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Abstract. We derive a model for the conduction in an ε-periodic struc-
ture containing highly conductive thin layers. The case of plane thin layers is
first considered. It is shown that the resulting model displays an increased con-
ductivity along the directions of the layers planes. The more involved case of
tubular layers yields a similar result with an increase of the conductivity along
the direction of the tubes, while the presence of highly conductive thin lay-
ers confined between spheres of ε-order radii does not increase the macroscopic
conductivity in any direction. It seems that the presence of ε-periodic highly
conductive thin layers determines an increase of the macroscopic conductivity
in a certain direction only if these layers cover entirely segment lines of unity
order having this direction.
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1 Introduction

The study of layered materials is one main achievement of homogenization
theory, beside Darcy’s law in fluid mechanics and the modelling of composite
materials in elasticity. The foundations of layered materials were laid down
by Murat and Tartar in their pioneering work [9]. It states that given some
characteristic coefficients aε, under some additional assumptions on the inverse
1/aε, the reduced model can be explicited. In [6], the theory still works in the
framework of weaker topologies. The case of BV -functions and sequences of
measures is worked out in [5]. The engineering point of view favors geometric
considerations and industrial achievements. In that respect, measures provide
a more realistic tool when they are confined to the description of the critical
part of a system as in [1], [2]. Later, the control-zone method introduced in
[3], [4] and designed for Sobolev spaces, proved efficient in the modelling of fine
substructures where small particles of high density influence the behavior of the
global problem in spite of their vanishing volume. The asymptotic treatment
reveals the apparent paradox between an obviously disappearing element and
its everlasting action on their environment.

The paper is organized as follows. The problem of plane thin layers is con-
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sidered in Section 2. Subsection 2.1 is devoted to the main notations and to
the description of the initial problem. The functional framework is introduced
through the space W1 in (11)–(54) and yields the existence and unicity of the
solution. Subsection 2.2 introduces the main tools of a control-zone (18) charac-
terized by two layers widths rε and Rε. Then, the problem reduces to studying
the action of both local operators GRε

and Grε
on the solution uε of the initial

problem. The homogenization procedure is described in Subsection 2.3. The
main theorem 3.21 emphasizes the influence of the geometry of the fissures on
the global behavior of the mixture in the form of an enforcing multiplicative
coefficient in the plane direction. Interestingly, we observe that unlike the case
of a geometry involving a capacity criterium, there is no discriminant param-
eter and the result holds however very small the thickness rε of a layer is in
comparison to the size of the distribution period.

The more involved case of tubular layers is studied in Section 3. The ar-
guments follow the same lines with an exchange in the respective parts of the
dimensions, namely the plane dimension containing the periodic distribution
of the tubes where the homogenization actually takes place and the dimension
corresponding to the direction of the tubes. This is explained in Subsection 3.1
which is the analogue of Subsection 2.1. The control tools are presented in
Subsection 3.2 where the new definition of local operators involves the mean
value upon both interior and exterior boundaries of the tubular layers. From a
practical point of view, the mere exchange in the respective parts of the plane
and longitudinal coordinates corresponds to an improved theoretical material.
In the main Theorem of Subsection 3.3, the respective parts of the thin tubular
fissures and the surrounding mixture is emphasized through the introduction of
a scaled conductivity outside the fissures. It eventually shows that the global
conductivity is increased in the direction of the fissures and that this increase
adds to the global conductivity that is classically derived in the presence of a
periodic in-plane distribution.

The same arguments apply to the homogenization of thin layers confined
between spheres of ε-order radii, but with no increase of the macroscopic con-
ductivity, in any direction. Indeed, the macroscopic conductivity takes into
account both components of the original system only if the thin layers cover
segment lines of unity order having a certain direction. Eventually, the increase
of the macroscopic conductivity shows up along this distinguished directions of
the thin layers.

2 The case of separating thin plane layers

2.1 The conduction problem

We consider Ω = I ×D with I = (0, 1), D ⊆ RN , N ≥ 1 a bounded Lipschitz
domain occupied by a mixture of two different materials, one of them forming
the ambiental connected phase and the other being concentrated in a periodical
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distribution of plane thin layers. Let us denote

I :=

(

−1

2
,+

1

2

)

. (1)

Ik
ε := εk + εI, k ∈ Zε := {ℓ ∈ N, 0 < εℓ < 1}. (2)

The distribution of fissures is defined by the following reunion

Tε := ∪k∈Zε
Ik
rε

×D, (3)

where 0 < rε << ε and Ik
rε

:= εk + 2rεI. Obviously,

|Tε| = 2rεcard Zε|D| → 0 as ε→ 0. (4)

We also use the following notation

Ωε =
(ε

2
, 1 − ε

2

)

×D, ∂1Ω := {0, 1} ×D, ∂DΩ := (0, 1) × ∂D. (5)

We consider the problem which governs the conduction process throughout
our binary mixture. Denoting by aε > 0 the relative conductivity of the thin
layers, then, its non-dimensional form is the following:

To find uε solution of

−div(Aε∇uε) = fε in Ω (6)

uε = 0 on ∂1D (7)

∂uε

∂ν
= 0, ν = (0, ν′) on ∂DΩ (8)

uε = 0 on ∂Ω (9)

where ν′ is the normal on ∂D in the outward direction, fε ∈ L2(Ω) and

Aε(x) =

{
1 if x ∈ Ω \ Tε

aε if x ∈ Tε.
(10)

Let W1 be the Hilbert space

W1 := {v ∈ H1(Ω), v = 0 on ∂1D} (11)

endowed with the scalar product

(u, v)W1
:= (∇u,∇v)Ω. (12)

Now, we can present the variational formulation of the problem (6)–(10).
To find uε ∈W1 satisfying the following equation

∫

Ω\Tε

∇uε∇v + aε

∫

Tε

∇uε∇v = 〈fε, v〉, ∀w ∈W1 (13)

where 〈·, ·〉 denotes the duality product between W1 and W ′
1.
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Theorem 2.1 Under the above hypotheses and notations, problem (13) has a
unique solution.

In the following we consider that the conductivity of the layers is much higher
than that of the surrounding phase. The specific feature of our mixture is given
by the following relation which describes the fact that the conductivity of the
thin layers is balanced by their vanishing volume:

lim
ε→0

aε|Tε| = η > 0. (14)

As for the data, we assume that there exists f ∈W ′
1 such that

fε ⇀ f in W ′
1. (15)

Also, we denote ∫

−
D

· dx =
1

|D|

∫

D

·dx.

Proposition 2.2 We have

(uε)ε is bounded in W1. (16)

Moreover, there exists C > 0, independent of ε, such that

∫

−
Tε

|∇uε|2 ≤ C. (17)

Proof. Substituting w = uε in the variational problem (13), and taking into
account that

|v|W1
≤ C|∇v|L2(Ω), ∀v ∈W1,

we get:

C

∫

Ω

|∇uε|2 ≤
∫

Tε

|∇uε|2 + aε

∫

Ω\Tε

|∇uε|2 ≤ C|fε|W ′
1
|∇uε|L2(Ω)

There results:
|∇uε|L2(Ω) ≤ C

and the proof is completed.

2.2 Specific tools

The set of control-sequences is defined by

R = {(Rε)ε>0, rε << Rε << ε} (18)

that is (Rε)ε>0 ∈ R iff

lim
ε→0

rε
Rε

= lim
ε→0

Rε

ε
= 0. (19)
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For any (Rε)ε ∈ R, we denote the domain confined between the layers of
widths rε and Rε as the union of all subsets constructed from

Ck
Rε

:= Ik
Rε

\ Ik
rε
, where Ik

Rε
:= εk + 2RεI

namely:
Cε := (∪k∈Zε

Ck
Rε

) ×D.

Then:
|Cε| = cardZε(Rε − rε)|D| → 0 as ε→ 0. (20)

Definition 2.3 For any (Rε)ε ∈ R, we define wε ∈W1 by

wε(x1, x
′) :=







1 − rε
Rε

if (x1, x
′) ∈ T ε,

1 − 1

Rε
|x1 − εk| if (x1, x

′) ∈ Ck
Rε

×D, k ∈ Zε,

0 if (x1, x
′) ∈ Ω \ (T ε ∪ Cε).

(21)

We remark here the following properties of wε:

wε ∈W1 (22)

0 ≤ wε(x) < 1, ∀x ∈ Ω (23)

|wε|L2(Ω) ≤ |Tε ∪ Cε|1/2 ≤ C

√

Rε

ε
→ 0. (24)

Definition 2.4 For any u ∈ W1 and any (bε)n∈N with 0 < bε <
ε

2
, we define

Gk
bε

(u) ∈ H1/2(D) and Gbε
(u) ∈ L2(Ω) by

Gk
bε

(u)(x′) =
1

2
(u (εk − bε, x

′) + u (εk + bε, x
′))

Gbε
(u)(x1, x

′) =
∑

k∈Zε

Gk
bε

(u)(x′)1Ik
ε
(x1), (x1, x

′) ∈ Ω.

Proposition 2.5 For any u ∈W1, we have:
∫

−
Tε

|Grε
(u)|2 =

1

εcardZε

∫

−
Ω

|Grε
(u)|2. (25)

Proof. We have
∫

Ω

|Grε
(u)|2 =

∑

k∈Zε

∫

I×D

|Gk
rε

(u)(x′)|21Ik
ε

= ε
∑

k∈Zε

∫

D

|Gk
rε

(u)|2.

Moreover:
∫

−
Tε

|Grε
(u)|2 =

1

2cardZεrε|D|
∑

k∈Zε

∫

Ik
rε

×D

|Grε
(u)|2(x′)1Ik

ε
(x1) =
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=
1

cardZε|D|
∑

k∈Zε

∫

D

|Gk
rε

(u)|2.

This achieves the proof.

Proposition 2.6 For any u ∈W1, there holds:
∫

Ik
ε
×D

|u−Gk
bε

(u)|2 ≤ ε2

2

∫

Ik
ε
×D

∣
∣
∣
∣

∂u

∂x1

∣
∣
∣
∣

2

(26)

Proof. Consider the quantity

Jk
ε =

∫

Ik
ε
×D

|u−Gk
bε

(u)|2.

We have

Jk
ε =

∫

Ik
ε

dx1

∫

D

∣
∣
∣
∣
u(x1, x

′) − 1

2
(u (εk − bε, x

′) + u (εk + bε, x
′))

∣
∣
∣
∣

2

dx′ =

=
1

4

∫

Ik
ε

dx1

∫

D

∣
∣
∣
∣
∣

∫ x1

εk−bε

∂u

∂x1
(t, x′)dt−

∫ εk+bε

x1

∂u

∂x1
(t, x′)dt

∣
∣
∣
∣
∣

2

dx′ ≤

≤ 1

2

∫

Ik
ε

dx1

∫

D





∣
∣
∣
∣

∫ x1

εk−bε

∂u

∂x1
(t, x′)dt

∣
∣
∣
∣

2

+

∣
∣
∣
∣
∣

∫ εk+bε

x1

∂u

∂x1
(t, x′)dt

∣
∣
∣
∣
∣

2


 dx′ ≤

≤ 1

2

∫

Ik
ε

dx1

∫

D

[

(x1−εk+bε)

∫ x1

εk−bε

∣
∣
∣
∣

∂u

∂x1
(t, x′)

∣
∣
∣
∣

2

dt+(εk+bε−x1)

∫ εk+bε

x1

∣
∣
∣
∣

∂u

∂x1
(t, x′)

∣
∣
∣
∣

2

dt

]

dx′.

There results

Jk
ε ≤ ε

2

∫

Ik
ε

dx1

∫

D

dx′
∫ εk+ ε

2

εk− ε

2

∣
∣
∣
∣

∂u

∂x1
(t, x′)

∣
∣
∣
∣

2

dt

︸ ︷︷ ︸

independent of x1

=
ε2

2

∫

Ik
ε
×D

∣
∣
∣
∣

∂u

∂x1

∣
∣
∣
∣

2

Proposition 2.7 For any u ∈W1, there holds
∫

Ik

bε
×D

|u−Gk
bε

(u)|2 ≤ 2b2ε

∫

Ik

bε
×D

∣
∣
∣
∣

∂u

∂x1

∣
∣
∣
∣

2

(27)

Proof. We have
∫

Ik

bε
×D

|u−Gk
bε

(u)|2 =

∫

Ik

bε

dx1

∫

D

∣
∣
∣
∣
u(x1, x

′)− 1

2
(u (εk−bε, x′)+u (εk+bε, x

′))

∣
∣
∣
∣

2

dx′dx1 ≤

≤ 1

2

∫

Ik

bε

∫

D





∣
∣
∣
∣

∫ x1

εk−bε

∂u

∂x1
(t, x′)dt

∣
∣
∣
∣

2

+

∣
∣
∣
∣
∣

∫ εk+bε

x1

∂u

∂x1
(t, x′)dt

∣
∣
∣
∣
∣

2


dx′ ≤ 2b2ε

∫

Ik

bε
×D

∣
∣
∣
∣

∂u

∂x1

∣
∣
∣
∣

2
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Proposition 2.8 For any u ∈W1, we have:

|Grε
(u) −GRε

(u)|L2(Ω) ≤ (εRε)
1/2

∣
∣
∣
∣

∂u

∂x1

∣
∣
∣
∣
L2(Cε)

(28)

Proof. For each k, k ∈ Zε, there holds:
∫

D

∣
∣Gk

rε
(u)(x′) −Gk

Rε
(u)(x′)

∣
∣
2
dx′ ≤ (Rε − rε)

∫

Ck

Rε
×D

∣
∣
∣
∣

∂u

∂x1

∣
∣
∣
∣

2

.

Indeed, let k ∈ Zε. We have

∫

D

∣
∣Gk

rε
(u)(x′)−Gk

Rε
(u)(x′)

∣
∣
2
dx′≤ 1

2

∫

D





∣
∣
∣
∣
∣

∫ εk−rε

εk−Rε

∂u

∂x1
(t, x′)dt

∣
∣
∣
∣
∣

2

+

∣
∣
∣
∣
∣

∫ εk+Rε

εk+rε

∂u

∂x1
(t, x′)dt

∣
∣
∣
∣
∣

2


dx′≤

≤ (Rε − rε)

∫

Ck

Rε
×D

∣
∣
∣
∣

∂u

∂x1

∣
∣
∣
∣

2

.

To conclude about (28), we write:

|Grε
(u) −GRε

(u)|2L2(Ω) =
∑

k∈Zε

∫

Ik
ε
×D

∣
∣Gk

rε
(uε) −Gk

Rε
(uε)

∣
∣
2

=

= ε
∑

k∈Zε

∫

D

∣
∣Gk

rε
(u)(x′) −Gk

Rε
(u)(x′)

∣
∣
2
dx′ ≤ ε(Rε−rε)

∑

k∈Zε

∫

Ck

Rε
×D

∣
∣
∣
∣

∂u

∂x1

∣
∣
∣
∣

2

≤ εRε

∣
∣
∣
∣

∂u

∂x1

∣
∣
∣
∣

2

L2(Cε)

Proposition 2.9 The following estimate holds true:

∫

−
Tε

|u|2 ≤ C|∇u|2L2(Ω), ∀u ∈W1 (29)

for some constant C > 0 independent of ε.

Proof. From (25) and (27), we have
∫

−
Tε

|u|2 ≤ 2

∫

−
Tε

|u−Grε
(u)|2 + 2

∫

−
Tε

|Grε
(u)|2 ≤

≤ Cεrε

∣
∣
∣
∣

∂u

∂x1

∣
∣
∣
∣

2

L2(Tε)

+
1

εcardZε

∫

−
Ω

|Grε
(u)|2 .

Moreover, using (28) and the Poincaré-Wirtinger inequality in Ω, we get

|Grε
(u)|L2(Ω) ≤ |Grε

(u) −GRε
(u)|L2(Ω) + |GRε

(u) − u|L2(Ω) + |u|L2(Ω) ≤

≤ (εRε)
1/2

∣
∣
∣
∣

∂u

∂x1

∣
∣
∣
∣
L2(Cε)

+ ε

∣
∣
∣
∣

∂u

∂x1

∣
∣
∣
∣
L2(Ω)

+ C|∇u|L2(Ω).
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Corollary 2.10 The following estimate holds true:

∫

−
Tε

|uε|2 ≤ C (30)

for some constant C > 0 independent of ε.

Definition 2.11 For every ϕ ∈ C(Ω) ∩W1, define

Mrε
(ϕ) =

∑

k∈Zε

(
∫

−
Ik

ε

ϕ(t, x′)dt

)

1Ik
rε

(x1)

Proposition 2.12 There holds

lim
ε→0

∫

−
Tε

|ϕ−Mrε
(ϕ)|2 = 0, ∀ϕ ∈ C(Ω) ∩W1. (31)

Proof. Let ϕ ∈ C(Ω) ∩W1 and let δ > 0. The uniform continuity of ϕ yields
the existence of some ε0 > 0 such that:
∫

Ik
rε

|ϕ(x1, x
′) −

∫

−
Ik

ε

ϕ(t, x′)dt|2 < δ, ∀x′ ∈ D, ∀k ∈ Zε, ∀ε ∈ (0, ε0).

There results
∫

−
Tε

|ϕ−Mrε
(ϕ)| =

1

|Tε|
∑

k∈Zε

∫

Ik
rε

×D

|ϕ(x1, x
′)−

∫

−
Ik

ε

ϕ(t, x′)dt| ≤ δ, ∀ε ∈ (0, ε0).

Proposition 2.13 There holds

∫

−
Tε

Grε
(uε)Mrε

(ϕ) =
1

εcardZε

∫

−
Ω

Grε
(uε)ϕ, ∀ϕ ∈ C(Ω) ∩W1. (32)

Proof. Let ϕ ∈ C(Ω) ∩W1. We have:
∫

−
Tε

Grε
(uε)Mrε

(ϕ) =
1

|Tε|
∑

k∈Zε

∫

Ik
rε

×D

Gk
rε

(uε)(x
′)

(
∫

−
Ik

ε

ϕ(t, x′)dt

)

dx =

=
2rε

2εcardZε rε|D|
∑

k∈Zε

∫

Ik
ε
×D

Gk
rε

(uε)(x
′)ϕ(t, x′)dx′dt =

=
1

εcardZε|D|

∫

Ω

Grε
(uε)ϕ.
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2.3 The homogenization result

A preliminary result is the following:

Proposition 2.14 There exists u ∈W1 such that, on some subsequence,

uε ⇀ u in H1(Ω). (33)

GRε
(uε) → u in L2(Ω) (34)

Grε
(uε) → u in L2(Ω) (35)

Proof. From (16), we get, on some subsequence, the convergence (33). More-
over, from (26), we have:

|uε −GRε
(uε)|2L2(Ω) =

∑

k∈Zε

∫

Ik
ε
×D

|uε −Gk
Rε

(uε)|2 ≤ ε2
∣
∣
∣
∣

∂uε

∂x1

∣
∣
∣
∣

2

L2(Ω)

≤ Cε2.

and the proof of (34) is complete.
In order to prove (35), we recall (28), which yields:

|Grε
(uε) −GRε

(uε)|L2(Ω) ≤ C (εRε)
1/2 → 0.

and the conclusion follows from (34).

Proposition 2.15 For any ϕ ∈ W1, the following convergences hold true on
some subsequence: ∫

−
Tε

uεϕ→
∫

−
Ω

uϕ, (36)

∫

−
Tε

∂uε

∂xi
ϕ→

∫

−
Ω

∂u

∂xi
ϕ, i = 2, 3, · · · (37)

where u was introduced by (33).

Proof. Let ϕ ∈ C(Ω) ∩W1. We have
∫

−
Tε

uεϕ =

∫

−
Tε

(uε−Grε
(uε))ϕ+

∫

−
Tε

Grε
(uε)(ϕ−Mrε

(ϕ))+

∫

−
Tε

Grε
(uε)Mrε

(ϕ).

Taking into account (27) and (31), we have:

∣
∣
∣
∣

∫

−
Tε

(uε −Grε
(uε))ϕ

∣
∣
∣
∣
≤ Crε

(
∫

−
Tε

∣
∣
∣
∣

∂uε

∂x1

∣
∣
∣
∣

2
)1/2

|ϕ|L∞(Ω) ≤ Crε → 0

∣
∣
∣
∣

∫

−
Tε

Grε
(uε)(ϕ−Mrε

(ϕ))

∣
∣
∣
∣
≤ |Grε

(uε)|L2(Ω)

(∫

−
Tε

|ϕ−Mrε
(ϕ)|2

)1/2

→ 0.

Then, using (32), we get

lim
ε→0

∫

−
Tε

uεϕ = lim
ε→0

1

εcardZε

∫

−
Ω

Grε
(uε)ϕ =

∫

−
Ω

uϕ.
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In order to conclude (36), we notice that C(Ω) ∩W1 is dense in W1 and that
the following estimate proves the continuity of the mapping ϕ 7→

∫
−

Tε

uεϕ:

∣
∣
∣
∣

∫

−
Tε

uεϕ

∣
∣
∣
∣
≤
(∫

−
Tε

|uε|2
)1/2(∫

−
Tε

|ϕ|2
)1/2

≤ C|∇ϕ|L2(Ω).

For i = 2, 3, · · · , and for ϕ ∈ D(Ω), we have
∫

Tε

∂

∂xi
(uεϕ) =

∫

∂Tε

uεϕνi =
∑

k∈Zε

∫

∂Ck

Rε
×D

uεϕνi = 0

as ϕ = 0 on ∂DΩ and νi = 0 on ∂1Ω. There results:
∫

−
Tε

∂uε

∂xi
ϕ+

∫

−
Tε

uε
∂ϕ

∂xi
= 0. (38)

As a consequence of the estimate (30), there exist v2 and v3 ∈ H−1(Ω) such
that:

lim
ε→0

∫

−
Tε

∂uε

∂xi
ϕ = 〈vi, ϕ〉.

Then, passing to the limit as ε→ 0, we get

〈vi, ϕ〉 +

∫

−
Ω

u
∂ϕ

∂xi
= 0. (39)

As (39) holds for every ϕ ∈ D(Ω), we infer that vi =
1

|Ω|
∂u

∂xi
∈ L2(Ω) and the

proof is completed.

Definition 2.16 For any ϕ ∈W1 ∩ C1(Ω), we define ϕ̂ε ∈ L∞(Ω) by

ϕ̂ε :=
∑

k∈Zε

ϕk
ε(x′)1Ik

ε
(x1)

where

ϕk
ε(x′) =

{
ϕ (εk, x′) if x′ ∈ Ik

Rε
, k ∈ Zε,

0 elsewhere.

Let us mention the following straightforward property of ϕ̂ε:

|ϕ− ϕ̂ε|L∞(Cε) ≤ Rε|∇ϕ|L∞(Ω). (40)

We are in the position to state the main result:

Theorem 2.17 The limit u ∈W1 of (33) verifies (in a weak sense) the follow-
ing problem:

−∂
2u

∂x2
1

−
(

1 +
η

|D|

)

∆x′u = f in Ω.

10



Proof. For any (Rε)ε ∈ R and ϕ ∈ C1(Ω) ∩W1, let us denote

Φε = (1 − rε
Rε

− wε)ϕ+ wεϕ̂ε. (41)

As a straightforward consequence of the definitions we have Φε ∈W1 and

lim
ε→0

|Φε − ϕ|L2(Ω) = 0. (42)

Then, we set in (13) w = Φε where Φε is defined by (41).
Then, we get

∫

Ω\Tε

∇uε(−∇wε)ϕ+

∫

Ω\Tε

∇uε

(

1 − rε
Rε

− wε

)

∇ϕ+

+

∫

Ω\Tε

∇uε∇wεϕ̂ε +

∫

Ω\Tε

∇uεwε∇ϕ̂ε + aε

∫

Tε

∇uε∇ϕ̂ε =

=

(

1 − rε
Rε

)

〈fε, ϕ〉 + 〈fε, wε(ϕ̂ε − ϕ)〉.

Concerning the sum between the first and the third terms of the left-hand side
of the previous relation, we have:
∣
∣
∣
∣

∫

Cε

∇uε∇wε(ϕ̂ε − ϕ)

∣
∣
∣
∣
≤ 1

Rε
|ϕ̂ε−ϕ|L∞(Cε)|∇uε|L1(Cε) ≤ C|∇uε|L2(Cε)

√

|Cε| → 0,

where we have used (40).
As a consequence of (24) and (4), the second term converges straightly to

∫

Ω

∇u∇ϕ.

The fourth term converges to zero by (20) and (23) as follows:
∣
∣
∣
∣
∣

∫

Ω\Tε

(∇uε)wε∇ϕ̂ε

∣
∣
∣
∣
∣
=

∣
∣
∣
∣

∫

Cε

∇x′uε(∇x′ ϕ̂ε)wε

∣
∣
∣
∣
≤

≤ C

∫

Cε

|∇x′uε| ≤ C|Cε|1/2 → 0.

For the fifth one, taking in account (37) and the uniform continuity of ∇x′ϕ,
we have

aε

∫

Tε

∇uε∇ϕ̂ε = aε|Tε|
∫

−
Tε

∇x′uε∇x′ ϕ̂ε → η

∫

−
Ω

∇x′u∇x′ϕ

Then, the left-hand side tends to
∫

Ω

∇u∇ϕ+ η

∫

−
Ω

∇x′u∇x′ϕ.

As for the right-hand side, we have 〈fε, ϕ〉 → 〈f, ϕ〉 and

|〈fε, wε(ϕ̂ε − ϕ)〉| ≤ C|∇wε|Cε
|ϕ̂ε − ϕ|L∞(Cε) + C|wε|L2(Cε)|ϕ|L∞(Cε)

≤ C
√

|Cε| + C|wε|L2(Cε) → 0

11



which achieves the proof.

3 The case of separating tubular thin layers

3.1 The conduction problem

We consider the same problem as in the previous section, only this time Ω =
D × I with I = (0, 1) and D is a bounded Lipschitz domain in R2. Denoting

Y :=

(

−1

2
,+

1

2

)2

, B1 := B(0, 1) = {y ∈ R2, |y| < 1} (43)

Y k
ε := εk + εY, T k

ε := B2(εk, εd+ rε) \B2(εk, εd− rε), k ∈ Z2, (44)

where B2(εk, r) denotes the ball of radius r > 0 centered at εk in R2,

Zε := {k ∈ Z2, Y k
ε ⊂ D}. (45)

Let d ∈ (0, 1/2). The distribution of the thin tubes is defined by the following
reunion

Tε = (∪k∈Zε
T k

ε ) × I,

where 0 < rε << ε. Notice that

|Tε| ≃ 4πd|D|
(rε
ε

)

→ 0. (46)

We also use the following notation

Ωε = ∪k∈Zε
Y k

ε × I, ∂DΩ := ∂D × (0, 1), ∂3Ω := D × {0, 1}. (47)

In this case, the conduction problem is the following:
To find uε solution of

−div(Aε∇uε) = fε in Ω (48)

uε = 0 on ∂3D (49)

∂uε

∂ν
= 0, ν = (ν′, 0) on ∂DΩ (50)

uε = 0 on ∂Ω (51)

where ν′ is the normal on ∂D in the outward direction,

Aε(x) =







aε(x
′) if x ∈ Ω \ Tε

η

|Tε| if x ∈ Tε

(52)

12



where aε(x
′) = a

(
x′

ε

)

for some

a ∈ L∞
per(Y ), (53)

such that a(y) ≥ a0 > 0 for any y ∈ Y .
Let W2 be the Hilbert space

W2 := {v ∈ H1(Ω), v = 0 on ∂3D}

endowed with the scalar product

(u, v)W2
:= (∇u,∇v)Ω. (54)

Now, we can present the variational formulation of the problem (48)–(52).
To find uε ∈W2 satisfying the following equation

∫

Ω\Tε

aε∇uε∇v + η

∫

−
Tε

∇uε∇v = 〈fε, v〉, ∀w ∈W2 (55)

where 〈·, ·〉 denotes the duality product between W2 and W ′
2.

Theorem 3.1 Under the above hypotheses and notations, problem (55) has a
unique solution.

Regarding the relative conductivity outside the fissures, we only assume:

aε ≥ a0 > 0, ∀ε > 0. (56)

As for the data, we assume that there exists f ∈W ′
2 such that

fε ⇀ f in W ′
2. (57)

Proposition 3.2 We have

(uε)ε is bounded in W2. (58)

Moreover, there exists C > 0, independent of ε > 0, such that
∫

−
Tε

|∇uε|2 ≤ C. (59)

Proof. The proof follows the same lines as that of Proposition 2.2.

Proposition 3.3 Let

pε
i (x) := a

(
x′

ε

)
∂uε

∂xi
(x), i = 1, 2, 3.

Then, there exists pi ∈ L2(Ω) such that, at least on some subsequence:

pε
i ⇀ pi in L2(Ω). (60)

Proof. This is a consequence of (58) and (53).

13



3.2 Specific tools

For any (Rε)ε ∈ R with R defined by (18), we define the domain confined
between the cylinders of radii εd± rε and εd±Rε centered at εk, k ∈ Zε, by:

Ck
Rε

:= Bk
2 (εk, εd+Rε) \B

k

2(εk, εd+ rε)

Ck
−Rε

:= Bk
2 (εk, εd−Rε) \B

k

2(εk, εd− rε)

respectively. Then, setting

Ck
ε := Ck

Rε
∪ Ck

−Rε

we define the control zone of our method as the union

Cε :=
(
∪k∈Zε

Ck
ε

)
× (0, 1).

A straightforward computation yields

|Cε| = 4πd|D|
(
Rε − rε

ε

)

→ 0 as ε→ 0. (61)

Definition 3.4 For any (Rε)ε ∈ R, we define wε ∈W2 by

wε(x) =







1 if x ∈ T ε,

ln(εd+Rε) − ln |x′ − εk|
ln(εd+Rε) − ln(εd+ rε)

if x ∈ Ck
Rε

× I,

ln |x′ − εk| − ln(εd−Rε)

ln(εd− rε) − ln(εd−Rε)
if x ∈ Ck

−Rε
× I,

0 if x ∈ Ω \ (T ε ∪ Cε)

Proposition 3.5
wε ∈W2

0 ≤ wε(x) ≤ 1, ∀x ∈ Ω (62)

|wε|Ω ≤ |Tε ∪ Cε|1/2 ≤ C

√

Rε

ε
→ 0.

|∇wε|2Cε
≃ 4πd|D|
ε(Rε − rε)

≤ C

εRε

Definition 3.6 For any u ∈ W2 and any (sε)ε>0 with 0 < εd + sε < ε, we
define Gk

sε
(u) ∈ H1/2(I) and Gsε

(u) ∈ L2(Ω) by

Gk
sε

(u)(x3) =
1

2

(
∫

−
∂Bk

sε

udσ +

∫

−
∂Bk

−sε

udσ

)

14



where Bk
±sε

= B2(εk, εd± sε),

Gsε
(u)(x′, x3) =

∑

k∈Zε

Gk
sε

(u)(x3)1Y k
ε
(x′), (x′, x3) ∈ Ω.

Proposition 3.7 For any u ∈W2, we have:

∫

−
Tε

|Gsε
(u)|2 =

∫

−
Ωε

|Gsε
(u)|2. (63)

where Ωε is defined by (47).

Proof. We have
∫

−
Tε

|Gsε
(u)|2 =

|T 0
ε |

|Tε|
∑

k∈Zε

∫

I

|Gk
sε

(u)|2 =
1

|Ωε|
∑

k∈Zε

∫

D×I

(Gk
sε

(u))21Y k
ε

as |Tε| = cardZε|T k
ε |, ∀k ∈ Zε, ε

2cardZε = |Ωε|.

Proposition 3.8 For a.e. x3 ∈ I and for any u ∈W2,

∫

Ck

±Rε

∇u∇wε =
±2π

ln

(
εd± rε
εd±Rε

)

(
∫

−
∂Bk

±Rε

udσ −
∫

−
∂Bk

±rε

udσ

)

. (64)

∫

I

|Gk
rε

(u) −Gk
Rε

(u)|2(x3)dx3 ≤ C
Rε

ε

∫

Ck
ε
×I

|∇u|2 (65)

Proof. The identity (64) results from the following direct computation:
∫

Ck

−Rε

∇u∇wε =

∫

Ck

−Rε

divx′ (u∇x′wε) =

∫

Ck

−Rε

u
∂wε

∂ν′

and likewise in Ck
Rε

.
As for (65), we have:

∫

I

|Gk
rε

(u)−Gk
Rε

(u)|2(x3)dx3 ≤ 1

2

∫

I

∣
∣
∣
∣
∣

∫

−
∂Bk

−rε

u−
∫

−
∂Bk

−Rε

u

∣
∣
∣
∣
∣

2

+
1

2

∫

I

∣
∣
∣
∣
∣

∫

−
∂Bk

rε

u−
∫

−
∂Bk

Rε

u

∣
∣
∣
∣
∣

2

≤ C

∣
∣
∣
∣
ln

(
εd− rε
εd−Rε

)∣
∣
∣
∣

2∫

Ck

−Rε
×I

|∇u|2
∫

Ck

−Rε

|∇wε|2+C
∣
∣
∣
∣
ln

(
εd+Rε

εd+ rε

)∣
∣
∣
∣

2∫

Ck

Rε
×I

|∇u|2
∫

Ck

Rε

|∇wε|2

≤ C

∣
∣
∣
∣
ln

(

1 +
Rε − rε
εd−Rε

)∣
∣
∣
∣

∫

Ck

−Rε
×I

|∇u|2 + C

∣
∣
∣
∣
ln

(

1 +
Rε − rε
εd+ rε

)∣
∣
∣
∣

∫

Ck

Rε
×I

|∇u|2

≤ C
Rε

ε

∫

Ck
ε
×I

|∇u|2
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Proposition 3.9 For any u ∈W2, there holds:

|GRε
(u) −Grε

(u)|2L2(Ω) ≤ CεRε|∇u|2L2(Cε) (66)

Proof. We have

|GRε
(u) −Grε

(u)|2L2(Ω) = ε2
∑

k∈Zε

∫

I

|Gk
rε

(u) −Gk
Rε

(u)|2(x3)dx3 ≤

≤ Cε2
∑

k∈Zε

Rε

ε

∫

Ck
ε
×I

|∇u|2 ≤ CεRε|∇u|2L2(Cε).

Proposition 3.10 For any u ∈W2, there holds:

|u−GRε
(u)|L2(Ωε) ≤ Cε|∇u|L2(Ω). (67)

Proof. We have:

∑

k∈Zε

∫

Y k
ε
×I

|u−Gk
Rε

(u)|2≤
∑

k∈Zε

(
∫

B2(εk,ε/
√

2)

|u−
∫

−
∂Bk

−Rε

u|2 +

∫

B2(εk,ε/
√

2)

|u−
∫

−
∂Bk

Rε

u|2
)

≤ Cε2
∑

k∈Zε

∫

B2(εk,ε/
√

2)×I

|∇u|2 ≤ Cε2|∇u|2L2(Ω)

where B2(εk, ε/
√

2) denotes the ball of R2 of radius
ε√
2

centered at εk, k ∈ Zε.

A straightforward computation shows that the first eigenvalue of the Neu-
mann problem in T k

ε is of r−2
ε order. Then, the following variant of Poincaré-

Wirtinger inequality holds true:

|u−Gk
0(u)|L2(T k

ε
) ≤ Crε|∇u|L2(T k

ε
), ∀u ∈ H1(T k

ε ), k ∈ Zε. (68)

Proposition 3.11 For any u ∈W2 and for any k ∈ Zε,
∫

T k
ε
×I

|u−Gk
rε

(u)|2 ≤ Cεrε|∇x′u|2T k
ε
×I (69)

Proof. Let k ∈ Zε. We have:
∫

T k
ε
×I

|u−Gk
rε

(u)|2 ≤ 2

∫

I

(
∫

T k
ε

|u−Gk
0(u)|2 +

∫

T k
ε

|Gk
0(u) −Gk

rε
(u)|2

)

.

The first integral of the right-hand side is estimated through (68) and for the
second, we use the same argument as in (66).

Proposition 3.12 For any u ∈W2, there holds

|u−Grε
(u)|2L2(Tε) ≤ Cεrε|∇x′u|2L2(Tε). (70)
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Proof. We have

|u−Grε
(u)|2L2(Tε) ≤

∑

k∈Zε

∫

T k
ε
×I

|u−Gk
rε

(u)|2 ≤
∑

k∈Zε

Cεrε|∇x′u|2T k
ε
×I

Proposition 3.13 For any u ∈W2, there holds
∫

−
Tε

|u|2 ≤ C|∇u|2L2(Ω) (71)

Proof. We have:
∫

−
Tε

|u|2 ≤ 2

∫

−
Tε

|u−Grε
(u)|2 + 2

∫

−
Tε

|Grε
(u)|2

≤ 2

∫

−
Tε

|u−Grε
(u)|2 + 2

∫

−
Ωε

|Grε
(u)|2

≤ Cεrε

∫

−
Tε

|∇u|2 + 2

∫

−
Ωε

|Grε
(u)|2

≤ C

(
εrε
|Tε|

∫

Tε

|∇u|2+|Grε
(u)−GRε

(u)|2L2(Ωε)+|GRε
(u)−u|2L2(Ωε)+|u|2L2(Ω)

)

≤ C|∇u|2L2(Ω)

where we have used (66), (67) and (70).

Corollary 3.14 The following estimate holds true:
∫

−
Tε

|uε|2 ≤ C (72)

for some constant C > 0 independent of ε > 0.

Definition 3.15 For every ϕ ∈ C(Ω) ∩W2, define

Mrε
(ϕ) =

∑

k∈Zε

(
∫

−
Y k

ε

ϕ(y, x3)dy

)

1T k
ε
(x′)

Proposition 3.16 There holds

lim
ε→0

∫

−
Tε

|ϕ−Mrε
(ϕ)|2 = 0, ∀ϕ ∈ C(Ω) ∩W2. (73)

Proof. Let ϕ ∈ C(Ω) ∩W2 and let δ > 0. The uniform continuity of ϕ yields
the existence of some ε0 > 0 such that:

∀k ∈ Zε, ∀x3 ∈ I,

∫

T k
ε

|ϕ(x′, x3) −
∫

−
Y k

ε

ϕ(y, x3)dy|2dx′ ≤ δ, ∀ε ∈ (0, ε0).
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There results ∫

−
Tε

|ϕ−Mrε
(ϕ)|2 ≤ δ, ∀ε ∈ (0, ε0).

Proposition 3.17 There holds

∫

−
Tε

Grε
(uε)Mrε

(ϕ) =

∫

−
Ωε

Grε
(uε)ϕ, ∀ϕ ∈ C(Ω) ∩W2. (74)

Proof. Let ϕ ∈ C(Ω) ∩W2. We have:
∫

−
Tε

Grε
(uε)Mrε

(ϕ) =
|T 0

ε |
|Tε|

∑

k∈Zε

∫

I

Gk
rε

(u)(x3)

(
∫

−
Y k

ε

ϕ

)

=
|T 0

ε |
ε2|Tε|

∫

Ωε

Grε
(u)ϕ.

3.3 The homogenization result

A preliminary result is the following:

Proposition 3.18 There exists u ∈W2 such that, on some subsequence,

uε ⇀ u in H1(Ω). (75)

GRε
(uε) → u in L2(Ω) (76)

Grε
(uε) → u in L2(Ω) (77)

Proof. From (58), we get, on some subsequence, the convergence (75). The
convergence (76) follows from (75) and (67). Finally, the convergence (77) is a
consequence of (76) and (66).

Proposition 3.19 For any ϕ ∈ W2, the following convergences hold true on
some subsequence: ∫

−
Tε

uεϕ→
∫

−
Ω

uϕ, (78)

∫

−
Tε

∂uε

∂x3
ϕ→

∫

−
Ω

∂u

∂x3
ϕ, (79)

where u was introduced by (75).

Proof. Let ϕ ∈ C(Ω) ∩W2. We have
∫

−
Tε

uεϕ =

∫

−
Tε

(uε−Grε
(uε))ϕ+

∫

−
Tε

Grε
(uε)(ϕ−Mrε

(ϕ))+

∫

−
Tε

Grε
(uε)Mrε

(ϕ)
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where, taking into account (70), (73), (75) and (77), we have:
∣
∣
∣
∣

∫

−
Tε

(uε −Grε
(uε))ϕ

∣
∣
∣
∣
≤
(∫

−
Tε

|u−Grε
(u)|2

)1/2(∫

−
Tε

|ϕ|2
)1/2

≤ (εrε)
1/2|ϕ|L∞(Ω)

(∫

−
Tε

|∇uε|2
)1/2

≤ Cε→ 0

∣
∣
∣
∣

∫

−
Tε

Grε
(uε)(ϕ−Mrε

(ϕ))

∣
∣
∣
∣
≤ |Grε

(uε)|Ω
(∫

−
Tε

|ϕ−Mrε
(ϕ)|2

)1/2

→ 0.

Then, using (74), we get

lim
ε→0

∫

−
Tε

uεϕ = lim
ε→0

∫

−
Ωε

Grε
(uε)ϕ =

∫

−
Ω

uϕ.

To conclude, we notice that C(Ω) ∩W2 is dense in W2 and that the following
estimate yields the continuity of ϕ 7→

∫
−

Tε

uεϕ as a mapping:

∣
∣
∣
∣

∫

−
Tε

uεϕ

∣
∣
∣
∣
≤
(∫

−
Tε

|uε|2
)1/2(∫

−
Tε

|ϕ|2
)1/2

≤ C|∇ϕ|Ω.

For ϕ ∈ D(Ω), we have
∫

Tε

∂uε

∂x3
ϕ = −

∫

Tε

uε
∂ϕ

∂x3
+

∫

∂Tε

uεϕν3 = −
∫

Tε

uε
∂ϕ

∂x3
+
∑

k∈Zε

∫

∂Ck

Rε
×(0,1)

uεϕν3 =

As ν3 = 0 on ∂Ck
Rε

× (0, 1), k ∈ Zε, we infer that
∫

−
Tε

∂uε

∂x3
ϕ+

∫

−
Tε

uε
∂ϕ

∂x3
= 0.

There results:
∣
∣
∣
∣

∫

−
Tε

∂uε

∂x3
ϕ

∣
∣
∣
∣
≤
√
∫

−
Tε

|uε|2|∇ϕ|Ω, ∀ϕ ∈ D(Ω)

and (72) yields the existence of some v3 ∈ H−1(Ω) such that

1

|Tε|
1Tε

∂uε

∂x3
⇀ v3 in H−1(Ω).

Then, passing to the limit as ε→ 0, we get

〈v3, ϕ〉 +

∫

−
Ω

u
∂ϕ

∂x3
= 0, (80)

that is, v3 =
1

|Ω|
∂u

∂x3
∈ L2(Ω).

Definition 3.20 For each i ∈ {1, 2}, let wi denote the solution of:

−divy(a(y)∇yw
i) =

∂a

∂yi
in Y
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wi ∈ H1
per(Y ),

∫

−
Y

wi = 0.

Now, we are in the position to state our main result:

Theorem 3.21 The limit u ∈W2 of (75) verifies (in a weak sense) the follow-
ing problem:

−divx′(Ahom∇x′u) −
(∫

−
Y

a(y)dy +
η

|D|

)
∂2u

∂x2
3

= f in Ω, (81)

where the homogenized matrix Ahom ∈ R2×2 is defined by its coefficients:

ahom
ij =

∫

−
Y

a(y)

(

δij +
∂wi

∂yj

)

dy, i, j ∈ {1, 2}. (82)

Proof. For any (Rε)ε ∈ R and ϕ ∈ C1(Ω) ∩W2, let us denote

Φε = (1 − wε)ϕ+ wεG0(ϕ). (83)

As a straightforward consequence of the definition, we have Φε ∈W2 and

lim
ε→0

|Φε − ϕ|Ω = 0 (84)

Then, we set in (55) w = Φε where Φε is defined by (83).
Then, we get

∫

Ω\Tε

aε∇uε(−∇wε)ϕ+

∫

Ω\Tε

aε∇uε (1 − wε)∇ϕ+

+

∫

Ω\Tε

aε∇uε∇wεG0(ϕ) +

∫

Ω\Tε

aε∇uεwε∇G0(ϕ) + η

∫

−
Tε

∇uε∇G0(ϕ) =

= 〈fε, ϕ〉 + 〈fε, wε(G0(ϕ) − ϕ)〉.
Concerning the sum between the first and the third terms of the left-hand side
of the previous relation, we have:
∣
∣
∣
∣

∫

Cε

aε∇uε∇wε(G0(ϕ)−ϕ)

∣
∣
∣
∣
≤ 1√

εRε

|G0(ϕ)−ϕ|L∞(Cε)|∇uε|L2(Cε) ≤ C

√

Rε

ε
→ 0.

As for the second term, we have:
∫

Ω\Tε

aε∇uε (1 − wε)∇ϕ =

∫

Ω\Cε

aε∇uε∇ϕ+

∫

Cε\Tε

aε∇uε (1 − wε)∇ϕ

with
∣
∣
∣
∣
∣

∫

Cε\Tε

aε∇uε (1 − wε)∇ϕ
∣
∣
∣
∣
∣
≤ C|∇uε|L2(Ω)|∇ϕ|L2(Cε) ≤ C|∇ϕ|L2(Cε) → 0.

Moreover: ∫

Ω\Cε

aε∇uε∇ϕ =

∫

Ω

pε∇ϕ1Ω\Cε
→
∫

Ω

p∇ϕ.
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where p is defined by (60). Next, we shall identify p. For this, we denote

wi
ε(x

′) := wi

(
x′

ε

)

, the periodization of wi. For ψ ∈ D(Ω) and i = 1, 2, we

have:
∫

Ω

pε
iψ =

∫

Ω

aε
∂uε

∂xi
ψ =

∑

j=1,2

(∫

Ω

(

aεδij + εaε
∂wi

ε

∂xj

)
∂uε

∂xj
ψ − ε

∫

Ω

aε
∂wi

ε

∂xj

∂uε

∂xj
ψ

)

The second term converges to zero because:
∣
∣
∣
∣
ε

∫

Ω

aε
∂wi

ε

∂xj

∂uε

∂xj
ψ

∣
∣
∣
∣
≤ C

√
ε|∇x′uε|L2(Ω) ≤ C

√
ε.

Noticing that

3∑

j=1

∂

∂xj

(

aεδij + εaε
∂wi

ε

∂xj

)

= 0 in D′(D), i = 1, 2,

and using the Curl-Div lemma (see [7], [8]) we obtain by passing to the limit:
∫

Ω

piψ =

∫

Ω

ahom
ij

∂u

∂xj
ψ,

that is,

pi =
∑

j=1,2

ahom
ij

∂u

∂xj
, i = 1, 2.

The identification of p3 follows from

pε
3 = aε

∂uε

∂x3
⇀

(∫

−
Y

a(y)dy

)
∂u

∂x3
in L2(Ω).

The fourth term converges to zero by (62) and (61) as follows:
∣
∣
∣
∣
∣

∫

Ω\Tε

∇uεwε∇G0(ϕ)

∣
∣
∣
∣
∣
≤
∑

k∈Zε

∣
∣
∣
∣
∣

∫

Y k
ε
\T k

ε

∂uε

∂x3
wε
∂Gk

0(ϕ)

∂x3

∣
∣
∣
∣
∣
≤

≤
∑

k∈Zε

∫

I

∣
∣
∣
∣
∣

∫

Ck

Rε
\T k

ε

∂uε

∂x3
wεG

k
0

(
∂ϕ

∂x3

)
∣
∣
∣
∣
∣
≤ |∇uε|L2(Ω)

∣
∣
∣
∣

∂ϕ

∂x3

∣
∣
∣
∣
L∞(Ω)

√

|Cε| → 0

For the fifth one, taking in account (79) and the uniform continuity of
∂ϕ

∂x3
, we

have

η

∫

−
Tε

∇u∇G0(ϕ) = η

∫

−
Tε

∂uε

∂x3

∂G0(ϕ)

∂x3
= η

∫

−
Tε

∂uε

∂x3
G0

(
∂ϕ

∂x3

)

→ η

∫

−
Ω

∂u

∂x3

∂ϕ

∂x3
.

Then, the left-hand side tends to the left-hand side of (81).
As for the right-hand side, we have 〈fε, ϕ〉 → 〈f, ϕ〉 and

|〈fε, wε(G0(ϕ) − ϕ)〉| ≤ C|∇wε|Cε
|G0(ϕ)−ϕ|L∞(Cε)+C|wε|L2(Cε∪T ε)|ϕ|L2(Cε∪T ε)

≤
√

Rε

ε
|ϕ|∞ → 0,
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which achieves the proof.

Remark 3.22 The conduction problem in the presence of ε-periodic highly con-
ductive thin layers confined between spheres of ε-order radii can be homogenized
similarly. In that case the macroscopic system does not present any increase of
the conductivity. Therefore, we conjecture that the presence of ε-periodic highly
conductive thin layers determines an increase of the macroscopic conductivity
in a certain direction only if these layers cover entirely segment lines of unity
order having this direction.
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