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The Kerr-Debye model is a relaxation of the nonlinear Kerr model in which the relaxation coefficient is a finite response time of the nonlinear material. We establish the convergence of the Kerr-Debye model to the Kerr model when this relaxation coefficient tends to zero.

1. Physical context. In this paper we study different models for the electromagnetic waves propagation in an isotropic nonlinear material (a cristal for example). The wave propagation is described by Maxwell's equations

∂ t D -curl H = 0, ∂ t B + curl E = 0, div D = div B = 0.
where E is the electric field, H is the magnetic field, D is the electric displacement and B is the magnetic induction. Once nondimensionalized, the constitutive relations for a nonlinear Kerr medium are given by B = H and D = E + P, where P is the nonlinear polarization.

For the Kerr model, the medium exhibits an instantaneous response :

P = |E| 2 E.
For the Kerr-Debye model, the medium exhibits a finite response time ε :

P = χE,
where

∂ t χ + 1 ε χ = 1 ε |E| 2
(see [START_REF] Shen | The Principles of Nonlinear Optics[END_REF][START_REF] Ziolkowski | The incorporation of microscopic material models into FDTD approach for ultrafast optical pulses simulations[END_REF]). Formally, when ε tends to zero, χ tends to |E| 2 , that is the Kerr-Debye model is a relaxation approximation of the Kerr model.

Concerning the Cauchy problem with initial data (D 0 , H 0 , χ 0 ) satisfying div D 0 = div H 0 = 0 and χ 0 ≥ 0, the convergence for the smooth solutions is proved by [START_REF] Hanouzet | Approximation par relaxation d'un système de Maxwell non linéaire[END_REF] using the results of [START_REF] Yong | Singular perturbations of first-order hyperbolic systems with stiff source terms[END_REF]. Generally a boundary layer in time appears because of the non compatibility of the initial data with the equilibrium condition χ = |E| 2 .

In order to describe realistic physical situations it is more convenient to study the initial boundary value problem. We denote by Ω = IR + × IR 2 the domain in which the nonlinear material is confined, and by Γ = {0} × IR 2 its boundary. We consider the Kerr and the Kerr-Debye models in the domain IR + t × Ω with the impedance boundary condition on IR + t × Γ and with null initial data. In this case the Kerr model, denoted by (K), becomes, for (t,

x) ∈ R + × Ω ∂ t D -curl H = 0, ∂ t H + curl E = 0, (1) 
with the constitutive relation :

D = (1 + |E| 2 )E. ( 2 
)
We suppose that the initial data vanishes :

D(0, x) = H(0, x) = 0 for x ∈ Ω (3) 
so that we obtain the conservative relations

div D = div H = 0. ( 4 
)
We denote by n = t (-1, 0, 0) the outer unit normal on Γ. We consider the impedance boundary condition

H ∧ n + a((E ∧ n) ∧ n) = ϕ for (t, x) ∈ IR + × Γ, ( 5 
)
where a is a positive endomorphism acting on Γ. The initial boundary value problem for the Kerr-Debye model (KD) writes, for

(t, x) ∈ R + × Ω    ∂ t D ε -curl H ε = 0, ∂ t H ε + curl E ε = 0, ∂ t χ ε = 1 ε (|E ε | 2 -χ ε ), (6) 
with the constitutive relation :

D ε = (1 + χ ε )E ε . (7) 
We suppose that the initial data vanishes :

D ε (0, x) = H ε (0, x) = 0, χ ε (0, x) = 0 for x ∈ Ω, (8) 
and we have also div D ε = div H ε = 0. (9) In addition we suppose that we have the same impedance boundary condition

H ε ∧ n + a((E ε ∧ n) ∧ n) = ϕ for (t, x) ∈ IR + × Γ. ( 10 
)

Two dimensional models

Following [START_REF] Ziolkowski | Full wave vector Maxwell equation modeling of the selffocusing of ultrashort optical pulses in a nonlinear Kerr medium exhibiting a finite response time[END_REF] we can also introduce the two-dimensional transverse magnetic (TM) and transverse electric (TE) models.

For the transverse magnetic case we assume that

H(x 1 , x 2 , x 3 ) = t (0, H 2 (x 1 , x 3 ), 0), E(x 1 , x 2 , x 3 ) = t (E 1 (x 1 , x 3 ), 0, E 3 (x 1 , x 3 )), ( 11 
)
in the domain (x 1 , x 3 ) ∈ {x 1 > 0} × IR. The Maxwell system becomes    ∂ t D 1 + ∂ 3 H 2 = 0, ∂ t D 3 -∂ 1 H 2 = 0, ∂ t H 2 + ∂ 3 E 1 -∂ 1 E 3 = 0, (12) 
with the divergence conservation condition

∂ 1 D 1 + ∂ 3 D 3 = 0 (13) 
(in this case the divergence condition for H is irrelevant). The impedance boundary condition writes H 2 -aE 3 = ϕ with a ≥ 0. (14) This system is coupled with (2) for the Kerr model and with [START_REF] Huynh | Etudes théorique et numérique de modèles de Kerr[END_REF] and the third equation in [START_REF] Hanouzet | Approximation par relaxation d'un système de Maxwell non linéaire[END_REF] for the Kerr-Debye model.

In the transverse electric case, we assume that

E(x 1 , x 2 , x 3 ) = t (0, E 2 (x 1 , x 3 ), 0), H(x 1 , x 2 , x 3 ) = t (H 1 (x 1 , x 3 ), 0, H 3 (x 1 , x 3 )). ( 15 
)
We obtain

   ∂ t D 2 -∂ 3 H 1 + ∂ 1 H 3 = 0, ∂ t H 1 -∂ 3 E 2 = 0, ∂ t H 3 + ∂ 1 E 2 = 0, (16) 
with the divergence conservation condition

∂ 1 H 1 + ∂ 3 H 3 = 0, (17) 
and the impedance boundary condition becomes

H 3 + aE 2 = ϕ with a ≥ 0. ( 18 
)
In the case of a fixed finite response time, numerical simulations are obtained for these two-dimensional models by finite-difference methods in [START_REF] Ziolkowski | Full wave vector Maxwell equation modeling of the selffocusing of ultrashort optical pulses in a nonlinear Kerr medium exhibiting a finite response time[END_REF] and by finiteelement methods in [START_REF] Huynh | Etudes théorique et numérique de modèles de Kerr[END_REF].

One dimensional model

In [START_REF] Carbou | Relaxation approximation of some nonlinear Maxwell initial-boundary value problem[END_REF] the one dimensionnal model is introduced :

E(x 1 , x 2 , x 3 ) = t (0, e(x 1 ), 0), H(x 1 , x 2 , x 3 ) = t (0, 0, h(x 1 )). ( 19 
)
In this case the Maxwell system becomes :

∂ t d + ∂ 1 h = 0, ∂ t h + ∂ 1 e = 0, (20) 
with the impedance boundary condition

h(t, 0) + ae(t, 0) = ϕ(t), a ≥ 0. ( 21 
)
We can also remark that the divergence conditions on h and d are irrelevant.

2. Mathematical Properties.

Properties of the Kerr model:

We recall the initial-boundary value problem for the general Kerr model.

   ∂ t D -curl H = 0, ∂ t H + curl E = 0, D = (1 + |E| 2 )E, (22) 
for (t, x) ∈ IR + × Ω,

D(t = 0) = E(t = 0) = 0 for x ∈ Ω, (23) 
H ∧ n + a((E ∧ n) ∧ n) = ϕ for (t, x) ∈ IR + × Γ. ( 24 
)
The energy density given by

E K (E, H) = 1 2 (|E| 2 + |H| 2 + 3 2 |E| 4 ) (25)
is a strictly convex entropy, so ( 22) is a quasilinear hyperbolic symmetrizable system. In the three dimensional case, the eigenvalues are, for ξ = 0,

λ 1 (E, ξ) ≤ λ 2 (E, ξ) < λ 3 = λ 4 = 0 < λ 5 = -λ 2 ≤ λ 6 = -λ 1 ,
so the boundary IR + × Γ is characteristic of constant multiplicity equal to two.

In the two dimensional cases, TM and TE, the eigenvalues are of the form:

λ 1 (E, ξ) < λ 2 = 0 < λ 3 = -λ 1 ,
so the boundary IR + × Γ is characteristic of constant multiplicity equal to one.

In the one dimensional case, the system is strictly hyperbolic and the boundary is non characteristic. We have

λ 1 (E) < 0 < λ 2 = -λ 1 .
The impedance boundary condition ( 24) is maximal dissipative thus we can apply the existence results in [START_REF] Picard | Local existence of solutions of impedance initialboundary value problem for non-linear Maxwell equations[END_REF] and also the more general results in [START_REF] Guès | Problème mixte hyperbolique quasi-linéaire caractéristique[END_REF]. We precise these results in the 3-d case. We assume that the source term ϕ is compactly supported in IR + t × Γ. We denote by H s the classical Sobolev spaces and we suppose that ϕ belongs to H s (IR t × Γ) for s great enough. So the boundary condition (24) and the initial data (23) match one each other and we obtain smooth local solutions. Proposition 1. Under the previous assumptions there exists a maximal smooth solution (E, H) for the IBVP ( 22)-( 23)-( 24) which lifespan is denoted by T * and such that

∂ i t (E, H) ∈ C 0 ([0, T * [; H 3-i (Ω)) for i = 0, 1, 2, 3. ( 26 
)
We have analogous results in the 2-d and the 1-d cases.

Properties of the Kerr-Debye models.

These models write, for (t, x)

∈ IR + × Ω        ∂ t D ε -curl H ε = 0, ∂ t H ε + curl E ε = 0, ∂ t χ ε = 1 ε (|E ε | 2 -χ ε ), D ε = (1 + χ ε )E ε . (27) D ε (0, x) = H ε (0, x) = 0, χ ε (0, x) = 0 for x ∈ Ω, (28) 
H ε ∧ n + a((E ε ∧ n) ∧ n) = ϕ for (t, x) ∈ IR + × .Γ, (29) 
By the third equation in ( 27) we observe that we have

χ ε ≥ 0. ( 30 
)
The energy density given by

E KD (E, H, χ) = 1 2 (1 + χ) -1 |D| 2 + 1 2 |H| 2 + 1 4 χ 2 (31) 
is a strictly convex entropy in the domain {χ ≥ 0}. So ( 27) is a quasilinear symmetrizable hyperbolic system.

In the three dimensional case the eigenvalues are, for ξ = 0,

µ 1 (E, χ, ξ) = µ 2 < µ 3 = µ 4 = µ 5 = 0 < µ 6 = µ 7 = -µ 1 ,
so the boundary is characteristic of constant multiplicity equal to three.

In the two dimensional cases we obtain

µ 1 (E, χ, ξ) < µ 2 = µ 3 = 0 < µ 4 = -µ 1 ,
so the boundary is characteristic of constant multiplicity equal to two.

In the one dimensional case, the system is strictly hyperbolic and the boundary is characteristic of constant multiplicity one. The eigenvalues are

µ 1 (E, χ) < µ 2 = 0 < µ 3 = -µ 1 .
The impedance boundary condition ( 29) is maximal dissipative and we apply the existence results of [START_REF] Guès | Problème mixte hyperbolique quasi-linéaire caractéristique[END_REF].

Proposition 2. Under the previous assumptions there exists a maximal smooth solution (D ε , H ε , χ ε ) for the IBVP ( 27)-( 28)-(29) which lifespan is denoted by T * ε and such that

∂ i t (D ε , H ε , χ ε ) ∈ C 0 ([0, T * ε [; H 3-i (Ω)) for i = 0, 1, 2, 3. (32) 
If for a fixed ε we have T * ε < +∞ the behaviour of the solution is described in [START_REF] Guès | Problème mixte hyperbolique quasi-linéaire caractéristique[END_REF] extending the results of Majda [START_REF] Majda | Compressible fluid flow and systems of conservation laws in several space variables[END_REF] on the general quasilinear hyperbolic systems. In the one dimensional case, the Kerr-Debye model behaves like a semilinear system. We prove in [START_REF] Carbou | Comportement semi-linéaire d'un système hyperbolique quasi-linéaire : le modèle de Kerr Debye[END_REF] that it does not exhibit schock waves: if the gradient of the solution blows up, the solution itself blows up:

sup [0,T * ε [ d ε L ∞ (I R + ) + h ε L ∞ (I R + ) + χ ε L ∞ (I R + ) = +∞. (33) 
3. Convergence Results. In order to prove the convergence results it is more convenient to use the entropic variables as it is proposed in [START_REF] Hanouzet | Global existence of smooth solutions for partially dissipative hyperbolic systems with a convex entropy[END_REF]. These variables are obtained taking the gradient of the convex entropy (31).

             ∂ D E KD = (1 + χ) -1 D = E, ∂ H E KD = H, ∂ χ E KD = 1 2 (χ -|E| 2 ) := v,
The IBVP (27) (28) (29) becomes

A 0 (W ε )∂ t W ε + 3 j=1 A j ∂ j W ε = 1 ε Q(W ε ) (34)
for (t, x) ∈ IR + × Ω, where

• W ε =   E ε H ε v ε   • A 0 (W ε ) =   (|E ε | 2 + 2v ε + 1)I 3 + 2E ε t E ε 0 2E ε 0 I 3 0 2 t E ε 0 2   • 3 j=1 A j ∂ j =   0 -curl 0 curl 0 0 0 0 0   Q(W ε ) =   0 0 -2v ε   with the initial data E ε (0, x) = H ε (0, x) = 0, v ε (0, x) = 0 for x ∈ Ω, ( 35 
)
and with the boundary condition

H ε ∧ n + a((E ε ∧ n) ∧ n) = ϕ for (t, x) ∈ IR + × Γ. ( 36 
)
We observe that the boundary condition is linear for the variables (E, H). In addition the equilibrium manifold (D, H, χ), χ = |E| 2 is linearized as (E, H, v), v = 0 and the relaxation term is linear.

For the three dimensional case the main convergence results are the two following theorems (see [START_REF] Carbou | Relaxation Approximation of the Kerr Model for the three Dimensional Initial-Boundary Value Problem[END_REF]):

Theorem 1. There exist T > 0 and a constant K > 0 such that for all ε > 0, T * ε ≥ T and the solution W ε of the (KD) boundary value problem ( 34)-( 35)-(36) satisfies

∂ i t W ε C 0 ([0, T ];H 3-i (I R + )) ≤ K for i = 0, 1, 2, 3, (37) 
∂ i t v ε C 0 ([0, T ];H 2-i (I R + )) ≤ Kε for i = 0, 1, 2. ( 38 
)
Theorem 1 shows the strong convergence of 1)-( 2)-( 3)-( 5) is described in the following statement:

v ε = 1 2 (χ ε -|E ε | 2 ) to zero. The con- vergence of (E ε , H ε ) to the solution (E, H) of the IBVP (
Theorem 2. For T ≤ T and T < T * , there exists a constant K > 0 such that for all ε > 0,

(E ε , H ε ) -(E, H) C 0 ([0,T ];H 1 (I R + )) ≤ Kε. (39) 
In our study we remark that no boundary layer appears in the time variable because the null initial data belongs to the equilibrium manifold defined by

V = (D, H, χ) such that χ -(1 + χ) -2 |D| 2 = 2v = 0 .
For the space variable, we have the same boundary condition for the system (K) and for the system (KD), so no space boundary layer appears again.

For the one dimensionnal case the analogous results are proved in [START_REF] Carbou | Relaxation approximation of some nonlinear Maxwell initial-boundary value problem[END_REF]. This case is simpler because we can use the semi-linear behaviour of the K-D model (see (33)) and because the boundary is characteristic of multiplicity one. In the 3-d case, the boundary is characteristic of multiplicity three, so we have to use the conservation conditions [START_REF] Picard | Local existence of solutions of impedance initialboundary value problem for non-linear Maxwell equations[END_REF]. The second one div H ε = 0 is linear, but the first one div D ε = 0 is nonlinear in the entropic variables, which entails additional technical difficulties. We guess that in the 2-d case, the TE case is similar to the 1-d case, and the TM case is analogous to the 3-d case.

4. Sketch of the proof for the 3-d case. Replacing the magnetic field H ε by H ε + ϕ(t, x 2 , x 3 )η(x 1 ), where η is a cut off function we are led to study the following homogeneous IBVP:

A 0 (W ε )∂ t W ε + 3 j=1 A j ∂ j W ε = 1 ε Q(W ε ) + G for (t, x) ∈ IR + × Ω, (40) 
W ε (0, x) = 0 for x ∈ Ω, (41)

H ε ∧ n + a((E ε ∧ n) ∧ n) = 0 for (t, x) ∈ IR + × Γ, (42) 
So the conservation properties are preserved:

div ((|E ε | 2 + 2v ε + 1)E ε ) = div H ε = 0. ( 43 
)
The tangential derivatives ∂ t = ∂ 0 , ∂ 2 , ∂ 3 and the normal derivative ∂ 1 are estimated by different ways. The tangential derivatives are measured by ψ ε :

ψ ε (t) =   W ε (t) 2 L 2 (Ω) + i =1 ∂ i W ε 2 L 2 (Ω) + ... + i,j,k =1 ∂ ijk W ε (t) 2 L 2 (Ω)   1 2
.

(44) The normal derivatives are measured by λ ε :

λ ε (t) =   ∂ 1 W ε 2 L 2 (Ω) + i ∂ 1i W ε (t) 2 L 2 (Ω) + i,j ∂ 1ij W ε (t) 2 L 2 (Ω)   1 2 . ( 45 
)
The source term G is measured by γ:

γ(t) =   G 2 L 2 (Ω) + . . . + i,j ∂ ij G 2 L 2 (Ω)   1 2 . ( 46 
)
We also introduce :

Ψ ε (t) = sup [0,t] ψ ε , Λ ε (t) = sup [0,t] λ ε , Γ(t) = sup [0,t] γ. (47) 
Let us introduce T 1 ε defined by

T 1 ε = max {t ≤ T * ε , Γ(t) ≤ 1, Ψ ε (t) ≤ 1, Λ ε (t) ≤ 1} . ( 48 
)
Variational estimates for the tangential derivatives

Taking the inner product of (40) with W ε we first obtain the L 2 estimate on [0, T

1 ε ]: 1 2 d dt Ω A 0 (W ε )W ε • W ε + 1 ε Ω |v ε | 2 ≤ K. (49) 
Let us remark that we have used the dissipative property of the boundary condition (42):

Ω 3 j=1 A j ∂ j W ε • W ε = Γ aE T ε • E T ε ≥ 0, where E T ε = t (E 2 ε , E 3 ε ).
We can derivate the IBVP with respect to the tangential derivatives ∂ i , i = 1, We obtain the same initial data and same boundary condition for ∂ i W and the same form for the relaxation term . Using also the uniform elliptic relation

C 1 |ξ| 2 ≤ A 0 (W )ξ • ξ ≤ C 2 |ξ| 2 ,
we obtain the estimation on ψ ε : there exists K 1 such that for all ε and for t ∈ [0, T

1 ε ] we have d dt ψ 2 ε + 2 ε Ω (|v ε | 2 + . . . + |∂ ijk v ε | 2 ) ≤ K 1 . (50) 
Estimates for the normal derivatives

In order to estimate v ε we solve the last equation in (40) using Duhamel formula:

v ε (t, x) = - 1 2 |E ε | 2 (t, x) + 1 2ε t 0 exp s -t ε |E ε | 2 (s, x)ds,
and from (50) we obtain that

3 i=0 ∂ i t v ε H 3-i (Ω) ≤ K(Ψ ε + Λ ε ) 2 . ( 51 
)
We estimate the normal derivatives using either the equation ( 40) or the divergence equations (43). For example, from curl E ε = G 2 -∂ t H ε we deduce that

∂ 1 E 2 ε L 2 (Ω) ≤ Kψ + γ. From div E ε = -div (|E ε | 2 + 2v ε )E ε we obtain ∂ 1 E 1 ε L 2 (Ω) ≤ Kψ ε + K(ψ ε + λ ε ) 2 .
To sum up we obtain the following estimates for the normal derivatives : there exists a constant K 2 such that on [0,

T 1 ε ], Λ ε (t) ≤ K 2 (Ψ ε (t) + Γ(t)) + K 2 Λ 2 ε (t). ( 52 
)
End of the proof.

Integrating (49) we obtain that on [0,

T 1 ε ] Ψ 2 ε (t) ≤ K 1 t. ( 53 
)
Let us define the polynomial map P δ (ξ) = K 2 ξ 2ξ + K 2 δ. If δ ≤ 1 2K 2 , the smallest rooth of P δ is less than 1. So while Γ(t) ≤ 1 4K2 and Ψ ε (t) ≤ 1 4K2 , then Λ ε (t) ≤ 1. We fix T 1 > 0 such that

∀ t ≤ T 1 , Γ(t) ≤ 1 4K 2 ,
and we introduce

T 2 = 1 16K 1 K 2 2
. By (53) we have that

∀ t ≤ T 2 , Ψ ε (t) ≤ 1 4K 2 .
Then we obtain that T 1 ε ≥ T = min{ T 1 , T 2 }, and we deduce (37). The estimate (38) is obtained by

v ε (t) = t 0 exp s -t ε E ε ∂ t E ε (s, x)ds.
Theorem 2 is a straightforward corollary of Theorem 1.