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Dans cet article, nous analysons la fiabilité et la performance des systèmes en prenant en compte l'incertitude et l'imprécision sur les paramètres élémentaires de la fiabilité des composants. L'analyse repose sur une approche par les réseaux de fonction de croyance et les fonctions d'utilité. Une étude de cas est réalisée sur un système 2 parmi 3 afin d'évaluer sa fiabilité puis sa performance.

ABSTRACT. This article deals with an analysis of probist reliability and performances of systems taking into account aleatory and epistemic uncertainties on basic reliability component parameters. The analysis is based on evidential networks and utility functions. A study case is done on a 2 out of 3 system in order to compute its reliability and performance.

Introduction

Dans les études de fiabilité des systèmes, les probabilités que nous manipulons sont souvent précises, parfaitement déterminables or les problèmes réels sont difficilement appréhendés par une connaissance précise des probabilités en jeu [START_REF] Utkin | New metaheuristics, neural & fuzzy techniques in reliability[END_REF]. La modélisation par un intervalle de probabilités est une alternative séduisante menant vers les travaux de Walley [START_REF] Walley | Statistical reasoning with imprecise probabilities[END_REF] sur les probabilités supérieure et inférieure ou vers la théorie des probabilités imprécises largement développée par Utkin [START_REF] Utkin | New metaheuristics, neural & fuzzy techniques in reliability[END_REF] et d'autres auteurs. Dans les études de fiabilité, il est également supposé que l'on dispose de toute l'information sur le comportement de la fiabilité du système et de ses composants. Cette complétude suppose deux conditions essentielles [START_REF] Utkin | New metaheuristics, neural & fuzzy techniques in reliability[END_REF] : Toutes les probabilités ou les distributions de probabilités sont connues et parfaitement déterminables. Les composants du système sont considérés indépendants, c'est-à-dire que toutes les variables aléatoires décrivant la fiabilité des composants sont indépendantes ou, à défaut, leur dépendance est connue précisément.

Utkin [START_REF] Utkin | New metaheuristics, neural & fuzzy techniques in reliability[END_REF] précise que la première condition est rarement remplie et préconise de traiter ce problème par les intervalles de probabilités [START_REF] Kozine | Interval valued Finite Markov Chaines[END_REF]. D'autres auteurs ont considéré le problème de précision à l'aide de densités de probabilités [START_REF] Coit | System optimization with Component Reliability estimation uncertainty : A multicriteria Approach[END_REF], d'enveloppes de probabilités [START_REF] Berleant | Bounding the times to failure of 2-component systems[END_REF], de probabilités imprécises [START_REF] Coolen | Imprecise reliability : A concise overview[END_REF], de nombres flous [START_REF] Sallak | A fuzzy probabilistic approach for determining Safety Integrity Level[END_REF], de densité de possibilités [START_REF] Brini | Réseaux possibilistes pour un modéle de recherche d'information[END_REF]) ou de fonctions de croyance [START_REF] Guo | Software Quality and Reliability Prediction Using Dempster-Shafer Theory[END_REF].

L'incertitude sur des paramètres peut avoir deux origines. La première source d'incertitude provient du caractère aléatoire de l'information qui est dû à une variabilité naturelle résultant de phénomènes stochastiques. On parle alors d'incertitudes de variabilité ou d'incertitudes stochastiques. La seconde source d'incertitude est liée au caractère imprécis et incomplet de l'information en raison d'un manque de connaissance. On parle alors d'incertitudes épistémiques.

La théorie de l'évidence, encore appelée la théorie des fonctions de croyance, est assez proche de la théorie des probabilités mais offre la possibilité de formaliser l'incertitude épistémique. Comme l'a précisé Halpern [START_REF] Halpern | Two views of belief : belief as generalized probability and belief as evidence[END_REF], une fonction de croyance peut formellement être définie comme une fonction satisfaisant des axiomes faibles de Kolmogorov qui caractérisent la théorie des probabilités. Ainsi, il semble raisonnable de considérer une fonction de croyance comme une fonction de probabilité généralisée. La théorie des fonctions de croyance permet ainsi de prendre en compte l'incertitude par l'affectation de probabilités à des ensembles plutôt qu'à des singletons.

L'objet de cet article est de formaliser les réseaux de fonctions de croyance sur la base des réseaux bayésienme pour tenir compte simultanément de l'imprécision et de l'incertitude dans l'analyse de la fiabilité et de la performance des systèmes. La section 2 de cet article fournit les éléments essentiels de la théorie de l'évidence. La section 3 développe le formalisme des réseaux de fonctions de croyance pour manipuler les probabilités imprécises et introduit la notion de fonction d'utilité. La section 4 traite de la modélisation de la fiabilité des systèmes multi-états. La section 5 est consacrée à un exemple numérique.

2. Formalisme élémentaire de la théorie de l'évidence La théorie des fonctions de croyance a été initiée par Dempster [START_REF] Dempster | Upper and Lower probabilities induced by a multivalued mapping[END_REF] avec ses travaux sur les bornes supérieures et inférieures d'une famille de distributions de probabilités puis renforcée par Shafer [START_REF] Shafer | A Mathematical Theory of Evidence[END_REF]. Sur un espace fini discret, le modèle proposé par Dempster et Shafer peut-être interprété comme une généralisation de la théorie des probabilités où les probabilités sont assignées aux ensembles par opposition aux singletons mutuellement exclusifs [START_REF] Sentz | Combination of Evidence in Dempster-Shafer Theory[END_REF]. Lorsque les informations disponibles permettent l'affectation des mesures à des événements uniques (i.e. connaissance spécifique), le modèle de Dempster-Shafer se confond avec la formulation traditionnelle des probabilités et il s'agit d'évidences dites bayésiennes [START_REF] Ouzounova | Incertitude et mesure de performance : Une nouvelle approche à travers la théorie mathématique des indications[END_REF]. La relation étroite entre ces deux modèles renforce l'intérêt de la théorie de Dempster-Shafer pour des applications initialement traitées par la théorie des probabilités.

Allocation de masses de croyance

L'idée centrale du processus d'allocation de masse de croyance est d'allouer une mesure entre 0 et 1 afin d'indiquer le degré de croyance sur un ensemble d'événements ou d'hypothèses [START_REF] Shafer | A Mathematical Theory of Evidence[END_REF]. Si nous considérons un ensemble de q éléments mutuellement exclusifs et exhaustifs Ω :

Ω = {H 1 , H 2 , ..., H q } [1]
Ω défini l'espace de raisonnement où chaque proposition H i peut supporter l'information provenant de différentes sources. Les sources d'information peuvent distribuer des masses sur les sous-ensembles du cadre de discernement, A i ∈ 2 Ω : {∅, H 1 , . . . , H q , {H 1 , H 2 }, . . . , {H1, . . . , H q }}. Une source d'information assigne une masse de croyance uniquement sur les hypothèses A i pour lesquelles elle dispose d'une information directe, i.e. qu'elle n'attribue de masse de croyance à aucun sous-ensemble des A i [START_REF] Klir | Uncertainty-based information. Elements of generalized information theory[END_REF]. Ce processus appelé allocation de masses est représenté par une fonction m définie par :

m : 2 Ω → [0, 1] et Ai∈2 Ω m (A i ) = 1
Dans cet article, nous faisons l'hypothèse d'un monde fermé, c'est-à-dire que toutes les hypothèses H i sont connues et m(∅) = 0. Chaque A i supportant 0 ≤ m (A i ) ≤ 1 est appelé un élément focal.

Mesures de croyance et de plausibilité

A partir de la distribution des masses de croyance, les bornes supérieure et inférieure d'un intervalle de probabilités peuvent être définies. Cet intervalle contient la probabilité d'un ensemble d'hypothèses ou éléments focaux et, est borné par deux mesures non-additives appelées croyance (Bel) et plausibilité (P ls) [START_REF] Klir | Fuzzy Sets and Fuzzy Logic. Theory and Applications[END_REF].

P ls (A i ) = B|Ai∩B =∅ m (B) , Bel (A i ) = B|B⊆Ai m (B) [2]
Il en résulte la propriété d'encadrement définie par l'équation suivante :

Bel (A i ) ≤ P (A i ) ≤ P ls (A i ) [3]
Où P (A i ) exprime la probabilité que A i se réalise mais qui reste inconnue et peut prendre toute valeur dans l'intervalle [Bel(A i ), P ls(A i )].

Les mesures de plausibilité et de croyance ne sont pas duales car elles ne sont pas additives (Bel (A) = P ls (A c )) où A c est le complément de A par rapport à Ω.

La différence (P ls

(A i ) -Bel (A i )) décrit l'incertitude concernant l'hypothèse A i représentée par [Bel (A i ) , P ls (A i )].
A partir des mesures de plausibilité et de croyance, il est possible d'obtenir la distribution de masses de croyance par la transformée de möbius [START_REF] Smets | The application of the matrix calculus to belief functions[END_REF] :

m (A i ) = B|B⊆Ai (-1) |Ai|-|B| Bel (B) [4]
où |A i | est le cardinal de l'ensemble A i .

Intervalles de probabilités et distribution de masses de croyance

Si l'imprécision sur une probabilité est décrite par un intervalle de probabilités. La relation avec les mesures de croyance et de plausibilité est immédiate par une simple identification :

P Hi , P Hi = [Bel({H i }), P ls({H i })]
[5] où P Hi est la probabilité inférieure de l'hypothèse H i , P Hi en est la probabilité supérieure et i allant de 1 à q le nombre total d'hypothèses. La transformation d'un ensemble d'intervalles de probabilités P H vers une distribution de masses de croyance est alors aisée par l'intermédiaire des équations 2 et 4. Si :

P H = ( P H1 , P H1 . . . P Hq , P Hq )

[6]

alors

M H = [m(∅) m({H 1 }) . . . , m({H i }) . . . m({H 1 , . . . , H q })] [7]
= [0 P H1 . . .

Hj |Hj ⊆Hi

(-1) |Hi|-|Hj | P Hj . . .]

Réseaux de fonctions de croyance

Les réseaux de fonctions de croyance proposés sont des graphes orientés sans circuit qui représentent une connaissance incertaine vue sous une forme aléatoire et épistémique [START_REF] Simon | Bayesian networks inference algorithm to implement Dempster Shafer theory in reliability analysis[END_REF]. Un réseau de fonctions de croyance est défini comme un couple : G = ((N, A) , M ), où (N, A) représente le graphe avec N l'ensemble des noeuds et A l'ensemble des arcs et, M représente l'ensemble des masses de croyance associé à chaque noeud. Lorsqu'un noeud n'est pas un noeud racine, sa distribution de masses de croyance est définie par une table de masses de croyance conditionnelles quantifiant la relation entre ce noeud et ses parents. Lorsqu'un noeud est racine, une distribution de masses de croyance a priori est définie.

Une variable aléatoire discrète X est représentée par un noeud X ∈ N avec son cadre de discernement Ω constitué de q hypothèses mutuellement exclusives et exhaustives (eq.1). Le vecteur M (X), également noté M X , est la distribution de masses de croyance sur les 2 q -1 ensembles focaux A X i . M (X) est défini par l'équation ci-dessous :

M (X) = [m(∅) m(X ⊆ A X 1 ) . . . m(X ⊆ A X i ) . . . m(X ⊆ A X 2 q )] [8] avec m(X ⊆ A X i ) ≥ 0 et A X i |A X i ∈2 Ω m X ⊆ A X i = 1
où m(X ⊆ A X i ) est la croyance que la variable X vérifie les hypothèses de l'élément focal A X i . Lorsqu'un noeud est un noeud enfant, M est représenté par une table de masses de croyance conditionnelles qui lui est propre. Chaque table de masses de croyance conditionnelles établie la relation des masses de croyance entre le cadre de discernement des variables de chaque noeud parent et celui du noeud enfant. Si on considère deux noeuds X et Y définis sur les cadres de discernement

2 ΩX : ∅, A X 1 , . . . A X M , 2 ΩY : ∅, A Y 1 , . . . A Y K et relier à un noeud Z disposant de son propre cadre de discer- nement 2 ΩZ : ∅, A Z 1 , . . . A Z L .
La table de masses de croyance conditionnelles de Z est définie par les masses de croyance conditionnelles M (Z |X, Y ) pour chaque hypothèse A Z i sachant les éléments focaux de ses parents X et Y . Pour un noeud racine, la table de masses de croyance est un vecteur représentant la distribution des masses de croyance a priori décrivant la croyance que la variable vérifie les hypothèses du cadre de discernement.

Pour calculer les distributions de masses de croyance marginales de chaque noeud, nous utilisons l'algorithme d'inférence exacte proposé par Jensen reposant sur la construction d'un arbre de jonctions (Jensen, 1996, pp. 76). Cet algorithme permet de réactualiser les distributions de masses de croyance marginales sur chaque noeud en fonction des évidences représentant les connaissances introduites dans le réseau de fonctions de croyance. Le mécanisme de calcul est basé sur le théorème de Bayes qui dans notre cas est étendu à la représentation de l'information incertaine selon le cadre de Dempster-Shafer.

Mesures de croyance et plausibilité

Pour calculer les mesures de croyance et de plausibilité dans un réseau de fonctions de croyance, il faut appliquer les équations 2. Mais, lorsque ce réseau est implémenté dans un outil vérifiant l'axiome d'additivité, l'algorithme d'inférence exacte ne permet le calcul des mesures Bel et P ls que sous la condition de séparer ce calcul pour maintenir la validité de l'axiome d'additivité. Simon et Weber [START_REF] Simon | SIL allocation of SIS by aggregation of experts opinions[END_REF] ont donc proposé le calcul de chacune de ces mesures sur un élément focal d'une variable à partir de deux noeuds adaptés.

Le noeud destiné au calcul de Bel(A X j ) est décrit par les deux hypothèses Believe et Doubt selon la table de masses de croyance conditionnelles proposée à la table 1. La structure de ces noeuds est générique. Elle est donc exploitable pour le calcul des mesures de croyance et de plausibilité de chaque noeud du réseau et pour chaque hypothèse. En outre, compte tenu de la propriété d'encadrement (eq.3), ces noeuds permettent la définition d'un intervalle de probabilités sur toute hypothèse d'une variable étudiée. 

A X j A X i ∈ 2 ΩX Bel Doubt . . . . . . . . . A X i 1 si A X j ⊆ A X i 0 sinon. 0 si A X j ⊆ A X i 1 sinon. . . . . . . . . . Tableau 1.
A X j A X i ∈ 2 ΩX P ls Disbelief . . . . . . . . . A X i 1 si A X j ∩ A X i = ∅ 0 sinon 0 si A X j ∩ A X i = ∅ 1 sinon . . . . . . . . . Tableau 2.
EU s d k = n j=1 p j k .u x j k [9] avec p j k : P (X = x j k |S d = S d k ) et u(x j k
) est l'utilité de x j k . Les fonctions d'utilité peuvent être utilisées dans les réseaux de décision [START_REF] Russell | Artificial intelligence : a modern approach, 2nd Edition[END_REF] et se combinent parfaitement avec les réseaux bayésiens (Jensen, 1996, p. 134). Pour coder la relation 9, il suffit de définir les poids u j k dans le noeud d'utilité associé à un noeud du réseau, i.e. à une variable aléatoire. L'utilisation de la fonction d'utilité dans les réseaux de fonctions de croyance relève du même principe. Toutefois, les probabilités P k sont remplacées par des mesures de croyance et de plausibilité dont nous déduisons les masses de croyance M k : {m 1 k , . . . , m j k , . . . , m 2 n k } associées. Il faut définir une utilité aux ensembles focaux du cadre de discernement lié au noeud représentant la variable étudiée, tout en respectant la logique d'attribution des utilités du cas probabiliste [START_REF] Jaffray | Linear utility theory for belief functions[END_REF]. Ainsi, la relation 9 se divise en deux équations liées à la mesure de croyance ou probabilité inférieure et la mesure de plausibilité ou probabilité supérieure :

EU s d k = 2 n j=1 m j k .u x j k avec u({x i k , x l k }) = min(u(x i k ), u(x l k )) [10] et EU s d k = 2 n l=1 m j k .u x l k avec u({x i k , x l k }) = max(u(x i k ), u(x l k )) [11]

Les systèmes multi-états

Dans de nombreux cas, le système comme ses composants peuvent fonctionner dans différents états ou modes caractérisés par différents niveaux de performance. De tels systèmes font référence à des systèmes multi-états [START_REF] Levitin | Block diagram method for analyzing multi-state systems with uncovered failures[END_REF]. Appliquée aux systèmes multi-états, une analyse de la fiabilité permet de calculer une mesure de la capacité du système à fournir un niveau de performance requis en fonction de son niveau de dégradation.

Pour analyser la fiabilité ou la performance des systèmes multi-états, il est nécessaire de connaître l'ensemble des modes de fonctionnement du système et de chacun de ses composants. Par hypothèse, le mode de fonctionnement de chaque composant est indépendant de celui des autres et le système est cohérent au sens de la fiabilité.

Considérons un système avec K + 1 modes de fonctionnement S = {s 0 , . . . , s K } et niveaux de performance U = {u 0 , . . . , u k } exprimés comme une utilité. Chaque niveau de performance u i correspond à un mode de fonctionnement s i du système. Le mode de fonctionnement s K correspond au fonctionnement normal et est associé au niveau de performance maximum u K . Le mode s 0 correspond à une défaillance totale du système, ce qui induit un niveau de performance minimum u 0 . Le système est composé de n composants C i ayant chacun K Ci + 1 modes de fonctionnement S Ci = {s Ci0 , . . . , s CiKC i }. Le mode de fonctionnement s CiKC i est le mode de fonctionnement normal du composant et le mode s Ci0 correspond à l'état de défaillance totale du composant. L'état de fonctionnement du système dépend de celui de ses composants. Ainsi, à chaque instant, le mode de fonctionnement du système multiétats peut s'écrire comme une variable aléatoire Y = {y 0 , . . . , y i , . . . , y K }. Le mode de fonctionnement de chaque composant peut également s'écrire comme une variable aléatoire X Ci = {x Ci0 , . . . , x CiK C i }. Nous pouvons alors écrire Y comme une combinaison des variables aléatoires X Ci selon la fonction de structure φ reliant l'état du système à celui de ses composants.

Y = φ(X Ci ) [12]
Le niveau de performance du système à chaque instant est alors calculé par l'espérance de l'utilité selon l'équation suivante :

U = K k=0 y k .u k [13]
L'élaboration des tables de masses de croyances conditionnelles pour les systèmes multi-états est fastidieuse en raison de la croissance exponentielle des combinaisons des cadres de discernements. En outre, la prise en compte des modes de fonctionnement multiples d'un système et de ses composants dans l'analyse de fiabilité par les réseaux de fonctions de croyance consiste à définir les tables de masses de croyance a priori et les tables de masses de croyance conditionnelles. L'aspect qualitatif du réseau modélise le mécanisme de propagation de l'impact des modes de fonctionnement, i.e. la modélisation de la fonction de structure φ sous une forme factorisée réduisant l'effort de modélisation.

Dans les systèmes multi-états, la probabilité pour chaque composant d'être dans un de ses modes de fonctionnement est donnée avec précision. Si les probabilités fournies sont entachées d'imprécision, ces probabilités peuvent être définies par des intervalles P X i , P X i où X est la variable aléatoire caractérisant le mode de fonctionnement d'un élément. Le passage des intervalles de probabilités aux distributions de masses de croyance se fait comme à la section précédente à l'aide de l'équation 8 ou du jeu d'équations 2 et 4.

Etude de cas

Cette section est dédiée à l'analyse de la méthode proposée pour le calcul de la fiabilité des systèmes. Nous étudions un système de type 2 parmi 3 avec d'une part deux états de fonctionnement et d'autre part un point de vue multi-états. Deux cas seront distingués selon que les probabilités sont précises ou non. L'inférence dans le cas des réseaux de fonctions de croyance est faite par l'algorithme d'inférence exacte programmée dans Bayesialab ©. Les réseaux de fonctions de croyance sont donc directement modélisés par cet outil en utilisant son interface graphique.

Fiabilité d'un Système 2/3

Dans un système 2/3, on considère que le système fonctionne lorsque 2 composants parmi les 3 fonctionnent. Dans un objectif de simplification et sans perte de généralité, considérons que chaque composant dispose du même taux de défaillance λ. Les évènements élémentaires qui conduisent les composants de l'état {U p} à l'état {Down} sont indépendants. Le système est homogène et aucune réparation n'est considérée. La fiabilité du système R (T i ) est donnée par l'équation suivante :

R (T i ) = n i=k C i n r (T i ) i (1 -r (T i )) n-i avec C i n = n! i!(n-i)! [14]
où r (T i ) est la probabilité pour chaque composant d'être dans l'état {U p} et T i est la durée de mission.

Si nous considérons λ = 10 -3 h -1 et T i = 200h, alors la fiabilité du système 2/3 est donnée par l'équation 14 et vaut R (T i ) = 0.9133.

Cette fiabilité peut être déterminée par le réseau de fonctions de croyance de la figure 1 transcrit dans Bayesialab©. 

Système 2 parmi 3 multi-états

Afin de montrer le fonctionnement des réseaux de fonctions de croyance pour l'étude des performances des systèmes multi-états, nous avons repris l'exemple d'un système de redondance 2 parmi 3 fourni par Gopal [START_REF] Gopal | Schur Property of the Performance Function for the Multistate Coherent System[END_REF]. Le système est composé de 3 composants disposant chacun de 3 modes de fonctionnement S Ci=1,2,3 = {s Ci0 , s Ci1 , s Ci2 }. Le système dispose également de 3 modes de fonctionnement S = {s 0 , s 1 , s 2 } associés à 3 niveaux de performance U = {u 0 , u 1 , u 2 }. La fonction de structure φ donnant la relation entre les modes de fonctionnement des composants et les modes de fonctionnement du système est donnée par la table 3 :

S C1 S C2 S C3 φ(S) S C1 S C2 S C3 φ(S) 0 0 0 s 0 1 1 2 s 1 0 0 1 s 0 1 2 0 s 1 0 0 2 s 0 1 2 1 s 1 0 1 0 s 0 1 2 2 s 2 0 1 1 s 1 2 0 0 s 0 0 1 2 s 1 2 0 1 s 1 0 2 0 s 0 2 0 2 s 2 0 2 1 s 1 2 1 0 s 1 0 2 2 s 2 2 1 1 s 1 1 0 0 s 0 2 1 2 s 2 1 0 1 s 1 2 2 0 s 2 1 0 2 s 1 2 2 1 s 2 1 1 0 s 1 2 2 2 s 2 1 1 1 s 1
Tableau 3. Fonction de structure du système 2 parmi 3 multi-états [START_REF] Gopal | Schur Property of the Performance Function for the Multistate Coherent System[END_REF] La fonction définissant la relation entre la performance du système U S et les modes de fonctionnement des composants s'exprime comme l'espérance de l'utilité (eq. 9) que l'on définit par la relation suivante :

U S = si (u i .y i ) = si u i .φ(x Ci )
où y i est la probabilité que le système soit dans le mode de fonctionnement i, x Ci est la probabilité que le composant C i soit dans le mode de fonctionnement i et φ la fonction de structure donnée par la table 3. [START_REF] Gopal | Schur Property of the Performance Function for the Multistate Coherent System[END_REF], si la répartition des modes de fonctionnement des composants est : P sC i1 = (0.6, 0.3, 0.1), P sC i2 = (0.2, 0.5, 0.3), P sC i3 = (0.4, 0.2, 0.4) alors la performance du système est de 0.822 unités. Nous constatons que le réseau de fonctions de croyance présenté à la figure 3 donne cette même valeur de l'espérance d'utilité avec des masses de croyance a priori conformes aux distributions de probabilités a priori fournies ci-dessus.

Considérons maintenant le problème de probabilités imprécises sur les états des composants. Pour exemple et sans perte de généralité, nous allons considérer que les probabilités du problème précédent sont entachées d'une incertitude de ±0.05 sur chaque terme. Nous devons donc calculer la performance telle que définie par Gopal [START_REF] Gopal | Schur Property of the Performance Function for the Multistate Coherent System[END_REF] : Comme nous pouvons le voir sur la figure 4, l'imprécision sur la probabilité des composants d'être dans chacun de leurs modes de fonctionnement se propage au travers du réseau et induit une distribution de masses de croyance mettant en évidence l'imprécision sur la probabilité du système d'être dans ses divers modes de fonctionnement. Compte tenu des performances associées, les noeuds d'utilité introduits donnent un encadrement de l'utilité réelle. Ainsi, l'utilité précise U s = 0.822, observable à la figure 3 lorsque les masses de croyance a priori ne sont affectées qu'aux ensembles focaux spécifiques, est encadrée par les utilités inférieure et supérieure [U s , U s ] = [0.688, 0.961].

U S = si=1,2,3 u i .φ(x Ci ) avec φ(x Ci

Conclusion

Les réseaux de fonctions de croyance présentent plusieurs intérêts. D'une part, ils permettent d'appréhender facilement la fonction de structure exprimant la logique de propagation des défaillances au sein d'un système ou la relation entre la performance de composants et celle du système. D'autre part, la même modélisation permet l'étude de la propagation de l'imprécision (incertitude épistémique) et l'incertitude (aléatoire). L'integration des fonctions d'utilité imprécises permet l'étude de la fiabilité comme celle de la performance de systèmes complexes et/ou de grande taille. Cette caractéristique des réseaux de fonctions de croyance ouvre des possibilités significatives dans les problèmes de modélisation de paramètres de sûreté de fonctionnement et plus généralement de la modélisation de connaissance.

Figure 1 .

 1 Figure 1. Fiabilité d'un système 2 parmi 3 avec des probabilités précises La probabilité pour que chaque composant C i soit dans l'état {U p} est donnée par : P Ci ({U p}) = 0.81873. La distribution de masses de croyance a priori du noeud C i est : M Ci = [m ({U p}) m ({Down}) m ({U p, Down})] = [0.8187 0.18127 0] N'ayant pas d'imprécision sur la valeur de λ, le problème est complètement bayésien et nous constatons sur la figure 1 que Bel(KN = {U p}) = P ls(KN = {U p}) = 0.9133. Considérons maintenant que le taux de défaillance des composants ne soit pas connu avec précision mais sous forme d'un intervalle : λ, λ = 0.9e -3 , 1.1e -3 . La distribution de masses de croyance a priori explicitant l'état de chaque composant au temps de mission T i = 200h est obtenu par les équations 2 et 4 : M C = [m ({U p}) m ({Down}) m ({U p, Down})] = [0.80252 0.16473 0.03275]

Figure 2 .

 2 Figure 2. Fiabilité imprécise d'un système 2/3

Figure 3 .

 3 Figure3. Réseau de fonctions de croyance solution de[START_REF] Gopal | Schur Property of the Performance Function for the Multistate Coherent System[END_REF] 

  ) = φ(([0.55 0.65] , [0.25 0.35] , [0.05 0.15]), ([0.15 0.25] , [0.45 0.55] , [0.25 0.35]), ([0.35 0.45] , [0.15 0.25] , [0.35 0.45])))Le réseau de fonctions de croyance de la figure4modèlise le problème de probabilités imprécises et permet le calcul de la performance du système avec son imprécision.

Figure 4 .

 4 Figure 4. RFC d'évaluation de la performance du système multi-états (Gopal, 2002) avec son imprécision Les noeuds de calcul des fonctions Bel et P ls sur les modes de fonctionnement s 1 et s 2 du système ont été ajoutés pour montrer que la propriété d'encadrement sur les valeurs de probabilités dans le cas précis reste valide. La fonction d'utilité intégrée dans le réseau de fonction de croyance à la figure 3 est maintenant divisée en deux fonctions d'utilité calculant les bornes supérieure U S et inférieure U S selon la table5à l'utilité du système conformément à l'analyse de la section 3.2.Ensembles focaux utilitéu utilité u s 2 2 2 s 1 1 1 s 0 0 0 s 2 , s 1 1 2 s 2 , s 0 0 2 s 1 , s 0 0 1 s 2 , s 1 , s 0 0 2Tableau 5. Utilités U S , U S

  Table de masses de croyance conditionnelles du noeud Bel(A X j ) Le noeud destiné au calcul de P ls(A X j ) est décrit par les hypothèses P lausibility et Disbelief selon la table 2.

  Table de masses de croyance conditionnelles du noeud P ls(A X j ) 3.2. Intégration des fonctions d'utilité dans les réseaux de fonctions de croyance Dans certains problèmes, une mesure de satisfaction d'un besoin ou d'obtention d'un service est recherchée. La notion d'utilité permet cette mesure. Ainsi, pour l'évaluation de performances à l'aide des réseaux de fonctions de croyance, il est nécessaire d'introduire la notion d'utilité.

Si nous associons des conséquences X : {x 1 k , . . . , x j k , . . . , x n k } à chaque décision S d : {s d 1 , . . . , s d k , . . . , s d K } pouvant prendre K états et des probabilités P k : {p 1 k , . . . , p j k , . . . , p n k } à chaque conséquence, le décideur choisit l'état de la décision s d k qui maximise l'espérance de l'utilité EU (s d k ) calculée par la relation suivante (von Neumann et al., 1944) :
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