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SEMICLASSICAL SCATTERING AMPLITUDE AT THE MAXIMUM OF

THE POTENTIAL

IVANA ALEXANDROVA, JEAN-FRANÇOIS BONY, AND THIERRY RAMOND

Abstract. We study the scattering amplitude for Schrödinger operators at a critical energy
level, which is a unique non-degenerate maximum of the potential. We do not assume that
the maximum point is non-resonant and use results of [5] to analyze the contributions of
the trapped trajectories. We prove a semiclassical expansion of the scattering amplitude
and compute its leading term. We show that it has different orders of magnitude in specific
regions of phase space. We also prove upper and lower bounds for the resolvent in this
setting.

1. Introduction

We consider the semiclassical behavior of the scattering amplitude at energy E > 0 for
Schrödinger operators

(1.1) P (x, hD) = −h
2

2
∆ + V (x)

where V is a real valued C∞ function on R
n, which vanishes at infinity. We suppose that

E is close to a critical energy level E0 for P , which corresponds to a non-degenerate global
maximum of the potential. Here, we address the case where this maximum is unique.

Let us recall that, if V (x) = O(〈x〉−ρ) for some ρ > (n+ 1)/2, then for any ω 6= θ ∈ S
n−1

and E > 0, the problem




P (x, hD)u = Eu,

u(x, h) = ei
√

2Ex·ω/h + A(ω, θ, E, h)
ei
√

2Ex·θ/h

|x|(n−1)/2
+ o(|x|(1−n)/2) as x→ +∞,

x

|x| = θ,

has a unique solution in L2
loc(R

n). The scattering amplitude at energy E for the incoming
direction ω and the outgoing direction θ is the real number A(ω, θ, E, h).

For potentials that are not decaying that fast at infinity, the scattering amplitude cannot
be so easily defined through a stationary approach: If V (x) = O(〈x〉−ρ) for some ρ > 1,
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the scattering matrix S(E, h) at energy E can be given in terms of the wave operators (see
Section 4 below). Then, writing

(1.2) S(E, h) = Id− 2iπT (E, h),

one can see that T (E, h) is a compact operator on L2(Sn−1), whose kernel T (ω, θ, E, h) is
smooth away from the diagonal in S

n−1 × S
n−1. Then, the scattering amplitude is given for

θ 6= ω, by

(1.3) A(ω, θ, E, h) = c(E)h(n−1)/2T (ω, θ, E, h),

where

(1.4) c(E) = −2π(2E)−
n−1

4 (2π)
n−1

2 e−i
(n−3)π

4 .

We proceed here as in [32], where D. Robert and H. Tamura have studied the semiclassical
behavior of the scattering amplitude for short range potentials at a non-trapping energy E .
An energy E is said to be non-trapping when K(E), the trapped set at energy E, is empty.
This trapped set is defined as

(1.5) K(E) =
{
(x, ξ) ∈ p−1(E); exp(tHp)(x, ξ) 6→ ∞ as t→ ±∞

}
,

where Hp is the Hamiltonian vector field associated to the principal symbol p(x, ξ) = 1
2ξ

2 +
V (x) of the operator P . Notice that the scattering amplitude has been first studied, in the
semiclassical regime, by B. Vainberg [34] and Y. Protas [29] in the case of compactly supported
potential and for non-trapping energies, where they obtained the same type of result.

Under the non-trapping assumption, and some other non-degeneracy condition (in fact our
assumption (A4) below), D. Robert and H. Tamura have shown that the scattering amplitude
has an asymptotic expansion with respect to h. This non-degeneracy assumption implies in
particular that there is a finite number N∞ of classical trajectories for the Hamiltonian p,
with asymptotic direction ω for t→ −∞ and asymptotic direction θ as t→ +∞. Robert and
Tamura’s result is the following asymptotic expansion for the scattering amplitude:

(1.6) A(ω, θ, E, h) =

N∞∑

j=1

eiS
∞
j /h

∑

m≥0

aj,m(ω, θ, E)hm + O(h∞), h→ 0,

where S∞
j is the classical action along the corresponding trajectory. Also, they have computed

the first term in this expansion, showing that it can be given in terms of quantities attached
to the corresponding classical trajectory only.

V. Guillemin [18] has established a similar asymptotic expansion in the setting of smooth
compactly-supported metric perturbations of the Laplacian. For short-range potentials, K.
Yajima has proved in [35] an asymptotic expansion of the form (1.6) of the scattering am-
plitude in the L2 sense. Most recently, A. Hassell and J. Wunsch [19] have shown that
the scattering matrix at non-trapping energies on a compact manifold with boundary with
a scattering matric is a Legendrian-Lagrangian distribution associated to the total sojourn
relation.

There is also a small number of results concerning the scattering amplitude when the non-
trapping assumption is not fulfilled. In [26] L. Michel has shown that, if there is no trapped
trajectory with incoming direction ω, and θ is ω-regular (see the discussion after (2.7) below),
and if there is a resonance free complex neighborhood of E of size ∼ hN for some N ∈ N, then
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A(ω, θ, E, h) is still given by (1.6). The potential is also supposed to be analytic in a sector
out of a compact set, and the assumption on the resonance free domain near E amounts to
an estimate on the boundary values of the meromorphic extension of the truncated resolvent
of the form

(1.7) ‖χ(P − (E ± i0))−1χ‖ = O(h−N ), χ ∈ C∞
0 (Rn).

Note that, these assumptions allow the existence of a non-empty trapped set.

In [2] and [3], the first author has shown that at non-trapping energies or in Michel’s
setting, the scattering amplitude is an h-Fourier integral operator associated to a natural
scattering relation. These results imply that the scattering amplitude admits an asymptotic
expansion, in the sense of oscillatory integrals, even without the non-degeneracy assumption.
In particular, the expansion (1.6) is recovered under the non-degeneracy assumption.

In [23], A. Lahmar-Benbernou and A. Martinez have computed the scattering amplitude
at energy E ∼ E0, in the case where the trapped set K(E0) consists in one single point
corresponding to a local minimum of the potential (a well in the island situation). In that
case, the estimate (1.7) is not true, and their result is obtained through a construction of the
resonant states.

In the present work, we compute the scattering amplitude at energy E ∼ E0 in the case
where the trapped set K(E0) corresponds to the unique global maximum of the potential.
The one-dimensional case has been studied in [30, 14, 15], with specific techniques, and we
consider here the general n > 1 dimensional case.

Notice that J. Sjöstrand in [33], and P. Briet, J.-M. Combes and P. Duclos in [7, 8] have
described the resonances close to E0 in the case where V is analytic in a sector around R

n.
From their result, it follows that Michel’s assumption on the existence of a not too small
resonance-free neighborhood of E0 is satisfied. However, we show below (see Proposition 2.5)
that for any ω ∈ S

n−1, there is at least one half-trapped trajectory with incoming direction
ω, so that Michel’s result never applies here.

Here, we do not assume analyticity for V . We compute the contributions to the scattering
amplitude arising from the classical trajectories reaching the unstable equilibrium point, which
corresponds to the top of the potential barrier. At the quantum level, tunnel effect occurs,
which permits the particle to pass through this point. Our computation here relies heavily
on [5], where a precise description of this phenomena has been obtained. In a forthcoming
paper, we shall show that in this case also, the scattering amplitude is an h-Fourier integral
operator.

This paper is organized in the following way. In Section 2, we describe our assumptions, and
state our main results: a resolvent estimate, and the asymptotic expansion of the scattering
amplitude in the semiclassical regime. Section 3 is devoted to the proof of the resolvent
estimate, from which we deduce in Section 4 estimates similar to those in [32]. In that
section, we also recall briefly the representation formula for the scattering amplitude proved
by H. Isozaki and H. Kitada, and introduce notations from [32]. The computation of the
asymptotic expansion of the scattering amplitude is conducted in sections 5, 6 and 7, following
the classical trajectories. Eventually, we have put in four appendices the proofs of some side
results or technicalities.
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2. Assumptions and main results

We suppose that the potential V satisfies the following assumptions

(A1) V is a C∞ function on R
n, and, for some ρ > 1,

∂αV (x) = O(〈x〉−ρ−|α|).

(A2) V has a non-degenerate maximum point at x = 0, with E0 = V (0) > 0 and

∇2V (0) =




−λ2
1

. . .

−λ2
n


 , 0 < λ1 ≤ λ2 ≤ . . . ≤ λn.

(A3) The trapped set at energy E0 is K(E0) = {(0, 0)}.

Notice that the assumptions (A1)–(A3) imply that V has an absolute global maximum
at x = 0. Indeed, if L = {x 6= 0; V (x) ≥ E0} was non empty, the geodesic, for the

Agmon distance (E0 − V (x))
1/2
+ dx, between 0 and L would be the projection of a trapped

bicharacteristic (see [1, Theorem 3.7.7]).

As in D. Robert and H. Tamura in [32], one of the key ingredient for the study of the
scattering amplitude is a suitable estimate for the resolvent. Using the ideas in [5, Section 4],
we have obtained the following result, that we think to be of independent interest.

Theorem 2.1. Suppose assumptions (A1), (A2) and (A3) hold, and let α > 1
2 be a fixed

real number. We have

(2.1) ‖(P − (E ± i0))−1‖α,−α . h−1| lnh|,
uniformly for |E − E0| ≤ δ, with δ > 0 small enough. Here ‖Q‖α,β denotes the norm of the

bounded operator Q from L2(〈x〉α dx) to L2(〈x〉β dx).

Moreover, we prove in the Appendix B that our estimate is not far from optimal. Indeed,
we have the

Proposition 2.2. Let ψ ∈ C∞
0 (Rn) with ψ(0) 6= 0. Under the assumptions (A1) and (A2),

we have

(2.2) ‖ψ(P − (E0 ± i0))−1ψ‖ & h−1
√
| lnh|.

In particular,

(2.3) ‖(P − (E ± i0))−1‖α,−α & h−1
√
| lnh|,

for all α > 1
2 .

We would like to mention that in the case of a closed hyperbolic orbit, the same upper
bound has been obtained by N. Burq [9] in the analytic category, and in a recent paper [11]
by H. Christianson in the C∞ setting.

As a matter of fact, in the present setting, S. Nakamura has proved in [28] an O(h−2)
bound for the resolvent. Nakamura’s estimate would be sufficient for our proof of Theorem
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2.6, but it is not sharp enough for the computation of the total scattering cross section along
the lines of D. Robert and H. Tamura in [31]. In that paper, the proof relies on a bound
O(h−1) for the resolvent, but it is easy to see that an estimate like O(h−1−ε) for any small
enough ε > 0 is sufficient. If we denote

(2.4) σ(ω,E, h) =

∫

Sn−1

|A(ω, θ, E, h)|2dθ,

the total scattering cross-section, and following D. Robert and H. Tamura’s work, our resolvent
estimate gives the

Theorem 2.3. Suppose assumptions (A1), (A2) and (A3) hold, and that ρ > n+1
2 , n ≥ 2.

If |E − E0| < δ for some δ > 0 small enough, then

(2.5) σ(ω,E, h) = 4

∫

ω⊥

sin2

{
2−1(2E)−1/2h−1

∫

R

V (y + sω)ds

}
dy + O

(
h−(n−1)/(ρ−1)

)
.

Now we state our assumptions concerning the classical trajectories associated with the
Hamiltonian p, that is curves t 7→ γ(t, x, ξ) = exp(tHp)(x, ξ) for some initial data (x, ξ) ∈
T ∗

R
n. Let us recall that, thanks to the decay of V at infinity, for given α ∈ S

n−1 and
z ∈ α⊥ ∼ R

n−1 (the impact plane), there is a unique bicharacteristic curve

(2.6) γ±(t, z, α,E) = (x±(t, z, α,E), ξ±(t, z, α,E))

such that

(2.7)

lim
t→±∞

|x±(t, z, α,E) −
√

2Eαt− z| = 0,

lim
t→±∞

|ξ±(t, z, α,E) −
√

2Eα| = 0.

We shall denote by Λ−
ω the set of points in T ∗

R
n lying on trajectories going to infinity with

direction ω as t → −∞, and Λ+
θ the set of those which lie on trajectories going to infinity

with direction θ as t→ +∞:

(2.8)
Λ−
ω =

{
γ−(t, z, ω,E0) ∈ T ∗

R
n; z ∈ ω⊥, t ∈ R

}
,

Λ+
θ =

{
γ+(t, z, θ, E0) ∈ T ∗

R
n; z ∈ θ⊥, t ∈ R

}
.

From the discussion of Section 4 one can see that Λ−
ω and Λ+

θ are Lagrangian submanifolds
of T ∗

R
n.

Under the assumptions (A1), (A2) and (A3) there are only two possible behaviors for
x±(t, z, α,E0) as t→ ∓∞: either it escapes to ∞, or it goes to 0.

First we state our assumptions for the first kind of trajectories. For these, we also have,
for some (r∞(z, ω,E0), ξ∞(z, ω,E0)),

(2.9)
lim

t→+∞
ξ−(t, z, ω,E0) = ξ∞(z, ω,E0),

lim
t→+∞

x−(t, z, ω,E0) − ξ∞(z, ω,E0)t = r∞(z, ω,E0),

and we shall say that the trajectory γ−(t, z, ω,E0) has initial direction ω and final direction
θ = ξ∞(z, ω,E0)/

√
2E0. As in [32] we shall make some non-degeneracy assumption on the
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trajectories with initial direction ω. This assumption can be given in terms of the angular
density

(2.10) σ̂(z) = |det(ξ∞(z, ω,E0), ∂z1ξ∞(z, ω,E0), . . . , ∂zn−1ξ∞(z, ω,E0))|.
Definition 2.4. The outgoing direction θ ∈ S

n−1 is called regular for the incoming direction
ω ∈ S

n−1, or ω-regular, if θ 6= ω and, for all z′ ∈ ω⊥ with ξ∞(z′, ω, E0) =
√

2E0θ, the map
ω⊥ ∋ z 7→ ξ∞(z, ω,E0) ∈ S

n−1 is non-degenerate at z′, i.e. σ̂(z′) 6= 0.

We fix the incoming direction ω ∈ S
n−1, and we assume that

(A4) Λ−
ω ∩ Λ+

θ is a finite set of Hamiltonian trajectories (γ∞j )1≤j≤N∞ , and the direction

θ ∈ S
n−1 is ω-regular.

We denote γ∞j (t) = γ∞(t, z∞j ) = (x∞j (t), ξ∞j (t)). Then one can show that Λ−
ω and Λ+

θ intersect
transversely along each of these trajectories.

We now turn to trapped bicharacteristics. Let us notice that the linearization Fp at (0, 0)
of the Hamilton vector field Hp has eigenvalues −λn, . . . ,−λ1, λ1, . . . , λn. Thus (0, 0) is a
hyperbolic fixed point for Hp, and the Stable Manifold Theorem gives the existence of a
stable incoming Lagrangian manifold Λ− and a stable outgoing Lagrangian manifold Λ+

characterized by

(2.11) Λ± = {(x, ξ) ∈ T ∗
R
n; exp(tHp)(x, ξ) → 0 as t→ ∓∞} .

In this paper, we shall describe the contribution to the scattering amplitude of the trapped
trajectories, that is those going from infinity to the fixed point (0, 0). We have proved in
Appendix A the following result, which shows that there are always such trajectories.

Proposition 2.5. For every ω, θ ∈ S
n−1, we have

(2.12) Λ−
ω ∩ Λ− 6= ∅ and Λ+

θ ∩ Λ+ 6= ∅.

We suppose that

(A5) Λ−
ω and Λ− (resp. Λ+

θ and Λ+) intersect in a finite number N− (resp N+) of bichar-
acteristic curves, with each intersection transverse.

We denote these curves, respectively,

(2.13) γ−k : t 7→ γ−(t, z−k ) = (x−k (t), ξ−k (t)), 1 ≤ k ≤ N−,

and

(2.14) γ+
ℓ : t 7→ γ+(t, z+

ℓ ) = (x+
ℓ (t), ξ+ℓ (t)), 1 ≤ ℓ ≤ N+.

Here, the z−k (resp. the z+
ℓ ) belong to ω⊥ (resp. θ⊥) and determine the corresponding curve

by (2.7).

We recall from [20, Section 3] (see also [5, Section 5]), that each integral curve γ±(t) =
(x±(t), ξ±(t)) ∈ Λ± satisfies, in the sense of expandible functions (see Definition 6.1 below),

(2.15) γ±(t) ∼
∑

j≥1

γ±j (t)e±µjt, as t→ ∓∞,
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where µ1 = λ1 < µ2 < . . . is the strictly increasing sequence of linear combinations over N of
the λj ’s. Here, the functions γ±j : R → R

2n are polynomials, that we write

(2.16) γ±j (t) =

M ′
j∑

m=0

γ±j,mt
m.

Considering the base space projection of these trajectories, we denote

(2.17) x±(t) ∼
+∞∑

j=1

g±j (t)e±µjt, as t→ ∓∞, g±j (t) =

M ′
j∑

m=0

g±j,mt
m.

Let us denote by ̂ the (only) integer such that µ̂ = 2λ1. We prove in Proposition 6.11

below that if j < ̂, then M ′
j = 0, or more precisely, that γ±j (t) = γ±j is a constant vector in

Ker(Fp ∓ λj). We also have M ′
̂ ≤ 1, and g−̂,1 can be computed in terms of g−1 .

In this paper, we will denote the objects associated to the k-th incoming or ℓ-th outgoing
trajectory by attaching z−k or z+

ℓ to the notation. Concerning the incoming trajectories, we
shall assume that

(A6) For each k ∈ {1, . . . , N−}, g−1 (z−k ) 6= 0.

Finally, we state our assumptions for the outgoing trajectories γ+
ℓ ⊂ Λ+ ∩Λ+

θ . First of all,
it is easy to see, using Hartman’s linearization theorem, that, for all ℓ, there always exists
m ∈ N such that g+

m(z+
ℓ ) 6= 0. We let

(2.18) ℓℓℓ = ℓℓℓ(ℓ) = min{m; g+
m(z+

ℓ ) 6= 0}

be the smallest of these m’s. We know that µℓℓℓ is one of the λj ’s, and that M ′
ℓℓℓ = 0.

In [5], we have been able to describe the branching process between an incoming curve
γ− ⊂ Λ− and an outgoing curve γ+ ⊂ Λ+ provided 〈g−1 |g+

1 〉 6= 0 (see the definition for

Λ̃+(ρ−) before [5, Theorem 2.6]). Here, for the computation of the scattering amplitude,
we can relax this assumption a lot, and analyze the branching in other cases which we now
describe. Let us denote, for a given pair of paths (γ−(z−k ), γ+(z+

ℓ )) in (Λ−
ω ∩Λ−)× (Λ+

θ ∩Λ+),

(2.19) M2(k, ℓ) = − 1

8λ1

∑

j∈I1(2λ1)
α,β∈I2(λ1)

∂j∂
βV (0)

(g−1 (z−k ))β

β!
∂j∂

αV (0)
(g+

1 (z+
ℓ ))α

α!
,

and

M1(k, ℓ) = −
∑

j∈I1

α∈I2(λ1)

∂j∂
αV (0)

α!

(
(g−1 (z−k ))α(g+

̂,0(z
+
ℓ ))j + (g−̂,0(z

−
k ))j(g

+
1 (z+

ℓ ))α
)

+
∑

α,β∈I2(λ1)

(g−1 (z−k ))α

α!

(g+
1 (z+

ℓ ))β

β!
Cα,β ,(2.20)
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where

Cα,β = − ∂α+βV (0) +
∑

j∈I1\I1(2λ1)

4λ2
1

λ2
j (4λ

2
1 − λ2

j )
∂j∂

αV (0)∂j∂
βV (0)

−
∑

j∈I1

γ,δ∈I2(λ1)
γ+δ=α+β

(γ + δ)!

γ! δ!

1

2λ2
j

∂j∂
γV (0)∂j∂

δV (0).(2.21)

Here, we have set I1 = {1, . . . , n}, that we sometimes identify with {1j , j = 1 . . . n}, 1j =
(δij)i=1,...,n ∈ N

n and

(2.22) Im(µ) = {β ∈ N
n; β = 1k1 + · · · + 1km with λk1 = · · · = λkm = µ},

the set of multi-indices β of length |β| = m with each index of its non-vanishing components
in the set {j ∈ N; λj = µ}. We also denote Im ⊂ N

n the set of all multi-indices of length m.

We will suppose that

(A7) For each pair of paths (γ−(z−k ), γ+(z+
ℓ )), k ∈ {1, . . . , N−}, ℓ ∈ {1, . . . , N+}, one of the

three following cases occurs:

(a) The set
{
m < ̂ ; 〈g−m(z−k )|g+

m(z+
ℓ )〉 6= 0

}
is not empty. Then we denote

k = min
{
m < ̂ ; 〈g−m(z−k )|g+

m(z+
ℓ )〉 6= 0

}
.

(b) For all m < ̂, we have 〈g−m(z−k )|g+
m(z+

ℓ )〉 = 0, and M2(k, ℓ) 6= 0.

(c) For all m < ̂, we have 〈g−m(z−k )|g+
m(z+

ℓ )〉 = 0, M2(k, ℓ) = 0 and M1(k, ℓ) 6= 0.

As one could expect (see [32], [30] or [15]), action integrals appear in our formula for the
scattering amplitude. We shall denote

S∞
j =

∫ +∞

−∞
(|ξ∞j (t)|2 − 2E0)dt− 〈r∞(z∞j , ω, E0)|

√
2E0θ〉, j ∈ {1, . . . , N∞},(2.23)

S−
k =

∫ +∞

−∞

(
|ξ−k (t)|2 − 2E01t<0

)
dt, k ∈ {1, . . . , N−},(2.24)

S+
ℓ =

∫ +∞

−∞

(
|ξ+ℓ (t)|2 − 2E01t>0

)
dt, ℓ ∈ {1, . . . , N+},(2.25)

and ν∞j , ν+
ℓ , ν−k the Maslov indexes of the curves γ∞j , γ+

ℓ , γ−k respectively. Let also

D−
k = lim

t→+∞

∣∣∣ det
∂x−(t, z, ω,E0)

∂(t, z)
|z=z−k

∣∣∣ e−(Σjλj−2λ1)t,(2.26)

D+
ℓ = lim

t→−∞

∣∣∣ det
∂x+(t, z, ω,E0)

∂(t, z)
|z=z+ℓ

∣∣∣ e(Σjλj−2λℓℓℓ)t,(2.27)

be the Maslov determinants for γ−k , and γ+
ℓ respectively. We show below that 0 < D−

k , D
+
ℓ <

+∞. Eventually we set

(2.28) Σ(E, h) =
n∑

j=1

λj
2

− i
E − E0

h
·
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Then, the main result of this paper is the

Theorem 2.6. Suppose assumptions (A1) to (A7) hold, and that E ∈ R is such that
E − E0 = O(h). Then

A(ω, θ, E, h) =

N∞∑

j=1

Areg
j (ω, θ, E, h) +

N−∑

k=1

N+∑

ℓ=1

Asing
k,ℓ (ω, θ, E, h) + O(h∞),(2.29)

where

(2.30) Areg
j (ω, θ, E, h) ∼ eiS

∞
j /h

∑

m≥0

areg
j,m(ω, θ, E)hm,

with

(2.31) areg
j,0 (ω, θ, E) =

e−iν
∞
j π/2

σ̂(z∞j )1/2
e−〈r∞(z∞j ,ω,E0)|

√
2E0

−1
θ〉E−E0

h ·

Moreover we have

• In case (a)

Asing
k,ℓ (ω, θ, E, h) ∼ ei(S

−
k +S+

ℓ )/h
∑

m≥0

asing
k,ℓ,m(ω, θ, E, lnh)h(Σ(E)+µ̂m)/µk−1/2,(2.32)

where the asing
k,ℓ,m(ω, θ, E, lnh) are polynomials with respect to lnh, and

asing
k,ℓ,0(ω, θ, E, lnh) =

eiπ/4E(n−1)/4

2(n+1)/4
√
π

( n∏

j=1

λj

)−1/2
Γ
(Σ(E)

µk

)(2λ1λℓℓℓ)
3/2

µk

× e−iν
+
ℓ π/2e−iν

−
k π/2(D−

k D
+
ℓ )−1/2

× |g−1 (z−k )| |g+
ℓℓℓ (z+

ℓ )|
(
2iµk

〈
g−
k

(z−k )
∣∣g+

k
(z+
ℓ )

〉)−Σ(E)/µk .(2.33)

• In case (b)

(2.34) Asing
k,ℓ (ω, θ, E, h) = ei(S

+
ℓ +S−

k )/hasing
k,ℓ (ω, θ, E)

hΣ(E)/2λ1−1/2

| lnh|Σ(E)/λ1
(1 + o(1)),

where

asing
k,ℓ (ω, θ, E) =

eiπ/4E(n−1)/4

2(n+1)/4
√
π

( n∏

j=1

λj

)−1/2
Γ
(Σ(E)

2λ1

)
(2λ1λℓℓℓ)

3/2(2λ1)
Σ(E)/λ1−1

× e−iν
+
ℓ π/2e−iν

−
k π/2(D−

k D
+
ℓ )−1/2

× |g−1 (z−k )| |g+
ℓℓℓ (z+

ℓ )|
(
− iM2(k, ℓ)

)−Σ(E)/2λ1 .(2.35)

• In case (c)

(2.36) Asing
k,ℓ (ω, θ, E, h) = ei(S

+
ℓ +S−

k )/hasing
k,ℓ (ω, θ, E)

hΣ(E)/2λ1−1/2

| lnh|Σ(E)/2λ1
(1 + o(1)),
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where

asing
k,ℓ (ω, θ, E) =

eiπ/4E(n−1)/4

2(n+1)/4
√
π

( n∏

j=1

λj

)−1/2
Γ
(Σ(E)

2λ1

)
(2λ1λℓℓℓ)

3/2(2λ1)
Σ(E)/2λ1−1

× e−iν
+
ℓ π/2e−iν

−
k π/2(D−

k D
+
ℓ )−1/2

× |g−1 (z−k )| |g+
ℓℓℓ (z+

ℓ )|
(
− iM1(k, ℓ)

)−Σ(E)/2λ1 .(2.37)

Here, the µ̂j are the linear combinations over N of the λk’s and µk − µk’s for k ≥ k, and the

function z 7→ z−Σ(E)/µk is defined on C\] −∞, 0] and real positive on ]0,+∞[.

Of course the assumption that 〈g−1 |g+
1 〉 6= 0 (a subcase of (a)) is generic. Without the

assumption (A4), the regular part Areg of the scattering amplitude has an integral rep-
resentation as in [3]. When the assumption (A7) is not fulfilled, that is when the terms
corresponding to the µj with j ≤ ̂ do not contribute, we don’t know if the scattering am-
plitude can be given only in terms of the g±j ’s and of the derivatives of the potential at the
critical point.

3. Proof of the main resolvent estimate

Here we prove Theorem 2.1 using Mourre’s Theory. We start with the construction of an
escape function close to the stationary point (0, 0) in the spirit of [10] and [5]. Since Λ+ and
Λ− are Lagrangian manifolds, one can find a local symplectic map κ : (x, ξ) 7→ (y, η) such
that

(3.1) p(x, ξ) − E0 = B(y, η)y · η,
where (y, η) 7→ B(y, η) is a C∞ mapping from a neighborhood of (0,0) in T ∗

R
n to the space

Mn(R) of n× n matrices with real entries, such that,

(3.2) B(0, 0) =




λ1/2
. . .

λn/2


 .

We denote by U a unitary Fourier integral operator (FIO) microlocally defined in a neigh-
borhood of (0, 0), whose canonical transformation is κ, and we set

(3.3) P̂ = U(P − E0)U
∗.

Here the FIO U∗ is the adjoint of U , and we have UU∗ = Id+O(h∞) and U∗U = Id+O(h∞)

microlocally near (0, 0). Then P̂ is a pseudodifferential operator, with a real (modulo O(h∞))
symbol p̂(y, η) =

∑
j p̂j(y, η)h

j , such that

(3.4) p̂0 = B(y, η)y · η.
We set B1 = Oph(b1),

(3.5) b1(y, η) =
(

ln
〈 y√

hM

〉
− ln

〈 η√
hM

〉)
χ̃2(y, η),

where M > 1 will be fixed later and χ̃1 ≺ χ̃2 ∈ C∞
0 (T ∗

R
n) with χ̃1 = 1 near (0, 0). In what

follows, we will assume that hM < 1. In particular, b1 ∈ S1/2(| lnh|). Here and in what
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follows, we use the usual notation for classes of symbols. For m an order function, a function
a(x, ξ, h) ∈ C∞(T ∗

R
n) belongs to Sδ(m) when

(3.6) ∀α ∈ N
2n, ∃Cα > 0, ∀h ∈]0, 1], |∂αx,ξa(x, ξ, h)| ≤ Cαh

−δ|α|m(x, ξ).

We also recall that, with Oph(a) denoting the Weyl quantization, if a ∈ Sα(1) and b ∈ Sβ(1),
with α, β < 1/2, we have

(3.7)
[
Oph(a),Oph(b)

]
= Oph

(
ih{b, a}

)
+ h3(1−α−β) Oph(r),

with r ∈ Smin(α,β)(1): In particular the term of order 2 vanishes.

Hence, we have here

(3.8) [B1, P̂ ] = Oph
(
ih{p̂0, b1}

)
+ | lnh|h3/2 Oph(rM ),

with rM ∈ S1/2(1). The semi-norms of rM may depend on M . We have

(3.9) {p̂0, b1} = c1 + c2,

with

c1 =
(

ln
〈 y√

hM

〉
− ln

〈 η√
hM

〉)
{p̂0, χ̃2}(3.10)

c2 =
{
p̂0, ln

〈 y√
hM

〉
− ln

〈 η√
hM

〉}
χ̃2

=
((
By + (∂ηB)y · η

)
· y

hM + y2
+

(
Bη + (∂yB)y · η

)
· η

hM + η2

)
χ̃2.(3.11)

The symbols c1 ∈ S1/2(| lnh|), c2 ∈ S1/2(1) satisfy supp(c1) ⊂ supp(∇χ̃2). Let ϕ̃ ∈
C∞

0 (T ∗
R
n) be a function such that ϕ̃ = 0 near (0, 0) and ϕ̃ = 1 near the support of ∇χ̃2. We

have

Oph(c1) = Oph(ϕ̃)Oph(c1)Oph(ϕ̃) + O(h∞)

≥− C1h| lnh|Oph(ϕ̃)Oph(ϕ̃) + O(h∞)

≥− C1h| lnh|Oph(ϕ̃
2) + O(h2| lnh|),(3.12)

for some C1 > 0. On the other hand, using [5, (4.96)–(4.97)], we get

(3.13) Oph(c2) ≥ εM−1 Oph(χ̃1) + O(M−2),

for some ε > 0. With the notation A1 = U∗B1U , the formulas (3.8), (3.9), (3.12) and (3.13)
imply

−i[A1, P ] = − iU∗[B1, P̂ ]U + O(h∞)

≥εhM−1U∗ Oph(χ̃1)U − C1h| lnh|U∗ Oph(ϕ̃
2)U

+ O(hM−2) + OM (h3/2| lnh|).(3.14)

Here, χj = χ̃j ◦ κ, j = 1, 2 and ϕ = ϕ̃ ◦ κ are C∞
0 (T ∗

R
n, [0, 1]) functions which satisfy χ1 = 1

near (0, 0) and ϕ = 0 near (0, 0). Using Egorov’s Theorem, (3.14) becomes

(3.15) −i[A1, P ] ≥ εhM−1 Oph(χ1) − C1h| lnh|Oph(ϕ
2) + O(hM−2) + OM (h3/2| lnh|).

Now, we build an escape function outside of supp(χ1) as in [24]. Let 1(0,0) ≺ χ0 ≺
χ1 ≺ χ2 ≺ χ3 ≺ χ4 ≺ χ5 be C∞

0 (T ∗
R
n, [0, 1]) functions with ϕ ≺ χ4. We define a3 =
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g(ξ)(1−χ3(x, ξ))x ·ξ where g ∈ C∞
0 (Rn) satisfies 1p−1([E0−δ,E0+δ]) ≺ g. Using [6, Lemma 3.1],

we can find a bounded, C∞ function a2(x, ξ) such that

(3.16) Hpa2 ≥
{

0 for all (x, ξ) ∈ p−1([E0 − δ, E0 + δ]),

1 for all (x, ξ) ∈ supp(χ4 − χ0) ∩ p−1([E0 − δ, E0 + δ]),

and we set A2 = Oph(a2χ5), A3 = Oph(a3). We denote

(3.17) A = A1 + C2| lnh|A2 + | lnh|A3,

where C2 > 1 will be fixed later. Now let ψ̃ ∈ C∞
0 ([E0 − δ, E0 + δ], [0, 1]) with ψ̃ = 1 near

E0. We recall that ψ̃(P ) is a classical pseudodifferential operator of class Ψ0(〈ξ〉−∞) with

principal symbol ψ̃(p). Then, from (3.15), we obtain

−iψ̃(P )[A,P ]ψ̃(P ) ≥εhM−1ψ̃(P )Oph(χ1)ψ̃(P ) − C1h| lnh|ψ̃(P )Oph(ϕ
2)ψ̃(P )

+ C2h| lnh|Oph
(
ψ̃2(p)(χ4 − χ0)

)
+ C2h| lnh|Oph

(
ψ̃2(p)a2Hpχ5

)

+ h| lnh|Oph
(
ψ̃2(p)(ξ2 − x · ∇V )(1 − χ3)

)

+ h| lnh|Oph
(
ψ̃2(p)x · ξHp(gχ3)

)
+ O(hM−2) + OM (h3/2| lnh|).(3.18)

From (A1), we have x·∇V (x) → 0 as x→ ∞. In particular, if χ3 is equal to 1 in a sufficiently
large zone, we have

(3.19) ψ̃2(p)(ξ2 − x · ∇V )(1 − χ3) ≥ E0ψ̃
2(p)(1 − χ3).

If C2 > 0 is large enough, the G̊arding inequality implies

(3.20)
C2 Oph

(
ψ̃2(p)(χ4 − χ0)

)
− C1 Oph

(
ψ̃2(p)ϕ2

)
+ Oph

(
ψ̃2(p)x · ξHp(gχ3)

)

≥ Oph
(
ψ̃2(p)(χ4 − χ0)

)
+ O(h).

As in [24], we take χ5(x, ξ) = χ̃5(µx)g(ξ) with µ small and χ̃5 ∈ C∞
0 (Rn, [0, 1]), χ̃5 = 1 near

0. Since a2 is bounded, we get

(3.21)
∣∣C2ψ̃

2(p)a2Hpχ5

∣∣ ≤ µC2‖a2‖L∞‖Hpχ̃5‖L∞ . µ.

Therefore, if µ is small enough, (3.19) implies

(3.22) Oph
(
ψ̃2(p)(ξ2−x ·∇V )(1−χ3)

)
+C2 Oph

(
ψ̃2(p)a2Hpχ5

)
≥ E0

2
Oph

(
ψ̃2(p)(1−χ3)

)
.

Then (3.18), (3.20), (3.22) and the G̊arding inequality give, for some ε > 0,

−iψ̃(P )[A,P ]ψ̃(P ) ≥εhM−1 Oph
(
ψ̃2(p)χ1

)
+ h| lnh|Oph

(
ψ̃2(p)(χ4 − χ0)

)

+
E0

2
h| lnh|Oph

(
ψ̃2(p)(1 − χ3)

)
+ O(hM−2) + OM (h3/2| lnh|)

≥εhM−1 Oph
(
ψ̃2(p)

)
+ O(hM−2) + OM (h3/2| lnh|).(3.23)

Choosing M large enough and 1E0 ≺ ψ ≺ ψ̃, we have proved the

Lemma 3.1. Let M be large enough and ψ ∈ C∞
0 ([E0− δ, E0 + δ]), δ > 0 small enough, with

ψ = 1 near E0. Then, we have

(3.24) −iψ(P )[A,P ]ψ(P ) ≥ εhψ2(P ),
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for some ε > 0. Moreover

(3.25) [A,P ] = O(h| lnh|).

Now we estimate [[P,A], A]. From the properties of the support of the χj , we have

[[P,A], A] =[[P,A1], A1] + C2| lnh|[[P,A1], A2]

+ C2| lnh|[[P,A2], A1] + C2
2 | lnh|2[[P,A2], A2] + C2| lnh|2[[P,A2], A3]

+ C2| lnh|2[[P,A3], A2] + | lnh|2[[P,A3], A3] + O(h∞).(3.26)

We also know that P ∈ Ψ0(〈ξ〉2), A2 ∈ Ψ0(〈ξ〉−∞) and A3 ∈ Ψ0(〈x〉〈ξ〉−∞). Then, we can
show that all the terms in (3.26) with j, k = 2, 3 satisfy

(3.27) [[P,Aj ], Ak] ∈ Ψ0(h2).

On the other hand,

(3.28) [[P,A1], A2] = U∗[[P̂ , B1], UA2U
∗]U + O(h∞),

with UA2U
∗ ∈ Ψ0(1). From (3.8) – (3.11), we have [P̂ , B1] ∈ Ψ1/2(h| lnh|) and then

(3.29) [[P,A1], A2] = O(h3/2| lnh|).
The term [[P,A2], A1] gives the same type of contribution. It remains to study

(3.30) [[P,A1], A1] = U∗[[P̂ , B1], B1]U + O(h∞).

Let χ̃3 ∈ C∞
0 (T ∗

R
n), [0, 1]) with χ̃2 ≺ χ̃3 and

(3.31) f =
(

ln
〈 y√

hM

〉
− ln

〈 η√
hM

〉)
χ̃3(y, η) ∈ S1/2(| lnh|).

Then, with a remainder rM ∈ S1/2(1) which differs from line to line,

i[P̂ , B1] =hOph
(
f{χ̃2, p̂0} + c2

)
− h3/2| lnh|Oph(rM )

=hOph(f)Oph({χ̃2, p̂0}) + hOph(c2) + h3/2| lnh|Oph(rM ).(3.32)

In particular, since [P̂ , B1] ∈ Ψ1/2(h| lnh|), c2 ∈ S1/2(1) and f ∈ S1/2(| lnh|),

[[P̂ , B1], B1] =[[P̂ , B1],Oph(fχ̃2)]

= − ih[Oph(f)Oph({χ̃2, p̂0}),Oph(fχ̃2)] − ih[Oph(c2),Oph(fχ̃2)]

+ O(h3/2| lnh|2)
= − ih[Oph(f)Oph({χ̃2, p̂0}),Oph(f)Oph(χ̃2)] + O(h| lnh|)
= − ihOph(f)[Oph({χ̃2, p̂0}),Oph(f)] Oph(χ̃2)

− ihOph(f)Oph(f)[Oph({χ̃2, p̂0}),Oph(χ̃2)]

− ihOph(f)[Oph(f),Oph(χ̃2)] Oph({χ̃2, p̂0}) + O(h| lnh|)
=O(h| lnh|).(3.33)

From (3.26), (3.27), (3.29) and (3.33), we get

(3.34) [[P,A], A] = O(h| lnh|).
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As a matter of fact, using [5], one can show that [[P,A], A] = O(h). Now we can use the
following proposition which is an adaptation of the limiting absorption principle of Mourre
[27] (see also [12, Theorem 4.9], [21, Proposition 2.1] and [4, Theorem 7.4.1]).

Proposition 3.2. Let (P,D(P )) and (A, D(A)) be self-adjoint operators on a separable
Hilbert space H. Assume the following assumptions:

i) P is of class C2(A). Recall that P is of class Cr(A) if there exists z ∈ C \ σ(P ) such
that

(3.35) R ∋ t→ eitA(P − z)−1e−itA,

is Cr for the strong topology of L(H).
ii) The form [P,A] defined on D(A) ∩D(P ) extends to a bounded operator on H and

(3.36) ‖[P,A]‖ . β.

iii) The form [[P,A],A] defined on D(A) extends to a bounded operator on H and

(3.37) ‖[[P,A],A]‖ . γ.

iv) There exist a compact interval I ⊂ R and g ∈ C∞
0 (R) with 1I ≺ g such that

(3.38) ig(P )[P,A]g(P ) & γg2(P ).

v) β2 . γ . 1.

Then, for all α > 1/2, limε→0〈A〉−α(P − E ± iε)−1〈A〉−α exists and

(3.39)
∥∥〈A〉−α(P − E ± i0)−1〈A〉−α

∥∥ . γ−1,

uniformly for E ∈ I.

Remark 3.3. From Theorem 6.2.10 of [4], we have the following useful characterization of
the regularity C2(A). Assume that (ii) and (iv) hold. Then, P is of class C2(A) if and only
if, for some z ∈ C \ σ(P ), the set {u ∈ D(A); (P − z)−1u ∈ D(A) and (P − z)−1u ∈ D(A)}
is a core for A.

Proof. The proof follows the work of Hislop and Nakamura [21]. For ε > 0, we define M2 =
ig(P )[P,A]g(P ) and Gε(z) = (P − iεM2 − z)−1 which is analytic for Re z ∈ I and Im z > 0.
Following [12, Lemma 4.14] with (3.35), we get

(3.40) ‖g(P )Gε(z)ϕ‖ . (εγ)−1/2|(ϕ,Gε(z)ϕ)|1/2,

(3.41) ‖(1 − g(P ))Gε(z)‖ . 1 + εβ‖Gε(z)‖,
and then

(3.42) ‖Gε(z)‖ . (εγ)−1,

for ε < ε0 with ε0 small enough, but independent of β, γ.

As in [21], let Dε = (1 + |A|)−α(1 + ε|A|)α−1 for α ∈]1/2, 1] and Fε(z) = DεGε(z)Dε. Of
course, from (3.42),

(3.43) ‖Fε(z)‖ . (εγ)−1,
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and (3.40) and (3.41) with ϕ = Dεψ give

(3.44) ‖Gε(z)Dε‖ . 1 + (εγ)−1/2‖Fε‖1/2.

The derivative of Fε(z) is given by (see [12, Lemma 4.15])

(3.45) ∂εFε(z) = iDεGεM
2GεDε = Q0 +Q1 +Q2 +Q3,

with

Q0 =(α− 1)|A|(1 + |A|)−α(1 + ε|A|)α−2Gε(z)Dε

+ (α− 1)DεGε(z)|A|(1 + |A|)−α(1 + ε|A|)α−2(3.46)

Q1 =DεGε(1 − g(P ))[P,A](1 − g(P ))GεDε(3.47)

Q2 =DεGε(1 − g(P ))[P,A]g(P )GεDε +DεGεg(P )[P,A](1 − g(P ))GεDε(3.48)

Q3 = −DεGε[P,A]GεDε.(3.49)

From (3.44), we obtain

(3.50) ‖Q0‖ . εα−1
(
1 + (εγ)−1/2‖Fε‖1/2

)
,

and from (3.36), v) of Proposition 3.2, (3.41), and (3.42), we have

(3.51) ‖Q1‖ . γ−1.

Using in addition (3.44), we obtain

(3.52) ‖Q2‖ . 1 + (εγ)−1/2‖Fε‖1/2.

Now we write Q3 = Q4 +Q5 with

Q4 = −DεGε[P − iεM2 − z,A]GεDε(3.53)

Q5 = −iεDεGε[M
2,A]GεDε.(3.54)

For Q4, we have the estimate

(3.55) ‖Q4‖ . εα−1
(
1 + (εγ)−1/2‖Fε‖1/2

)

On the other hand, (3.36), (3.37) and v) imply

(3.56) ‖[M2,A]‖ . γ.

Then (3.44) gives

(3.57) ‖Q5‖ . 1 + ‖Fε‖.
Using the estimates on the Qj , we get

(3.58) ‖∂εFε‖ . εα−1
(
γ−1 + (εγ)−1/2‖Fε‖1/2 + ‖Fε‖

)
.

Using (3.43) and integrating (3.37) N times with respect to ε, we get

(3.59) ‖Fε‖ . γ−1
(
1 + ε2α(1−2−N )−1

)
,

so that, for N large enough,

(3.60) lim sup
δ→0

sup
E∈I

‖〈A〉−α(P − E ± iδ)−1〈A〉−α‖ . γ−1.

Using, as in [21], the fact that z 7→ F0(z) is Hölder continuous, we prove the existence of the
limit limIm z→0 F0(z) for Re z ∈ I and the proposition follows from (3.60). �
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From Lemma 3.1 and (3.34), we can apply Proposition 3.2 with A = A/| lnh|, β = h and
γ = h/| lnh|. Therefore we have the estimate

(3.61)
∥∥〈A〉−α(P − E ± i0)−1〈A〉−α

∥∥ . h−1| lnh|,
for E ∈ [E0 − δ, E0 + δ]. As usual, we have

(3.62) ‖〈x〉−α〈A〉α‖ = O(1),

for α ≥ 0. Indeed, (3.62) is clear for α ∈ 2N, and the general case follows by complex
interpolation. Then, (3.61) and (3.26) imply Theorem 2.1.

4. Representation of the scattering amplitude

As in [32], our starting point for the computation of the scattering amplitude is the rep-
resentation given by Isozaki and Kitada in [22]. We recall briefly their formula, that they
obtained writing parametrices for the wave operators W± as Fourier integral operators, tak-
ing advantage of the well-known intertwining property W±P = P0W±, P = P0 + V , with

P0 = −h2

2 ∆. The wave operators are defined by

(4.1) W± = s–lim
t→±∞

eitP/he−itP0/h,

where the limits exist in L2(Rn) thanks to the short-range assumption (A1). The scattering
operator is by definition S = (W+)∗W−, and the scattering matrix S(E, h) is then given by
the decompostion of S with respect to the spectral measure of P0. Now we recall briefly the
discussion in [32, Section 1,2] (see also [3]), and we start with some notations.

If Ω is an open subset of T ∗
R
n , we denote by Am(Ω) the class of symbols a such that

(x, ξ) 7→ a(x, ξ, h) belongs to C∞(Ω) and

(4.2)
∣∣∣∂αx ∂

β
ξ a(x, ξ)

∣∣∣ ≤ Cαβ〈x〉m−|α|〈ξ〉−L, for all L > 0, (x, ξ) ∈ Ω, (α, β) ∈ N
d × N

d.

We also denote by

(4.3) Γ±(R, d, σ) =

{
(x, ξ) ∈ R

n × R
n; |x| > R,

1

d
< |ξ| < d,± cos(x, ξ) > ±σ

}

with R > 1, d > 1, σ ∈ (−1, 1), and cos(x, ξ) = x·ξ
|x| |ξ| , the outgoing and incoming subsets

of T ∗
R
n, respectively. Eventually, for α > 1

2 , we denote the bounded operator F0(E, h) :

L2
α(Rn) → L2(Sn−1) given by

(4.4) (F0(E, h)f) (ω) = (2πh)−
n
2 (2E)

n−2
4

∫

Rn

e−
i
h

√
2Eω·xf(x)dx,E > 0.

Isozaki and Kitada have constructed phase functions Φ± and symbols a± and b± such that,
for some R0 >> 0, 1 < d4 < d3 < d2 < d1 < d0, and 0 < σ4 < σ3 < σ2 < σ1 < σ0 < 1:

i) Φ± ∈ C∞(T ∗
R
n) solve the eikonal equation

(4.5)
1

2
|∇xΦ±(x, ξ)|2 + V (x) =

1

2
|ξ|2

in (x, ξ) ∈ Γ±(R0, d0,±σ0), respectively.
ii) (x, ξ) 7→ Φ±(x, ξ) − x · ξ ∈ A0 (Γ±(R0, d0,±σ0)) .
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iii) For all (x, ξ) ∈ T ∗
R
n

(4.6)

∣∣∣∣
∂2Φ±
∂xj∂ξk

(x, ξ) − δjk

∣∣∣∣ < ε(R0),

where δjk is the Kronecker delta and ε(R0) → 0 as R0 → +∞.
iv) a± ∼ ∑∞

j=0 h
ja±j , where a±j ∈ A−j(Γ±(3R0, d1,∓σ1)), supp a±j ⊂ Γ±(3R0, d1,∓σ1),

a±j solve

(4.7) 〈∇xΦ±|∇xa±0〉 +
1

2
(∆xΦ±) a±0 = 0

(4.8) 〈∇xΦ±|∇xa±j〉 +
1

2
(∆xΦ±) a±j =

i

2
∆xa±j−1, j ≥ 1,

with the conditions at infinity

(4.9) a±0 → 1, a±j → 0, j ≥ 1, as |x| → ∞.

in Γ±(2R0, d2,∓σ2), and solve (4.7) and (4.8) in Γ±(4R0, d1,∓σ2).
v) b± ∼ ∑∞

j=0 h
jb±j , where b±j ∈ A−j(Γ±(5R0, d3,±σ4)), supp b±j ⊂ Γ±(5R0, d3,±σ4),

b±j solve (4.7) and (4.8) with the conditions at infinity (4.9) in Γ±(6R0, d4,±σ3), and
solve (4.7) and (4.8) in Γ±(6R0, d3,±σ3).

For a symbol c and a phase function ϕ, we denote by Ih(c, ϕ) the oscillatory integral

(4.10) Ih(c, ϕ) =
1

(2πh)n

∫

Rn

e
i
h
(ϕ(x,ξ)−y·ξ)c(x, ξ)dξ

and we set

(4.11)
K±a(h) = P (h)Ih(a±,Φ±) − Ih(a±,Φ±)P0(h),

K±b(h) = P (h)Ih(b±,Φ±) − Ih(b±,Φ±)P0(h).

The operator T (E, h) for E ∈] 1
2d24
,
d24
2 [ is then given by (see [22, Theorem 3.3])

(4.12) T (E, h) = T+1(E, h) + T−1(E, h) − T2(E, h),

where

(4.13) T±1(E, h) = F0(E, h)Ih(a±,Φ±)∗K±b(h)F∗
0 (E, h)

and

(4.14) T2(E, h) = F0(E, h)K
∗
+a(h)R(E + i0, h) (K+b(h) +K−b(h))F∗

0 (E, h),

where we denote from now on R(E ± i0, h) = (P − (E ± i0))−1.

Writing explicitly their kernel, it is easy to see, by a non-stationary phase argument, that
the operators T±1 are O(h∞) when θ 6= ω. Therefore we have

(4.15) A(ω, θ, E, h) = −c(E)h(n−1)/2T2(ω, θ, E, h) + O(h∞),

where c(E) is given in (1.4).

As in [32], we shall use our resolvent estimate (Theorem 2.1) in a particular form. It was
noticed by L. Michel in [26, Proposition 3.1] that, in the present trapping case, the following
proposition follows easily from the corresponding one in the non-trapping setting. Indeed, if

ϕ is a compactly supported smooth function, it is clear that P̃ = −h2∆ + (1 − ϕ(x/R))V (x)
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satisfies the non-trapping assumption for R large enough, thanks to the decay of V at ∞.

Writing [32, Lemma 2.3] for P̃ , one gets the

Proposition 4.1. Let ω± ∈ A0 have support in Γ±(R, d, σ±) for R > R0. For E ∈ [E0 −
δ, E0 + δ], we have

(i) For any α > 1/2 and M > 1, then, for any ε > 0,

(4.16) ‖R(E ± i0, h)ω±(x, hDx)‖−α+M,−α = O(h−3−ε).

(ii) If σ+ > σ−, then for any α≫ 1,

(4.17) ‖ω∓(x, hDx)R(E ± i0, h)ω±(x, hDx)‖−α,α = O(h∞).

(iii) If ω(x, ξ) ∈ A0 has support in |x| < (9/10)R, then for any α≫ 1

(4.18) ‖ω(x, hDx)R(E ± i0, h)ω±(x, hDx)‖−α,α = O(h∞).

Then we can follow line by line the discussion after Lemma 2.1 of D. Robert and H. Tamura,
and we obtain (see Equations 2.2-2.4 there):

(4.19) A(ω, θ, E, h) = c̃(E)h−(n+1)/2〈R(E + i0, h)g−e
iψ−/h, g+e

iψ+/h〉 + O(h∞),

where c̃(E) = (2π)(1−n)/2(2E)(n−3)/4e−i
(n−3)π

4 ,

(4.20) g± = e−iψ±/h[χ±, P ]a±(x, h)eiψ±/h,

and

(4.21) ψ+(x) = Φ+(x,
√

2Eθ), ψ−(x) = Φ−(x,
√

2Eω).

Moreover the functions χ± are C∞
0 (Rn) functions such that χ± = 1 near some ball B(0, R±),

with support in B(0, R± + 1).

Eventually, we shall need the following version of Egorov’s Theorem, which is also used in
Robert and Tamura’s paper.

Proposition 4.2 ([32, Proposition 3.1]). Let ω(x, ξ) ∈ A0 be of compact support. Assume
that, for some fixed t ∈ R, ωt is a function in A0 which vanishes in a small neighborhood of

{(x, ξ); (x, ξ) = exp(tHp)(y, η), (y, η) ∈ suppω}.
Then

‖Oph(ωt)e
−itP/h Oph(ω)‖−α,α = O(h∞),

for any α ≫ 1. Moreover, the order relation is uniform in t when t ranges over a compact
interval of R.

In the three next sections, we prove Theorem 2.6 using (4.19). We set

(4.22) u− = uh− = R(E + i0, h)g−e
iψ−/h,

and our proof consists in the computation of u− in different region of the phase space, following
the classical trajectories γ∞j , or γ−k and γ+

ℓ . It is important to notice that we have (P−E)u− =
0 out of the support of g−.
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5. Computations before the critical point

5.1. Computation of u− in the incoming region.

We start with the computation of u− in an incoming region which contains the micro-
support of g−. Notice that, thanks to Theorem 2.1, 〈x〉−αu−(x) is a semiclassical family of
distributions for α > 1/2.

Lemma 5.1. Let P = −h2

2 ∆ + V , where V satisfies assumption (A1) with ρ > 0. Let also

I be a compact interval of ]0,+∞[, and d > 0 such that I ⊂] 1
2d2
, d

2

2 [. For any 0 < σ+ < 1,
there exists R(σ+) > 0 such that, for all R > R(σ+) and any compact subset K ⊂ T ∗

R
n of

p−1(I), there exists T > 0 such that, if ρ ∈ K and t > T ,

(5.1) exp(tHp)(ρ) ∈ Γ+(R/2, d, σ+) ∪ (B(0, R/2) × R
n).

Proof. We recall from the constructions of C. Gérard and J. Sjöstrand in [17] that for any
δ > 0, there exist Rδ > 0 and a function G(x, ξ) ∈ C∞(R2n) such that,

(HpG)(x, ξ) ≥ 0 for all (x, ξ) ∈ p−1(]
1

2d2
,
d2

2
[),(5.2)

(HpG)(x, ξ) > 2E(1 − δ) for |x| > Rδ and p(x, ξ) = E ∈]
1

2d2
,
d2

2
[,(5.3)

G(x, ξ) = x · ξ for |x| > Rδ.(5.4)

We choose δ > 0 such that 1 − 3δ > σ+. We can assume that

(5.5) |ξ| ≤
√

2E(1 + δ),

for |x| ≥ Rδ, (x, ξ) ∈ p−1(] 1
2d2
, d

2

2 [). We first assume that R > 4Rδ, and that K is a compact

subset of p−1(I). For ρ ∈ K and γ(t) = (x(t), ξ(t)) = exp(tHp)(ρ), the corresponding
Hamiltonian curve, we distinguish between 2 cases:

1) For all t > 0, we have |x(t)| > Rδ.

Then G(γ(t)) > 2E(1 − δ)t+G(ρ) and, for t > T1 with T1 large enough,

(5.6) G(γ(t)) > 2 sup
x∈B(0,Rδ)
p(x,ξ)∈I

G(x, ξ).

By continuity, there exists a neighborhood U of ρ such that, for all ρ̃ ∈ U , we have

(5.7) G(γ̃(T1)) > sup
x∈B(0,Rδ)
p(x,ξ)∈I

G(x, ξ).

Since G is non-decreasing along γ̃(t), we have |x̃(t)| > Rδ for all t > T1, and then

(5.8) G(γ̃(t)) > 2E(1 − δ)(t− T1) +G(γ̃(T1)) > 2E(1 − δ)t− C.

From (5.5) and (5.8), we get |x̃(t)| > 1
C t−C for all ρ̃ ∈ U , and then |ξ̃(t)| =

√
2E+ ot→∞(1).

On the other hand using (5.5) we have |x̃(t)| ≤
√

2E(1+δ)t+C, for some C > 0 independent
of ρ̃ ∈ U . In particular, the previous estimates give, for t > TU with TU large enough but
independent of ρ̃ ∈ U
(5.9) |x̃(t)| > R/2,
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(5.10) cos
(
x̃, ξ̃

)
(t) >

2E(1 − δ)t− C

(
√

2E(1 + δ)t+ C)(
√

2E + ot→∞(1))
=

1 − δ

1 + δ
+ ot→∞(1) > 1 − 3δ,

Thus, for t > TU and ρ̃ ∈ U , we have

(5.11) γ̃(t) ∈ Γ+(R/2, d, σ+),

where we recall that σ+ < 1 − 3δ.

2) There exists T2 > 0 such that |x(T2)| = Rδ.

Then there exists a neighborhood V of ρ such that for all ρ̃ ∈ V we have |x̃(T2)| < 2Rδ, where

(x̃(t), ξ̃(t)) = exp tHp(ρ̃). Now let t > T2.

a) If |x̃(t)| ≤ R/2, then γ̃(t) ∈ B(0, R/2) × R
n.

b) Assume now |x̃(t)| > R/2. Denote by T3 (> T2) the last time (before t) such that
|x̃(T3)| = 2Rδ. Then

G(γ̃(t)) >2E(1 − δ)(t− T3) +G(γ̃(T3))

>2E(1 − δ)(t− T3) − C,(5.12)

where C depends only on Rδ. On the other hand, the have |x̃(t)| <
√

2E(1 + δ)(t− T3) +C,
where the constant C depends only on Rδ. Then,

(5.13) t− T3 >
|x̃(t)|√

2E(1 + δ)
− C√

2E(1 + δ)
,

(5.14) |ξ̃(t)| =
√

2E + oR→∞(1),

cos
(
x̃, ξ̃

)
(t) >

2E(1 − δ)|x̃(t)|
|x̃(t)|(

√
2E(1 + δ))(

√
2E + oR→∞(1))

+ O(R−1)

>
1 − δ

1 + δ
+ oR→∞(1) > 1 − 2δ + oR→∞(1).(5.15)

So, if R is large enough, γ̃(t) ∈ Γ+(R/2, d, σ+).

Then a) and b) imply that, for all ρ̃ ∈ V and t > T := T2, we have

(5.16) γ̃(t) ∈ Γ+(R/2, d, σ+) ∪ (B(0, R/2) × R
n).

The lemma follows from (5.11), (5.16) and a compactness argument. �

Recall that the microsupport of g−(x)eiψ−(x)/h ∈ C∞
0 (Rn) is contained in Γ−(R−, d1, σ1).

Let ω−(x, ξ) ∈ A0 with ω− = 1 near Γ−(R−/2, d1, σ1) and supp(ω−) ⊂ Γ−(R−/3, d0, σ0).
Using the identity

(5.17) u− =
i

h

∫ T

0
e−it(P−E)/h(g−e

iψ−/h)dt+ R(E + i0, h)e−iT (P−E)/h(g−e
iψ−/h),

and Proposition 4.1, Proposition 4.2 and Lemma 5.1, we get

(5.18) Oph(ω−)u− = Oph(ω−)
i

h

∫ T

0
e−it(P−E)/h(g−e

iψ−/h)dt+ O(h∞),
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for some T > 0 large enough. In particular,

(5.19) MS(Oph(ω−)u−) ⊂ Λ−
ω ∩ (B(0, R− + 1) × R

n).

5.2. Computation of u− along γ−k .

Here we compute u− microlocally along a trajectory γ−k . We recall that γ−k is a bicharac-

teristic curve (x−k (t), ξ−k (t)) such that (x−k (t), ξ−k (t)) → (0, 0) as t → +∞, and such that, as
t→ −∞,

(5.20)
|x−k (t) −√

2E0ωt− z−k | → 0,

|ξ−k (t) −√
2E0ω| → 0.

The symbol a− solves (4.7) and (4.8) near γ−k ∩ MS(g−eiψ−/h). In particular, if R− is large

enough, microlocally near γ−k ∩Γ−(R−/2, d1, σ1)∩ (B(0, R−)×R
n), u− is given by (5.18) and

u− =
i

h

∫ T

0
e−it(P−E)/h([χ−, P ]a−e

iψ−/h)dt+ O(h∞)

=
i

h

∫ T

0
e−it(P−E)/h(χ−(P − E)a−e

iψ−/h)dt

− i

h

∫ T

0
e−it(P−E)/h((P − E)χ−a−e

iψ−/h)dt+ O(h∞)

= − i

h

∫ T

0
(P − E)e−it(P−E)/h(χ−a−e

iψ−/h)dt+ O(h∞)

= − (P − E)R(E + i0, h)a−e
iψ−/h + O(h∞)

= − a−e
iψ−/h + O(h∞).(5.21)

Now, using (5.21), and the fact that u− is a semiclassical distribution satisfying

(5.22) (P − E)u− = 0,

near B(0, R−), we can compute u− microlocally near γ−k ∩ B(0, R−) using Maslov’s theory
(see [25] for more details). Moreover, it is proved in Proposition C.1 (see also [5, Lemma 5.8])
that the Lagrangian manifold Λ−

ω has a nice projection with respect to x in a neighborhood
of γ−k close to (0, 0). Then, in such a neighborhood, u−can be written as

(5.23) u−(x) = −a−(x, h)e−iν
−
k π/2eiψ−(x)/h,

where ν−k denotes the Maslov index of γ−k . The phase ψ− satisfies the usual eikonal equation

(5.24) p(x,∇ψ−) = E0.

Here, to the contrary of (4.21), we have written E = E0 + E1h with E1 = O(1), and we
choose to work with E1 in the amplitudes instead of the phases. As usual, we have

(5.25) ∂t(ψ−(x−k (t))) = ∇ψ−(x−k (t)) · ∂tx−k (t) = ∇ψ−(x−k (t)) · ξ−k (t) = |ξ−k (t)|2,
so that

(5.26) ψ−(x−k (t)) = ψ−(x−k (s)) +

∫ t

s
|ξ−k (u)|2du
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We also have ψ−(x−k (s)) = (
√

2E0ωs+ z−k ) · √2E0ω + o(1) as s→ −∞, and then

(5.27) ψ−(x−k (t)) = 2E0s+

∫ t

s
|ξ−k (u)|2du+ o(1), s→ −∞.

We have obtained in particular that

(5.28) ψ−(x−k (t)) =

∫ t

−∞
|ξ−k (u)|2−2E01u<0 du =

∫ t

−∞

1

2
|ξ−k (u)|2−V (x−k (u))+E0 sgn(u) du.

We turn to the computation of the symbol. The function a−(x, h) ∼ ∑∞
k=0 a−,k(x)h

k

satisfies the usual transport equations:

(5.29)





∇ψ− · ∇a−,0 +
1

2
(∆ψ− − 2iE1)a−,0 = 0,

∇ψ− · ∇a−,k +
1

2
(∆ψ− − 2iE1)a−,k = i

1

2
∆a−,k−1, k ≥ 1,

In particular, we get for the principal symbol

(5.30) ∂t(a−,0(x
−
k (t))) = ∇a−,0(x−k (t)) · ξ−k (t) = ∇a−,0(x−k (t)) · ∇ψ−(x−k (t)),

so that,

(5.31) ∂t(a−,0(x
−
k (t))) = −1

2

(
∆ψ−(x−k (t)) − 2iE1

)
a−,0(x

−
k (t))

and then

(5.32) a−,0(x
−
k (t)) = a−,0(x

−
k (s)) exp

(
−1

2

∫ t

s
∆ψ−(x−(u)) du+ i(t− s)E1

)
.

On the other hand, from [32, Lemma 4.3], based on Maslov theory, we have

(5.33) a−,0(x
−
k (t)) = (2E0)

1/4D−
k (t)−1/2eitE1 ,

where

(5.34) D−
k (t) =

∣∣∣ det
∂x−(t, z, ω,E0)

∂(t, z)
|z=z−k

∣∣∣.

6. Computation of u− at the critical point

In this section we use the results of [5] to obtain a representation of u− in a whole neigh-
borhood of the critical point. Indeed we saw already that (P −E)u− = 0 outside the support
of g−, in particular in a neighborhood of the critical point. First, we need to recall some
terminology from [20] and [5].

We recall from Section 2 that (µj)j≥0 is the strictly increasing sequence of linear combi-
nations over N of the λj ’s, with µ0 = 0. Let u(t, x) be a function defined on [0,+∞[×U ,
U ⊂ R

m.

Definition 6.1. We say that u : [0,+∞[×U → R, a smooth function, is expandible, if, for
any N ∈ N, ε > 0, (α, β) ∈ N

1+m,

(6.1) ∂αt ∂
β
x

(
u(t, x) −

N∑

j=1

uj(t, x)e
−µjt

)
= O

(
e−(µN+1−ε)t),
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for a sequence (uj)j of smooth functions, which are polynomials in t. We shall write

u(t, x) ∼
∑

j≥1

uj(t, x)e
−µjt,

when (6.1) holds.

We say that f(t, x) = Õ(e−µt) if for all (α, β) ∈ N
1+m and ε > 0 we have

(6.2) ∂αt ∂
β
xf(t, x) = O(e−(µ−ε)t).

Definition 6.2. We say that u(t, x, h), a smooth function, is of class SA,B if, for any ε > 0,
(α, β) ∈ N

1+m,

(6.3) ∂αt ∂
β
xu(t, x, h) = O

(
hAe−(B−ε)t).

Let S∞,B =
⋂
A∈R

SA,B. We shall say that u(t, x, h) is a classical expandible function of order
(A,B), if, for any K ∈ N,

(6.4) u(t, x, h) −
K∑

k=A

uk(t, x)h
k ∈ SK+1,B,

for a sequence (uk)k of expandible functions. We shall write

u(t, x, h) ∼
∑

k≥A
uk(t, x)h

k,

in that case.

Now, since the intersection between Λ−
ω and Λ− is transverse along the trajectories γ−k (z−k ),

and since g−1 (z−k ) 6= 0, Theorem 2.1 and Theorem 5.4 of [5] imply that one can write, microlo-
cally near (0, 0),

(6.5) u− =
1√
2πh

∫ N−∑

k=1

αk(t, x, h)eiϕ
k(t,x)/hdt,

where the αk(t, x, h)’s are classical expandible functions in S0,2 Re Σ(E):

(6.6)

αk(t, x, h) ∼
∑

m≥0

αkm(t, x)hm,

αkm(t, x) ∼
∑

j≥0

αkm,j(t, x)e
−2(Σ(E)+µj)t,

and where the αkm,j(t, x)’s are polynomial with respect to t. We recall from (2.28) that, for
E = E0 + hE1,

(6.7) Σ(E) =
n∑

j=1

λj
2

− iE1.

Following line by line [5, Section 6], we obtain (see [5, (6.26)])

αk0,0(0) = −eiπ/4(2λ1)
3/2e−iν

−
k π/2|g(γ−k )|(D−

k )−1/2(2E0)
1/4.(6.8)

Notice that from (5.32) and Proposition C.1, we have 0 < D−
k < +∞.
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From [5, Section 5], we recall that the phases ϕk(t, x) satisfy the eikonal equation

(6.9) ∂tϕ
k + p(x,∇xϕ

k) = E0,

and that they have the asymptotic expansions

(6.10) ϕk(t, x) ∼
+∞∑

j=0

Mk
j∑

m=0

ϕkj,m(x)tme−µjt,

with Mk
j < +∞. In the following, we set

(6.11) ϕkj (t, x) =

Mk
j∑

m=0

ϕkj,m(x)tm,

and, still from [5, Section 5], we have that the first ϕkj ’s are of the form

ϕk0(t, x) =ϕ+(x) + ck(6.12)

ϕk1(t, x) = − 2λ1g
−
1 (z−k ) · x+ O(x2),(6.13)

where ck ∈ R is the constant depending on k given by

(6.14) ck = “ψ−(0)” = lim
t→+∞

ψ−(x−k (t)) = S−
k ,

thanks to (5.28) (see also [5, Lemma 5.10]). Moreover ϕ+ is the generating function of the
outgoing stable Lagrangian submanifold Λ+ with ϕ+(0) = 0, and

(6.15) ϕ+(x) =
∑

j

λj
2
x2
j + O(x3).

The fact that ϕk1(t, x) does not depend on t and the expression (6.13) follows also from
Corollary 6.6 and (6.109).

6.1. Study of the transport equations for the phases.

Now, we examine the equations satisfied by the functions ϕkj (t, x), defined in (6.10) and

(6.11), for the integers j ≤ ̂ (recall that ̂ is defined by µ̂ = 2λ1). For clearer notation, we
omit the superscript k until further notice.

Recall that ϕ(t, x) satisfies the eikonal equation (6.9), which implies (see (6.10))

(6.16)
∑

j

Mj∑

m=0

e−µjtϕj,m(x)(−µjtm+mtm−1)+
1

2

( ∑

j

Mj∑

m=0

∇ϕj,m(x)tme−µjt
)2

+V (x) ∼ E0,

and then

∑

j

Mj∑

m=0

e−µjtϕj,m(x)(−µjtm +mtm−1) +
1

2

∑

j,̃

Mj∑

m=0

M̃∑

m̃=0

∇ϕj,m∇ϕ̃,m̃(x)e−(µj+µ̃)ttm+m̃

+V (x) ∼ E0.(6.17)
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When µj < 2λ1, the cross product in the previous formula provides a term of the form e−µjt

if and only if µj = 0 or µ̃ = 0. In particular, the term of order e−µjt in (6.17) gives

(6.18)

Mj∑

m=0

ϕj,m(x)(−µjtm +mtm−1) + ∇ϕ+(x) ·
Mj∑

m=0

∇ϕj,m(x)tm = 0.

When µj = 2λ1, one gets also a term of order e−2λ1t for µj = µ̃ = λ1 and then

Mj∑

m=0

ϕj,m(x)(−µjtm +mtm−1) + ∇ϕ+(x) ·
Mj∑

m=0

∇ϕj,m(x)tm

+
1

2

M1∑

m=0

M1∑

m̃=0

tm+m̃∇ϕ1,m(x)∇ϕ1,m̃(x) = 0.(6.19)

To study these equations, we denote by

(6.20) L = ∇ϕ+(x) · ∇
the vector field that appears in (6.18) and (6.19). We set also L0 =

∑
j λjxj∂j its linear part

at x = 0, and we begin with the study of the solution of

(6.21) (L− µ)f = g,

with µ ∈ R and f , g ∈ C∞(Rn). First of all, we show that it is sufficient to solve (6.21) for
formal series.

Proposition 6.3. Let g ∈ C∞(Rn) and g0 be the Taylor series of g at 0. For each formal
series f0 such that (L− µ)f0 = g0, there exists a unique function f ∈ C∞(Rn) defined near 0
such that f has Taylor series f0 at 0 and

(6.22) (L− µ)f = g,

near 0.

Proof. Let f̃0 be a C∞ function having f0 has Taylor series at 0. With the notation f = f̃0+r,
the problem (6.22) is equivalent to finding r = O(x∞) with

(6.23) (L− µ)r = g − (L− µ)f̃0 = r̃,

where r̃ ∈ C∞ has g0 − (L− µ)f0 = 0 as Taylor series at 0. Let y(t, x) be the solution of

(6.24)

{
∂ty(t, x) = ∇ϕ+(y(t, x)),

y(0, x) = x.

Thus, (6.23) is equivalent to

(6.25) r(x) =

∫ 0

t
e−µsr̃(y(s, x))ds+ e−µtr(y(t, x)).

Since r(x), r̃(x) = O(x∞) and y(s, x) = O(eλ1t|x|) for t < 0, the functions e−µtr(y(t, x)),
e−µtr̃(y(t, x)) are O(eNt) as t→ −∞ for all N > 0. Then

(6.26) r(x) =

∫ 0

−∞
e−µsr̃(y(s, x))ds,
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and r(x) = O(x∞). The uniqueness follows and it is enough to prove that r given by (6.26)
is C∞. We have

(6.27) ∂t(∇xy) = (∇2
xϕ+(y))(∇xy),

and since ∇2
xϕ+ is bounded, there exists C > 0 such that

(6.28) |∇xy(t, x)| . e−Ct,

has t → −∞. Then, e−µs(∇r̃)(y(s, x))(∂jy(t, x)) = O(eNt) as t → −∞ for all N > 0 and

∂jr(x) =
∫ 0
−∞ e−µs(∇r̃)(y(s, x))(∂jy(t, x))ds. The derivatives of order greater than 1 can be

treated in the same way. �

We let

(6.29) Lµ = L− µ : CJxK → CJxK,

where we use the standard notation CJxK for formal series, and CpJxK for formal series of
degree ≥ p. We notice that

(6.30) Lµx
α = (L0 − µ)xα + C|α|+1JxK = (λ · α− µ)xα + C|α|+1JxK.

Recall that Iℓ(µ) has been defined in (2.22). The number of elements in Iℓ(µ) will be denoted

(6.31) nℓ(µ) = #Iℓ(µ).

One has for example n2(µ) = n1(µ)(n1(µ)+1)
2 .

Proposition 6.4. Suppose µ ∈]0, 2λ1[. With the above notations, one has KerLµ⊕ ImLµ =
CJxK. More precisely:

i) The kernel of Lµ has dimension n1(µ), and one can find a basis (Ej1 , . . . , Ejn1(µ)
) of

KerLµ such that Ej(x) = xj + C2JxK, j ∈ I1(µ).

ii) A formal series F = F0 +
n∑

j=1

Fjxj + C2JxK belongs to ImLµ if and only if Fj = 0 for

all j ∈ I1(µ).

Remark 6.5. Thanks to Propostion 6.3, the same result is true for germs of C∞ functions
at 0. Notice that when µ 6= µj for all j, Lµ is invertible.

Proof. For a given F =
∑

α Fαx
α ∈ CJxK, we look for solutions E =

∑
αEαx

α ∈ CJxK to the
equation

(6.32) Lµ

( ∑

α

Eαx
α
)

=
∑

α

Fαx
α.

The calculus of the term of order x0 in (6.32) leads to the equation

(6.33) E0 = −F0

µ
.

With this value for E0, (6.32) becomes, using again (6.30),

(6.34)
∑

|α|=1

(λ · α− µ)Eαx
α =

∑

|α|=1

Fαx
α + C2JxK.

We have two cases:
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If α /∈ I1(µ), one should have

(6.35) Eα =
Fα

λ · α− µ
.

If α ∈ I1(µ), the formula (6.34) gives Fα = 0. In that case, the corresponding Eα can be
chosen arbitrarily.

Now suppose that the Eα are fixed for all |α| ≤ p− 1 (with p ≥ 2), and such that

(6.36) Lµ

( ∑

|α|≤p−1

Eαx
α
)

=
∑

α

Fαx
α + CpJxK.

We can write (6.32) as

(6.37) Lµ

( ∑

|α|=p
Eαx

α
)

=
∑

α

Fαx
α − Lµ

( ∑

|α|≤p−1

Eαx
α
)

+ Cp+1JxK,

or, using again (6.30),

(6.38)
∑

|α|=p
(λ · α− µ)Eαx

α =
∑

|α|≤p
Fαx

α − Lµ

( ∑

|α|≤p−1

Eαx
α
)

+ Cp+1JxK.

Since |α| ≥ 2, one has λ · α ≥ 2λ1 > µ, so that (6.38) determines by induction all the Eα’s
for |α| = p in a unique way. �

Corollary 6.6. If j < ̂, the function ϕj(t, x) does not depend on t, i.e. we have Mj = 0.

Proof. Suppose that Mj ≥ 1, then (6.18) gives the system

(6.39)

{
(L− µj)ϕj,Mj

= 0,

(L− µj)ϕj,Mj−1 = −Mjϕj,Mj
,

with ϕj,Mj
6= 0. But this would imply that ϕj,Mj

∈ KerLµ ∩ ImLµ, a contradiction. �

As a consequence, for j < ̂, the equation (6.18) on ϕj reduces to

(6.40) (L− µj)ϕj,0 = 0,

and, from Proposition 6.4, we get that

(6.41) ϕj(t, x) = ϕj,0(x) =
∑

k∈I1(µj)

dj,kxk + O(x2).

We now consider the case j = ̂, and we study (6.19). We have already seen that ϕ1 does
not depend on t, so that this equation can be written

(6.42)

Mj∑

m=0

ϕj,m(x)(−µjtm +mtm−1) + ∇ϕ+(x) ·
Mj∑

m=0

∇ϕj,m(x)tm +
1

2

∣∣∇ϕ1(x)
∣∣2 = 0.
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As for the study of (6.18), we begin with that of (6.21), with µ = 2λ1. We denote by

Ψ : R
n1(2λ1) −→ R

n2(λ1) the linear map

(6.43) Ψ(Eβ1 , . . . , Eβn1(2λ1)
) =

( ∑

β∈I1(2λ1)

Eβ
1

α!

(
∂α(L− µ)xβ

)
|x=0

)

α∈I2(λ1)
,

and we set

(6.44) n(Ψ) = dim KerΨ.

Recalling that L = ∇ϕ+(x) · ∇, we see that

(6.45) Ψ(Eβ1 , . . . , Eβn1(2λ1)
) =

( ∑

β∈I1(2λ1)

Eβ
∂α∂βϕ+(0)

α!

)

α∈I2(λ1)
.

More generally, for any |α| = 2, we denote

(6.46) Ψα((Eβ)β∈I1(2λ1)) =
∑

β∈I1(2λ1)

Eβ
∂α∂βϕ+(0)

α!
·

Then, at the level of formal series, we have the

Proposition 6.7. Suppose µ = 2λ1. Then

i) KerLµ has dimension n2(λ1) + n(Ψ).
ii) A formal series F =

∑
α Fαx

α belongs to ImLµ if and only if

∀α ∈ I1(2λ1), Fα = 0,(6.47)
( ∑

|β|=1
β /∈I1(2λ1)

∂β∂αϕ+(0)

α!

Fβ
2λ1 − λ · β + Fα

)

α∈I2(λ1)
∈ Im Ψ.(6.48)

iii) If F ∈ ImLµ, any formal series E =
∑

αEαx
α with LµE = F satisfies

E0 =
1

−2λ1
F0,(6.49)

Eα =
1

λ · α− 2λ1
Fα, for α ∈ I1 \ I1(2λ1),(6.50)

Ψ
(
(Eβ

)
β∈I1(2λ1)

) =
( ∑

|β|=1
β /∈I1(2λ1)

∂β∂αϕ+(0)

α!

Fβ
2λ1 − λ · β + Fα

)

α∈I2(λ1)
.(6.51)

Moreover for α ∈ I2 \ I2(λ1), one has

(6.52) Eα =
1

λ · α− 2λ1

(
Fα − Ψα((Eβ)β∈I1(2λ1)) +

∑

|β|=1
β /∈I1(2λ1)

Fβ
2λ1 − λ · β

∂α+βϕ+(0)

α!

)
.

Lastly, E is completely determined by F and a choice of the Eα for |α| ≤ 2 such that
(6.49)– (6.52) are satisfied.

iv) KerLµ ∩ Im(Lµ)
2 = {0}.



SEMICLASSICAL SCATTERING AMPLITUDE AT THE MAXIMUM OF THE POTENTIAL 29

Proof. For a given F =
∑

α Fαx
α we look for a E =

∑
αEαx

α such that L2λ1E = F . First of
all, we must have

(6.53) E0 = − F0

2λ1
.

When this is true, we get

(6.54)
∑

|α|=1

Eα(L0 − 2λ1)x
α =

∑

|α|=1

Fα(L− 2λ1)x
α + C2JxK,

and we obtain as necessary condition that Fα = 0 for any α ∈ I1(2λ1). So far, the Eα for
α ∈ I1(2λ1) can be chosen arbitrarily, and we must have

(6.55) Eα =
Fα

λ · α− 2λ1
, α ∈ I1 \ I1(2λ1).

We suppose that (6.53) and (6.55) hold. Then we have

(6.56)
∑

|α|=2

Eα(L0−2λ1)x
α =

∑

|α|=2

Fαx
α+

( ∑

|α|=1
α/∈I1(2λ1)

Fαx
α−

∑

|α|=1

Eα(L−2λ1)x
α
)

+C3JxK.

Notice that the second term in the R.H.S of (6.56) belongs to C2JxK thanks to (6.55). Again,
we have two cases:

• When α ∈ I2(λ1), the corresponding Eα can be chosen arbitrarily, but one must have

Fα =
∑

|β|=1

Eβ
( 1

α!
∂α(L− 2λ1)x

β
)
|x=0(6.57)

=Ψα((Eβ)β∈I1(2λ1)) +
∑

|β|=1
β /∈I1(2λ1)

Eβ
∂α+βϕ+(0)

α!
,(6.58)

and this, with (6.55), gives (6.51).
• When |α| = 2, α /∈ I2(λ1), one obtains

Eα =
1

λ · α− 2λ1

(
Fα −

∑

|β|=1

Eβ
( 1

α!
∂α(L− 2λ1)x

β
)
|x=0

)

=
1

λ · α− 2λ1

(
Fα − Ψα((Eβ)β∈I1(2λ1)) −

∑

|β|=1
β /∈I1(2λ1)

Eβ
∂α+βϕ+(0)

α!

)
,(6.59)

and this, with (6.55), gives (6.52).

Now suppose that (6.53), (6.55), (6.57) and (6.59) hold, and that we have chosen a value
for the free variables Eα for α ∈ I1(2λ1)∪I2(λ1). Thanks to the fact that λ ·α 6= 2λ1 for any
α ∈ N

n with |α| = 3, we see as in the proof of Propostion 6.4, that the equation (6.54) has a
unique solution, and the points (i), (ii) and (iii) follow easily.

To prove the last point of the proposition, suppose that

(6.60) E =
∑

α∈Nn

Eαx
α ∈ KerLµ ∩ Im(Lµ)

2.
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First, we have E ∈ KerLµ ∩ ImLµ. Thus, E0 = 0 by (6.49), Eα = 0 for α ∈ I1(2λ1) by
(6.47), and Eα = 0 for α ∈ I1 \ I1(2λ1) by (6.50). Last, since LµE = 0, we also have Eα = 0
for α ∈ I2 \ I2(λ1), and finally,

(6.61) E =
∑

α∈I2(λ1)

Eαx
α + C3JxK.

Moreover, one can write E = LµG for some G ∈ ImLµ. Since E0 = 0, we must have G0 = 0.
Since G ∈ ImLµ, by (6.47), we have Gα = 0 for α ∈ I1(2λ1). Finally, since Eα = 0 for
|α| = 1, α /∈ I1(2λ1), the same is true for the corresponding Gα, and

(6.62) G =
∑

|α|≥2

Gαx
α.

Then, since Lµx
α = 0 + C3[x] for α ∈ I2(λ1), we obtain Eα = 0 for α ∈ I2(λ1). As above, we

then get that, for |α| ≥ 3, Eα = 0, and this ends the proof. �

Corollary 6.8. We have M̂ ≤ 2. If, in addition, λk 6= 2λ1 for all k ∈ {1, . . . , n}, then
M̂ ≤ 1.

Proof. Suppose that M̂ ≥ 3. Then (6.42) gives

(L− µ̂)ϕ̂,M̂
= 0(6.63)

(L− µ̂)ϕ̂,M̂ −1 = −M̂ϕ̂,M̂
(6.64)

(L− µ̂)ϕ̂,M̂ −2 = −(M̂ − 1)ϕ̂,M̂ −1,(6.65)

with ϕ̂,M̂
6= 0. Notice that we have used the fact that M̂ − 2 > 0 in (6.65). But this gives

ϕ̂,M̂
∈ Ker(L − µ̂) and (L − µ̂)

2ϕ̂,M̂−2 = M̂(M̂ − 1)ϕ̂,M̂
, so that ϕ̂,M̂

∈ Im(L − µ̂)
2.

This contradicts point (iv) of Proposition 6.7.

Now we suppose that λk 6= 2λ1 for all k ∈ {1, . . . n}, that is I1(2λ1) = ∅, and that M̂ = 2.
Then (6.42) gives

(L− µ̂)ϕ̂,M̂
= 0(6.66)

(L− µ̂)ϕ̂,M̂ −1 = −M̂ ϕ̂,M̂
(6.67)

with ϕ̂,M̂
6= 0. Therefore we have ϕ̂,M̂

∈ KerLµ̂
∩ ImLµ̂

, and we get the same conclusion

as in (6.61): ϕ̂,M̂
(x) = O(x2). Then, we write

(6.68) ϕ̂,M̂
= (L− µ̂)g,

and we see, as in (6.62), that g = O(x2), here because I1(2λ1) = ∅. Finally, we conclude also
that ϕ̂,M̂

= 0, a contradiction. �

6.2. Taylor expansions of ϕ+ and ϕk1.

Now we compute the Taylor expansions of the leading terms with respect to t, of the phase
functions ϕ(t, x) = ϕk(t, x).
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Lemma 6.9. The smooth function ϕ+(x) =
n∑

j=1

λj
2
x2
j + O(x3) satisfies

(6.69) ∂αϕ+(0) = − 1

λ · α∂
αV (0),

for |α| = 3, and

(6.70) ∂αϕ+(0) = − 1

2(λ · α)

n∑

j=1

∑

β,γ∈I2
α=β+γ

α!

β! γ!

∂j∂
βV (0)

λj + λ · β
∂j∂

γV (0)

λj + λ · γ − 1

λ · α∂
αV (0),

for |α| = 4, where α, β, γ ∈ N
n.

Proof. The smooth function x 7→ ϕ+(x) is defined in a neighborhood of 0, and it is charac-
terized (up to a constant: we have chosen ϕ+(0) = 0) by

(6.71)





p(x,∇ϕ+(x)) =
1

2
|∇ϕ+(x)|2 + V (x) = E0

∇ϕ+(x) = (λjxj)j=1,...,n + O(x2)

The Taylor expansion of ϕ+ at x = 0 is

(6.72) ϕ+(x) =
n∑

j=1

λj
2
x2
j +

∑

|α|=3,4

∂αϕ+(0)

α!
xα + O(x5),

and we have

(6.73) ∂jϕ+(x) = λjxj +
∑

|α|=3,4

αj
∂αϕ+(0)

α!
xα−1j + O(x4).

Therefore

|∇ϕ+(x)|2 =
n∑

j=1

λ2
jx

2
j + 2

∑

|α|=3

( n∑

j=1

λjαj

)∂αϕ+(0)

α!
xα + 2

∑

|α|=4

( n∑

j=1

λjαj

)∂αϕ+(0)

α!
xα

+
n∑

j=1

( ∑

|α|=3

αj
∂αϕ+(0)

α!
xα−1j

)2
+ O(x5).(6.74)

Let us compute further the last term in (6.74):
n∑

j=1

( ∑

|α|=3

αj
∂αϕ+(0)

α!
xα−1j

)2
=

n∑

j=1

∑

|β|,|γ|=3

βjγj
∂βϕ+(0)

β!

∂γϕ+(0)

γ!
xβ+γ−21j

=
n∑

j=1

∑

|α|=4

xα
( ∑

α=β+γ
|β|,|γ|=2

∂j∂
βϕ+(0)

β!

∂j∂
γϕ+(0)

γ!

)
·(6.75)

Writing the Taylor expansion of V at x = 0 as

(6.76) V (x) = E0 −
n∑

j=1

λ2
j

2
x2
j +

∑

|α|=3,4

∂αV (0)

α!
xα + O(x5),
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and using the eikonal equation (6.71), we obtain first, for any α ∈ N
n with |α| = 3,

(6.77) ∂αϕ+(0) = − 1

λ · α∂
αV (0).

Then, (6.74) and (6.75) give

(6.78) ∂αϕ+(0) = − 1

λ · α∂
αV (0) − 1

2(λ · α)

n∑

j=1

∑

β,γ∈I2
α=β+γ

α!

β!γ!

∂j∂
βV (0)

λj + λ · β
∂j∂

γV (0)

λj + λ · γ ,

for |α| = 4. �

Now we turn to the function ϕ1. This function is a solution, in a neighborhood of x = 0,
of the transport equation

(6.79) Lϕ1(x) = λ1ϕ1(x),

where L is given in (6.20).

Lemma 6.10. The C∞ function ϕ1(x) = −2λ1g
−
1 (z−) · x+ O(x2) satisfies

(6.80) ∂αϕ1(0) =
2λ1α!

(λ1 − λ · α)(λ1 + λ · α)

n∑

j=1

∂j∂
αV (0)

α!

(
g−1 (z−)

)
j
,

for |α| = 2, and

∂αϕ1(0) = − 2λ1

λ1 − λ · α
∑

1k∈I1(λ1),j∈I1

β,γ∈I2
α+1j=β+γ

α!γj
β!γ!

∂j∂
βV (0)

λj + λ · β
∂k∂

γV (0)

(λ1 − λ · γ)(λ1 + λ · γ)
(
g−1 (z−)

)
k

+
λ1

(λ1 − λ · α)(λ1 + λ · α)

∑

k∈I1,j∈I1(λ1)
β,γ∈I2

1j+α=β+γ

(α+ 1j)!

β!γ!

∂k∂
βV (0)

λk + λ · β
∂k∂

γV (0)

λk + λ · γ
(
g−1 (z−)

)
j

+
2λ1

(λ1 − λ · α)(λ1 + λ · α)

∑

1j∈I1(λ1)

∂j∂
αV (0)

(
g−1 (z−)

)
j
.(6.81)

for |α| = 3.

Proof. We write

(6.82) ϕ1(x) =
n∑

j=1

ajxj +
∑

|α|=2,3

aαx
α + O(x4),

and Lemma 6.9 together with (6.73) give all the coefficients in the expansion

(6.83) ∇ϕ+(x) =
(
λjxj +

∑

|α|=2,3

Aj,αx
α + O(x4)

)

j=1,...,n
.

In fact, we have

(6.84) Aj,α =
∂α+1jϕ+(0)

α!
and aα =

∂αϕ1(0)

α!
.
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We get

Lϕ1(x) =
n∑

j=1

∂jϕ+(x)∂jϕ1(x)

=
n∑

j=1

(
ajλjxj +

∑

|α|=2

(
αjλjaα + ajAj,α

)
xα

+
∑

|α|=3

αjλjaαx
α +

∑

|β|=|γ|=2

Aj,βγjaγx
β+γ−1j +

∑

|α|=3

ajAj,αx
α
)

+ O(x4)

=
n∑

j=1

ajλjxj +
∑

|α|=2

(
λ · α aα +

n∑

j=1

Aj,αaj
)
xα

+
∑

|α|=3

(
λ · α aα +

n∑

j=1

( ∑

α=β+γ−1j

|β|,|γ|=2

Aj,βγjaγ + ajAj,α
))
xα + O(x4).(6.85)

Thus, (6.79) gives, for all α ∈ N
n with |α| = 2,

(6.86) aα =
1

λ1 − λ · α

n∑

j=1

Aj,αaj ,

and, for all α ∈ N
n with |α| = 3,

(6.87) aα =
1

λ1 − λ · α

n∑

j=1

( ∑

β,γ∈I2
α+1j=β+γ

γjAj,βaγ + ajAj,α

)
.

Then, the lemma follows from (6.84). �

6.3. Asymptotics near the critical point for the trajectories.

The knowledge obtained so far is not sufficient for the computation of the ϕj ’s. We shall
obtain here some more information by studying the behavior of the incoming trajectory
γ−(t) as t → +∞. We recall from [20, Section 3] (see also [5, Section 5]), that the curve
γ−(t) = (x−(t), ξ−(t)) ∈ Λ− ∩ Λ−

ω satisfies, in the sense of expandible functions,

(6.88) γ−(t) =
∑

j≥1

M ′
j∑

m=0

γ−j,mt
me−µjt,

Notice that we continue to omit the subscript k for γ−k = (x−k , ξ
−
k ), z−k , . . . Writing also

(6.89) x−(t) ∼
+∞∑

j=1

g−j (t, z−)e−µjt, g−j (t, z−) =

M ′
j∑

m=0

g−j,m(z−)tm,

for some integers M ′
j , we know that g−1 (t, z−) = g−1,0(z

−) 6= 0. Since ξ−(t) = ∂tx
−(t), we have

(6.90) ξ−(t) ∼
+∞∑

j=1

M ′
j∑

m=0

g−j,m(z−)(−µjtm +mtm−1)e−µjt.
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Proposition 6.11. If j < ̂, then M ′
j = 0. We also have M ′

̂ ≤ 1, and M ′
̂ = 0 when

I1(2λ1) = ∅. Moreover

(6.91) (g−̂,1(z
−))β =





1

4λ1

∑

|α|=2

∂α+βV (0)

α!
(g−1 (z−))α for β ∈ I1(2λ1),

0 for β /∈ I1(2λ1),

and, for |β| = 1, β /∈ I1(2λ1),

(6.92) (g−̂,0(z
−))β =

1

(2λ1 + λ · β)(2λ1 − λ · β)

∑

|α|=2

∂α+βV (0)

α!
(g−1 (z−))α.

Proof. First of all, since ∂tγ
−(t) = Hp(γ

−(t)), we can write

(6.93) ∂tγ
−(t) = Fp(γ

−(t)) + O(t2M
′
1e−2λ1t),

where

(6.94) Fp = d(0,0)Hp =

(
0 I
Λ2 0

)
, Λ2 = diag(λ2

1, . . . , λ
2
n).

We obtain

(6.95)
∑

1≤j<̂

M ′
j∑

m=0

(Fp + µj)γ
−
j,mt

me−µjt =
∑

1≤j<̂

M ′
j∑

m=0

γ−j,mmt
m−1e−µjt.

Now suppose j < ̂ and M ′
j ≥ 1. We get, for this j, for some γ−

j,M ′
j
6= 0,

(6.96)





(Fp + µj)γ
−
j,M ′

j
= 0,

(Fp + µj)γ
−
j,M ′

j−1
= M ′

jγ
−
j,M ′

j
,

so that Ker(Fp + µj) ∩ Im(Fp + µj) 6= {0}. Since Fp is a diagonizable matrix, this can easily
be seen to be a contradiction.

Now we study M ′
̂ . So far we have obtained that

(6.97) γ−(t) =
∑

1≤j<̂
γ−j e

−µjt +

M ′
̂∑

m=0

γ−̂,mt
me−2λ1t + O(tCe−µ̂+1t),

and we can write

(6.98) Hp(x, ξ) =




ξ

Λ2x−
∑

|α|=2

∂α∇V (0)

α!
xα + O(x3)


 .

Thus we have

(6.99) Hp(γ
−(t)) = Fp

(∑

j<̂

γ−j e
−µjt +

M ′
̂∑

m=0

γ−̂,mt
me−2λ1t

)
+ e−2λ1tA(γ−1 ) + O(e−(2λ1+ε)t),
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where, noticing that µj + µj′ = 2λ1 if and only if j = j′ = 1,

(6.100) A(γ−1 ) =




0

−
∑

|α|=2

∂α∇V (0)

α!
(g−1 )α


 .

For the terms of order e−2λ1t, we have, since ∂tγ
−(t) = Hp(γ

−(t)),

(6.101) (Fp + 2λ1)

M ′
̂∑

m=0

γ−̂,mt
m =

M ′
̂∑

m=0

γ−̂,mmt
m−1 −A(γ−1 ).

Thus, if we suppose that M ′
̂ ≥ 2, we obtain

(6.102)





(Fp + 2λ1)γ
−
̂,M ′

̂
= 0,

(Fp + 2λ1)γ
−
̂,M ′

̂−1
= M ′

̂ γ
−
̂,M ′

̂
.

Then again we have γ−
̂,M ′

̂
∈ Ker(Fp + 2λ1) ∩ Im(Fp + 2λ1), a contradiction.

Finally, if λj 6= 2λ1 for all j, then Ker(Fp + 2λ1) = {0}. Therefore, if we suppose that
M ′
̂ = 1, we see that γ̂,1 6= 0 satisfies the first equation in (6.102) and we obtain a contradic-

tion.

Now we compute γ−̂ (t) = γ−̂,1t+ γ−̂,0. We have

(6.103)

{
(Fp + 2λ1)γ

−
̂,1 = 0,

(Fp + 2λ1)γ
−
̂,0 = γ−̂,1 −A(γ−1 ),

and we see that γ−̂,1 = Πγ−̂,1 = ΠA(γ−1 ), where Π is the projection on the eigenspace of

Fp associated to −2λ1. We denote by ej = (δi,j ⊗ 0)i=1,...,n and εj = (0 ⊗ δi,j)i=1,...,n for
j = 1, . . . , n, so that (e1, . . . en, ε1, . . . , εn) is the canonical basis of R

2n = T(0,0)T
∗
R
n. Then it

is easy to check that, for all j, v±j = ej ± λjεj is an eigenvector of Fp for the eigenvalue ±λj .
In the basis {e1, ε1, . . . , en, εn} the projector Π is block diagonal and, if Kj = span(ej , εj), we
have

(6.104) Π|Kj
=





(
1/2 −1/4λ1

−λ1 1/2

)
for j ∈ I1(2λ1),

0 for j /∈ I1(2λ1).

Therefore, we obtain

(6.105) (g−̂,1)
β =





− 1

4λ1

∑

|α|=2

∂β∂αV (0)

α!
(g−1 (z−))α for β ∈ I1(2λ1),

0 for β /∈ I1(2λ1).

Now suppose that k /∈ I1(2λ1). Then the second equality in (6.103) restricted to Kk gives

(6.106)

(
2λ1 1
λ2
k 2λ1

)
Πkγ̂,0 = −ΠkA(γ−1 ),
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where Πk denotes the projection onto Kk. Solving this system, one gets

(6.107) (g−̂,0)k =
1

4λ2
1 − λ2

k

ΠxΠkA(γ−1 ),

and, together with (6.100), this ends the proof of Proposition 6.11. �

6.4. Computation of the ϕkj ’s.

Here we compute the ϕkj ’s for j ≤ ̂. We continue to omit the superscript k. From [5], we

know that ξ−(t) = ∇xϕ
(
t, x−(t)

)
, so that, using Corollary 6.6, and Corollary 6.8,

ξ−(t) =∇ϕ+(x−(t)) + ∇ϕ1(x
−(t))e−λ1t +

∑

2≤j<̂
∇ϕj(0)e−µjt

+ ∇ϕ̂,2(0)t2e−2λ1t + ∇ϕ̂,1(0)te−2λ1t + ∇ϕ̂,0(0)e−2λ1t + Õ(e−µ̂+1t).(6.108)

Since ϕ+ = −ϕ− and (x−, ξ−) ∈ Λ−, we have ∇ϕ+(x−(t)) = −ξ−(t), and we obtain first, by
(6.90),

(6.109) ∇ϕj(0) = −2µjg
−
j (z−),

for 1 ≤ j < ̂.

Now we study ϕ̂(t, x) = ϕ̂,0(x) + tϕ̂,1(x) + t2ϕ̂,2(x) when I1(2λ1) 6= ∅. It follows from
(6.108) that we have

(6.110)

{ − 4λ1g
−
̂,1(z

−) = ∇ϕ̂,1(0),

− 4λ1g
−
̂,0(z

−) + 2g−̂,1(z
−) = ∇ϕ̂,0(0) + ∇2ϕ1(0)g−1 (z−).

On the other hand, we have seen that, by (6.42), the functions ϕ̂,2, ϕ̂,1 and ϕ̂,0 satisfy

(6.111)





(L− 2λ1)ϕ̂,2 = 0,

(L− 2λ1)ϕ̂,1 = −2ϕ̂,2,

(L− 2λ1)ϕ̂,0 = −ϕ̂,1 −
1

2
|∇ϕ1(0)|2.

In particular ϕ̂,2 ∈ Ker(L− 2λ1) ∩ Im(L− 2λ1) so that (see (6.61)),

(6.112) ϕ̂,2(x) =
∑

α∈I2(λ1)

c2,αx
α + O(x3).

Going back to (6.108), we now obtain

ξ−(t) =∇ϕ+(x−(t)) + ∇ϕ1(x
−(t))e−λ1t +

∑

2≤j<̂
∇ϕj(0)e−µjt

∇ϕ̂,1(0)te−2λ1t + ∇ϕ̂,0(0)e−2λ1t + Õ(e−µ̂+1t),(6.113)

and this equality is consistent with Proposition 6.11.

Then, (6.49) and (6.50) give

(6.114) ϕ̂,1(x) =
∑

α∈I1(2λ1)

c1,αx
α +

∑

|α|=2

c1,αx
α + O(x3),
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and, by (6.51), we have

(6.115) Ψ((c1,β)β∈I1(2λ1)) = (−2c2,α)α∈I2(λ1).

By (6.52), we also have for |α| = 2, α /∈ I2(λ1),

(6.116) c1,α =
1

2λ1 − λ · α
∑

β∈I1(2λ1)

∂α+βϕ+(0)

α!
c1,β .

The function ϕ̂,0(x) =
∑

|α|≤2 c0,αx
α + O(x3) satisfies (see (6.42))

(6.117) (L− 2λ1)ϕ̂,0 = −ϕ̂,1 −
1

2

∣∣∇ϕ1(x)
∣∣2.

First of all, the compatibility condition (6.47) gives

(6.118) ∀α ∈ I1(2λ1), c1,α = −∇ϕ1(0) · ∂α∇ϕ1(0),

so that in particular, by (6.115), the function ϕ̂,2 is known up to O(x3) terms:

(6.119) ∀α ∈ I2(λ1), c2,α =
1

2

∑

β∈I1(2λ1)

∂α+βϕ+(0)

α!
∇ϕ1(0) · ∂β∇ϕ1(0),

and

(6.120) ∀α /∈ I2(λ1), |α| = 2, c1,α = − 1

2λ1 − λ · α
∑

β∈I1(2λ1)

∂α+βϕ+(0)

α!
∇ϕ1(0) · ∂β∇ϕ1(0).

Now (6.49) and (6.50) give

(6.121) c0,0 = ϕ̂,0(0) =
1

4λ1
|∇ϕ1(0)|2,

and

(6.122) ∀α /∈ I1(2λ1), |α| = 1, c0,α =
1

2λ1 − λ · α∇ϕ1(0) · ∂α∇ϕ1(0).

From the other compatibility condition (6.48), we know that
(
c1,α +

1

α!
∇ϕ1(0) · ∂α∇ϕ1(0) +

1

2

∑

β,γ∈I1(λ1)
β+γ=α

∂β∇ϕ1(0) · ∂γ∇ϕ1(0)

+
∑

|β|=1
β /∈I1(2λ1)

∂α+βϕ+(0)

α!

∇ϕ1(0) · ∂β∇ϕ1(0)

2λ1 − λ · β
)

α∈I2(λ1)
∈ Im Ψ,(6.123)

and, from (6.51), we obtain the following relation between the (c0,β)β∈I1(2λ1) and the (c1,α)α∈I2(λ1)

∀α ∈ I2(λ1), c1,α = − 1

α!
∂α∇ϕ1(0) · ∇ϕ1(0) − 1

2

∑

β,γ∈I1(λ1)
β+γ=α

∂β∇ϕ1(0) · ∂γ∇ϕ1(0)

−
∑

β∈I1(2λ1)

∂α+βϕ+(0)

α!
c0,β −

∑

|β|=1
β /∈I1(2λ1)

∂α+βϕ+(0)

α!

∇ϕ1(0) · ∂β∇ϕ1(0)

2λ1 − λ · β ·(6.124)
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Using the second equation in (6.110), we obtain, for |β| = 1,

(6.125) c0,β = −4λ1(g
−
̂,0(z

−))β + 2(g−̂,1(z
−))β − ∂β∇ϕ1(0) · g−1 (z−).

So far, we have computed the functions ϕ̂,1(x) and ϕ̂,2(x) up to O(x3), in terms of

derivatives of ϕ+ and ϕ1, and of the g−̂,m(z−). We shall now use the expressions we have

obtained in Section 6.2 and in Section 6.3 to give these functions in terms of g−1 and of
derivatives of V only.

First, by (6.112), (6.119), Lemma 6.9 and Lemma 6.10, we obtain

ϕ̂,2(x) = − 1

8λ1

∑

γ∈I1(2λ1)
α,β∈I2(λ1)

∂β+γV (0)
(g−1 (z−))β

β!
∂α+γV (0)

xα

α!
+ O(x3).(6.126)

Then we have

(6.127) ϕ̂,1(x) = −4λ1g
−
̂,1(z

−) · x+
∑

α∈I2(λ1)

c1,αx
α +

∑

|α|=2
α/∈I2(λ1)

c1,αx
α + O(x3),

where the c1,α are given by (6.124) and (6.125) for α ∈ I2(λ1), and by (6.120) for α /∈ I2(λ1).

• For |α| = 2, α /∈ I2(λ1), we obtain from (6.116), Lemma 6.9, and Lemma 6.10,

c1,α =
4λ2

1

(2λ1 + λ · α)(2λ1 − λ · α)

×
∑

β∈I1(2λ1)

∂α+βV (0)

α!

n∑

j=1

1

(λ1 + λj)(3λ1 + λj)
∂j∂

β∇V (0) · g−1 (z−)(g−1 (z−))j .(6.128)

Since (g−1 (z−))j = 0 except for 1j ∈ I1(λ1), we get, changing notation a bit,

(6.129) c1,α =
1

(2λ1 + λ · α)(2λ1 − λ · α)

∑

γ∈I1(2λ1)
β∈I2(λ1)

∂α+γV (0)

α!

∂β+γV (0)

β!
(g−1 (z−))β .

• Now we compute c1,α for α ∈ I2(λ1).

For the last term in the R.H.S. of (6.124), we obtain

−
∑

|β|=1
β /∈I1(2λ1)

∂α+βϕ+(0)

α!

∇ϕ1(0) · ∂β∇ϕ1(0)

2λ1 − λ · β =

∑

γ∈I1\I1(2λ1)
β∈I2(λ1)

8λ2
1

(2λ1 − λ · γ)(λ · γ)(2λ1 + λ · γ)2
∂α+γV (0)

α!

∂β+γV (0)

β!
(g−1 (z−))β .(6.130)
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Using (6.91) and (6.125), we have also

−
∑

β∈I1(2λ1)

∂α+βϕ+(0)

α!
c0,β =

−
∑

γ∈I1(2λ1)

∂α+γV (0)

α!
(g−̂,0(z

−))γ +
1

4λ2
1

∑

γ∈I1(2λ1)
β∈I2(λ1)

∂α+γV (0)

α!

∂β+γV (0)

β!
(g−1 (z−))β .(6.131)

Now we compute − 1
α!∂

α∇ϕ1(0) · ∇ϕ1(0) for α ∈ I2(λ1). We obtain

− 1

α!
∂α∇ϕ1(0) · ∇ϕ1(0) = −

∑

β∈I2(λ1)

∂α+βV (0)

α!β!
(g−1 (z−))β

− 1

4

n∑

j,p,k=1

∑

β,γ∈I2
β+γ=α+1p+1j

((α+ 1p)j + 1)(αp + 1)

(λk + λ · β)(λk + λ · γ)
∂β+1kV (0)

β!

∂γ+1kV (0)

γ!
(g−1 (z−))j(g

−
1 (z−))p

+ 2λ1

n∑

j,p,k=1

∑

β,γ∈I2
β+γ=α+1p+1j

(αp + 1)γj
(λ1 − λ · γ)(λ1 + λ · γ)(λj + λ · β)

×

× ∂β+1jV (0)

β!

∂γ+1kV (0)

γ!
(g−1 (z−))k(g

−
1 (z−))p

= I + II + III.
(6.132)

Writing δ = 1j + 1p, we get

(6.133) II = −1

2

n∑

k=1

∑

β,γ,δ∈I2
β+γ=α+δ

(α+ δ)!

(λk + λ · β)(λk + λ · γ)
∂β+1kV (0)

β!

∂γ+1kV (0)

γ!

(g−1 (z−))δ

α! δ!
·

Since δ ∈ I2(λ1) (otherwise (g−1 (z−))δ = 0), we have β, γ ∈ I2(λ1) and, changing notations a
bit,

(6.134) II = −1

2

∑

β∈I2(λ1)

(α+ β)!

α!

∑

γ,δ∈I2(λ1)
γ+δ=α+β

n∑

j=1

1

(2λ1 + λj)2
∂j∂

γV (0)

γ!

∂j∂
δV (0)

δ!

(g−1 (z−))β

β!
·

In the last term III, we can suppose that γ = 1j+1q for some q ∈ {1, . . . , n}. Then γj = γ!
and, writing β = 1a + 1b we have

III = λ1

n∑

j,k,p=1

(αp + 1)(g−1 (z−))k(g
−
1 (z−))p

×
∑

a,b,q∈I1
1a+1b+1q=α+1p

(αp + 1)

(λ1 − λj − λq)(λ1 + λj + λq)(λj + λa + λb)
∂j,a,bV (0)∂j,q,kV (0).(6.135)
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Since α ∈ I2(λ1) and 1p ∈ I1(λ1) (otherwise (g−1 (z−))p = 0), we have 1a, 1b, 1q ∈ I1(λ1) so
that we can write
(6.136)

III = −
n∑

j,k,p=1

(αp + 1)
λ1

λj(2λ1 + λj)2
(g−1 (z−))k(g

−
1 (z−))p

∑

a,b,q∈I1
1a+1b+1q=α+1p

∂j,a,bV (0)∂j,q,kV (0).

Now it is easy to check, noticing that (α+ 1p)k ∈ {0, 1, 2, 3} and examining each case, that

(6.137)
∑

a,b,q∈I1
1a+1b+1q=α+1p

∂j,a,bV (0)∂j,q,kV (0) =
(α+ 1p)k

4

∑

a,b,c,d∈I1
1a+1b+1c+1d=α+1p+1k

∂j,a,bV (0)∂j,c,dV (0).

Therefore, we have

III = −1

4

n∑

j,k,p=1

(α+ 1p + 1k)!

α!

λ1

λj(2λ1 + λj)2
(g−1 (z−))k(g

−
1 (z−))p

×
∑

a,b,c,d∈I1
1a+1b+1c+1d=α+1p+1k

∂j,a,bV (0)∂j,c,dV (0).(6.138)

Eventually, setting β = 1p + 1k, γ = 1a + 1b and δ = 1c + 1d, we get
(6.139)

III = −
∑

β∈I2(λ1)

(α+ β)!

α!

∑

γ,δ∈I2(λ1)
γ+δ=α+β

n∑

j=1

2λ1

λj(2λ1 + λj)2
∂j∂

γV (0)

γ!

∂j∂
δV (0)

δ!

(g−1 (z−))β

β!
·

We are left with the computation of

−1

2

∑

β,γ∈I1(λ1)
β+γ=α

∂β∇ϕ1(0) · ∂γ∇ϕ1(0) = −1

2

n∑

j=1

∑

β,γ∈I1(λ1)
β+γ=α

∂j∂
βϕ1(0) · ∂j∂γϕ1(0)

= −1

2

n∑

j=1

4λ2
1

λ2
j (2λ1 + λj)2

∑

β,γ∈I1(λ1)
β+γ=α

n∑

k,ℓ=1

∂j∂k∂
βV (0)(g−1 (z−))k∂j∂ℓ∂

γV (0)(g−1 (z−))ℓ.(6.140)



SEMICLASSICAL SCATTERING AMPLITUDE AT THE MAXIMUM OF THE POTENTIAL 41

At this point, we notice that

−1

2

∑

α∈I2(λ1)

∑

β,γ∈I1(λ1)
β+γ=α

∂β∇ϕ1(0) · ∂γ∇ϕ1(0)xα

= −1

2

n∑

j=1

4λ2
1

λ2
j (2λ1 + λj)2

∑

β,γ∈I1(λ1)
α∈I2(λ1)
β+γ=α

n∑

k,ℓ=1

∂j∂k∂
βV (0)(g−1 (z−))k∂j∂ℓ∂

γV (0)(g−1 (z−))ℓ x
α

= −1

2

n∑

j=1

4λ2
1

λ2
j (2λ1 + λj)2

{ ∑

α,β∈I2(λ1)

(α+ β)!
∑

γ,δ∈I2(λ1)
γ+δ=α+β

∂j∂
γV (0)

γ!

∂j∂
δV (0)

δ!

xα

α!

(g−1 (z−))β

β!

− 2
∑

α,β∈I2(λ1)

∂j∂
αV (0)

α!

∂j∂
βV (0)

β!
xα(g−1 (z−))β

}(6.141)

From (6.124), (6.130), (6.131) (6.139), and (6.141), we finally obtain that

∑

α∈I2(λ1)

c1,αx
α =

∑

γ∈I1\I1(2λ1)
α,β∈I2(λ1)

8λ2
1

(2λ1 − λ · γ)(λ · γ)(2λ1 + λ · γ)2
∂α+γV (0)

α!

∂β+γV (0)

β!
(g−1 (z−))βxα

−
∑

γ∈I1(2λ1)
α∈I2(λ1)

∂α+γV (0)

α!
(g−̂,0(z

−))γxα +
1

4λ2
1

∑

γ∈I1(2λ1)
α,β∈I2(λ1)

∂α+γV (0)

α!

∂β+γV (0)

β!
(g−1 (z−))βxα

−
∑

α,β∈I2(λ1)

∂α+βV (0)

α!β!
(g−1 (z−))βxα

− 1

2

∑

α,β∈I2(λ1)

(α+ β)!
∑

γ,δ∈I2
γ+δ=α+β

n∑

j=1

1

(2λ1 + λj)2
∂j∂

γV (0)

γ!

∂j∂
δV (0)

δ!

(g−1 (z−))β

β!

xα

α!

−
∑

α,β∈I2(λ1)

(α+ β)!
∑

γ,δ∈I2(λ1)
γ+δ=α+β

n∑

j=1

2λ1

λj(2λ1 + λj)2
∂j∂

γV (0)

γ!

∂j∂
δV (0)

δ!

(g−1 (z−))β

β!

xα

α!

− 2
∑

α,β∈I2(λ1)

(α+ β)!
∑

γ,δ∈I2(λ1)
γ+δ=α+β

n∑

j=1

λ2
1

λ2
j (2λ1 + λj)2

∂j∂
γV (0)

γ!

∂j∂
δV (0)

δ!

(g−1 (z−))β

β!

xα

α!

+ 4
∑

α,β∈I2(λ1)

n∑

j=1

λ2
1

λ2
j (2λ1 + λj)2

∂j∂
αV (0)

α!

∂j∂
βV (0)

β!
xα(g−1 (z−))β ,

(6.142)
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or, more simply,

∑

α∈I2(λ1)

c1,αx
α = −

∑

γ∈I1(2λ1)
α∈I2(λ1)

∂α+γV (0)

α!
(g−̂,0(z

−))γxα +
∑

α,β∈I2(λ1)

(g−1 (z−))β

β!

xα

α!

×
{ ∑

γ∈I1\I1(2λ1)

8λ2
1

(2λ1 − λ · γ)(λ · γ)(2λ1 + λ · γ)2∂
α+γV (0)∂β+γV (0)

+
1

4λ2
1

∑

γ∈I1(2λ1)

∂α+γV (0)∂β+γV (0) − ∂α+βV (0)

− (α+ β)!

2

∑

γ,δ∈I2
γ+δ=α+β

n∑

j=1

1

λ2
j

∂j∂
γV (0)

γ!

∂j∂
δV (0)

δ!

+ 4
n∑

j=1

λ2
1

λ2
j (2λ1 + λj)2

∂j∂
αV (0)∂j∂

βV (0)

}
.(6.143)

7. Computations after the critical point

7.1. Stationary phase expansion in the outgoing region.

Now we compute the scattering amplitude starting from (4.19). First of all, we change the
cut-off function χ+ so that the support of the right hand side of the scalar product in (4.19)
is close to (0, 0).

γ+
ℓχ+ = 0

supp(∇χ+)

χ+ = 1

γ+
ℓχ̃+ = 0

supp(∇χ̃+)

χ̃+ = 1

Figure 1. The support of χ+ and χ̃+ in T ∗
R
n.

Using Maslov’s theory, we construct a function v+ which coincides with a+(x, h)eiψ+(x)/h

out of a small neighborhood of
⋃
ℓ γ

+
ℓ ∩ (B(0, R+ + 1)×R

n) and such that v+ is a solution of

(P − E)v+ = 0 microlocally near
⋃
ℓ γ

+
ℓ . Let χ̃+(x, ξ) ∈ C∞(T ∗

R
n) be such that χ̃+(x, ξ) =

χ+(x) out of a small enough neighborhood of
⋃
ℓ γ

+
ℓ ∩ (B(0, R+ + 1) × R

n). In particular,
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(P − E)v+ is microlocally 0 near the support of χ+ − χ̃+. So, we have

〈u−, [χ+, P ]v+〉 =〈u−, [Op(χ̃+), P ]v+〉 + 〈u−, (χ+ − Op(χ̃+))(P − E)v+〉
− 〈(P − E)u−, (χ+ − Op(χ̃+))v+〉

=〈u−, [Op(χ̃+), P ]v+〉 + O(h∞) − 〈g−eiψ−/h, (χ+ − Op(χ̃+))v+〉
=〈u−, [Op(χ̃+), P ]v+〉 + O(h∞),(7.1)

since the microsupports of g−eiψ−/h and χ+− χ̃+ are disjoint. Thus, the scattering amplitude
is given by

(7.2) A(ω, θ, E, h) = c̃(E)h−(n+1)/2〈u−, [Op(χ̃+), P ]v+〉 + O(h∞).

Now we will prove that, modulo O(h∞), the only contribution to the scattering amplitude
in (7.2) comes from the values of the functions u− and v+ microlocally on the trajectories γ+

ℓ

and γ∞j . From (5.18), the fact that u− = O(h−C) and (P −E)u− = 0 microlocally out of the

microsupport of g−e−iψ−/h, and the usual propagation of singularities theorem, we get

(7.3) MS(u−) ⊂ Λ−
ω ∪ Λ+.

Moreover, we have

(7.4) MS(v+) ⊂ Λ+
θ .

Now, let f∞j (resp. f+
ℓ ) be C∞

0 (T ∗
R
n) functions with support in a small enough neighborhood

of γ∞j (resp. γ+
ℓ ∩ MS(v+)) such that f∞j = 1 (resp. f+

k = 1) in a neighborhood of γ∞j (resp.

γ+
ℓ ∩MS(v+)). In particular, we assume that all these functions have disjoint support. Since

u− and v+ have disjoint microsupport out of the support of the f∞j and the f+
ℓ , we have

A(ω, θ, E, h) =c̃(E)h−(n+1)/2
∑

j

〈Op(f∞j )u−,Op(f∞j )[Op(χ̃+), P ]v+〉

+ c̃(E)h−(n+1)/2
∑

ℓ

〈Op(f+
ℓ )u−,Op(f+

ℓ )[Op(χ̃+), P ]v+〉 + O(h∞)

=Areg + Asing.(7.5)

Concerning the terms which contain f∞j , Areg, we are in the same setting as in [32, Section

4] with the difference that the calculus is made for any E = E0 + hE1 with E1 = O(1) and
not for E = E0.

In Equation (5.33), we have shown that the main term of the symbol appearing in the

WKB expansion on u− differs, from the case E = E0, by a factor eit−(ρ)E1 for ρ ∈ γ∞j . The

time t−(ρ) is the unique time t such that γ−(t, z∞j , ω, E0) = ρ (see (2.6) and (2.8)). The same

way, the main term of the symbol in the WKB expansion on v+ differs by a factor eit+(ρ)E1

on the curve γ∞j . Here t+(ρ) = t is such that γ+(t, z̃∞j , θ, E0) = ρ, where z̃∞j is the projection

of r∞(z∞j , ω, E0) on θ⊥. The bicharacteristic curves γ−(t, z∞j , ω, E0), γ+(t, z̃∞j , θ, E0) and γ∞j
are the same sets, and the quantity t− − t+ does not depend on ρ ∈ γ∞j . Moreover, from

(2.9), we have

(7.6) t− − t+ = −
〈
r∞(z∞j , ω, E0)|

√
2E0

−1
θ
〉
.
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Then, following [32, Section 4], the computation of the term Areg gives

(7.7) Areg =

N∞∑

j=1

( ∑

m≥0

areg
j,m(ω, θ, E)hm

)
eiS

∞
j /h + O(h∞),

with

(7.8) areg
j,0 (ω, θ, E) = areg

j,0 (ω, θ, E0)e
i(t−−t+)E1 .

Here, areg
j,0 (ω, θ, E0) is the term obtained by Robert and Tamura and equal to

(7.9) areg
j,0 (ω, θ, E0) =

e−iν
∞
j π/2

σ̂(z∞j )1/2
·

Now we compute Asing. Proceeding as in Section 5.2 for u−, one can show that v+ can be
written as

(7.10) v+(x) = a+(x, h)eiν
+
ℓ π/2eiψ+(x)/h,

microlocally near any ρ ∈ γ+
ℓ close enough to (0, 0). Here ν+

ℓ is the Maslov index of γ+
ℓ . The

phase ψ+ and the classical symbol a+ satisfy the usual eikonal and transport equations. In
particular, as in (5.28) and (5.33), we have
(7.11)

ψ+(x+
ℓ (t)) = −

∫ +∞

t
|ξ+ℓ (u)|2 − 2E01u>0 du = −

∫ +∞

t

1

2
|ξ+ℓ (u)|2 − V (x+

ℓ (u)) − E0 sgn(u) du,

and a+(x, h) ∼ ∑
m a+,m(x)hm with

(7.12) a+,0(x
+
ℓ (t)) = (2E0)

1/4(D+
ℓ (t))−1/2eitE1 ,

where

(7.13) D+
ℓ (t) =

∣∣∣ det
∂x+(t, z, θ, E0)

∂(t, z)
|z=z+ℓ

∣∣∣.

We can choose χ̃+ so that the support of the symbol of Op(f+
ℓ )[Op(χ̃+), P ] is contained in

a vicinity of such a point ρ ∈ γ+
ℓ (see Figure 1). Then, microlocally near ρ, we have

(7.14) Op(f+
ℓ )[Op(χ̃+), P ]v+ = ã+(x, h)eiν

+
ℓ π/2eiψ+(x)/h,

with

(7.15) ã+(x, h) =
∑

m≥0

ã+,m(x)hm+1,

and

(7.16) ã+,0(x) = −i{χ̃+, p}(x,∇ψ+(x))a+,0(x).

From [5, Section 5], the Lagrangian manifold

{(x,∇xϕ
k(t, x)); ∂tϕ

k(t, x) = 0},
coincides with Λ−

ω . In particular, since MS(v+) ⊂ Λ+
θ and since there is no curve γ∞(z∞j )

sufficiently close to the critical point, the finite times in (6.5) give a contribution O(h∞) to the
scattering amplitude (4.19). In view of the equations (6.5), (6.12) and (7.14), the principal



SEMICLASSICAL SCATTERING AMPLITUDE AT THE MAXIMUM OF THE POTENTIAL 45

contribution of Asing will come from the intersection of the manifolds Λ+
θ and Λ+. Recall

that, from (A5), the manifolds Λ+
θ and Λ+ intersect transversely along γ+

ℓ .

In particular, to compute Asing, we can apply the method of stationary phase in the
directions that are transverse to γ+

ℓ . For each ℓ, after a linear and orthonormal change of

variables, we can assume that g+
ℓℓℓ (z+

ℓ ) is collinear to the xℓℓℓ–direction, and that V (x) satisfies

(A2). We denote Hℓ
xℓℓℓ

= {y = (y1, . . . , yn) ∈ R
n; yℓℓℓ = xℓℓℓ} the hyperplane orthogonal to

(0, . . . , 0, xℓℓℓ, 0, . . . , 0).

We shall compute Asing in the case where there is only one incoming curve γ−k in Λ−
ω and

one outgoing curve γ+
ℓ in Λ+

θ . In the case of several but finitely many trajectories, Asing is
simply given by the sum over k and ℓ of such contributions. Using (4.19), (6.5) and (7.14),
we can write

Asing =
c̃(E)h−(n+1)/2

√
2πh

∫∫
ei(ϕ

k(t,x)−ψ+(x))/hαk(t, x, h)ã+(x, h)e−iν
+
ℓ π/2dt dx

=
c̃(E)h−(n+1)/2

√
2πh

∫

xℓℓℓ

∫∫

y∈Hℓ
xℓℓℓ

ei(ϕ
k(t,x)−ψ+(x))/hαk(t, x, h)ã+(x, h)e−iν

+
ℓ π/2dt dy dxℓℓℓ.(7.17)

Let Φ(y) = ϕk(t, xℓℓℓ, y) − ψ+(xℓℓℓ, y) be the phase function in (7.17). From (6.10)–(6.13), we
can write

(7.18) Φ(y) = S−
k + (ϕ+ − ψ+)(xℓℓℓ, y) + ψ̃(t, xℓℓℓ, y),

where ψ̃ = O(e−λ1t) is an expandible function. Since the manifolds Λ+
θ and Λ+ intersect

transversely along γ+
ℓ , the phase function y 7→ (ϕ+ −ψ+)(xℓℓℓ, y) has a non degenerate critical

point yℓ(xℓℓℓ) ∈ Hℓ
xℓℓℓ

∩ Πxγ
+
ℓ , and xℓℓℓ 7→ yℓ(xℓℓℓ) is C∞ for xℓℓℓ 6= 0. Then, from the implicit

function theorem, the function Φ has a unique critical point yℓ(t, xℓℓℓ) ∈ Hℓ
xℓℓℓ

for t large enough

depending on xℓℓℓ. The function (t, xℓℓℓ) 7→ yℓ(t, xℓℓℓ) is expandible and we have

(7.19) yℓ(t, xℓℓℓ) = yℓ(xℓℓℓ) − Hess(ϕ+ − ψ+)−1
(
yℓ(xℓℓℓ)

)
∇ϕ1

(
yℓ(xℓℓℓ)

)
e−µ1t + Õ

(
e−µ2t

)
.

As a consequence, Φ
(
yℓ(t, xℓℓℓ)

)
is also expandible.

Since ϕ+ and ψ+ satisfy the same eikonal equation, we get (see (5.25))

(7.20) ∂t(ϕ+ − ψ+)(x+
ℓ (t)) = |ξ+ℓ (t)|2 − |ξ+ℓ (t)|2 = 0.

Thus, (ϕ+ − ψ+)(yℓ(xℓℓℓ)) does not depend of xℓℓℓ and is equal to

(ϕ+ − ψ+)(yℓ(xℓℓℓ)) = lim
t→−∞

(ϕ+ − ψ+)(x+
ℓ (t))

=

∫ +∞

−∞
|ξ+ℓ (s)|2 − 2E01s>0 ds

=

∫ +∞

−∞

1

2
|ξ+ℓ (s)|2 − V (x+

ℓ (s)) − E0 sgn(s) ds

=S+
ℓ ,(7.21)
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where we have used (7.11). Therefore, the phase function Φ at the critical point yℓ(t, xℓℓℓ) is
equal to

Φ
(
yℓ(t, xℓℓℓ)

)
=S−

k + S+
ℓ +

∑

m∈N
µm≤2λ1

ϕm
(
t, yℓ(xℓℓℓ)

)
e−µmt

− 1

2

(
Hess(ϕ+ − ψ+)−1

(
yℓ(xℓℓℓ)

)
∇ϕ1

(
yℓ(xℓℓℓ)

)
· ∇ϕ1

(
yℓ(xℓℓℓ)

))
e−2µ1t + Õ(e−µ̃t),(7.22)

where µ̃ is the first of the µj ’s such that µj > 2λ1.

Using the method of the stationary phase for the integration with respect to y ∈ Hℓ
xℓℓℓ

in
(7.17), we get

(7.23) Asing =
c̃(E)h−(n+1)/2

√
2πh

(2πh)(n−1)/2

∫∫
eiΦ(yℓ(t,xℓℓℓ))/hf ℓ(t, xℓℓℓ, h) dt dxℓℓℓ + O(h∞).

The O(h∞) term follows from the fact that the error term stemming from the stationary phase

method can be integrated with respect to time t, since αk ∈ S0,2 Re Σ(E), with Re Σ(E) > 0
(see the beginning of Section 6). The symbol f ℓ(t, xℓℓℓ, h) is a classical expandible function of

order S1,2 Re Σ(E) in the sense of Definition 6.2:

(7.24) f ℓ(t, xℓℓℓ, h) ∼
∑

m≥0

f ℓm(t, xℓℓℓ, lnh)h
1+m,

where the f ℓm are polynomials with respect to lnh and

(7.25) f ℓ0(t, xℓℓℓ, lnh) = αk0
(
t, yℓ(t, xℓℓℓ)

)
ã+,0

(
yℓ(t, xℓℓℓ)

)
e−iν

+
ℓ π/2

e
i sgn Φ′′

|Hℓ
xℓℓℓ

(yℓ(t,xℓℓℓ))π/4

∣∣ detΦ′′
|Hℓ

xℓℓℓ

(
yℓ(t, xℓℓℓ)

)∣∣1/2
.

Using Proposition C.1, we compute the Hessian of Φ, and we get

ψ′′
+

(
yℓ(xℓℓℓ)

)
= diag(−λ1, . . . ,−λℓℓℓ−1, λℓℓℓ,−λℓℓℓ+1, . . . ,−λn) + o(1),

ϕ′′
+

(
yℓ(xℓℓℓ)

)
= diag(λ1, . . . , λn) + o(1).

Then, for xℓℓℓ small enough and t large enough depending on xℓℓℓ, we have

∣∣ det Φ′′
|Hℓ

xℓℓℓ

(
yℓ(t, xℓℓℓ)

)∣∣1/2 =

√∏

j 6=ℓℓℓ
2λj + o(1),(7.26)

sgn Φ′′
|Hℓ

xℓℓℓ

(
yℓ(t, xℓℓℓ)

)
= n− 1,(7.27)

as xℓℓℓ goes to 0.

7.2. Behaviour of the phase function Φ.

Suppose that j ∈ N is such that j < ̂. From (6.40), we have

(7.28) ϕkj (x
+
ℓ (s0)) = e−µj(s−s0)ϕkj (x

+
ℓ (s)).

Combining (6.41) with (6.109), we obtain

ϕkj (x
+
ℓ (s0)) =eµjs0e−µjs

(
− 2µj〈g−j (z−k )|g+

j (z+
ℓ 〉)eµjs + O(e2λ1s)

)

= − 2µj
〈
g−j (z−k )

∣∣g+
j (z+

ℓ )
〉
eµjs0 .(7.29)
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We suppose first that we are in the case (a) of assumption (A7). Then, (7.22) becomes

(7.30) Φ
(
yℓ(t, xℓℓℓ)

)
= S−

k + S+
ℓ − 2µk

〈
g−
k

(z−k )
∣∣g+

k
(z+
ℓ )

〉
eµks(xℓℓℓ)e−µkt + Õ(e−µk+1t).

Here s(xℓℓℓ) is such that x+
ℓ (s(xℓℓℓ)) = xℓ(xℓℓℓ) and the Õ(e−µk+1t) is in fact expandible, uniformly

with respect to xℓℓℓ when xℓℓℓ varies in a compact set avoiding 0.

Suppose now that we are in the case (b) of assumption (A7). Of course, from (7.29), we
have ϕj

(
yℓ(xℓℓℓ)

)
= 0 for all j < ̂. On the other hand, Corollary 6.8 and (6.111) imply

(7.31) ϕk̂,2(x
+
ℓ (s0)) = e−2λ1(s−s0)ϕk̂,2(x

+
ℓ (s)).

Combining this with (6.126), we get

ϕk̂,2(x
+
ℓ (s0)) =e2λ1s0e−2λ1s

(
− 1

8λ1

∑

j∈I1(2λ1)
α,β∈I2(λ1)

∂α+1jV (0)

α!

∂β+1jV (0)

β!

(
g−1 (z−k )

)α(
g+
1 (z+

ℓ )
)β
e2λ1s

+ O(e3λ1s)
)

= − 1

8λ1

∑

j∈I1(2λ1)
α,β∈I2(λ1)

∂α+1jV (0)

α!

∂β+1jV (0)

β!

(
g−1 (z−k )

)α(
g+
1 (z+

ℓ )
)β
e2λ1s0 .(7.32)

In particular, (7.22) becomes, in that case,

Φ
(
yℓ(t, xℓℓℓ)

)
=S−

k − S+
ℓ − 1

8λ1

∑

j∈I1(2λ1)
α,β∈I2(λ1)

∂α+1jV (0)

α!

∂β+1jV (0)

β!

(
g−1 (z−k )

)α(
g+
1 (z+

ℓ )
)β
e2λ1s(xℓℓℓ)

× t2e−2λ1t + O(te−2λ1t)

=S−
k + S+

ℓ + M2(k, ℓ)t
2e−2λ1t + O(te−2λ1t).(7.33)

As in (7.30), the term O(te−2λ1t) is in fact expandible uniformly with respect to xℓℓℓ when xℓℓℓ
varies in a compact set avoiding 0.

Eventually, we suppose that we are in the case (c) of assumption (A7). Then we obtain
from (7.29) and (7.32) that ϕj

(
yℓ(xℓℓℓ)

)
= 0 for all j < ̂ and ϕ̂,2

(
yℓ(xℓℓℓ)

)
= 0. With the last

identity in mind, Equation (6.111) on ϕk̂,1 implies

(7.34) ϕk̂,1(x
+
ℓ (s0)) = e−2λ1(s−s0)ϕk̂,1(x

+
ℓ (s)).

In order to compute ϕk̂,1(x
+
ℓ (s)), we put the expansion (2.17) for x+

ℓ (s) (with Proposition 6.11

in mind) into (6.127). The third term in (6.127) will be, at least, O(e(µ2+µ1)s) = o(e2λ1s).
Thank to (6.91) and thanks to the fact that M2(k, ℓ) = 0, the first term in (6.127) will give
no contribution of order se2λ1s and will be of the form

(7.35) −4λ1g
−
̂,1(z

−
k ) · x+

ℓ (s) = −
∑

j∈I1

α∈I2(λ1)

∂j∂
αV (0)

α!
(g−1 (z−k ))α(g+

̂,0(z
+
ℓ ))je

2λ1s + Õ(eµ̂+1s)

It remains to study the contribution the second term in (6.127), as given in (6.143). As
previously, the first term of the third line in (6.143) will give a term of order o(e2λ1s). The
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other terms will contribute to the order e2λ1s for

−
∑

j∈I1

α∈I2(λ1)

∂j∂
αV (0)

α!
(g−̂,0(z

−
k ))j(g

+
1 (z+

ℓ ))α +
∑

α,β∈I2(λ1)

(g−1 (z−k ))α

α!

(g+
1 (z+

ℓ ))β

β!
×

×
(
− ∂α+βV (0) +

∑

j∈I1\I1(2λ1)

4λ2
1

λ2
j (4λ

2
1 − λ2

j )
∂j∂

αV (0)∂j∂
βV (0)

−
∑

j∈I1

γ,δ∈I2(λ1)
γ+δ=α+β

(γ + δ)!

γ! δ!

1

2λ2
j

∂j∂
γV (0)∂j∂

δV (0)
)
.(7.36)

Thus, combining (7.35) and (7.36), the discussion above leads to

ϕk̂,1(x
+
ℓ (s0)) =e2λ1s0e−2λ1s

(
M1(k, ℓ)e

2λ1s + o(e2λ1s)
)

=M1(k, ℓ)e
2λ1s0 .(7.37)

In particular, (7.22) becomes, in that case,

Φ
(
yℓ(t, xℓℓℓ)

)
=S−

k + S+
ℓ + M1(k, ℓ)e

2λ1s(xℓℓℓ)te−2λ1t + O(e−2λ1t).(7.38)

As above, the O(e−2λ1t) is expandible uniformly with respect to the variable xℓℓℓ when xℓℓℓ varies
in a compact set avoiding 0.

7.3. Integration with respect to time.

Now we perform the integration with respect to time t in (7.23). We follow the ideas of
[20, Section 5] and [5, Section 6]. Since yℓ(t, xℓℓℓ) is expandible (see (7.19)), and since Φ is C∞

outside of xℓℓℓ = 0, the symbol f ℓ(t, xℓℓℓ, h) is expandible.

We compute only the contribution of the principal symbol (with respect to h) of f ℓ, since
the other terms can be treated the same way, and the remainder term will give a contribution
O(h∞) to the scattering amplitude. In other word, we compute

(7.39) Asing
0 =

c̃(E)h−(n+1)/2

√
2πh

(2πh)(n−1)/2h

∫∫
eiΦ(yℓ(t,xℓℓℓ))/hf ℓ0(t, xℓℓℓ) dt dxℓℓℓ + O(h∞).

First, we assume that we are in the case (a) of the assumption (A7). In that case, Φ is
given by (7.30). For xℓℓℓ fixed in a compact set away from 0, we set

τ =Φ
(
yℓ(t, xℓℓℓ)

)
− (S−

k + S+
ℓ )

= − 2µk

〈
g−
k

(z−k )
∣∣g+

k
(z+
ℓ )

〉
eµks(xℓℓℓ)e−µkt +R(t, xℓℓℓ),(7.40)

and we perform the change of variable t 7→ τ in (7.39). We assume for a moment that

(7.41)
〈
g−
k

(z−k )
∣∣g+

k
(z+
ℓ )

〉
< 0.
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Here R(t, xℓℓℓ) = Õ(e−µk+1t) is expandible. As in [20, Section 5] and [5, Section 6], we get

e−t ∼
(
− 2µk

〈
g−
k

(z−k )
∣∣g+

k
(z+
ℓ )

〉
eµks(xℓℓℓ)

)−1/µkτ1/µk

(
1 +

∞∑

j=1

τ µ̂j/µkbj(− ln τ, xℓℓℓ)
)

(7.42)

t ∼− 1

µk

ln τ +
1

µk

ln
(
− 2µk

〈
g−
k

(z−k )
∣∣g+

k
(z+
ℓ )

〉
eµks(xℓℓℓ)

)
+

∞∑

j=1

τ µ̂j/µkbj(− ln τ, xℓℓℓ)(7.43)

τ
dt

dτ
∼− 1

µk

+
∞∑

j=1

τ µ̂j/µkbj(− ln τ, xℓℓℓ),(7.44)

where the bj ’s change from line to line. These expansions are valid in the following sense:

Definition 7.1. Let f(τ, y) be defined on ]0, ε[×U where U ⊂ R
m. We say that f = Ô(g(τ))

(resp. f = ô(g(τ))), where g(τ) is a non-negative function defined in ]0, ε[ if and only if for
all α ∈ N and β ∈ N

m,

(7.45) (τ∂τ )
α∂βy f(τ, y) = O(g(τ)),

(resp. o(g(τ))) for all (τ, y) ∈]0, ε[×U .

Thus, an expression like f ∼ ∑∞
j=1 τ

µ̂j/µkfj(− ln τ, xℓℓℓ), where fj(− ln τ, xℓℓℓ) is a polynomial

with respect to ln τ , as in (7.42)–(7.44), means that, for all J ∈ N,

(7.46) f(τ, x) −
J∑

j=0

τ µ̂j/µkfj(− ln τ, xℓℓℓ) = Ô(τ µ̂J/µk).

We shall call that such symbols f expandible near 0.

Since f ℓ0(t, xℓℓℓ) is expandible (see Definition 6.1) with respect to t, this symbol is also
expandible near 0 with respect to τ in the sense of Definition 7.1. In particular, we get

(7.47) f̃ ℓ0(τ, xℓℓℓ) = −f ℓ0(t, xℓℓℓ)τ
dt

dτ
∼

∞∑

j=0

τ (Σ(E)+µ̂j)/µk f̃ ℓ0,j(− ln τ, xℓℓℓ),

where the f̃ ℓ0,j ’s are polynomials with respect to ln τ . The principal symbol f̃ ℓ0,0 is independent
of ln τ and we have

(7.48) f̃ ℓ0,0(xℓℓℓ) =
1

µk

(
− 2µk

〈
g−
k

(z−k )
∣∣g+

k
(z+
ℓ )

〉
eµks(xℓℓℓ)

)−Σ(E)/µkf ℓ0,0(xℓℓℓ).

In that case, (7.39) becomes

(7.49) Asing
0 =

c̃(E)h−1/2

(2π)1−n/2
ei(S

−
k +S+

ℓ )/h

∫∫ +∞

0
eiτ/hf̃ ℓ0(τ, xℓℓℓ)

dτ

τ
dxℓℓℓ + O(h∞).

Note that f̃ ℓ0(τ, xℓℓℓ) has in fact a compact support with respect to τ . Now, using Lemma D.1,
we can perform the integration with respect to t of each term in the right hand side of (7.47),
modulo a term O(h∞) (see (D.3)–(D.4) in Lemma D.1). Then, we get

(7.50) Asing
0 =

c̃(E)h−1/2

(2π)1−n/2
ei(S

−
k +S+

ℓ )/h
+∞∑

j=0

f̂j(lnh)h
(Σ(E)+µ̂j)/µk ,
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where f̂j(lnh) is a polynomial with respect to lnh. The function f̂0 does not depend on h
and we have

(7.51) f̂0 = Γ(Σ(E)/µk)(−i)−Σ(E)/µk

∫
f̃ ℓ0,0(xℓℓℓ) dxℓℓℓ.

To finish the proof, it remains to perform the integration with respect to xℓℓℓ. From (7.25)
and (7.48), (7.51) becomes

f̂0 =Γ(Σ(E)/µk)
1

µk

∫ (
2iµk

〈
g−
k

(z−k )
∣∣g+

k
(z+
ℓ )

〉
eµks(xℓℓℓ)

)−Σ(E)/µk

× α0,0(y
ℓ
(
xℓℓℓ)

)
ã+,0

(
yℓ(xℓℓℓ)

)
e−iν

+
ℓ π/2

e
i sgn Φ′′

|Hℓ
xℓℓℓ

(yℓ(xℓℓℓ))π/4

∣∣ detΦ′′
|Hℓ

xℓℓℓ

(
yℓ(xℓℓℓ)

)∣∣1/2
dxℓℓℓ.(7.52)

Now we make the change of variable xℓℓℓ 7→ s given by yℓ(xℓℓℓ) = x+
ℓ (s) (then s(xℓℓℓ) = s). In

particular,

(7.53) dxℓℓℓ = ∂s(x
+
ℓ,ℓℓℓ(s))ds = λℓℓℓ|g+

ℓℓℓ (z+
ℓ )|eλℓℓℓs(1 + o(1))ds,

as s→ −∞. In this setting, we get

(7.54) α0,0(x
+
ℓ (s)) = α0,0(0)(1 + o(1)),

as s→ −∞, where α0,0(0) is given in (6.8). We also have, from (7.12) and (7.16),

(7.55) ã+,0(x
+
ℓ (s)) = −i∂s

(
χ̃+(γ+

ℓ (s))
)
(2E0)

1/4(D+
ℓ (s))−1/2e−isE1 .

Then, substituting (7.26), (7.27), (7.53), (7.54) and (7.55) in (7.52), we obtain

f̂0 =Γ(Σ(E)/µk)
−i
µk

∫ (
2iµk

〈
g−
k

(z−k )
∣∣g+

k
(z+
ℓ )

〉)−Σ(E)/µkα0,0(0)∂s
(
χ̃+(γ+

ℓ (s))
)
e−iν

+
ℓ π/2

× ei(n−1)π/4

√∏

j 6=ℓℓℓ
2λj

λℓℓℓ|g+
ℓℓℓ (z+

ℓ )|(2E0)
1/4(D+

ℓ (s))−1/2e−isE1e−Σ(E)seλℓℓℓs(1 + o(1)) ds

= − ei(n+1)π/4

µk

( ∏

j 6=ℓℓℓ
2λj

)−1/2
λℓℓℓ|g+

ℓℓℓ (z+
ℓ )|Γ(Σ(E)/µk)

(
2iµk

〈
g−
k

(z−k )
∣∣g+

k
(z+
ℓ )

〉)−Σ(E)/µk

× e−iν
+
ℓ π/2α0,0(0)(2E0)

1/4(D+
ℓ )−1/2

∫
∂s

(
χ̃+(γ+

ℓ (s))
)
(1 + o(1)) ds.(7.56)

Here the o(1) does not depend on χ̃+. Now, we choose a family of cut-off functions (χ̃j+)j∈N

such that the support of ∂t
(
χ̃j+(γ+

ℓ (t))
)

goes to −∞ as j → +∞. We also assume that

∂t
(
χ̃j+(γ+

ℓ (t))
)

is non-positive (see Figure 1). Then

f̂0 = − ei(n+1)π/4

µk

( ∏

j 6=ℓℓℓ
2λj

)−1/2
λℓℓℓΓ(Σ(E)/µk)e−iν

+
ℓ π/2eiπ/4(2λ1)

3/2e−iν
−
k π/2

× |g−1 (z−k )| |g+
ℓℓℓ (z+

ℓ )|
(
2iµk

〈
g−
k

(z−k )
∣∣g+

k
(z+
ℓ )

〉)−Σ(E)/µk

× (2E0)
1/2(D−

k D
+
ℓ )−1/2 × (1 + o(1)).(7.57)
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as j → +∞. Since f̂0 is also independent of χ̃+, we obtain Theorem 2.6 from (7.50) and
(7.51), in the case (a) and under the assumption (7.41). When 〈g−

k
(z−k )|g+

k
(z+
ℓ )〉 > 0, we set

τ as the opposite of the R.H.S. of (7.40), and we obtain the result along the same lines (see
Remark D.2).

Now we assume that we are in the case (b) of the assumption (A7). In that case, the
phase function Φ is given by (7.33). For xℓℓℓ fixed in a compact set outside from 0, we set,
mimicking (7.40),

τ =Φ
(
yℓ(t, xℓℓℓ)

)
− (S−

k + S+
ℓ )

=M2(k, ℓ)e
2λ1s(xℓℓℓ)t2e−2λ1t +R(t, xℓℓℓ)(7.58)

where R(t, xℓℓℓ) = O(te−2λ1t) is expandible with respect to t. As above, we assume that
M2(k, ℓ) is positive (the other case can be studied the same way).

Following (7.42), we want to write s := e−t as a function of τ . Since t 7→ τ(t) is expandible
with respect to t, we have

(7.59) τ = M2(k, ℓ)e
2λ1s(xℓℓℓ)(ln s)2s2λ1(1 + r(s, xℓℓℓ)),

where r(s, xℓℓℓ) = ô(1). In particular, ∂sτ > 0 for s positive small enough and then, for ε > 0
small enough, s 7→ τ(s) is invertible for 0 < s < ε. We denote by s(τ) the inverse of this
function. We look for s(τ) of the form

(7.60) s(τ) = (2λ1)
1/λ1

( τ

M2(k, ℓ)e2λ1s(xℓℓℓ)

)1/2λ1 u(τ, xℓℓℓ)

(− ln τ)1/λ1
,

where u(τ, xℓℓℓ) has to be determined. Using (7.59), the equation for u is

τ =M2(k, ℓ)e
2λ1s(xℓℓℓ)(ln s)2s2λ1(1 + r(s, xℓℓℓ))

=τu2λ1

(
1 − ln

(
(2λ1)

−2M2(k, ℓ)e
2λ1s(xℓℓℓ)

)

ln τ
+ 2λ1

lnu

ln τ
− 2

ln(− ln τ)

ln τ

)2

×
(
1 + r

(
(2λ1)

1/λ1

( τ

M2(k, ℓ)e2λ1s(xℓℓℓ)

)1/2λ1 u

(− ln τ)1/λ1
, xℓℓℓ

))

=τF (τ, u, xℓℓℓ),(7.61)

where F = u2λ1(1 + r̃(τ, u, xℓℓℓ)) and r̃ = ô(1) for u close to 1 (here (u, xℓℓℓ) are the variables y
in Definition 7.1). In other word, to find u, we have to solve F (t, u, xℓℓℓ) = 1.

First we remark that u 7→ F (τ, u, xℓℓℓ) is real-valued and continuous. Since, for δ > 0 and
τ small enough, F (τ, 1 − δ, xℓℓℓ) < 1 < F (τ, 1 + δ, xℓℓℓ), there exists u ∈ [1 − δ, 1 + δ] such that
F (τ, 1 + δ, xℓℓℓ) = 1. Thanks to the discussion before (7.60), the function s(τ) is of the form
(7.60) with u(τ, xℓℓℓ) ∈ [1 − δ, 1 + δ], for τ small enough.

For τ > 0, the function F is C∞ and, since r̃ = ô(1), we have

(7.62) ∂u
(
F (τ, u, xℓℓℓ) − 1

)
(u(τ, xℓℓℓ)) = 2λ1u

2λ1−1(1 + oτ (1)) > λ1,

for τ small enough. The notation oτ (1) means a term which goes to 0 as τ goes to 0. Here
we have used the fact that u(τ, xℓℓℓ) is close to 1. In particular, the implicit function theorem
implies that u(τ, xℓℓℓ) is C∞.
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We write u = 1 + v(τ, xℓℓℓ) and we known that v ∈ C∞ and v = oτ (1). Differentiating the
equality

(7.63) 1 = F (τ, u(τ, xℓℓℓ), xℓℓℓ) =
(
u(τ, xℓℓℓ)

)2λ1
(
1 + r̃(τ, u(τ, xℓℓℓ), xℓℓℓ)

)
,

one can show that v = ô(1). Thus we have

e−t =s(τ) = (2λ1)
1/λ1

( τ

M2(k, ℓ)e2λ1s(xℓℓℓ)

)1/2λ1 1 + r̂(τ, xℓℓℓ)

(− ln τ)1/λ1
,(7.64)

t = − ln τ

2λ1
(1 + r̂(τ, xℓℓℓ)),(7.65)

τ
dt

dτ
= − 1

2λ1
+ r̂(τ, xℓℓℓ),(7.66)

where r̂(τ, xℓℓℓ) = ô(1) change from line to line.

Since f ℓ0(t, xℓℓℓ, h) is expandible with respect to t, we get, from (7.64)–(7.66),

(7.67) f̃ ℓ0(τ, xℓℓℓ) = −f ℓ0(t, xℓℓℓ)τ
dt

dτ
= τΣ(E)/2λ1(− ln τ)−Σ(E)/λ1

(
f̃ ℓ0,0(xℓℓℓ) + r̂(τ, xℓℓℓ)

)
,

where r̂ = ô(1) and

(7.68) f̃ ℓ0,0(xℓℓℓ) = (2λ1)
Σ(E)/λ1−1

(
M2(k, ℓ)e

2λ1s(xℓℓℓ)
)−Σ(E)/2λ1f ℓ0,0(xℓℓℓ).

In that case, (7.39) becomes

(7.69) Asing
0 =

c̃(E)h−1/2

(2π)1−n/2
ei(S

−
k +S+

ℓ )/h

∫∫ +∞

0
eiτ/hf̃ ℓ0(τ, xℓℓℓ)

dτ

τ
dxℓℓℓ + O(h∞).

Note that f̃ ℓ0(τ, xℓℓℓ) has in fact a compact support with respect to τ . Now, using Lemma D.1,
we can perform the integration with respect to t in (7.69), modulo an error term given by
(D.3)–(D.4) in Lemma D.1. Then, we get

Asing
0 =

c̃(E)h−1/2

(2π)1−n/2
ei(S

−
k +S+

ℓ )/hΓ(Σ(E)/2λ1)(−i)−Σ(E)/2λ1

× hΣ(E)/2λ1(− lnh)−Σ(E)/λ1

( ∫
f̃ ℓ0,0(xℓℓℓ) dxℓℓℓ + o(1)

)
,(7.70)

as h goes to 0. The rest of the proof follows that of (7.57).

Lastly, the proof of Theorem 2.6 in the case (c) can be obtained along the same lines, and
we omit it.

Appendix A. Proof of Proposition 2.5

We prove that Λ+
θ ∩ Λ+ 6= ∅. From Assumption (A2), the Lagrangian manifold Λ+ can be

described, near (0, 0) ∈ T ∗(Rn), as

(A.1) Λ+ = {(x, ξ); x = ∇ϕ̃+(ξ)},
for |ξ| < 2ε, with ε > 0 small enough. For η ∈ S

n−1, let (x(t, η), ξ(t, η)) be the bicharacteristic
curve with initial condition (ϕ̃(εη), εη). We have

(A.2) Λ+ = {(x(t, η), ξ(t, η)); t ∈ R, η ∈ S
n−1} ∪ {(0, 0)}.
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The function ξ(t, η) is continuous on R × S
n−1. From the classical scattering theory (see [13,

Section 1.3]), we know that this function ξ(t, η) converges uniformly to

(A.3) ξ(∞, η) := lim
t→+∞

ξ(t, η),

as t→ +∞ and ξ(∞, η) ∈
√

2E S
n−1.

Then, the function

(A.4) F (t, η) =
ξ( t

1−t , η)

|ξ( t
1−t , η)|

,

is well defined for 0 ≤ t ≤ 1 with the convention F (1, η) = ξ(∞, η)/
√

2E. Here we used that
|ξ(t, η)| 6= 0 for each t ∈ [0,+∞], η ∈ S

n−1. The previous properties of ξ(t, η) imply the
continuity of F (t, η) on [0, 1] × S

n−1.

From (A.2), to prove that Λ+
θ ∩ Λ+ 6= ∅ for all θ ∈ S

n−1, it is enough (equivalent) to show
the surjectivity of η 7→ F (1, η). But if η 7→ F (1, η) is not onto, then ImF (1, ·) ⊂ S

n−1 \ {a
point}. And since S

n−1 \ {a point} is a contractible space, F (1, ·) is homotopic to a constant
map

(A.5) f : S
n−1 → S

n−1.

On the other hand, F : [0, 1]×S
n−1 −→ S

n−1 gives a homotopy between F (0, ·) = IdSn−1 and
F (1, ·). In particular, we have

(A.6) 1 = deg(F (0, ·)) = deg(F (1, ·)) = deg(f(·)) = 0,

which is impossible (see [16, Section 23] for more details).

Appendix B. A lower bound for the resolvent

Let χ ∈ C∞(]0,+∞[) be a non-decreasing function such that

(B.1) χ(x) =

{
x for 0 < x < 1

2 for 2 < x,

Let also ϕ ∈ C∞
0 (R) be an even function such that 0 ≤ ϕ ≤ 1, 1[−1,1] ≺ ϕ, and suppϕ ⊂

[−2, 2]. We set

(B.2) u(x) =
n∏

j=1

eiλjx
2
j/2hϕ

( xj
hα

)
χ
( hβ

|xj |1/2
)

=
n∏

j=1

uj(x),

where 0 < α < 2β will be fixed later on. The uj ’s are of course C∞ functions, and we have

(B.3) (P − E0)u = −h
2

2
∆u(x) −

n∑

j=1

λ2
j

2
x2
ju(x) + O(x3u(x)).

Lemma B.1. For any h small enough, we have

hβn| lnh|n/2 . ‖u‖L2(Rn) . hβn| lnh|n/2,(B.4)
∥∥|x|3u(x)

∥∥
L2(Rn)

. h3αhβn| lnh|n/2.(B.5)
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Proof. First of all, the second estimate follow easily from the first one: we have

∥∥|x|3u(x)
∥∥2

=

∫

Rn

|x|6|u(x)|2dx . h6α‖u‖2,

since u vanishes if |x| > 2hα. Thanks to the fact that u is a product of n functions of one
variable, it is enough to estimate

I =

∫
ϕ2

( t

hα

)
χ2

( hβ

|t|1/2
)
dt = 2

∫ 2hα

0
ϕ2

( t

hα

)
χ2

( hβ

t1/2

)
dt.

We have

2

∫ hα

h2β

χ2
( hβ

t1/2

)
dt ≤ I ≤ 2

∫ 2hα

h2β

χ2
( hβ

t1/2

)
dt+ 2

∫ h2β

0
χ2

( hβ

t1/2

)
dt,

so that

2

∫ hα

h2β

h2β

t
dt ≤ I ≤ 2

∫ 2hα

h2β

h2β

t
dt+ 2

∫ h2β

0
4 dt.

The first estimate follows from the fact that 2β − α > 0, once we have noticed that

∫ Ahα

h2β

h2β

t
dt = h2β

(
(2β − α)| lnh| + lnA

)
.

�

On the other hand, we have

−h
2

2
∆u(x) −

n∑

j=1

λ2
j

2
x2
ju(x) =

n∑

k=1

∏

j 6=k
uj(xj)

(
− h2

2
u′′k(xk) −

λ2
k

2
x2
kuk(xk)

)
.

From Lemma B.1, we get
∥∥(P − E0)u

∥∥ .hβ(n−1)| lnh|(n−1)/2 sup
1≤k≤n

∥∥h2u′′k(t) + λ2
kt

2uk(t)
∥∥ + h3αhβn| lnh|n/2

.
(
h−β | lnh|−1/2 sup

1≤k≤n

∥∥h2u′′k(t) + λ2
kt

2uk(t)
∥∥ + h3α

)
‖u‖.(B.6)

We also have

(B.7) h2u′′k(t) + λ2
kt

2uk(t) = eiλkt
2/2h

(
h2v′′h(t) + ihλk(2t∂t + 1)vh(t)

)
,

where we have set vh(t) = ϕ
(
t
hα

)
χ
(
hβ

|t|1/2

)
. Notice that the right hand side of (B.7) is an even

function, so that we only have to consider t > 0. The point here, is that we have, for t > 0,

(B.8) (2t∂t + 1)
(
χ
( hβ

t1/2

))
= − hβ

t1/2
χ′

( hβ

t1/2

)
+ χ

( hβ

t1/2

)
=





2 if 0 < t <
h2β

4
,

O(1) if
h2β

4
< t < h2β ,

0 if h2β < t.
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Therefore, we obtain

∥∥(2t∂t + 1)vh
∥∥2

=2

∫ 2hα

0

(
ϕ
( t

hα

)
(2t∂t + 1)

(
χ
( hβ

|t|1/2
)))2

dt

+ 2

∫ 2hα

0

(
2t∂t

(
ϕ
( t

hα

))
χ
( hβ

|t|1/2
))2

dt

.

∫ h2β

0
dt+

∫ 2hα

hα

t2

h2α

(
ϕ′

( t

hα

)
χ
( hβ

|t|1/2
))2

dt . h2β .(B.9)

On the other hand, an easy computation gives, still for t > 0,

v′′h(t) =h−2αϕ′′
( t

hα

)
χ
( hβ

t1/2

)
− hβ−α

t3/2
ϕ′

( t

hα

)
χ′

( hβ

t1/2

)

+
3hβ

4t5/2
ϕ
( t

hα

)
χ′

( hβ

t1/2

)
+
h2β

4t3
ϕ
( t

hα

)
χ′′

( hβ

t1/2

)
.(B.10)

Computing the L2–norm of each of these terms as in Lemma B.1 and (B.9), we obtain

(B.11) ‖h2v′′h‖ . h2+β−2α + h2+β−2α + h2−3β + h2−3β ,

and, eventually, from (B.6), (B.7), (B.9) and (B.11),

∥∥(P − E0)u
∥∥ .

(
h−β | lnh|−1/2

(
h1+β + h2+β−2α + h2−3β

)
+ h3α

)
‖u‖.

Therefore we obtain Proposition 2.2 if we can find α > 0 and β > 0 such that

2 − 2α > 1, 2 − 4β > 1, 3α > 1 and 2β > α,

and one can check that α = 5/12 and β = 11/48 satisfies these four inequalities.

Appendix C. Lagrangian manifolds which are transverse to Λ±

Let Λ ⊂ p−1(E0) be a Lagrangian manifold such that Λ ∩ Λ− is transverse along a Hamil-
tonian curve γ(t) = (x(t), ξ(t)). Then, there exist a 6= 0 and ν ∈ {1, . . . , n} such that

(C.1) γ(t) = (a+ O(e−εt))e−λνt,

as t→ +∞. The vector a is an eigenvector of

(C.2)

(
0 Id

V ′′(0) 0

)
,

for the eigenvalue λν . Thus, up to a linear change of variable in R
n, we can always assume

that Πxa is collinear to the xν–direction. The goal of this section is to prove the following
geometric result.

Proposition C.1. For t large enough, Λ projects diffeomorphically on R
n
x near γ(t). In

particular, there exists ψ ∈ C∞(Rn) defined near Πxγ, unique up to a constant, such that
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Λ = Λψ := {(x,∇ψ(x)); x ∈ R
n}. Moreover, we have

(C.3) ψ′′(x(t)) =




λ1

. . .

λν−1

−λν
λν+1

. . .

λn




+ O(e−εt),

as t→ +∞.

Remark C.2. The same result holds in the outgoing region: If γ = Λ ∩ Λ+ is transverse,
Λ projects nicely on R

n
x near γ(t), t → −∞. Then Λ = Λψ for some function ψ satisfying

ψ′′(x(t)) = diag(−λ1, . . . ,−λν−1, λν ,−λν+1, . . . ,−λn) + O(eεt).

Proof. We follow the proof of [20, Lemma 2.1]. There exist symplectic local coordinates (y, η)
centered at (0, 0) such that Λ− (resp. Λ+) is given by y = 0 (resp. η = 0) and

yj =
1√
2λj

(ξj + λjxj) + O((x, ξ)2),(C.4)

ηj =
1√
2λj

(ξj − λjxj) + O((x, ξ)2).(C.5)

Then, p(x, ξ) = A(y, η)y · η with A0 := A(0, 0) = diag(λ1, . . . , λn). In particular, the tangent
vectors (δy, δη) to Λ at γ(t) satisfy the following evolution equation

(C.6)
d

dt

(
δy
δη

)
=

(
A0 + O(e−λ1t) 0

O(e−λ1t) A0 + O(e−λ1t)

)(
δy
δη

)
.

We denote by U(t, s) the linear operator such that U(t, s)δ solves (C.6) with U(s, s) = Id.

Since the intersection Λ ∩ Λ− = γ is transverse, there exists En−1(t0) ⊂ Tγ(t0)Λ, a vector
space of dimension n−1 disjoint from Tγ(t0)Λ−. For convenience, we set En(t0) = En−1(t0)⊕
Rv for some v /∈ Tγ(t0)Λ + Tγ(t0)Λ−. Let E•(t) = U(t, t0)E•(t0). From [20, Lemma 2.1],

there exists a n × n matrix Bt = O(e−λ1t) such that En(t) is given by δη = Btδy. Now, if
δ ∈ En−1(t), we have σ(Hp, δ) = 0 since En−1(t) ⊕ RHp = Tγ(t)Λ and Λ is a Lagrangian
manifold. From (C.1), we have

(C.7) Hp(γ(t)) = γ̇(t) = −λν(ãeην + O(e−εt))e−λνt,

where eην is the basis vector corresponding to ην , ã = ±|a|, and then

(C.8) 0 = σ(eλνtHp, δ) = λν ãδyν + O(e−εt)|δ|.
It follows that δ ∈ En−1(t) if and only if (δyν , δη) = B̃tδy′ where B̃t = O(e−εt) is a (n+ 1) ×
(n − 1) matrix. Using Tγ(t)Λ = En−1(t) ⊕ RHp, we obtain that Tγ(t)Λ has a basis formed of
vector fj(t) such that

fj =eyj + O(e−εt) for j 6= ν(C.9)

fν =eην + O(e−εt).(C.10)
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In the (x, ξ)-coordinates, Tγ(t)Λ has a basis formed of vector f̃j(t) of the form

f̃j =eξj + λjexj + O(e−εt) for j 6= ν(C.11)

f̃ν =eξν − λjexν + O(e−εt),(C.12)

and the lemma follows. �

Appendix D. Asymptotic behavior of certain integrals

Lemma D.1. Let α ∈ C, Reα > 0, β ∈ R and χ ∈ C∞
0 (]−∞, 1/2[) be such that χ = 1 near

0. As λ goes to +∞, we have

(D.1)

∫ ∞

0
eiλttα(− ln t)βχ(t)

dt

t
= Γ(α)(lnλ)β(−iλ)−α(1 + o(1)).

Moreover, if β ∈ N, we get

(D.2)

∫ ∞

0
eiλttα(− ln t)βχ(t)

dt

t
= (−iλ)−α

β∑

j=0

CjβΓ
(j)(α)(−1)j

(
ln(−iλ)

)β−j
+ O(λ−∞).

Finally, if s(t) ∈ C∞(]0,+∞[) satisfies

(D.3) |∂jt s(t)| = o
(
tα−j(− ln t)β

)
,

for all j ∈ N and t→ 0, then

(D.4)

∫ ∞

0
eiλts(t)χ(t)

dt

t
= o

(
(lnλ)βλ−α

)
.

Here (−iλ)−α = eiαπ/2λ−α and ln(−iλ) = lnλ− iπ/2.

Remark D.2. Notice that one obtains the behavior of these quantities as λ→ −∞ by taking
the complex conjugate in these expressions.

Proof. We begin with (D.2) and assume first that β = 0. Then, we can write
∫ ∞

0
eiλttαχ(t)

dt

t
= lim
ε→0

∫ ∞

0
ei(λ+iε)ttαχ(t)

dt

t

= lim
ε→0

(
I1(α, ε) − I2(α, ε)

)
,(D.5)

where

I1(α, ε) =

∫ ∞

0
e−(ε−iλ)ttα

dt

t
,(D.6)

I2(α, ε) =

∫ ∞

0
ei(λ+iε)ttα(1 − χ(t))

dt

t
·(D.7)

It is clear that

(D.8) I1(α, ε) = (ε− iλ)−αΓ(α),

where z−α is defined on C\] −∞, 0] and is real positive on ]0,+∞[. In particular

(D.9) lim
ε→0

I1(α, ε) = (−iλ)−αΓ(α).



58 IVANA ALEXANDROVA, JEAN-FRANÇOIS BONY, AND THIERRY RAMOND

Concerning I2(α, ε), we remark that r(t, α) = tα−1(1 − χ(t)) is a symbol which satisfies

(D.10) |∂jt ∂kαr(t, α)| . 〈t〉Reα−1−j〈ln t〉k,

for all j, k ∈ N uniformly for t ∈ [0,+∞[ and α in a compact subset of {Re z > 0}. Then,
performing integration by parts in (D.7), we obtain

(D.11) I2(α, ε) =
1

(ε− iλ)j

∫ +∞

0
e(iλ−ε)t∂jt r(t, α) dt,

for all j ∈ N. Now, if j is large enough (j > Reα), ∂jt r(t, α) is integrable in time and does
not depend on ε. In particular, for such j,

(D.12) lim
ε→0

I2(α, ε) = eijπ/2λ−j
∫ +∞

0
eiλt∂jt r(t, α) dt,

and then (see (D.10) or Cauchy’s formula)

∂kα lim
ε→0

I2(α, ε) =eijπ/2λ−j
∫ +∞

0
eiλt∂jt ∂

k
αr(t, α) dt

=O(λ−∞),(D.13)

for all k ∈ N. Then we obtain (D.2) for β = 0. To obtain the result for β ∈ N, it is enough
to observe that

∫ ∞

0
eiλttα(ln t)βχ(t)

dt

t
=∂βα

∫ ∞

0
eiλttαχ(t)

dt

t

=∂βα
(
(−iλ)−αΓ(α)

)
+ ∂βα lim

ε→0
I2(α, ε)

=(−iλ)−α
β∑

j=0

CjβΓ
(j)(α)

(
− ln(−iλ)

)β−j
+ O(λ−∞),(D.14)

from (D.13). Thus, (D.2) is proved.

Let u ∈ C∞(]0,+∞[) be such that

(D.15) |∂jt u(t)| . tReα−j(− ln t)β ,

near 0. Let ϕ ∈ C∞(R) be such that ϕ = 1 for t < 1 and ϕ = 0 for t > 2. For δ > 0, we have

(D.16)

∫ +∞

0
eiλtu(t)χ(t)

(
1−ϕ(t/δ)

) dt
t

= (−iλ)−N
∫ ∞

0
eiλt∂Nt

(
u(t)χ(t)

(
1−ϕ(t/δ)

)
t−1

)
dt,

for all N .

If one of the derivatives falls on 1 − ϕ(t/δ), the support of this contribution is contained
in [δ, 2δ]. Therefore, the corresponding term will be bounded by δReα−N−1(ln δ)β and will
contribute like δReα−N (− ln δ)β to the integral.

If one of the derivatives falls on χ(t), the support of the integrand will be a compact set
away from 0 and then this function will be O(1). The contribution to the integral of such a
term will be like 1.
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If all the derivatives fall on u(t)t−1, the corresponding term will satisfies

∫ ∞

0
eiλt∂Nt

(
u(t)t−1

)
χ(t)

(
1 − ϕ(t/δ)

)
dt =O(1)

∫ +∞

δ
tReα−1−N (− ln t)β(1 − χ(t))dt

.(− ln δ)βδReα−N ,(D.17)

for N large enough (N > Reα).

From these three cases, we deduce

(D.18)

∫ +∞

0
eiλtu(t)χ(t)

(
1 − ϕ(t/δ)

) dt
t

= O
(
(− ln δ)βδα−Nλ−N

)
.

Taking δ = (ελ)−1, we get

(D.19)

∫ +∞

0
eiλtu(t)χ(t)

(
1 − ϕ(t/δ)

) dt
t

= O
(
ε(lnλ)βλ−α

)
,

as λ→ +∞.

We now assume (D.3), and we want to prove (D.4). Since, for t small enough

(D.20) tReα−1(− ln t)β .
(
tReα(− ln t)β

)′
,

we obtain

∣∣∣
∫ +∞

0
eiλts(t)χ(t)ϕ(t/δ)

dt

t

∣∣∣ =oδ→0(1)

∫ 2δ

0
tReα−1(− ln t)βdt

=oδ→0(1)δReα(− ln δ)β.(D.21)

Here oδ→0(1) stands for a term which goes to 0 as δ goes to 0. If δ = (ελ)−1, we have

(D.22)
∣∣∣
∫ +∞

0
eiλts(t)χ(t)ϕ(t/δ)

dt

t

∣∣∣ = oλ→+∞(1)λ−α(lnλ)β ,

when λ → +∞ and ε fixed. Taking ε small enough in (D.19), and then λ large enough in
(D.22), we obtain (D.4).

It remains to prove (D.1). We need to compute

(D.23) I =

∫ +∞

0
eiλttα(− ln t)βϕ(t/δ)

dt

t
·

Performing the change of variable s = λt, we get

I =λ−α
∫ 2/ε

0
eissα(lnλ− ln s)βϕ(εs)

ds

s

=(lnλ)βλ−α
∫ 2/ε

0
eissα(1 − ln s/ lnλ)βϕ(εs)

ds

s
.(D.24)
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We remark that, in the previous equation, − ln s/ lnλ > − ln(2/ε)/ lnλ > −1/2 for λ large

enough. Using (1 + u)β = 1 + O(|u| + |u|max(1,β)) for u > −1/2, we get

I =(lnλ)βλ−α
∫ 2/ε

0
eissαϕ(εs)

ds

s

+ (lnλ)βλ−α
∫ 2/ε

0
sReαO

( | ln s|
lnλ

+
( | ln s|

lnλ

)max(1,β))
ϕ(εs)

ds

s

=(lnλ)β
∫ +∞

0
eiλttα(− ln t)βϕ(t/δ)

dt

t
+ Oε

(
(lnλ)β−1λ−α

)
·(D.25)

Note that the Oε in (D.25) depends on ε.

Then, using (D.19), (D.25) and (D.19) again, we get
∫ ∞

0
eiλttα(− ln t)βχ(t)

dt

t

=I + O
(
ε(lnλ)βλ−α

)

=(lnλ)β
∫ +∞

0
eiλttα(− ln t)βϕ(t/δ)

dt

t
+ Oε

(
(lnλ)β−1λ−α

)
+ O

(
ε(lnλ)βλ−α

)

=(lnλ)β
∫ +∞

0
eiλttα(− ln t)βχ(t)

dt

t
+ O

(
ε(lnλ)βλ−α

)
+ Oε

(
(lnλ)β−1λ−α

)

+ O
(
ε(lnλ)βλ−α

)
.(D.26)

Choosing ε small enough, then λ large enough, and using (D.2) with β = 0 to compute the
first term, we obtain

(D.27)

∫ ∞

0
eiλttα(− ln t)βχ(t)

dt

t
= Γ(α)(lnλ)β(−iλ)−α(1 + o(1)),

and this completes the proof of (D.1). �
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(1989), no. 2, 187–198.
22. H. Isozaki and H. Kitada, Modified wave operators with time-independent modifiers, J. Fac. Sci. Univ.

Tokyo Sect. IA Math. 32 (1985), no. 1, 77–104.
23. A. Lahmar-Benbernou and A. Martinez, Semiclassical asymptotics of the residues of the scattering matrix

for shape resonances, Asymptot. Anal. 20 (1999), no. 1, 13–38.
24. A. Martinez, Resonance free domains for non globally analytic potentials, Ann. Henri Poincaré 3 (2002),
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