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We derive a model for the conduction in an ε-periodic structure containing highly conductive thin layers. The case of plane thin layers is first considered. It is shown that the resulting model displays an increased conductivity along the directions of the layers planes. The more involved case of tubular layers yields a similar result with an increase of the conductivity along the direction of the tubes, while the presence of highly conductive thin layers confined between spheres of ε-order radii does not increase the macroscopic conductivity in any direction. It seems that the presence of ε-periodic highly conductive thin layers determines an increase of the macroscopic conductivity in a certain direction only if these layers cover entirely segment lines of unity order having this direction.

Introduction

The study of layered materials is one main achievement of homogenization theory, beside Darcy's law in fluid mechanics and the modelling of composite materials in elasticity. The foundations of layered materials were laid down by Murat and Tartar in their pioneering work [START_REF] Murat | Calcul des variations et homogénéisation In Homogenization methods: theory and applications in physics (Bréau-sans-Nappe[END_REF]. It states that given some characteristic coefficients a ε , under some additional assumptions on the inverse 1/a ε , the reduced model can be explicited. In [START_REF] Héron | Picard Homogenization of some quasilinear problems for stratified media with low and high conductivities Differential Integral[END_REF], the theory still works in the framework of weaker topologies. The case of BV -functions and sequences of measures is worked out in [START_REF] Bouchitté | Picard Singular perturbations and homogenization in stratified media[END_REF]. The engineering point of view favors geometric considerations and industrial achievements. In that respect, measures provide a more realistic tool when they are confined to the description of the critical part of a system as in [START_REF] Bellieud | Homogenization of elliptic problems in a fiber reinforced structure. Non local effects[END_REF], [START_REF] Bentalha | Homogenization of a conductive suspension in a Stokes-Boussinesq flow[END_REF]. Later, the control-zone method introduced in [START_REF] Bentalha | Diffusion process in a rarefied binary structure[END_REF], [START_REF] Bentalha | Diffusion in a highly rarefied binary structure of general periodic shape[END_REF] and designed for Sobolev spaces, proved efficient in the modelling of fine substructures where small particles of high density influence the behavior of the global problem in spite of their vanishing volume. The asymptotic treatment reveals the apparent paradox between an obviously disappearing element and its everlasting action on their environment.

The paper is organized as follows. The problem of plane thin layers is con-sidered in Section 2. Subsection 2.1 is devoted to the main notations and to the description of the initial problem. The functional framework is introduced through the space W 1 in (11)-( 54) and yields the existence and unicity of the solution. Subsection 2.2 introduces the main tools of a control-zone (18) characterized by two layers widths r ε and R ε . Then, the problem reduces to studying the action of both local operators G Rε and G rε on the solution u ε of the initial problem. The homogenization procedure is described in Subsection 2.3. The main theorem 3.21 emphasizes the influence of the geometry of the fissures on the global behavior of the mixture in the form of an enforcing multiplicative coefficient in the plane direction. Interestingly, we observe that unlike the case of a geometry involving a capacity criterium, there is no discriminant parameter and the result holds however very small the thickness r ε of a layer is in comparison to the size of the distribution period. The more involved case of tubular layers is studied in Section 3. The arguments follow the same lines with an exchange in the respective parts of the dimensions, namely the plane dimension containing the periodic distribution of the tubes where the homogenization actually takes place and the dimension corresponding to the direction of the tubes. This is explained in Subsection 3.1 which is the analogue of Subsection 2.1. The control tools are presented in Subsection 3.2 where the new definition of local operators involves the mean value upon both interior and exterior boundaries of the tubular layers. From a practical point of view, the mere exchange in the respective parts of the plane and longitudinal coordinates corresponds to an improved theoretical material. In the main Theorem of Subsection 3.3, the respective parts of the thin tubular fissures and the surrounding mixture is emphasized through the introduction of a scaled conductivity outside the fissures. It eventually shows that the global conductivity is increased in the direction of the fissures and that this increase adds to the global conductivity that is classically derived in the presence of a periodic in-plane distribution.

The same arguments apply to the homogenization of thin layers confined between spheres of ε-order radii, but with no increase of the macroscopic conductivity, in any direction. Indeed, the macroscopic conductivity takes into account both components of the original system only if the thin layers cover segment lines of unity order having a certain direction. Eventually, the increase of the macroscopic conductivity shows up along this distinguished directions of the thin layers.

The case of separating thin plane layers 2.1 The conduction problem

We consider Ω = I × D with I = (0, 1), D ⊆ R N , N ≥ 1 a bounded Lipschitz domain occupied by a mixture of two different materials, one of them forming the ambiental connected phase and the other being concentrated in a periodical distribution of plane thin layers. Let us denote

I := - 1 2 , + 1 2 . ( 1 
)
I k ε := εk + εI, k ∈ Z ε := {ℓ ∈ N, 0 < εℓ < 1}. ( 2 
)
The distribution of fissures is defined by the following reunion

T ε := ∪ k∈Zε I k rε × D, (3) 
where 0 < r ε << ε and I k rε := εk + 2r ε I. Obviously,

|T ε | = 2r ε card Z ε |D| → 0 as ε → 0. ( 4 
)
We also use the following notation

Ω ε = ε 2 , 1 - ε 2 × D, ∂ 1 Ω := {0, 1} × D, ∂ D Ω := (0, 1) × ∂D. (5) 
We consider the problem which governs the conduction process throughout our binary mixture. Denoting by a ε > 0 the relative conductivity of the thin layers, then, its non-dimensional form is the following:

To find u ε solution of

-div(A ε ∇u ε ) = f ε in Ω (6) 
u ε = 0 on ∂ 1 D (7) 
∂u ε ∂ν = 0, ν = (0, ν ′ ) on ∂ D Ω (8) 
u ε = 0 on ∂Ω (9) 
where ν ′ is the normal on ∂D in the outward direction, f ε ∈ L 2 (Ω) and

A ε (x) = 1 if x ∈ Ω \ T ε a ε if x ∈ T ε . (10) 
Let W 1 be the Hilbert space

W 1 := {v ∈ H 1 (Ω), v = 0 on ∂ 1 D} (11) 
endowed with the scalar product

(u, v) W1 := (∇u, ∇v) Ω . (12) 
Now, we can present the variational formulation of the problem (6)-(10).

To find u ε ∈ W 1 satisfying the following equation

Ω\Tε ∇u ε ∇v + a ε Tε ∇u ε ∇v = f ε , v , ∀w ∈ W 1 ( 13 
)
where •, • denotes the duality product between W 1 and W ′ 1 .

Theorem 2.1 Under the above hypotheses and notations, problem (13) has a unique solution.

In the following we consider that the conductivity of the layers is much higher than that of the surrounding phase. The specific feature of our mixture is given by the following relation which describes the fact that the conductivity of the thin layers is balanced by their vanishing volume:

lim ε→0 a ε |T ε | = η > 0. ( 14 
)
As for the data, we assume that there exists f ∈ W ′ 1 such that

f ε ⇀ f in W ′ 1 . (15) 
Also, we denote

- D • dx = 1 |D| D •dx. Proposition 2.2 We have (u ε ) ε is bounded in W 1 . (16) 
Moreover, there exists C > 0, independent of ε, such that

- Tε |∇u ε | 2 ≤ C. (17) 
Proof. Substituting w = u ε in the variational problem (13), and taking into account that

|v| W1 ≤ C|∇v| L 2 (Ω) , ∀v ∈ W 1 ,
we get:

C Ω |∇u ε | 2 ≤ Tε |∇u ε | 2 + a ε Ω\Tε |∇u ε | 2 ≤ C|f ε | W ′ 1 |∇u ε | L 2 (Ω)
There results:

|∇u ε | L 2 (Ω) ≤ C
and the proof is completed.

Specific tools

The set of control-sequences is defined by

R = {(R ε ) ε>0 , r ε << R ε << ε} (18) that is (R ε ) ε>0 ∈ R iff lim ε→0 r ε R ε = lim ε→0 R ε ε = 0. ( 19 
)
For any (R ε ) ε ∈ R, we denote the domain confined between the layers of widths r ε and R ε as the union of all subsets constructed from

C k Rε := I k Rε \ I k rε , where I k Rε := εk + 2R ε I namely: C ε := (∪ k∈Zε C k Rε ) × D. Then: |C ε | = cardZ ε (R ε -r ε )|D| → 0 as ε → 0. ( 20 
)
Definition 2.3 For any (R ε ) ε ∈ R, we define w ε ∈ W 1 by w ε (x 1 , x ′ ) :=                  1 - r ε R ε if (x 1 , x ′ ) ∈ T ε , 1 - 1 R ε |x 1 -εk| if (x 1 , x ′ ) ∈ C k Rε × D, k ∈ Z ε , 0 if (x 1 , x ′ ) ∈ Ω \ (T ε ∪ C ε ). ( 21 
)
We remark here the following properties of w ε :

w ε ∈ W 1 (22) 0 ≤ w ε (x) < 1, ∀x ∈ Ω (23) |w ε | L 2 (Ω) ≤ |T ε ∪ C ε | 1/2 ≤ C R ε ε → 0. ( 24 
)
Definition 2.4 For any u ∈ W 1 and any

(b ε ) n∈N with 0 < b ε < ε 2 , we define G k bε (u) ∈ H 1/2 (D) and G bε (u) ∈ L 2 (Ω) by G k bε (u)(x ′ ) = 1 2 (u (εk -b ε , x ′ ) + u (εk + b ε , x ′ )) G bε (u)(x 1 , x ′ ) = k∈Zε G k bε (u)(x ′ )1 I k ε (x 1 ), (x 1 , x ′ ) ∈ Ω.
Proposition 2.5 For any u ∈ W 1 , we have:

- Tε |G rε (u)| 2 = 1 εcardZ ε - Ω |G rε (u)| 2 . ( 25 
)
Proof. We have

Ω |G rε (u)| 2 = k∈Zε I×D |G k rε (u)(x ′ )| 2 1 I k ε = ε k∈Zε D |G k rε (u)| 2 .
Moreover:

- Tε |G rε (u)| 2 = 1 2cardZ ε r ε |D| k∈Zε I k rε ×D |G rε (u)| 2 (x ′ )1 I k ε (x 1 ) = = 1 cardZ ε |D| k∈Zε D |G k rε (u)| 2 .
This achieves the proof.

Proposition 2.6 For any u ∈ W 1 , there holds:

I k ε ×D |u -G k bε (u)| 2 ≤ ε 2 2 I k ε ×D ∂u ∂x 1 2 (26) 
Proof. Consider the quantity

J k ε = I k ε ×D |u -G k bε (u)| 2 .
We have

J k ε = I k ε dx 1 D u(x 1 , x ′ ) - 1 2 (u (εk -b ε , x ′ ) + u (εk + b ε , x ′ )) 2 dx ′ = = 1 4 I k ε dx 1 D x1 εk-bε ∂u ∂x 1 (t, x ′ )dt - εk+bε x1 ∂u ∂x 1 (t, x ′ )dt 2 dx ′ ≤ ≤ 1 2 I k ε dx 1 D   x1 εk-bε ∂u ∂x 1 (t, x ′ )dt 2 + εk+bε x1 ∂u ∂x 1 (t, x ′ )dt 2   dx ′ ≤ ≤ 1 2 I k ε dx 1 D (x 1 -εk+b ε ) x1 εk-bε ∂u ∂x 1 (t, x ′ ) 2 dt+(εk+b ε -x 1 ) εk+bε x1 ∂u ∂x 1 (t, x ′ ) 2 dt dx ′ .
There results

J k ε ≤ ε 2 I k ε dx 1 D dx ′ εk+ ε 2 εk-ε 2 ∂u ∂x 1 (t, x ′ ) 2 dt independent of x 1 = ε 2 2 I k ε ×D ∂u ∂x 1 2
Proposition 2.7 For any u ∈ W 1 , there holds

I k bε ×D |u -G k bε (u)| 2 ≤ 2b 2 ε I k bε ×D ∂u ∂x 1 2 (27) 
Proof. We have

I k bε ×D |u-G k bε (u)| 2 = I k bε dx 1 D u(x 1 , x ′ )- 1 2 (u (εk-b ε , x ′ )+u (εk+b ε , x ′ )) 2 dx ′ dx 1 ≤ ≤ 1 2 I k bε D   x1 εk-bε ∂u ∂x 1 (t, x ′ )dt 2 + εk+bε x1 ∂u ∂x 1 (t, x ′ )dt 2   dx ′ ≤ 2b 2 ε I k bε ×D ∂u ∂x 1 2
Proposition 2.8 For any u ∈ W 1 , we have:

|G rε (u) -G Rε (u)| L 2 (Ω) ≤ (εR ε ) 1/2 ∂u ∂x 1 L 2 (Cε) (28) 
Proof. For each k, k ∈ Z ε , there holds:

D G k rε (u)(x ′ ) -G k Rε (u)(x ′ ) 2 dx ′ ≤ (R ε -r ε ) C k Rε ×D ∂u ∂x 1 2 . Indeed, let k ∈ Z ε . We have D G k rε (u)(x ′ )-G k Rε (u)(x ′ ) 2 dx ′ ≤ 1 2 D   εk-rε εk-Rε ∂u ∂x 1 (t, x ′ )dt 2 + εk+Rε εk+rε ∂u ∂x 1 (t, x ′ )dt 2   dx ′ ≤ ≤ (R ε -r ε ) C k Rε ×D ∂u ∂x 1 2 .
To conclude about (28), we write:

|G rε (u) -G Rε (u)| 2 L 2 (Ω) = k∈Zε I k ε ×D G k rε (u ε ) -G k Rε (u ε ) 2 = = ε k∈Zε D G k rε (u)(x ′ ) -G k Rε (u)(x ′ ) 2 dx ′ ≤ ε(R ε -r ε ) k∈Zε C k Rε ×D ∂u ∂x 1 2 ≤ εR ε ∂u ∂x 1 2 L 2 (Cε)
Proposition 2.9 The following estimate holds true:

- Tε |u| 2 ≤ C|∇u| 2 L 2 (Ω) , ∀u ∈ W 1 (29) 
for some constant C > 0 independent of ε.

Proof. From (25) and ( 27), we have

- Tε |u| 2 ≤ 2 - Tε |u -G rε (u)| 2 + 2 - Tε |G rε (u)| 2 ≤ ≤ Cεr ε ∂u ∂x 1 2 L 2 (Tε) + 1 εcardZ ε - Ω |G rε (u)| 2 .
Moreover, using (28) and the Poincaré-Wirtinger inequality in Ω, we get

|G rε (u)| L 2 (Ω) ≤ |G rε (u) -G Rε (u)| L 2 (Ω) + |G Rε (u) -u| L 2 (Ω) + |u| L 2 (Ω) ≤ ≤ (εR ε ) 1/2 ∂u ∂x 1 L 2 (Cε) + ε ∂u ∂x 1 L 2 (Ω) + C|∇u| L 2 (Ω) .
Corollary 2.10 The following estimate holds true:

-

Tε |u ε | 2 ≤ C (30)
for some constant C > 0 independent of ε.

Definition 2.11 For every ϕ ∈ C(Ω) ∩ W 1 , define M rε (ϕ) = k∈Zε - I k ε ϕ(t, x ′ )dt 1 I k rε (x 1 )
Proposition 2.12 There holds

lim ε→0 - Tε |ϕ -M rε (ϕ)| 2 = 0, ∀ϕ ∈ C(Ω) ∩ W 1 . (31) 
Proof. Let ϕ ∈ C(Ω) ∩ W 1 and let δ > 0. The uniform continuity of ϕ yields the existence of some ε 0 > 0 such that:

I k rε |ϕ(x 1 , x ′ ) -- I k ε ϕ(t, x ′ )dt| 2 < δ, ∀x ′ ∈ D, ∀k ∈ Z ε , ∀ε ∈ (0, ε 0 ).
There results

- Tε |ϕ-M rε (ϕ)| = 1 |T ε | k∈Zε I k rε ×D |ϕ(x 1 , x ′ )-- I k ε ϕ(t, x ′ )dt| ≤ δ, ∀ε ∈ (0, ε 0 ). Proposition 2.13 There holds - Tε G rε (u ε )M rε (ϕ) = 1 εcardZ ε - Ω G rε (u ε )ϕ, ∀ϕ ∈ C(Ω) ∩ W 1 . (32) 
Proof. Let ϕ ∈ C(Ω) ∩ W 1 . We have:

-

Tε G rε (u ε )M rε (ϕ) = 1 |T ε | k∈Zε I k rε ×D G k rε (u ε )(x ′ ) - I k ε ϕ(t, x ′ )dt dx = = 2r ε 2εcardZ ε r ε |D| k∈Zε I k ε ×D G k rε (u ε )(x ′ )ϕ(t, x ′ )dx ′ dt = = 1 εcardZ ε |D| Ω G rε (u ε )ϕ.

The homogenization result

A preliminary result is the following:

Proposition 2.14 There exists u ∈ W 1 such that, on some subsequence,

u ε ⇀ u in H 1 (Ω). ( 33 
) G Rε (u ε ) → u in L 2 (Ω) (34) G rε (u ε ) → u in L 2 (Ω) (35) 
Proof. From ( 16), we get, on some subsequence, the convergence (33). Moreover, from (26), we have:

|u ε -G Rε (u ε )| 2 L 2 (Ω) = k∈Zε I k ε ×D |u ε -G k Rε (u ε )| 2 ≤ ε 2 ∂u ε ∂x 1 2 L 2 (Ω) ≤ Cε 2 .
and the proof of (34) is complete.

In order to prove (35), we recall (28), which yields:

|G rε (u ε ) -G Rε (u ε )| L 2 (Ω) ≤ C (εR ε ) 1/2 → 0.
and the conclusion follows from (34).

Proposition 2.15 For any ϕ ∈ W 1 , the following convergences hold true on some subsequence:

- Tε u ε ϕ → - Ω uϕ, (36) 
- Tε ∂u ε ∂x i ϕ → - Ω ∂u ∂x i ϕ, i = 2, 3, • • • (37)
where u was introduced by (33).

Proof. Let ϕ ∈ C(Ω) ∩ W 1 . We have

- Tε u ε ϕ = - Tε (u ε -G rε (u ε ))ϕ+ - Tε G rε (u ε )(ϕ-M rε (ϕ))+ - Tε G rε (u ε )M rε (ϕ).
Taking into account ( 27) and (31), we have:

-

Tε (u ε -G rε (u ε ))ϕ ≤ Cr ε - Tε ∂u ε ∂x 1 2 1/2 |ϕ| L ∞ (Ω) ≤ Cr ε → 0 - Tε G rε (u ε )(ϕ -M rε (ϕ)) ≤ |G rε (u ε )| L 2 (Ω) - Tε |ϕ -M rε (ϕ)| 2 1/2 → 0.
Then, using (32), we get

lim ε→0 - Tε u ε ϕ = lim ε→0 1 εcardZ ε - Ω G rε (u ε )ϕ = - Ω uϕ.
In order to conclude (36), we notice that C(Ω) ∩ W 1 is dense in W 1 and that the following estimate proves the continuity of the mapping ϕ → -Tε u ε ϕ:

- Tε u ε ϕ ≤ - Tε |u ε | 2 1/2 - Tε |ϕ| 2 1/2 ≤ C|∇ϕ| L 2 (Ω) .
For i = 2, 3, • • • , and for ϕ ∈ D(Ω), we have

Tε ∂ ∂x i (u ε ϕ) = ∂Tε u ε ϕν i = k∈Zε ∂C k Rε ×D u ε ϕν i = 0
as ϕ = 0 on ∂ D Ω and ν i = 0 on ∂ 1 Ω. There results:

- Tε ∂u ε ∂x i ϕ + - Tε u ε ∂ϕ ∂x i = 0. ( 38 
)
As a consequence of the estimate (30), there exist v 2 and v 3 ∈ H -1 (Ω) such that: lim

ε→0 - Tε ∂u ε ∂x i ϕ = v i , ϕ .
Then, passing to the limit as ε → 0, we get

v i , ϕ + - Ω u ∂ϕ ∂x i = 0. (39) 
As (39) holds for every ϕ ∈ D(Ω), we infer that

v i = 1 |Ω| ∂u ∂x i ∈ L 2 (Ω) and the proof is completed. Definition 2.16 For any ϕ ∈ W 1 ∩ C 1 (Ω), we define φε ∈ L ∞ (Ω) by φε := k∈Zε ϕ k ε (x ′ )1 I k ε (x 1 )
where

ϕ k ε (x ′ ) = ϕ (εk, x ′ ) if x ′ ∈ I k Rε , k ∈ Z ε , 0 elsewhere.
Let us mention the following straightforward property of φε :

|ϕ -φε | L ∞ (Cε) ≤ R ε |∇ϕ| L ∞ (Ω) . ( 40 
)
We are in the position to state the main result: Theorem 2.17 The limit u ∈ W 1 of (33) verifies (in a weak sense) the following problem:

- ∂ 2 u ∂x 2 1 -1 + η |D| ∆ x ′ u = f in Ω. Proof. For any (R ε ) ε ∈ R and ϕ ∈ C 1 (Ω) ∩ W 1 , let us denote Φ ε = (1 - r ε R ε -w ε )ϕ + w ε φε . ( 41 
)
As a straightforward consequence of the definitions we have Φ ε ∈ W 1 and

lim ε→0 |Φ ε -ϕ| L 2 (Ω) = 0. ( 42 
)
Then, we set in (13) w = Φ ε where Φ ε is defined by (41). Then, we get

Ω\Tε ∇u ε (-∇w ε )ϕ + Ω\Tε ∇u ε 1 - r ε R ε -w ε ∇ϕ+ + Ω\Tε ∇u ε ∇w ε φε + Ω\Tε ∇u ε w ε ∇ φε + a ε Tε ∇u ε ∇ φε = = 1 - r ε R ε f ε , ϕ + f ε , w ε ( φε -ϕ) .
Concerning the sum between the first and the third terms of the left-hand side of the previous relation, we have:

Cε ∇u ε ∇w ε ( φε -ϕ) ≤ 1 R ε | φε -ϕ| L ∞ (Cε) |∇u ε | L 1 (Cε) ≤ C|∇u ε | L 2 (Cε) |C ε | → 0,
where we have used (40). As a consequence of ( 24) and ( 4), the second term converges straightly to Ω ∇u∇ϕ.

The fourth term converges to zero by ( 20) and (23) as follows:

Ω\Tε (∇u ε )w ε ∇ φε = Cε ∇ x ′ u ε (∇ x ′ φε )w ε ≤ ≤ C Cε |∇ x ′ u ε | ≤ C|C ε | 1/2 → 0.
For the fifth one, taking in account (37) and the uniform continuity of ∇ x ′ ϕ, we have

a ε Tε ∇u ε ∇ φε = a ε |T ε | - Tε ∇ x ′ u ε ∇ x ′ φε → η - Ω ∇ x ′ u∇ x ′ ϕ
Then, the left-hand side tends to

Ω ∇u∇ϕ + η - Ω ∇ x ′ u∇ x ′ ϕ.
As for the right-hand side, we have f ε , ϕ → f, ϕ and

| f ε , w ε ( φε -ϕ) | ≤ C|∇w ε | Cε | φε -ϕ| L ∞ (Cε) + C|w ε | L 2 (Cε) |ϕ| L ∞ (Cε) ≤ C |C ε | + C|w ε | L 2 (Cε) → 0
which achieves the proof.

3 The case of separating tubular thin layers

The conduction problem

We consider the same problem as in the previous section, only this time Ω = D × I with I = (0, 1) and D is a bounded Lipschitz domain in R 2 . Denoting

Y := - 1 2 , + 1 2 2 , B 1 := B(0, 1) = {y ∈ R 2 , |y| < 1} (43) Y k ε := εk + εY, T k ε := B 2 (εk, εd + r ε ) \ B 2 (εk, εd -r ε ), k ∈ Z 2 , ( 44 
)
where B 2 (εk, r) denotes the ball of radius r > 0 centered at εk in R 2 ,

Z ε := {k ∈ Z 2 , Y k ε ⊂ D}. ( 45 
)
Let d ∈ (0, 1/2). The distribution of the thin tubes is defined by the following reunion

T ε = (∪ k∈Zε T k ε ) × I, where 0 < r ε << ε. Notice that |T ε | ≃ 4πd|D| r ε ε → 0. ( 46 
)
We also use the following notation

Ω ε = ∪ k∈Zε Y k ε × I, ∂ D Ω := ∂D × (0, 1), ∂ 3 Ω := D × {0, 1}. (47) 
In this case, the conduction problem is the following: To find u ε solution of

-div(A ε ∇u ε ) = f ε in Ω (48) u ε = 0 on ∂ 3 D (49) ∂u ε ∂ν = 0, ν = (ν ′ , 0) on ∂ D Ω ( 50 
)
u ε = 0 on ∂Ω (51)
where ν ′ is the normal on ∂D in the outward direction,

A ε (x) =      a ε (x ′ ) if x ∈ Ω \ T ε η |T ε| if x ∈ T ε (52) 
where

a ε (x ′ ) = a x ′ ε for some a ∈ L ∞ per (Y ), (53) 
such that a(y) ≥ a 0 > 0 for any y ∈ Y . Let W 2 be the Hilbert space

W 2 := {v ∈ H 1 (Ω), v = 0 on ∂ 3 D}
endowed with the scalar product

(u, v) W2 := (∇u, ∇v) Ω . ( 54 
)
Now, we can present the variational formulation of the problem (48)-(52).

To find u ε ∈ W 2 satisfying the following equation

Ω\Tε a ε ∇u ε ∇v + η - Tε ∇u ε ∇v = f ε , v , ∀w ∈ W 2 (55)
where •, • denotes the duality product between W 2 and W ′ 2 . Theorem 3.1 Under the above hypotheses and notations, problem (55) has a unique solution.

Regarding the relative conductivity outside the fissures, we only assume:

a ε ≥ a 0 > 0, ∀ε > 0. ( 56 
)
As for the data, we assume that there exists

f ∈ W ′ 2 such that f ε ⇀ f in W ′ 2 . ( 57 
) Proposition 3.2 We have (u ε ) ε is bounded in W 2 . ( 58 
)
Moreover, there exists C > 0, independent of ε > 0, such that

- Tε |∇u ε | 2 ≤ C. ( 59 
)
Proof. The proof follows the same lines as that of Proposition 2.2.

Proposition 3.3 Let

p ε i (x) := a x ′ ε ∂u ε ∂x i (x), i = 1, 2, 3.
Then, there exists p i ∈ L 2 (Ω) such that, at least on some subsequence:

p ε i ⇀ p i in L 2 (Ω). ( 60 
)
Proof. This is a consequence of (58) and (53).

Specific tools

For any (R ε ) ε ∈ R with R defined by (18), we define the domain confined between the cylinders of radii εd ± r ε and εd ± R ε centered at εk, k ∈ Z ε , by:

C k Rε := B k 2 (εk, εd + R ε ) \ B k 2 (εk, εd + r ε ) C k -Rε := B k 2 (εk, εd -R ε ) \ B k 2 (εk, εd -r ε ) respectively. Then, setting C k ε := C k Rε ∪ C k -Rε
we define the control zone of our method as the union

C ε := ∪ k∈Zε C k ε × (0, 1).
A straightforward computation yields

|C ε | = 4πd|D| R ε -r ε ε → 0 as ε → 0. ( 61 
) Definition 3.4 For any (R ε ) ε ∈ R, we define w ε ∈ W 2 by w ε (x) =                            1 if x ∈ T ε , ln(εd + R ε ) -ln |x ′ -εk| ln(εd + R ε ) -ln(εd + r ε ) if x ∈ C k Rε × I, ln |x ′ -εk| -ln(εd -R ε ) ln(εd -r ε ) -ln(εd -R ε ) if x ∈ C k -Rε × I, 0 if x ∈ Ω \ (T ε ∪ C ε ) Proposition 3.5 w ε ∈ W 2 0 ≤ w ε (x) ≤ 1, ∀x ∈ Ω (62) |w ε | Ω ≤ |T ε ∪ C ε | 1/2 ≤ C R ε ε → 0. |∇w ε | 2 Cε ≃ 4πd|D| ε(R ε -r ε ) ≤ C εR ε Definition 3.6 For any u ∈ W 2 and any (s ε ) ε>0 with 0 < εd + s ε < ε, we define G k sε (u) ∈ H 1/2 (I) and G sε (u) ∈ L 2 (Ω) by G k sε (u)(x 3 ) = 1 2 - ∂B k sε udσ + - ∂B k -sε udσ where B k ±sε = B 2 (εk, εd ± s ε ), G sε (u)(x ′ , x 3 ) = k∈Zε G k sε (u)(x 3 )1 Y k ε (x ′ ), (x ′ , x 3 ) ∈ Ω.
Proposition 3.7 For any u ∈ W 2 , we have:

- Tε |G sε (u)| 2 = - Ωε |G sε (u)| 2 . ( 63 
)
where Ω ε is defined by (47).

Proof. We have

- Tε |G sε (u)| 2 = |T 0 ε | |T ε | k∈Zε I |G k sε (u)| 2 = 1 |Ω ε | k∈Zε D×I (G k sε (u)) 2 1 Y k ε as |T ε | = cardZ ε |T k ε |, ∀k ∈ Z ε , ε 2 cardZ ε = |Ω ε |.
Proposition 3.8 For a.e. x 3 ∈ I and for any u ∈ W 2 ,

C k ±Rε ∇u∇w ε = ±2π ln εd ± r ε εd ± R ε - ∂B k ±Rε udσ -- ∂B k ±rε udσ . (64) 
I |G k rε (u) -G k Rε (u)| 2 (x 3 )dx 3 ≤ C R ε ε C k ε ×I |∇u| 2 (65) 
Proof. The identity (64) results from the following direct computation:

C k -Rε ∇u∇w ε = C k -Rε div x ′ (u∇ x ′ w ε ) = C k -Rε u ∂w ε ∂ν ′
and likewise in C k Rε . As for (65), we have:

I |G k rε (u)-G k Rε (u)| 2 (x 3 )dx 3 ≤ 1 2 I - ∂B k -rε u -- ∂B k -Rε u 2 + 1 2 I - ∂B k rε u -- ∂B k Rε u 2 ≤ C ln εd -r ε εd -R ε 2 C k -Rε ×I |∇u| 2 C k -Rε |∇w ε | 2 +C ln εd + R ε εd + r ε 2 C k Rε ×I |∇u| 2 C k Rε |∇w ε | 2 ≤ C ln 1 + R ε -r ε εd -R ε C k -Rε ×I |∇u| 2 + C ln 1 + R ε -r ε εd + r ε C k Rε ×I |∇u| 2 ≤ C R ε ε C k ε ×I |∇u| 2
Proposition 3.9 For any u ∈ W 2 , there holds:

|G Rε (u) -G rε (u)| 2 L 2 (Ω) ≤ CεR ε |∇u| 2 L 2 (Cε) (66) 
Proof. We have

|G Rε (u) -G rε (u)| 2 L 2 (Ω) = ε 2 k∈Zε I |G k rε (u) -G k Rε (u)| 2 (x 3 )dx 3 ≤ ≤ Cε 2 k∈Zε R ε ε C k ε ×I |∇u| 2 ≤ CεR ε |∇u| 2 L 2 (Cε) .
Proposition 3.10 For any u ∈ W 2 , there holds:

|u -G Rε (u)| L 2 (Ωε) ≤ Cε|∇u| L 2 (Ω) . (67) 
Proof. We have:

k∈Zε Y k ε ×I |u-G k Rε (u)| 2 ≤ k∈Zε B2(εk,ε/ √ 2) |u -- ∂B k -Rε u| 2 + B2(εk,ε/ √ 2)
|u --

∂B k Rε u| 2 ≤ Cε 2 k∈Zε B2(εk,ε/ √ 2)×I |∇u| 2 ≤ Cε 2 |∇u| 2 L 2 (Ω)
where

B 2 (εk, ε/ √ 2) denotes the ball of R 2 of radius ε √ 2 centered at εk, k ∈ Z ε .
A straightforward computation shows that the first eigenvalue of the Neumann problem in T k ε is of r -2 ε order. Then, the following variant of Poincaré-Wirtinger inequality holds true:

|u -G k 0 (u)| L 2 (T k ε ) ≤ Cr ε |∇u| L 2 (T k ε ) , ∀u ∈ H 1 (T k ε ), k ∈ Z ε . (68) 
Proposition 3.11 For any u ∈ W 2 and for any k ∈ Z ε ,

T k ε ×I |u -G k rε (u)| 2 ≤ Cεr ε |∇ x ′ u| 2 T k ε ×I (69) 
Proof. Let k ∈ Z ε . We have:

T k ε ×I |u -G k rε (u)| 2 ≤ 2 I T k ε |u -G k 0 (u)| 2 + T k ε |G k 0 (u) -G k rε (u)| 2 .
The first integral of the right-hand side is estimated through (68) and for the second, we use the same argument as in (66).

Proposition 3.12 For any u ∈ W 2 , there holds

|u -G rε (u)| 2 L 2 (Tε) ≤ Cεr ε |∇ x ′ u| 2 L 2 (Tε) . (70) 
Proof. We have

|u -G rε (u)| 2 L 2 (Tε) ≤ k∈Zε T k ε ×I |u -G k rε (u)| 2 ≤ k∈Zε Cεr ε |∇ x ′ u| 2 T k ε ×I
Proposition 3.13 For any u ∈ W 2 , there holds

- Tε |u| 2 ≤ C|∇u| 2 L 2 (Ω) (71) 
Proof. We have:

-

Tε |u| 2 ≤ 2 - Tε |u -G rε (u)| 2 + 2 - Tε |G rε (u)| 2 ≤ 2 - Tε |u -G rε (u)| 2 + 2 - Ωε |G rε (u)| 2 ≤ Cεr ε - Tε |∇u| 2 + 2 - Ωε |G rε (u)| 2 ≤ C εr ε |T ε | Tε |∇u| 2 +|G rε (u)-G Rε (u)| 2 L 2 (Ωε) +|G Rε (u)-u| 2 L 2 (Ωε) +|u| 2 L 2 (Ω) ≤ C|∇u| 2 L 2 (Ω)
where we have used (66), (67) and (70).

Corollary 3.14 The following estimate holds true:

-

Tε |u ε | 2 ≤ C (72)
for some constant C > 0 independent of ε > 0.

Definition 3.15 For every ϕ ∈ C(Ω) ∩ W 2 , define

M rε (ϕ) = k∈Zε - Y k ε ϕ(y, x 3 )dy 1 T k ε (x ′ )
Proposition 3.16 There holds

lim ε→0 - Tε |ϕ -M rε (ϕ)| 2 = 0, ∀ϕ ∈ C(Ω) ∩ W 2 . ( 73 
)
Proof. Let ϕ ∈ C(Ω) ∩ W 2 and let δ > 0. The uniform continuity of ϕ yields the existence of some ε 0 > 0 such that:

∀k ∈ Z ε , ∀x 3 ∈ I, T k ε |ϕ(x ′ , x 3 ) -- Y k ε ϕ(y, x 3 )dy| 2 dx ′ ≤ δ, ∀ε ∈ (0, ε 0 ).
There results

- Tε |ϕ -M rε (ϕ)| 2 ≤ δ, ∀ε ∈ (0, ε 0 ).
Proposition 3.17 There holds

- Tε G rε (u ε )M rε (ϕ) = - Ωε G rε (u ε )ϕ, ∀ϕ ∈ C(Ω) ∩ W 2 . ( 74 
)
Proof. Let ϕ ∈ C(Ω) ∩ W 2 . We have:

-

Tε G rε (u ε )M rε (ϕ) = |T 0 ε | |T ε | k∈Zε I G k rε (u)(x 3 ) - Y k ε ϕ = |T 0 ε | ε 2 |T ε | Ωε G rε (u)ϕ.

The homogenization result

A preliminary result is the following: Proposition 3.18 There exists u ∈ W 2 such that, on some subsequence,

u ε ⇀ u in H 1 (Ω). ( 75 
) G Rε (u ε ) → u in L 2 (Ω) (76) G rε (u ε ) → u in L 2 (Ω) (77) 
Proof. From (58), we get, on some subsequence, the convergence (75). The convergence (76) follows from (75) and (67). Finally, the convergence (77) is a consequence of (76) and (66).

Proposition 3.19 For any ϕ ∈ W 2 , the following convergences hold true on some subsequence:

- Tε u ε ϕ → - Ω uϕ, (78) 
- Tε ∂u ε ∂x 3 ϕ → - Ω ∂u ∂x 3 ϕ, (79) 
where u was introduced by (75).

Proof. Let ϕ ∈ C(Ω) ∩ W 2 . We have

- Tε u ε ϕ = - Tε (u ε -G rε (u ε ))ϕ+ - Tε G rε (u ε )(ϕ-M rε (ϕ))+ - Tε G rε (u ε )M rε (ϕ)
where, taking into account (70), ( 73), ( 75) and (77), we have:

-

Tε (u ε -G rε (u ε ))ϕ ≤ - Tε |u -G rε (u)| 2 1/2 - Tε |ϕ| 2 1/2 ≤ (εr ε ) 1/2 |ϕ| L ∞ (Ω) - Tε |∇u ε | 2 1/2 ≤ Cε → 0 - Tε G rε (u ε )(ϕ -M rε (ϕ)) ≤ |G rε (u ε )| Ω - Tε |ϕ -M rε (ϕ)| 2 1/2 → 0.
Then, using (74), we get

lim ε→0 - Tε u ε ϕ = lim ε→0 - Ωε G rε (u ε )ϕ = - Ω uϕ.
To conclude, we notice that C(Ω) ∩ W 2 is dense in W 2 and that the following estimate yields the continuity of ϕ → -Tε u ε ϕ as a mapping:

- Tε u ε ϕ ≤ - Tε |u ε | 2 1/2 - Tε |ϕ| 2 1/2 ≤ C|∇ϕ| Ω .
For ϕ ∈ D(Ω), we have

Tε ∂u ε ∂x 3 ϕ = - Tε u ε ∂ϕ ∂x 3 + ∂Tε u ε ϕν 3 = - Tε u ε ∂ϕ ∂x 3 + k∈Zε ∂C k Rε ×(0,1) u ε ϕν 3 = As ν 3 = 0 on ∂C k Rε × (0, 1), k ∈ Z ε , we infer that - Tε ∂u ε ∂x 3 ϕ + - Tε u ε ∂ϕ ∂x 3 = 0.
There results:

-

Tε ∂u ε ∂x 3 ϕ ≤ - Tε |u ε | 2 |∇ϕ| Ω , ∀ϕ ∈ D(Ω)
and (72) yields the existence of some

v 3 ∈ H -1 (Ω) such that 1 |T ε | 1 Tε ∂u ε ∂x 3 ⇀ v 3 in H -1 (Ω).
Then, passing to the limit as ε → 0, we get

v 3 , ϕ + - Ω u ∂ϕ ∂x 3 = 0, ( 80 
) that is, v 3 = 1 |Ω| ∂u ∂x 3 ∈ L 2 (Ω).
Definition 3.20 For each i ∈ {1, 2}, let w i denote the solution of:

-div y (a(y)∇ y w

i ) = ∂a ∂y i in Y w i ∈ H 1 per (Y ), - Y w i = 0.
Now, we are in the position to state our main result: Theorem 3.21 The limit u ∈ W 2 of (75) verifies (in a weak sense) the following problem:

-div x ′ (A hom ∇ x ′ u) -- Y a(y)dy + η |D| ∂ 2 u ∂x 2 3 = f in Ω, ( 81 
)
where the homogenized matrix A hom ∈ R 2×2 is defined by its coefficients:

a hom ij = - Y a(y) δ ij + ∂w i ∂y j dy, i, j ∈ {1, 2}. ( 82 
) Proof. For any (R ε ) ε ∈ R and ϕ ∈ C 1 (Ω) ∩ W 2 , let us denote Φ ε = (1 -w ε )ϕ + w ε G 0 (ϕ). ( 83 
)
As a straightforward consequence of the definition, we have

Φ ε ∈ W 2 and lim ε→0 |Φ ε -ϕ| Ω = 0 (84) 
Then, we set in (55) w = Φ ε where Φ ε is defined by (83). Then, we get

Ω\Tε a ε ∇u ε (-∇w ε )ϕ + Ω\Tε a ε ∇u ε (1 -w ε ) ∇ϕ+ + Ω\Tε a ε ∇u ε ∇w ε G 0 (ϕ) + Ω\Tε a ε ∇u ε w ε ∇G 0 (ϕ) + η - Tε ∇u ε ∇G 0 (ϕ) = = f ε , ϕ + f ε , w ε (G 0 (ϕ) -ϕ) .
Concerning the sum between the first and the third terms of the left-hand side of the previous relation, we have:

Cε a ε ∇u ε ∇w ε (G 0 (ϕ)-ϕ) ≤ 1 √ εR ε |G 0 (ϕ)-ϕ| L ∞ (Cε) |∇u ε | L 2 (Cε) ≤ C R ε ε → 0.
As for the second term, we have: where p is defined by (60). Next, we shall identify p. For this, we denote w i ε (x ′ ) := w i x ′ ε , the periodization of w i . For ψ ∈ D(Ω) and i = 1, 2, we have:

Ω p ε i ψ = Ω a ε ∂u ε ∂x i ψ = j=1,2 Ω a ε δ ij + εa ε ∂w i ε ∂x j ∂u ε ∂x j ψ -ε Ω a ε ∂w i ε ∂x j ∂u ε ∂x j ψ
The second term converges to zero because:

ε Ω a ε ∂w i ε ∂x j ∂u ε ∂x j ψ ≤ C √ ε|∇ x ′ u ε | L 2 (Ω) ≤ C √ ε.
Noticing that

3 j=1 ∂ ∂x j a ε δ ij + εa ε ∂w i ε ∂x j = 0 in D ′ (D), i = 1, 2,
and using the Curl-Div lemma (see [START_REF] Murat | Compacité par Compensation[END_REF], [START_REF] Murat | Compacité par Compensation II[END_REF]) we obtain by passing to the limit:

Ω p i ψ = Ω a hom ij ∂u ∂x j ψ,
that is, Then, the left-hand side tends to the left-hand side of (81).

p i =
As for the right-hand side, we have f ε , ϕ → f, ϕ and

| f ε , w ε (G 0 (ϕ) -ϕ) | ≤ C|∇w ε | Cε |G 0 (ϕ)-ϕ| L ∞ (Cε) +C|w ε | L 2 (Cε∪T ε) |ϕ| L 2 (Cε∪T ε) ≤ R ε ε |ϕ| ∞ → 0,
which achieves the proof.

Remark 3.22

The conduction problem in the presence of ε-periodic highly conductive thin layers confined between spheres of ε-order radii can be homogenized similarly. In that case the macroscopic system does not present any increase of the conductivity. Therefore, we conjecture that the presence of ε-periodic highly conductive thin layers determines an increase of the macroscopic conductivity in a certain direction only if these layers cover entirely segment lines of unity order having this direction.

Ω\Tε a ε ∇u ε ( 1 -

 1 w ε ) ∇ϕ = Ω\Cε a ε ∇u ε ∇ϕ + Cε\Tε a ε ∇u ε (1 -w ε ) ∇ϕ with Cε\Tε a ε ∇u ε (1 -w ε ) ∇ϕ ≤ C|∇u ε | L 2 (Ω) |∇ϕ| L 2 (Cε) ≤ C|∇ϕ| L 2 (Cε) → 0. Moreover: Ω\Cε a ε ∇u ε ∇ϕ = Ω p ε ∇ϕ1 Ω\Cε → Ω p∇ϕ.

3 ≤

 3 converges to zero by (62) and (61) as follows:Ω\Tε ∇u ε w ε ∇G 0 (ϕ) ≤ |∇u ε | L 2 (Ω) ∂ϕ ∂x 3 L ∞ (Ω) |C ε | → 0For the fifth one, taking in account (79) and the uniform continuity of ∂ϕ
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