2N , HHG is equal to the Shannon entropy HS.
We discuss in detail the above axioms, in the light of Faddeev’s axioms.

• continuity

We have f(u) = H2,2
HG(0, u, 1) = H2

S(p
(0,u,1),C) = H2

S(u, 1 − u), where
C := (∅, {1}, {1, 2}). Therefore (HG1) corresponds to (F1).

• dual invariance

More generally, even where v is defined on a regular set system which is
not necessarily 2, HHG(v) is dual invariant.

Proposition 15 (dual invariance) For any capacity v on a regular set

system, HHG(vd) = HHG(v) holds.

Proof Let v be a capacity on N. For any a ∈ N, (ac)c = a, hence the dual
mapping is a bijection from N to Nd. Then, C := (c0, . . . , cn) ∈ C(N) if and
only if Cd := (ccn, . . . , c

c
0) ∈ C(Nd), since ci ≺ ci+1 implies cci ≻ cci+1. Hence
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|C(N)| = |C(Nd)|. In addition, we have for any C ∈ C(N),

HS(p
v,C) =

n∑

i=1

h[v(ci)− v(ci−1)]

=

n∑

i=1

h[(1− v(ci−1))− (1− v(ci))]

=

n∑

i=1

h[vd(cci−1)− vd(cci)]

= HS(p
vd,Cd),

where h(x) := −x log x. Therefore

HHG(vd) =
1

|C(Nd)|

∑

C∈C(Nd)

HS(p
vd,C)

=
1

|C(N)|

∑

Cd∈C(N)

HS(p
v,Cd)

= HHG(v). �

The Shannon entropy of a probability measure satisfies dual invariance,
since a probability measure and its dual measure are identical.

• increase by embedding

Let v be a capacity on a totally ordered regular set system N = {C :=
{c0, c1, . . . , cn}}, where ci−1 ≺ ci, i = 0, . . . , n, and consider the embedding
of v2 := (0, u, 1) into v at ck. Then

HHG(vck) = HS(p
vck ,C′),

where C ′ := (c0, . . . , ck−1, c
′
k, c

′′
k, c

′′
k+1, . . . , c

′′
n), with c′k := (ck \ ik) ∪ i′k, c

′′
j :=

(cj \ ik) ∪ {i
′
k, i

′′
k}, j = k, . . . , n (see Def. 7). And by (F3), we have

HS(p
vck ,C′) = HS(p

v,C) + (v(ck)− v(ck−1)) ·HS(u, 1− u)

which can be rewritten as

HHG(vck) = HHG(v) + (v(ck)− v(ck−1)) ·HHG(v2).

This is exactly (HG3).
The embedding of (0, u, 1) at ck ∈ N means that ik := ck \ ck−1 ∈ N is

splitted into i′k, i
′′
k. In other words, ik is the union of i′k and i′′k. Hence (HG3)

means that for capacities on totally ordered regular set systems, if elements
of N are splitted, then the entropy increases according to (4.1).

• convexity
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This axiom says that the computation of the entropy follows the struc-
ture of the set system, whatever the capacity is. If the (regular) set system
can be splitted into several (regular) subsystems, provided all elements of N
are present in both, and that no redundancy occurs (no common maximal
chain), then the computation can also be splitted into these subsystems, each
corresponding to the entropy computed on a subsystem. It is important to
note that the way of splitting the computation does not depend on the ca-
pacity but only on the splitting, i.e., the αi’s are independent of the capacity.

• permutation invariance

(HG5) corresponds to (F2). Note that there are set systems such that no
permutation makes them invariant.

To finish this section, we consider a modification of our axiomatization
so as to recover the entropy defined by Dukhovny [4]. We modify (HG4) as
follows:

(HG4′) Let (N,N), (N,N1),. . . , (N,Nk) be regular set systems satisfying

C(N) = C(N1) ∪ · · · ∪ C(Nk). Then for any capacity v on N,

Hn,N(v) = min
{
Hn,N1(v|N1), . . . , H

n,Nk(v|Nk)
}
.

Theorem 16 Under the condition H2,2(0, 1
2
, 1) = 1, Hn,N = Hn,N

D for all

n ≥ 2 and all regular set systems N on N holds if and only if (HG1), (HG2),
(HG3) and (HG4′) hold.

(see proof in Sec. 5)

5 Proof of Theorems 14 and 16

Proof of Theorem 14 (necessity) We have H2,2
HG(0, u, 1) = −u log u−

(1− u) log(1− u), hence obviously HHG satisfies (HG1).
By Proposition 15, HHG satisfies (HG2).
We show that HHG satisfies (HG3). Let v be a capacity on N := {C :=

c0, . . . , cn} such that ci−1 ≺ ci, i = 1, . . . , n. Then the capacity vck which is
embedding of (0, u, 1) into v at ck is defined on Nck = {C ′ := {c0 ≺ · · · ≺
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ck−1 ≺ c′k ≺ c′′k ≺ · · · ≺ c′′n}}, with notations of Def. 7. Then we have

Hn+1,Nck
HG (vck) = HS(p

vck ,C′)

=

k−1∑

i=1

h[vck(ci)− vck(ci−1)] + h[vck(c′k)− vck(ck−1)]

+h[vck(c′′k)− vck(c′k)] +

n∑

i=k+1

h[vck(c′′i )− vck(c′′i−1)]

=
∑

i �=k

h[v(ci)− v(ci−1)]

+(v(ck)− v(ck−1))

(

h

[
vck(c′k)− vck(ck−1)

v(ck)− v(ck−1)

]
+ h

[
vck(c′′k)− vck(c′k)

v(ck)− v(ck−1)

])

+h[vck(c′′k)− vck(ck−1)]

=

n∑

i=1

h[v(ci)− v(ci−1)]

+(v(ck)− v(ck−1))H
2,2
HG

(
0,

vck(c′k)− vck(ck−1)

v(ck)− v(ck−1)
, 1

)

= Hn,N
HG (v) + (v(ck)− v(ck−1))H

2,2
HG(0, u, 1),

where u = (vck(c′k)− vck(ck−1))/(v(ck)− v(ck−1)).
We show that HHG satisfies (HG4). We have, for set systemsN1,N2, . . . ,Nk

satisfying conditions of (HG4):

Hn,N
HG (v) =

1

|C(N)|

∑

C∈C(N)

Hn
S (pv,C)

=
1

|C(N)|




∑

C∈C(N1)

Hn
S (pv,C) + · · ·+

∑

C∈C(Nk)

Hn
S (pv,C)





=
|C(N1)|

|C(N)|

1

|C(N1)|

∑

C∈C(N1)

Hn
S (pv|N1 ,C)

+ · · ·+
|C(Nk)|

|C(N)|

1

|C(Nk)|

∑

C∈C(Nk)

Hn
S (pv|Nk ,C)

=
|C(N1)|

|C(N)|
Hn,N1
HG (v|N1) + · · ·+

|C(Nk)|

|C(N)|
Hn,Nk
HG (v|Nk)

and
|C(N1)|

|C(N)|
+ · · ·+

|C(Nk)|

|C(N)|
= 1.

We show that HHG satisfies (HG5). For any C = (c0, c1, . . . , cm) ∈
C(π(N)), π(C) := (π(c0), π(c1), . . . , π(cm)) ∈ C(N), because for any A,B ∈
π(N), A ≺ B implies π(A) ≺ π(B), and for any Ci, Cj ∈ C(N), i �= j,
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π(Ci) �= π(Cj). Consequently, we have

H
n,π(N)
HG (π ◦ v) =

1

|C(π(N))|

∑

C∈C(π(N))

Hn
S (pπ◦v,C)

=
1

|C(N)|

∑

C∈C(N)

Hn
S (pπ◦v,π(C))

=
1

|C(N)|

∑

C∈C(N)

Hn
S (pv,C) = Hn,N

HG (v).

(sufficiency) The proof goes as follows. In part (i), we show that (HG)
holds for any totally ordered regular set system C, i.e., we show that Hn,C =
Hn,C
HG for any n ≥ 2. In part (ii), we extend the result to any regular set

system, i.e., Hn,N = Hn,N
HG on Λ.

(i) We show by induction on n that for any v on a totally ordered regular
set system (N,C), C being a maximal chain:

Hn,C(v) = Hn,C
HG = Hn

S (pv,C). (5.1)

First, we show the result for n = 2, using (HG1), (HG2) and (HG3),
in a way similar to the Faddeev’s axiomatization for the Shannon entropy.
Suppose that v3 is a capacity on (N := {1, 2, 3}, 3 := {∅, {1}, {1, 2}, N})
and v3(1) := s, v3({1, 2}) := s + t, v3(N) := s + t + u = 1, s, u ≥ 0, t > 0.
We can regard v3 as the embedding of v2 = (0, t

1−s
, 1) into v = (0, s, 1) on

N := {∅, {1}, {1, 2}} at {1, 2} (putting i′k = 2, i′′k = 3 with notations of Def.
7). Then, by (HG3), we get

H3,3(v3) = H2,N(0, s, 1) + (1− s)H2,2 (0, t/(1− s), 1)

= H2,N(0, s, 1) + (1− s)H2,2 (0, (1− s− t)/(1− s), 1)

= H2,N(0, s, 1) + (1− s)H2,2 (0, u/(1− s), 1) , (5.2)

where the second equality follows from (HG2) and s + t + u = 1. Similarly,
we can also regard v3 as the embedding of v2 = (0, s

s+t
, 1) into v = (0, s+t, 1)

on N′ := {∅, {1}, {1, 3}} at {1} (putting i′k = 1, i′′k = 2). This time, we obtain
by (HG3) and s + t + u = 1,

H3,3(v3) = H2,N′(0, s + t, 1) + (s + t)H2,2 (0, s/(s + t), 1)

= H2,N′(0, u, 1) + (1− u)H2,2(0, s/(1− u), 1). (5.3)

Hence (5.2) and (5.3) yield

H2,N(0, s, 1) + (1− s)H2,2 (0, u/(1− s), 1)

= H2,N′(0, u, 1) + (1− u)H2,2(0, s/(1− u), 1).

Since regular set systemsN,N′ and 2 are isomorphic, putting f(s) := H2,2(0, s, 1),
we obtain

f(s) + (1− s)f(u/(1− s)) = f(u) + (1− u)f(s/(1− u)), (5.4)
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where the above expression is valid for any s, u ∈ [0, 1) satisfying s + u < 1.
If s = 0, u > 0, then

f(0) + f(u) = f(u) + (1− u)f(0),

hence we obtain

f(0) = H2,2(0, 0, 1) = H2,2(0, 1, 1) = 0.

Integrating both sides of (5.4) for u from 0 to 1 − s, where 0 ≤ s < 1, we
obtain

(1− s)f(s) + (1− s)2
∫ 1

0

f(x)dx (5.5)

=

∫ 1−s

0

f(x)dx + s2
∫ 1

s

x−3f(x)dx.

By (HG1), f(s) is continuous on [0, 1], hence all terms except the first one
of the left side of (5.5) are differentiable on 0 < s < 1, so that f(s) is also
differentiable on 0 < s < 1. Therefore differentiating (5.5) with respect to s,
we have

(1− s)f ′(s)− f(s)− 2(1− s)

∫ 1

0

f(x)dx

= −f(1− s) + 2s

∫ 1

s

x−3f(x)dx−
f(s)

s
.

Since f(s) = f(1− s),

(1− s)f ′(s) = 2(1− s)

∫ 1

0

f(x)dx + 2s

∫ 1

s

x−3f(x)dx−
f(s)

s
. (5.6)

By the same arguments as above, f ′(s) is differentiable on 0 < s < 1,
then differentiating (5.6) by s, we have for 0 < s < 1,

f ′′(s) =
−2

s(1− s)

∫ 1

0

f(x)dx. (5.7)

Integrating (5.7) twice, we obtain for 0 ≤ s ≤ 1,

f(s) = −s log s− (1− s) log(1− s)

by f(0) = 0 and f(1/2) = H2,2(0, 1/2, 1) = 1. Therefore for any v2 on 2,

H2,2(v2) = H2
S(p

v2,C) = H2,2
HG(v2).

Suppose that (5.1) holds till n and show that it still holds for n + 1. Let
v be a capacity on a maximal chain C := (c0, . . . , cn). Then by (HG3), we

12



have, denoting by C ′ the chain after embedding:

Hn+1,C′(vck) = Hn,C(v) + (v(ck)− v(ck−1))H
2,2(v2)

= Hn
S (pv,C) + (v(ck)− v(ck−1))H

2,2(0, u, 1)

= Hn
S (pv,C) + (v(ck)− v(ck−1))H

2,2

(
0,

vck(c′k)− vck(ck−1)

v(ck)− v(ck−1)
, 1

)

= Hn
S (pv,C) + (v(ck)− v(ck−1))

H2
S

(
vck(c′k)− vck(ck−1)

v(ck)− v(ck−1)
,
vck(c′′k)− vck(c′k)

v(ck)− v(ck−1)

)

= Hn+1
S (pv

ck ,C′) = Hn+1,C′

HG (vck)

by (3.1) and (F3), which means (5.1) holds for vck , so that (HG) holds for
any capacities on totally ordered regular set systems. From now on, the
expression of the entropy on totally ordered regular set systems of size n will
be denoted by Hn,n.

(ii) We show that for a regular set system which is not totally ordered,
(HG) holds. 2N has n! maximal chains C1, . . . , Cn!. By (HG4), there exist
unique αC1 , . . . , αCn! > 0, αC1 + · · ·+ αCn! = 1, such that for any capacity v
on 2N it holds

Hn,2N (v) = αC1H
n,n(v|C1) + · · ·+ αCn!H

n,n(v|Cn!). (5.8)

Let u1, . . . , un > 0, and put HS(u) := u log u + (1 − u) log(1 − u). First we
define a capacity ν on 2N by

ν(A) :=






0, |A| < 1,
ui, A = {i}, i = 1, . . . , n,
1, |A| > 1.

Then

Hn,2N (ν) =




∑

C∋{1}

αC



Hn
S (u1) + · · ·+




∑

C∋{n}

αC



Hn
S (un).

For any permutation π on N and any chain Ci, we have (π ◦v)|Ci = v|π−1(Ci),
hence

Hn,2N (π ◦ ν) = αC1H
n,n((π ◦ ν)|C1) + · · ·+ αCn!H

n,n((π ◦ ν)|Cn!)

= αC1H
n,n(ν|π−1(C1)) + · · ·+ αCn!H

n,n(ν|π−1(Cn!))

=




∑

C∋{1}

αC



Hn
S (uπ−1(1)) + · · ·+




∑

C∋{n}

αC



Hn
S (uπ−1(n)).

By (HG5), Hn,2N (ν) = Hn,2N (π ◦ ν) holds for any permutation π on N , and
any u1, . . . , un > 0, so that we obtain




∑

C∋{1}

αC



 = · · · =




∑

C∋{n}

αC



 =
1

n
.
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Next we consider the set system N1 := {A ∈ 2N |A � {1}, A � {1} or A =
{1}}, which is a regular set system and has (n−1)! maximal chains. Without
loss of generality, we assume C(N1) = {C1, . . . , C(n−1)!} � C(2N). Then by
(HG4), there exist unique βC1, . . . , βC(n−1)! > 0, βC1 + · · ·+ βC(n−1)! = 1, such

that for any capacity v on 2N

Hn,N1(v|N1) = βC1H
n,n(v|C1) + · · ·+ βC(n−1)!H

n,n(v|C(n−1)!). (5.9)

Since C(2N ) = C(N1) ∪ {C(n−1)!+1} ∪ · · · ∪ {Cn!} and C(N1) ∩ {C(n−1)!+1} ∩
· · · ∩ {Cn!} = ∅, by applying (HG4) again, there exist β, βC(n−1)!+1, . . . , βCn!,

β + βC(n−1)!+1 + · · ·+ βCn! such that for any capacity v on 2N

Hn,2N (v) = βHn,N1(v|N1) + βC(n−1)!+1H
n,n(v|C(n−1)!+1) + · · ·+ βCn!H

n,n(v|Cn!).

Substituting (5.9) in the above and comparing with (5.8), we get in particular
αCi = ββCi for i = 1, . . . , (n− 1)!. Since Ci ∋ {1}, i = 1, . . . , (n− 1)!,

(n−1)!∑

i=1

ββCi =

(n−1)!∑

i=1

αCi =
∑

C∋{1}

αC =
1

n
,

which implies β = 1
n
. Let us take ν on 2N such that

ν|N1(A) :=






0, |A| < 2,
ui, A = {1, i}, i = 2, . . . n,
1, |A| > 2.

Then

Hn,N1(ν|N1) =




∑

C∋{1},{1,2}

βC



Hn
S (u2) + · · ·+




∑

C∋{1},{1,n}

βC



Hn
S (un),

and by (HG5), Hn,N1(ν|N1) = Hn,π(N1)(π ◦ (ν|N1)) holds for any permutation
π on N satisfying π(N1) = N1 (i.e., permutations on N \ {1}), so that we
obtain

∑

C∋{1},{1,2}

βC = · · · =
∑

C∋{1},{1,n}

βC =
1

n− 1
, (5.10)

which implies for i = 2, . . . , n,

∑

C∋{1},{1,i}

αC =
∑

C∋{1},{1,i}

ββC =
1

n(n− 1)
.

Applying the same method for Ni := {A ∈ 2X | A � {i}, A � {i} or
A = {i}}, i = 2, . . . , n, and

ν|Ni(A) :=






0, |A| < 2,
uj , A = {i, j}, i �= j,
1, |A| > 2,
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we obtain for every i and j, i �= j,

∑

C∋{i},{i,j}

αC =
∑

C∋{i},{i,j}

ββC =
1

n(n− 1)
.

Next, we consider the set system N1,2 := {A ∈ 2X | A � {1}, A � {1, 2}
or A = {1}, {1, 2}}, and we assume w.l.o.g. that C(N1,2) := {C1, . . . , C(n−2)!}.
Applying (HG4) twice, there exist unique positive γC1 , . . . , γC(n−2)!,
γ, γC(n−2)!+1, . . . , γC(n−1)!, γC1 + · · · + γC(n−2)! = 1, and γ + γC(n−2)!+1 + · · · +

γC(n−1)! = 1, such that for any capacity v on 2N it holds

Hn,N1,2(v|N1,2) = γC1H
n,n(v|C1) + · · ·+ γC(n−2)!H

n,n(v|C(n−2)!)

Hn,N1(v|N1) = γHn,N1,2(v|N1,2) + γC(n−2)!+1H
n,n(v|C(n−2)!+1) + · · ·

+γC(n−1)!H
n,n(v|C(n−1)!).

Substituting the first equation into the second and comparing with (5.9), we
get in particular βCi = γγCi , hence αCi = βγγCi , for i = 1, . . . , (n − 2)!.
Taking a capacity ν on 2N such that

ν|N1,2(A) :=






0, |A| < 3,
ui, A = {1, 2, i}, i = 3, . . . n,
1, |A| > 3,

we have

Hn,N1,2(ν|N1,2) =






∑

C∋{1},{1,2},
{1,2,3}

γC




Hn

S (u3) + · · ·+






∑

C∋{1},{1,2},
{1,2,n}

γC




Hn

S (un).

By (HG5), using π on N satisfying π(N1,2) = N1,2 (i.e., the permutations on
N \ {1, 2}), we obtain

∑

C∋{1},{1,2},
{1,2,3}

γC = · · · =
∑

C∋{1},{1,2},
{1,2,n}

γC =
1

n− 2
,

which implies for i = 3, . . . , n, and using (5.10), we have

∑

C∋{1},{1,2},
{1,2,i}

αC =
1

n(n− 1)(n− 2)
.

Applying the same method for Ni,j := {A ∈ 2N | A � {i}, A � {i, j} or
A = {i}, {i, j}}, i �= j, we obtain for every i,j,k satisfying i �= j, i �= k, j �= k,

∑

C∋{i},{i,j}
{i,j,k}

αC =
∑

C∋{i},{i,j}
{i,j,k}

αβγC =
1

n(n− 1)(n− 2)
.
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Repeating a similar process up to Ni1,...,in−1 := {A ∈ 2N | A � {i1}, A �
{i1, . . . , in−1} or A = {i1}, {i1, i2}, . . . , {i1, . . . , in−1}}, we finally obtain αCi =
1
n!

, i = 1, . . . , n!, that is,

Hn,2N (v) =
1

n!

∑

C∈C(2N )

Hn,n(v|C).

Consider a regular set system N � 2N . We can write 2N as the union of
all its n! maximal chains:

2N = C1 ∪ C2 ∪ · · · ∪ Cn!.

For commodity, let us call C1, . . . , Ck the chains which are not in N, hence

C(2N) = {C1} ∪ · · · ∪ {Ck} ∪ C(N).

and
{C1} ∩ · · · ∩ {Ck} ∩ C(N) = ∅.

By (HG4), we can find unique positive α1, . . . , αk, αk+1 with
∑k+1

i=1 αi = 1,
such that

Hn,2N (v) = α1H
n,1(v|C1) + · · ·+ αkH

n,1(v|Ck) + αk+1H
n,N(v|N).

Similarly, it exists unique positive βk+1, . . . , βn! with
∑n!

i=k+1 βi = 1, such
that

Hn,N(v|N) = βk+1H
n,1(v|Ck+1) + · · ·+ βn!H

n,1(v|Cn!).

Substituting in the above leads to

Hn,2N (v) = α′1H
n,1(v|C1) + · · ·+ α′kH

n,1(v|Ck)

+α′k+1H
n,1(v|Ck+1) + · · ·+ α′n!H

n,1(v|Cn!),

with α′i = αi for i = 1, . . . , k, and α′i = αk+1βi for i = k + 1, . . . , n!. We
have proved that α′1 = α′2 = · · · = α′n! =

1
n!

, for i = 1, . . . , n!. It follows that
k
n!

+ αk+1 = 1, hence

αk+1 =
n!− k

n!
=
|C(N)|

n!

by definition of Ck+1, . . . , Cn!. Now, αk+1βi = 1
n!

for i = k + 1, . . . , n!, hence
βi = 1

|C(N)|
, for i = k + 1, . . . , n!. Finally we get

Hn,N(v|N) =
1

|C(N)|

n!∑

i=k+1

Hn,1(v|Ci)

=
1

|C(N)|

∑

C∈C(N)

HS(p
v,C)

using (5.1). �
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Proof of Theorem 16 (necessity) When v is a capacity on a totally
ordered regular set system, HD(v) = HHG(v) holds. Hence (D) implies
(HG1), (HG2) and (HG3) by Theorem 14.

We show that (D) satisfies (HG4′). We have, with set systems N1, . . . ,Nk
satisfying conditions of (HG4′),

Hn,N
D (v) = min

C∈C(N)
Hn
S (pv,C)

= min

{
min

C∈C(N1)
Hn
S (pv,C), . . . , min

C∈C(Nk)
Hn
S (pv,C)

}

= min
{
Hn,N1
D (v1), . . . , H

n,Nk
D (vk)

}

with usual notations.
(sufficiency) When v is a capacity on a totally ordered regular set system,
HD(v) = HHG(v) holds. Hence (HG1), (HG2) and (HG3) imply (D) by the
same way of the proof of Theorem 14.

Next, let v be a capacity on N which is regular and not totally ordered,
and write N as the union of all its maximal chains: N = C1 ∪ · · · ∪Ck. Then
by application of (HG4′) we have

Hn,N(v) = min
{
Hn,C1(v|C1), . . . , H

n,Ck(v|Ck)
}

= min
{
Hn
S (pv|C1 ,C1), . . . , Hn

S (pvCk ,Ck))
}

= min
C∈C(N)

Hn
S (pv,C),

= Hn,N
D (v). �

6 Applications and concluding remarks

We have proposed an axiomatization of the entropy of capacities defined on
regular set systems, in a spirit very close to the axiomatization of Faddeev for
the Shannon entropy. The key axiom which is additional is (HG4), binding
the computation of entropy to the structure of the set system.

Essentially, two comments are of interest here. The first one concerns
the nature of the 5 axioms we propose. Axioms (HG1), (HG3) and (HG5)
clearly correspond to the three axioms of Faddeev for the Shannon entropy.
Axiom (HG2) is necessary in our framework, but is implicit for the Shan-
non entropy. Put differently, (HG2) too is characteristic of Shannon entropy.
Hence, only axiom (HG4) is specific to our construction; it is able to deal with
the structure of the set system, provided it is regular. It is responsible for the
general form of the entropy, that is, a weighted average of classical Shannon
entropies along maximal chains. This suggests the following: as other en-
tropies have been proposed for probabilities, together with axiomatizations,
it would be possible to carry the present framework for axiomatizing these
other entropies, just replacing axioms (HG1), (HG2), (HG3) and (HG5) by
axioms which are specific to these entropies.
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Another comment concerns the usefulness of regular set systems. Would
it be possible to consider yet more general structures, i.e., set systems which
are not regular? Formally, Definition 11 can be applied to any set system,
since maximal chains are always defined, and thus probability distributions
pv,C too. A fundamental problem is however that these chains need not
to be of the same length, whose direct consequence is that the probability
distribution would be undefined for some elements of N . For example, take
N
′ := {∅, {1}, {1, 2, 3}}, which is totally ordered but not regular, and let v

be a capacity defined on N′. Computing the entropy of v by Definition 11
leads to:

H(v) = −v({1}) log v({1})− (v({1, 2, 3})−v({1})) log(v({1, 2, 3})−v({1})).

Clearly, the quantities v({1}), v({1, 2, 3}) − v({1}) cannot be considered as
the values of a probability distribution on N . Another troublesome fact is
the following. We know that classically the entropy takes its maximal value
when v is an additive uniform capacity, that is, which satisfies v(A) = |A|/n.
But for v on N′, H(v) takes the maximal value when v({1}) = 1/2 which is
not the additive uniform capacity.

It seems then, as far as maximal chains are considered as fundamen-
tal ingredients, that regular set systems are the most general structure we
can consider. It is important to note that regular set systems encompass
many well-known ordered structures. This is studied in details in [10], and it
turns out that distributive lattices, set lattices, convex geometries and anti-
matroids are strictly included into regular set systems. The following simple
example shows that a regular set system is not necessarily a lattice: take N =
{1, 2, 3, 4} andN := {∅, {1}, {3}, {1, 2}, {2, 3}, {1, 4}, {3, 4}, {1, 2, 3}, {1, 3, 4}, N}.
Then, {1} and {3} have no supremum. Now, the case of lattices is obviously
a particular case of interest. We refer the reader to [8] where we have exam-
ined the application of our definition of entropy to the case where capacities
are defined on lattices (not necessarily set lattices).
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