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Abstract. The Kerr-Debye model is a relaxation of the nonlinear Kerr model in
which the relaxation coefficient is a finite response time of the nonlinear material.
We establish the convergence of the Kerr-Debye model to the Kerr model when this
relaxation coefficient tends to zero.

1. Physical context. In this paper we study different models for the electromag-
netic waves propagation in an isotropic nonlinear material (a cristal for example).
The wave propagation is described by Maxwell’s equations

∂tD − curl H = 0,
∂tB + curl E = 0,
div D = div B = 0.

where E is the electric field, H is the magnetic field, D is the electric displace-
ment and B is the magnetic induction. Once nondimensionalized, the constitutive
relations for a nonlinear Kerr medium are given by

B = H and D = E + P,

where P is the nonlinear polarization.
For the Kerr model, the medium exhibits an instantaneous response :

P = |E|2E.

For the Kerr-Debye model, the medium exhibits a finite response time ε :

P = χE,

where

∂tχ+
1

ε
χ =

1

ε
|E|2

(see [10, 13]).
Formally, when ε tends to zero, χ tends to |E|2, that is the Kerr-Debye model is

a relaxation approximation of the Kerr model.
Concerning the Cauchy problem with initial data (D0, H0, χ0) satisfying div D0 =

div H0 = 0 and χ0 ≥ 0, the convergence for the smooth solutions is proved by [6]
using the results of [11]. Generally a boundary layer in time appears because of the
non compatibility of the initial data with the equilibrium condition χ = |E|2.
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In order to describe realistic physical situations it is more convenient to study the
initial boundary value problem. We denote by Ω = IR+ × IR2 the domain in which
the nonlinear material is confined, and by Γ = {0}× IR2 its boundary. We consider
the Kerr and the Kerr-Debye models in the domain IR+

t × Ω with the impedance
boundary condition on IR+

t × Γ and with null initial data.
In this case the Kerr model, denoted by (K), becomes, for (t, x) ∈ R+ × Ω

{
∂tD − curl H = 0,
∂tH + curl E = 0,

(1)

with the constitutive relation :

D = (1 + |E|2)E. (2)

We suppose that the initial data vanishes :

D(0, x) = H(0, x) = 0 for x ∈ Ω (3)

so that we obtain the conservative relations

div D = div H = 0. (4)

We denote by n = t(−1, 0, 0) the outer unit normal on Γ. We consider the
impedance boundary condition

H ∧ n+ a((E ∧ n) ∧ n) = ϕ for (t, x) ∈ IR+ × Γ, (5)

where a is a positive endomorphism acting on Γ.
The initial boundary value problem for the Kerr-Debye model (KD) writes, for

(t, x) ∈ R+ × Ω 



∂tDε − curl Hε = 0,
∂tHε + curl Eε = 0,
∂tχε = 1

ε
(|Eε|

2 − χε),
(6)

with the constitutive relation :

Dε = (1 + χε)Eε. (7)

We suppose that the initial data vanishes :

Dε(0, x) = Hε(0, x) = 0, χε(0, x) = 0 for x ∈ Ω, (8)

and we have also
div Dε = div Hε = 0. (9)

In addition we suppose that we have the same impedance boundary condition

Hε ∧ n+ a((Eε ∧ n) ∧ n) = ϕ for (t, x) ∈ IR+ × Γ. (10)

Two dimensional models

Following [12] we can also introduce the two-dimensional transverse magnetic
(TM) and transverse electric (TE) models.

For the transverse magnetic case we assume that

H(x1, x2, x3) = t(0, H2(x1, x3), 0),
E(x1, x2, x3) = t(E1(x1, x3), 0, E3(x1, x3)),

(11)

in the domain (x1, x3) ∈ {x1 > 0} × IR. The Maxwell system becomes




∂tD1 + ∂3H2 = 0,
∂tD3 − ∂1H2 = 0,
∂tH2 + ∂3E1 − ∂1E3 = 0,

(12)
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with the divergence conservation condition

∂1D1 + ∂3D3 = 0 (13)

(in this case the divergence condition for H is irrelevant). The impedance boundary
condition writes

H2 − aE3 = ϕ with a ≥ 0. (14)

This system is coupled with (2) for the Kerr model and with (7) and the third
equation in (6) for the Kerr-Debye model.

In the transverse electric case, we assume that

E(x1, x2, x3) = t(0, E2(x1, x3), 0),
H(x1, x2, x3) = t(H1(x1, x3), 0, H3(x1, x3)).

(15)

We obtain 



∂tD2 − ∂3H1 + ∂1H3 = 0,
∂tH1 − ∂3E2 = 0,
∂tH3 + ∂1E2 = 0,

(16)

with the divergence conservation condition

∂1H1 + ∂3H3 = 0, (17)

and the impedance boundary condition becomes

H3 + aE2 = ϕ with a ≥ 0. (18)

In the case of a fixed finite response time, numerical simulations are obtained
for these two-dimensional models by finite-difference methods in [12] and by finite-
element methods in [7].

One dimensional model

In [1] the one dimensionnal model is introduced :

E(x1, x2, x3) = t(0, e(x1), 0),
H(x1, x2, x3) = t(0, 0, h(x1)).

(19)

In this case the Maxwell system becomes :
{
∂td+ ∂1h = 0,
∂th+ ∂1e = 0,

(20)

with the impedance boundary condition

h(t, 0) + ae(t, 0) = ϕ(t), a ≥ 0. (21)

We can also remark that the divergence conditions on h and d are irrelevant.

2. Mathematical Properties.

Properties of the Kerr model:

We recall the initial-boundary value problem for the general Kerr model.



∂tD − curl H = 0,
∂tH + curl E = 0,
D = (1 + |E|2)E,

(22)

for (t, x) ∈ IR+ × Ω,

D(t = 0) = E(t = 0) = 0 for x ∈ Ω, (23)
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H ∧ n+ a((E ∧ n) ∧ n) = ϕ for (t, x) ∈ IR+ × Γ. (24)

The energy density given by

EK(E,H) =
1

2
(|E|2 + |H |2 +

3

2
|E|4) (25)

is a strictly convex entropy, so (22) is a quasilinear hyperbolic symmetrizable system.
In the three dimensional case, the eigenvalues are, for ξ 6= 0,

λ1(E, ξ) ≤ λ2(E, ξ) < λ3 = λ4 = 0 < λ5 = −λ2 ≤ λ6 = −λ1,

so the boundary IR+ × Γ is characteristic of constant multiplicity equal to two.
In the two dimensional cases, TM and TE, the eigenvalues are of the form:

λ1(E, ξ) < λ2 = 0 < λ3 = −λ1,

so the boundary IR+ × Γ is characteristic of constant multiplicity equal to one.
In the one dimensional case, the system is strictly hyperbolic and the boundary

is non characteristic. We have

λ1(E) < 0 < λ2 = −λ1.

The impedance boundary condition (24) is maximal dissipative thus we can apply
the existence results in [9] and also the more general results in [4]. We precise these
results in the 3-d case. We assume that the source term ϕ is compactly supported
in IR+

t × Γ. We denote by Hs the classical Sobolev spaces and we suppose that ϕ
belongs to Hs(IRt ×Γ) for s great enough. So the boundary condition (24) and the
initial data (23) match one each other and we obtain smooth local solutions.

Proposition 1. Under the previous assumptions there exists a maximal smooth
solution (E,H) for the IBVP (22)-(23)-(24) which lifespan is denoted by T ∗ and
such that

∂i
t(E,H) ∈ C0([0, T ∗[;H3−i(Ω)) for i = 0, 1, 2, 3. (26)

We have analogous results in the 2-d and the 1-d cases.

Properties of the Kerr-Debye models.

These models write, for (t, x) ∈ IR+ × Ω





∂tDε − curl Hε = 0,
∂tHε + curl Eε = 0,
∂tχε = 1

ε
(|Eε|

2 − χε),
Dε = (1 + χε)Eε.

(27)

Dε(0, x) = Hε(0, x) = 0, χε(0, x) = 0 for x ∈ Ω, (28)

Hε ∧ n+ a((Eε ∧ n) ∧ n) = ϕ for (t, x) ∈ IR+ × .Γ, (29)

By the third equation in (27) we observe that we have

χε ≥ 0. (30)

The energy density given by

EKD(E,H, χ) =
1

2
(1 + χ)−1|D|2 +

1

2
|H |2 +

1

4
χ2 (31)

is a strictly convex entropy in the domain {χ ≥ 0}. So (27) is a quasilinear sym-
metrizable hyperbolic system.
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In the three dimensional case the eigenvalues are, for ξ 6= 0,

µ1(E,χ, ξ) = µ2 < µ3 = µ4 = µ5 = 0 < µ6 = µ7 = −µ1,

so the boundary is characteristic of constant multiplicity equal to three.
In the two dimensional cases we obtain

µ1(E,χ, ξ) < µ2 = µ3 = 0 < µ4 = −µ1,

so the boundary is characteristic of constant multiplicity equal to two.
In the one dimensional case, the system is strictly hyperbolic and the boundary

is characteristic of constant multiplicity one. The eigenvalues are

µ1(E,χ) < µ2 = 0 < µ3 = −µ1.

The impedance boundary condition (29) is maximal dissipative and we apply the
existence results of [4].

Proposition 2. Under the previous assumptions there exists a maximal smooth
solution (Dε, Hε, χε) for the IBVP (27)-(28)-(29) which lifespan is denoted by T ∗

ε

and such that

∂i
t(Dε, Hε, χε) ∈ C0([0, T ∗

ε [;H3−i(Ω)) for i = 0, 1, 2, 3. (32)

If for a fixed ε we have T ∗
ε < +∞ the behaviour of the solution is described in [4]

extending the results of Majda [8] on the general quasilinear hyperbolic systems. In
the one dimensional case, the Kerr-Debye model behaves like a semilinear system.
We prove in [2] that it does not exhibit schock waves: if the gradient of the solution
blows up, the solution itself blows up:

sup
[0,T∗

ε
[

(
‖dε‖L∞(IR+) + ‖hε‖L∞(IR+) + ‖χε‖L∞(IR+)

)
= +∞. (33)

3. Convergence Results. In order to prove the convergence results it is more
convenient to use the entropic variables as it is proposed in [5]. These variables are
obtained taking the gradient of the convex entropy (31).





∂DEKD = (1 + χ)−1D = E,

∂HEKD = H,

∂χEKD =
1

2
(χ− |E|2) := v,

The IBVP (27) (28) (29) becomes

A0(Wε)∂tWε +

3∑

j=1

Aj∂jWε =
1

ε
Q(Wε) (34)

for (t, x) ∈ IR+ × Ω, where

• Wε =




Eε

Hε

vε




• A0(Wε) =




(|Eε|
2 + 2vε + 1)I3 + 2Eε

tEε 0 2Eε

0 I3 0
2 tEε 0 2



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•

3∑

j=1

Aj∂j =




0 −curl 0
curl 0 0

0 0 0


 Q(Wε) =




0
0

−2vε




with the initial data

Eε(0, x) = Hε(0, x) = 0, vε(0, x) = 0 for x ∈ Ω, (35)

and with the boundary condition

Hε ∧ n+ a((Eε ∧ n) ∧ n) = ϕ for (t, x) ∈ IR+ × Γ. (36)

We observe that the boundary condition is linear for the variables (E,H). In

addition the equilibrium manifold
{

(D,H, χ), χ = |E|2
}

is linearized as
{
(E,H, v), v = 0

}
and the relaxation term is linear.

For the three dimensional case the main convergence results are the two following
theorems (see [3]):

Theorem 1. There exist T̃ > 0 and a constant K > 0 such that for all ε > 0,
T ∗

ε ≥ T̃ and the solution Wε of the (KD) boundary value problem (34)- (35)- (36)
satisfies

‖∂i
tWε‖C0([0,T̃ ];H3−i(IR+)) ≤ K for i = 0, 1, 2, 3, (37)

‖∂i
tvε‖C0([0,T̃ ];H2−i(IR+)) ≤ Kε for i = 0, 1, 2. (38)

Theorem 1 shows the strong convergence of vε =
1

2
(χε −|Eε|

2) to zero. The con-

vergence of (Eε, Hε) to the solution (E,H) of the IBVP (1)-(2)-(3)-(5) is described
in the following statement:

Theorem 2. For T ≤ T̃ and T < T ∗, there exists a constant K > 0 such that for
all ε > 0,

‖(Eε, Hε) − (E,H)‖C0([0,T ];H1(IR+)) ≤ Kε. (39)

In our study we remark that no boundary layer appears in the time variable
because the null initial data belongs to the equilibrium manifold defined by

V =
{
(D,H, χ) such that χ− (1 + χ)−2|D|2 = 2v = 0

}
.

For the space variable, we have the same boundary condition for the system (K)
and for the system (KD), so no space boundary layer appears again.

For the one dimensionnal case the analogous results are proved in [1]. This case
is simpler because we can use the semi-linear behaviour of the K-D model (see (33))
and because the boundary is characteristic of multiplicity one. In the 3-d case, the
boundary is characteristic of multiplicity three, so we have to use the conservation
conditions (9). The second one div Hε = 0 is linear, but the first one div Dε = 0
is nonlinear in the entropic variables, which entails additional technical difficulties.
We guess that in the 2-d case, the TE case is similar to the 1-d case, and the TM
case is analogous to the 3-d case.

4. Sketch of the proof for the 3-d case. Replacing the magnetic field Hε by
Hε +ϕ(t, x2, x3)η(x1), where η is a cut off function we are led to study the following
homogeneous IBVP:

A0(Wε)∂tWε +
3∑

j=1

Aj∂jWε =
1

ε
Q(Wε) +G for (t, x) ∈ IR+ × Ω, (40)
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Wε(0, x) = 0 for x ∈ Ω, (41)

Hε ∧ n+ a((Eε ∧ n) ∧ n) = 0 for (t, x) ∈ IR+ × Γ, (42)

So the conservation properties are preserved:

div ((|Eε|
2 + 2vε + 1)Eε) = div Hε = 0. (43)

The tangential derivatives ∂t = ∂0, ∂2, ∂3 and the normal derivative ∂1 are
estimated by different ways. The tangential derivatives are measured by ψε:

ψε(t) =


‖Wε(t)‖

2
L2(Ω) +

∑

i6=1

‖∂iWε‖
2
L2(Ω) + ...+

∑

i,j,k 6=1

‖∂ijkWε(t)‖
2
L2(Ω)




1
2

.

(44)
The normal derivatives are measured by λε:

λε(t) =


‖∂1Wε‖

2
L2(Ω) +

∑

i

‖∂1iWε(t)‖
2
L2(Ω) +

∑

i,j

‖∂1ijWε(t)‖
2
L2(Ω)




1
2

. (45)

The source term G is measured by γ:

γ(t) =


‖G‖2

L2(Ω) + . . .+
∑

i,j

‖∂ijG‖
2
L2(Ω)




1
2

. (46)

We also introduce :

Ψε(t) = sup
[0,t]

ψε, Λε(t) = sup
[0,t]

λε, Γ(t) = sup
[0,t]

γ. (47)

Let us introduce T 1
ε defined by

T 1
ε = max {t ≤ T ∗

ε ,Γ(t) ≤ 1, Ψε(t) ≤ 1, Λε(t) ≤ 1} . (48)

Variational estimates for the tangential derivatives

Taking the inner product of (40) with Wε we first obtain the L2 estimate on
[0, T 1

ε ]:
1

2

d

dt

∫

Ω

A0(Wε)Wε ·Wε +
1

ε

∫

Ω

|vε|
2 ≤ K. (49)

Let us remark that we have used the dissipative property of the boundary condition
(42):

∫

Ω

3∑

j=1

Aj∂jWε ·Wε =

∫

Γ

aET
ε · ET

ε ≥ 0,

where ET
ε = t(E2

ε , E
3
ε ).

We can derivate the IBVP with respect to the tangential derivatives ∂i, i 6= 1,
We obtain the same initial data and same boundary condition for ∂iW and the
same form for the relaxation term . Using also the uniform elliptic relation

C1|ξ|
2 ≤ A0(W )ξ · ξ ≤ C2|ξ|

2,
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we obtain the estimation on ψε: there exists K1 such that for all ε and for t ∈ [0, T 1
ε ]

we have
d

dt
ψ2

ε +
2

ε

∫

Ω

(|vε|
2 + . . .+ |∂ijkvε|

2) ≤ K1. (50)

Estimates for the normal derivatives

In order to estimate vε we solve the last equation in (40) using Duhamel formula:

vε(t, x) = −
1

2
|Eε|

2(t, x) +
1

2ε

∫ t

0

exp
s− t

ε
|Eε|

2(s, x)ds,

and from (50) we obtain that

3∑

i=0

‖∂i
tvε‖H3−i(Ω) ≤ K(Ψε + Λε)

2. (51)

We estimate the normal derivatives using either the equation (40) or the diver-
gence equations (43). For example, from curl Eε = G2 − ∂tHε we deduce that

‖∂1E
2
ε‖L2(Ω) ≤ Kψ + γ.

From div Eε = −div
(
(|Eε|

2 + 2vε)Eε

)
we obtain

‖∂1E
1
ε‖L2(Ω) ≤ Kψε +K(ψε + λε)

2.

To sum up we obtain the following estimates for the normal derivatives : there
exists a constant K2 such that on [0, T 1

ε ],

Λε(t) ≤ K2(Ψε(t) + Γ(t)) +K2Λ
2
ε(t). (52)

End of the proof.

Integrating (49) we obtain that on [0, T 1
ε ]

Ψ2
ε(t) ≤ K1t. (53)

Let us define the polynomial map Pδ(ξ) = K2ξ
2 − ξ + K2δ. If δ ≤

1

2K2
, the

smallest rooth of Pδ is less than 1. So while Γ(t) ≤ 1
4K2

and Ψε(t) ≤ 1
4K2

, then

Λε(t) ≤ 1. We fix T̃1 > 0 such that

∀ t ≤ T̃1, Γ(t) ≤
1

4K2
,

and we introduce T̃2 =
1

16K1K
2
2

. By (53) we have that

∀ t ≤ T̃2, Ψε(t) ≤
1

4K2
.

Then we obtain that T 1
ε ≥ T̃ = min{T̃1, T̃2}, and we deduce (37).

The estimate (38) is obtained by

vε(t) =

∫ t

0

exp
s− t

ε
Eε∂tEε(s, x)ds.

Theorem 2 is a straightforward corollary of Theorem 1.
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